1
|
Appelman MD, van der Veen SW, van Mil SWC. Post-Translational Modifications of FXR; Implications for Cholestasis and Obesity-Related Disorders. Front Endocrinol (Lausanne) 2021; 12:729828. [PMID: 34646233 PMCID: PMC8503269 DOI: 10.3389/fendo.2021.729828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The Farnesoid X receptor (FXR) is a nuclear receptor which is activated by bile acids. Bile acids function in solubilization of dietary fats and vitamins in the intestine. In addition, bile acids have been increasingly recognized to act as signaling molecules involved in energy metabolism pathways, amongst others via activating FXR. Upon activation by bile acids, FXR controls the expression of many genes involved in bile acid, lipid, glucose and amino acid metabolism. An inability to properly use and store energy substrates may predispose to metabolic disorders, such as obesity, diabetes, cholestasis and non-alcoholic fatty liver disease. These diseases arise through a complex interplay between genetics, environment and nutrition. Due to its function in metabolism, FXR is an attractive treatment target for these disorders. The regulation of FXR expression and activity occurs both at the transcriptional and at the post-transcriptional level. It has been shown that FXR can be phosphorylated, SUMOylated and acetylated, amongst other modifications, and that these modifications have functional consequences for DNA and ligand binding, heterodimerization and subcellular localization of FXR. In addition, these post-translational modifications may selectively increase or decrease transcription of certain target genes. In this review, we provide an overview of the posttranslational modifications of FXR and discuss their potential involvement in cholestatic and metabolic disorders.
Collapse
|
2
|
Sahu G, Farley K, El-Hage N, Aiamkitsumrit B, Fassnacht R, Kashanchi F, Ochem A, Simon GL, Karn J, Hauser KF, Tyagi M. Cocaine promotes both initiation and elongation phase of HIV-1 transcription by activating NF-κB and MSK1 and inducing selective epigenetic modifications at HIV-1 LTR. Virology 2015; 483:185-202. [PMID: 25980739 DOI: 10.1016/j.virol.2015.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
Cocaine accelerates human immunodeficiency virus (HIV-1) replication by altering specific cell-signaling and epigenetic pathways. We have elucidated the underlying molecular mechanisms through which cocaine exerts its effect in myeloid cells, a major target of HIV-1 in central nervous system (CNS). We demonstrate that cocaine treatment promotes HIV-1 gene expression by activating both nuclear factor-kappa B (NF-ĸB) and mitogen- and stress-activated kinase 1 (MSK1). MSK1 subsequently catalyzes the phosphorylation of histone H3 at serine 10, and p65 subunit of NF-ĸB at 276th serine residue. These modifications enhance the interaction of NF-ĸB with P300 and promote the recruitment of the positive transcription elongation factor b (P-TEFb) to the HIV-1 LTR, supporting the development of an open/relaxed chromatin configuration, and facilitating the initiation and elongation phases of HIV-1 transcription. Results are also confirmed in primary monocyte derived macrophages (MDM). Overall, our study provides detailed insights into cocaine-driven HIV-1 transcription and replication.
Collapse
Affiliation(s)
- Geetaram Sahu
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Kalamo Farley
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Nazira El-Hage
- Virginia Commonwealth University, Richmond, VA, United States
| | - Benjamas Aiamkitsumrit
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Ryan Fassnacht
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | | | - Alex Ochem
- ICGEB, Wernher and Beit Building, Anzio Road, Observatory, 7925 Cape Town, South Africa
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States
| | - Jonathan Karn
- Case Western Reserve University, Cleveland, OH, United States
| | - Kurt F Hauser
- Virginia Commonwealth University, Richmond, VA, United States
| | - Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, George Washington University, Washington, DC, United States; Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037, United States.
