1
|
Pareja Tello R, Lamparelli EP, Ciardulli MC, Hirvonen J, Barreto G, Mafulli N, Della Porta G, Santos HA. Hybrid lipid nanoparticles derived from human mesenchymal stem cell extracellular vesicles by microfluidic sonication for collagen I mRNA delivery to human tendon progenitor stem cells. Biomater Sci 2025; 13:2066-2081. [PMID: 40033856 DOI: 10.1039/d4bm01405g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Tendon degeneration remains an intricate pathological process characterized by the coexistence of multiple dysregulated homeostasis processes, including the increase in collagen III production in comparison with collagen I. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) remain a promising therapeutic tool thanks to their pro-regenerative properties and applicability as drug delivery systems, despite their drug loading limitations. Herein, we developed MSC-EV-derived hybrid lipid nanoparticles (MSC-Hyb NPs) using a microfluidic-sonication technique as an alternative platform for the delivery of collagen type I (COL 1A1) mRNA into pathological TSPCs. The MSC-Hyb NPs produced had LNP-like physicochemical characteristics and were 178.6 nm in size with a PDI value of 0.245. Moreover, MSC-Hyb NPs encapsulated mRNA and included EV-derived surface proteins such as CD63, CD81 and CD144. MSC-Hyb NPs remained highly biocompatible with TSPCs and proved to be functional mRNA delivery agents with certain limitations in comparison with lipid nanoparticles (LNPs). In vitro efficacy studies on TSPCs showed a 2-fold increase in procollagen type I carboxy-terminal peptide production comparable with the effect caused by LNPs. Therefore, our work provides an alternative production method for MSC-EV-derived hybrid NPs and supports their potential use as drug delivery systems for tendon regeneration.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Erwin Pavel Lamparelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280 Helsinki, Finland
| | - Nicola Mafulli
- Department of Trauma and Orthopaedics, Faculty of Medicine and Psychology, Sant' Andrea Hospital, Sapienza University, 00189 Rome, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy.
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, SA, Italy
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
2
|
Wang S, Ma C. A practical guide for fast implementation of SNARE-mediated liposome fusion. BIOPHYSICS REPORTS 2024; 10:31-40. [PMID: 38737475 PMCID: PMC11079601 DOI: 10.52601/bpr.2023.230017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 05/14/2024] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNAER) family proteins are the engines of most intra-cellular and exocytotic membrane fusion pathways (Jahn and Scheller 2006). Over the past two decades, in-vitro liposome fusion has been proven to be a powerful tool to reconstruct physiological SNARE-mediated membrane fusion processes (Liu et al. 2017). The reconstitution of the membrane fusion process not only provides direct evidence of the capability of the cognate SNARE complex in driving membrane fusion but also allows researchers to study the functional mechanisms of regulatory proteins in related pathways (Wickner and Rizo 2017). Heretofore, a variety of delicate methods for in-vitro SNARE-mediated liposome fusion have been established (Bao et al. 2018; Diao et al. 2012; Duzgunes 2003; Gong et al. 2015; Heo et al. 2021; Kiessling et al. 2015; Kreye et al. 2008; Kyoung et al. 2013; Liu et al. 2017; Scott et al. 2003). Although technological advances have made reconstitution more physiologically relevant, increasingly elaborate experimental procedures, instruments, and data processing algorithms nevertheless hinder the non-experts from setting up basic SNARE-mediated liposome fusion assays. Here, we describe a low-cost, timesaving, and easy-to-handle protocol to set up a foundational in-vitro SNARE-mediated liposome fusion assay based on our previous publications (Liu et al. 2023; Wang and Ma 2022). The protocol can be readily adapted to assess various types of SNARE-mediated membrane fusion and the actions of fusion regulators by using appropriate alternative additives (e.g., proteins, macromolecules, chemicals, etc.). The total time required for one round of the assay is typically two days and could be extremely compressed into one day.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Abla KK, Mehanna MM. Lipid-based nanocarriers challenging the ocular biological barriers: Current paradigm and future perspectives. J Control Release 2023; 362:70-96. [PMID: 37591463 DOI: 10.1016/j.jconrel.2023.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Eye is the most specialized and sensory body organ and treating eye diseases efficiently is necessary. Despite various attempts, the design of a consummate ophthalmic drug delivery system remains unsolved because of anatomical and physiological barriers that hinder drug transport into the desired ocular tissues. It is important to advance new platforms to manage ocular disorders, whether they exist in the anterior or posterior cavities. Nanotechnology has piqued the interest of formulation scientists because of its capability to augment ocular bioavailability, control drug release, and minimize inefficacious drug absorption, with special attention to lipid-based nanocarriers (LBNs) because of their cellular safety profiles. LBNs have greatly improved medication availability at the targeted ocular site in the required concentration while causing minimal adverse effects on the eye tissues. Nevertheless, the exact mechanisms by which lipid-based nanocarriers can bypass different ocular barriers are still unclear and have not been discussed. Thus, to bridge this gap, the current work aims to highlight the applications of LBNs in the ocular drug delivery exploring the different ocular barriers and the mechanisms viz. adhesion, fusion, endocytosis, and lipid exchange, through which these platforms can overcome the barrier characteristics challenges.