| |
Collapse
|
3
|
Yang L, Huang K, Li X, Du M, Kang X, Luo X, Gao L, Wang C, Zhang Y, Zhang C, Tong Q, Huang K, Zhang F, Huang D. Identification of poly(ADP-ribose) polymerase-1 as a cell cycle regulator through modulating Sp1 mediated transcription in human hepatoma cells. PLoS One 2013; 8:e82872. [PMID: 24367566 PMCID: PMC3868549 DOI: 10.1371/journal.pone.0082872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022] Open
Abstract
The transcription factor Sp1 is implicated in the activation of G0/G1 phase genes. Modulation of Sp1 transcription activities may affect G1-S checkpoint, resulting in changes in cell proliferation. In this study, our results demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP-1) promoted cell proliferation by inhibiting Sp1 signaling pathway. Cell proliferation and cell cycle assays demonstrated that PARP inhibitors or PARP-1 siRNA treatment significantly inhibited proliferation of hepatoma cells and induced G0/G1 cell cycle arrest in hepatoma cells, while overexpression of PARP-1 or PARP-1 activator treatment promoted cell cycle progression. Simultaneously, inhibition of PARP-1 enhanced the expression of Sp1-mediated checkpoint proteins, such as p21 and p27. In this study, we also showed that Sp1 was poly(ADP-ribosyl)ated by PARP-1 in hepatoma cells. Poly(ADP-ribosyl)ation suppressed Sp1 mediated transcription through preventing Sp1 binding to the Sp1 response element present in the promoters of target genes. Taken together, these data indicated that PARP-1 inhibition attenuated the poly(ADP-ribosyl)ation of Sp1 and significantly increased the expression of Sp1 target genes, resulting in G0/G1 cell cycle arrest and the decreased proliferative ability of the hepatoma cells.
Collapse
Affiliation(s)
- Liu Yang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrao Li
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Du
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Kang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangsong Tong
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Poly(ADP-ribose) polymerase 1 promotes oxidative-stress-induced liver cell death via suppressing farnesoid X receptor α. Mol Cell Biol 2013; 33:4492-503. [PMID: 24043304 DOI: 10.1128/mcb.00160-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Farnesoid X receptor α (FXR) is highly expressed in the liver and regulates the expression of various genes involved in liver repair. In this study, we demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP1) promoted hepatic cell death by inhibiting the expression of FXR-dependent hepatoprotective genes. PARP1 could bind to and poly(ADP-ribosyl)ate FXR. Poly(ADP-ribosyl)ation dissociated FXR from the FXR response element (FXRE), present in the promoters of target genes, and suppressed FXR-mediated gene transcription. Moreover, treatment with a FXR agonist attenuated poly(ADP-ribosyl)ation of FXR and promoted FXR-dependent gene expression. We further established the CCl4-induced acute liver injury model in wild-type and FXR-knockout mice and identified an essential role of FXR poly(ADP-ribosyl)ation in CCl4-induced liver injury. Thus, our results identified poly(ADP-ribosyl)ation of FXR by PARP1 as a key step in oxidative-stress-induced hepatic cell death. The molecular association between PARP1 and FXR provides new insight into the mechanism, suggesting that inhibition of PARP1 could prevent liver injury.
Collapse
|
5
|
Zhang F, Wang Y, Wang L, Luo X, Huang K, Wang C, Du M, Liu F, Luo T, Huang D, Huang K. Poly(ADP-ribose) polymerase 1 is a key regulator of estrogen receptor α-dependent gene transcription. J Biol Chem 2013; 288:11348-57. [PMID: 23493398 DOI: 10.1074/jbc.m112.429134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Activation of nuclear receptor estrogen receptor α (ERα) exerts cardiovascular protective effects by modulating the expression of ERα target genes. However, the underlying mechanism remains unclear. PARP1 is a ubiquitous multifunctional nuclear enzyme. In this study, we examined the interplay between PARP1 and ERα, and identified PARP1 as an important regulator of ERα-dependent transcription. We showed that PARP1 could directly bind to ERα, and ERα could be poly(ADP-ribosyl)ated by PARP1. Poly(ADP-ribosyl)ation increased ERα binding to estrogen response element (ERE) present in the promoter of target genes and promoted ERα-mediated gene transcription. Estradiol, the ligand of ERα, increased PARP enzymatic activity and enhanced poly(ADP-ribosyl)ation of ERα. Upon treatment with estradiol, ERα binding to ERE- and ERα-dependent gene expression was dramatically increased in cultured vascular smooth muscle cells (VSMCs). Inhibition of PARP1 by PARP inhibitor or PARP1 siRNA decreased ERα binding to ERE and prevented ERα-dependent gene transcription in VSMCs. Further studies revealed that PARP1 served as an indispensible component for the formation of the ERα-ERE complex by directly interacting with ERα. Thus, our results identify PARP1 as a key regulator of ERα in controlling ERα transactivation.
Collapse
Affiliation(s)
- Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Wuhan, China 430022
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Bladder cancer (BC) is the second most common malignancy of the genitourinary tract and the second leading cause of cancer death in patients with urinary tract malignancies. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Aberrant epigenetic events such as DNA hypermethylation and altered histone acetylation have both been observed in bladder cancer, in which they affect a large number of genes. Although the list of aberrantly epigenetically regulated genes continues to grow, combination analysis including several candidate genes has given promising results of potential tumor biomarkers for the early diagnosis and risk assessment of bladder cancer. Thus, large-scale screening of aberrant epigenetic events such as DNA hypermethylation is needed to identify bladder cancer-specific epigenetic fingerprints. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to the reactivation of silenced genes. In this review, we examine the current literature on epigenetic changes in bladder cancer and discuss the clinical potential of cancer epigenetics for the diagnosis and treatment of this disease.
Collapse
|
7
|
Higashimoto K, Kuhn P, Desai D, Cheng X, Xu W. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc Natl Acad Sci U S A 2007; 104:12318-23. [PMID: 17640894 PMCID: PMC1941467 DOI: 10.1073/pnas.0610792104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Multiple protein arginine methyltransferases are involved in transcriptional activation of nuclear receptors. Coactivator-associated arginine methyltransferase 1 (CARM1)-mediated histone methylation has been shown to activate nuclear receptor-dependent transcription; however, little is known about the regulation of its enzymatic activity. Here, we report that the methyltransferase activity of CARM1 is negatively regulated through phosphorylation at a conserved serine residue. When the serine residue is mutated to glutamic acid, which mimics the phosphorylated serine residue, the mutant CARM1 exhibits diminished ability to bind the methyl donor adenosylmethionine and diminished histone methylation activity. Moreover, such mutation leads to the inhibition of CARM1 transactivation of estrogen receptor-dependent transcription. Our results provide an example for the regulation of protein arginine methyltransferase activity by phosphorylation. As CARM1 is a potent transcriptional coactivator of estrogen receptor, our results suggest that phosphorylation of CARM1 serves as a unique mechanism for inactivating CARM1-regulated estrogen-dependent gene expression.
Collapse
Affiliation(s)
- Ken Higashimoto
- *McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706; and
| | - Peter Kuhn
- *McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706; and
| | - Dhaval Desai
- *McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706; and
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Wei Xu
- *McArdle Laboratory for Cancer Research, University of Wisconsin, 1400 University Avenue, Madison, WI 53706; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Logan IR, Gaughan L, McCracken SRC, Sapountzi V, Leung HY, Robson CN. Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer. Mol Cell Biol 2006; 26:6502-10. [PMID: 16914734 PMCID: PMC1592843 DOI: 10.1128/mcb.00147-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 03/14/2006] [Accepted: 06/14/2006] [Indexed: 12/23/2022] Open
Abstract
The androgen receptor (AR) is a hormone-dependent transcription factor critically involved in human prostate carcinogenesis. Optimal transcriptional control of androgen-responsive genes by AR may require complex interaction among multiple coregulatory proteins. We have previously shown that the AR coregulator TIP60 can interact with human PIRH2 (hPIRH2). In this study, we uncover important new functional role(s) for hPIRH2 in AR signaling: (i) hPIRH2 interacts with AR and enhances AR-mediated transcription with a dynamic pattern of recruitment to androgen response elements in the prostate-specific antigen (PSA) gene; (ii) hPIRH2 interacts with the AR corepressor HDAC1, leading to reduced HDAC1 protein levels and inhibition of transcriptional repression; (iii) hPIRH2 is required for optimal PSA expression; and (iv) hPIRH2 is involved in prostate cancer cell proliferation. In addition, overexpression of hPIRH2 protein was detected in 73 of 82 (89%) resected prostate cancers, with a strong correlation between increased hPIRH2 expression and aggressive disease, as signified by high Gleason sum scores and the presence of metastatic disease (P = <0.0001 and 0.0004, respectively). Collectively, our data establish hPIRH2 as a key modulator of AR function, opening a new direction for targeted therapy in aggressive human prostate cancer.
Collapse
Affiliation(s)
- Ian R Logan
- University of Newcastle Upon Tyne, Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle Upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
9
|
Passeri D, Marcucci A, Rizzo G, Billi M, Panigada M, Leonardi L, Tirone F, Grignani F. Btg2 enhances retinoic acid-induced differentiation by modulating histone H4 methylation and acetylation. Mol Cell Biol 2006; 26:5023-32. [PMID: 16782888 PMCID: PMC1489145 DOI: 10.1128/mcb.01360-05] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retinoic acid controls hematopoietic differentiation through the transcription factor activity of its receptors. They act on specific target genes by recruiting protein complexes that deacetylate or acetylate histones and modify chromatin status. The regulation of this process is affected by histone methyltransferases, which can inhibit or activate transcription depending on their amino acid target. We show here that retinoic acid treatment of hematopoietic cells induces the expression of BTG2. Overexpression of this protein increases RARalpha transcriptional activity and the differentiation response to retinoic acid of myeloid leukemia cells and CD34+ hematopoietic progenitors. In the absence of retinoic acid, BTG2 is present in the RARalpha transcriptional complex, together with the arginine methyltransferase PRMT1 and Sin3A. Overexpressed BTG2 increases PRMT1 participation in the RARalpha protein complex on the RARbeta promoter, a target gene model, and enhances gene-specific histone H4 arginine methylation. Upon RA treatment Sin3A, BTG2, and PRMT1 detach from RARalpha and thereafter BGT2 and PRMT1 are driven to the cytoplasm. These events prime histone H4 demethylation and acetylation. Overall, our data show that BTG2 contributes to retinoic acid activity by favoring differentiation through a gene-specific modification of histone H4 arginine methylation and acetylation levels.
Collapse
Affiliation(s)
- Daniela Passeri
- Patologia Generale and Medicina Interna e Scienze Oncologiche, Dipartimento di Medicina Clinica e Sperimentale, Perugia University, Policlinico Monteluce, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Li LC, Carroll PR, Dahiya R. Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 2005; 97:103-15. [PMID: 15657340 DOI: 10.1093/jnci/dji010] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Prostate cancer is the most common noncutaneous malignancy and the second leading cause of cancer death among men in the United States. DNA methylation and histone modifications are important epigenetic mechanisms of gene regulation and play essential roles both independently and cooperatively in tumor initiation and progression. Aberrant epigenetic events such as DNA hypo- and hypermethylation and altered histone acetylation have both been observed in prostate cancer, in which they affect a large number of genes. Although the list of aberrantly epigenetically regulated genes continues to grow, only a few genes have, so far, given promising results as potential tumor biomarkers for early diagnosis and risk assessment of prostate cancer. Thus, large-scale screening of aberrant epigenetic events such as DNA hypermethylation is needed to identify prostate cancer-specific epigenetic fingerprints. The reversibility of epigenetic aberrations has made them attractive targets for cancer treatment with modulators that demethylate DNA and inhibit histone deacetylases, leading to reactivation of silenced genes. More studies into the mechanism and consequence of demethylation are required before the cancer epigenome can be safely manipulated with therapeutics as a treatment modality. In this review, we examine the current literature on epigenetic changes in prostate cancer and discuss the clinical potential of cancer epigenetics for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Long-Cheng Li
- Department of Urology, Veterans Affairs Medical Center, and University of California San Francisco, 94121, USA
| | | | | |
Collapse
|
11
|
Boulanger MC, Liang C, Russell RS, Lin R, Bedford MT, Wainberg MA, Richard S. Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J Virol 2005; 79:124-31. [PMID: 15596808 PMCID: PMC538702 DOI: 10.1128/jvi.79.1.124-131.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) transactivator protein, Tat, stimulates transcription from the viral long terminal repeats via an arginine-rich transactivating domain. Since arginines are often known to be methylated, we investigated whether HIV type 1 (HIV-1) Tat was a substrate for known protein arginine methyltransferases (PRMTs). Here we identify Tat as a substrate for the arginine methyltransferase, PRMT6. Tat is specifically associated with and methylated by PRMT6 within cells. Overexpression of wild-type PRMT6, but not a methylase-inactive PRMT6 mutant, decreased Tat transactivation of an HIV-1 long terminal repeat luciferase reporter plasmid in a dose-dependent manner. Knocking down PRMT6 consistently increased HIV-1 production in HEK293T cells and also led to increased viral infectiousness as shown in multinuclear activation of a galactosidase indicator assays. Our study demonstrates that arginine methylation of Tat negatively regulates its transactivation activity and that PRMT6 acts as a restriction factor for HIV replication.
Collapse
Affiliation(s)
- Marie-Chloé Boulanger
- Terry Fox Molecular Oncology Group, Lady Davis Institute, Sir Mortimer B. Davis Jewish General Hospital, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
12
|
Li YJ, Stallcup MR, Lai MMC. Hepatitis delta virus antigen is methylated at arginine residues, and methylation regulates subcellular localization and RNA replication. J Virol 2004; 78:13325-34. [PMID: 15542683 PMCID: PMC524986 DOI: 10.1128/jvi.78.23.13325-13334.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.
Collapse
Affiliation(s)
- Yi-Jia Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033-1054, USA
| | | | | |
Collapse
|