Collapse
Affiliation(s)
- Kawthar K Abla
- Pharmaceutical Nanotechnology Research lab, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Mohammed M Mehanna
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
4
|
Nishad R, Betancourt-Solis M, Dey H, Heidelberger R, McNew JA. Regulation of Syntaxin3B-Mediated Membrane Fusion by T14, Munc18, and Complexin. Biomolecules 2023; 13:1463. [PMID: 37892145 PMCID: PMC10604575 DOI: 10.3390/biom13101463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Retinal neurons that form ribbon-style synapses operate over a wide dynamic range, continuously relaying visual information to their downstream targets. The remarkable signaling abilities of these neurons are supported by specialized presynaptic machinery, one component of which is syntaxin3B. Syntaxin3B is an essential t-SNARE protein of photoreceptors and bipolar cells that is required for neurotransmitter release. It has a light-regulated phosphorylation site in its N-terminal domain at T14 that has been proposed to modulate membrane fusion. However, a direct test of the latter has been lacking. Using a well-controlled in vitro fusion assay, we found that a phosphomimetic T14 syntaxin3B mutation leads to a small but significant enhancement of SNARE-mediated membrane fusion following the formation of the t-SNARE complex. While the addition of Munc18a had only a minimal effect on membrane fusion mediated by SNARE complexes containing wild-type syntaxin3B, a more significant enhancement was observed in the presence of Munc18a when the SNARE complexes contained a syntaxin3B T14 phosphomimetic mutant. Finally, we showed that the retinal-specific complexins (Cpx III and Cpx IV) inhibited membrane fusion mediated by syntaxin3B-containing SNARE complexes in a dose-dependent manner. Collectively, our results establish that membrane fusion mediated by syntaxin3B-containing SNARE complexes is regulated by the T14 residue of syntaxin3B, Munc18a, and Cpxs III and IV.
Collapse
Affiliation(s)
- Rajkishor Nishad
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
| | - Miguel Betancourt-Solis
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
- Lonza Biologics, 14905 Kirby Dr, Houston, TX 77047, USA
| | - Himani Dey
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center, Houston (UTHealth Houston), 6431 Fannin Street, Houston, TX 77030, USA;
| | - Ruth Heidelberger
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center, Houston (UTHealth Houston), 6431 Fannin Street, Houston, TX 77030, USA;
| | - James A. McNew
- Department of BioSciences, Rice University, 6500 Main Street, MS 601, Houston, TX 77005, USA;
| |
Collapse
|
5
|
Niort K, Dancourt J, Boedec E, Al Amir Dache Z, Lavieu G, Tareste D. Cholesterol and Ceramide Facilitate Membrane Fusion Mediated by the Fusion Peptide of the SARS-CoV-2 Spike Protein. ACS OMEGA 2023; 8:32729-32739. [PMID: 37720777 PMCID: PMC10500581 DOI: 10.1021/acsomega.3c03610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023]
Abstract
SARS-CoV-2 entry into host cells is mediated by the Spike (S) protein of the viral envelope. The S protein is composed of two subunits: S1 that induces binding to the host cell via its interaction with the ACE2 receptor of the cell surface and S2 that triggers fusion between viral and cellular membranes. Fusion by S2 depends on its heptad repeat domains that bring membranes close together and its fusion peptide (FP) that interacts with and perturbs the membrane structure to trigger fusion. Recent studies have suggested that cholesterol and ceramide lipids from the cell surface may facilitate SARS-CoV-2 entry into host cells, but their exact mode of action remains unknown. We have used a combination of in vitro liposome-liposome and in situ cell-cell fusion assays to study the lipid determinants of S-mediated membrane fusion. Our findings reveal that both cholesterol and ceramide lipids facilitate fusion, suggesting that targeting these lipids could be effective against SARS-CoV-2. As a proof of concept, we examined the effect of chlorpromazine (CPZ), an antipsychotic drug known to perturb membrane structure. Our results show that CPZ effectively inhibits S-mediated membrane fusion, thereby potentially impeding SARS-CoV-2 entry into the host cell.
Collapse
Affiliation(s)
- Kristina Niort
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Julia Dancourt
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Erwan Boedec
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| | - Zahra Al Amir Dache
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - Grégory Lavieu
- Université
Paris Cité, Inserm U 1316, CNRS UMR 7057, Laboratoire Matières
et Systèmes Complexes (MSC), Paris 75006, France
| | - David Tareste
- Université
Paris Cité, Inserm UMR-S 1266, Institute of Psychiatry and
Neuroscience of Paris (IPNP), Paris 75014, France
| |
Collapse
|
6
|
Vlieghe A, Niort K, Fumat H, Guigner JM, Cohen MM, Tareste D. Role of Lipids and Divalent Cations in Membrane Fusion Mediated by the Heptad Repeat Domain 1 of Mitofusin. Biomolecules 2023; 13:1341. [PMID: 37759741 PMCID: PMC10527301 DOI: 10.3390/biom13091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria are highly dynamic organelles that constantly undergo fusion and fission events to maintain their shape, distribution and cellular function. Mitofusin 1 and 2 proteins are two dynamin-like GTPases involved in the fusion of outer mitochondrial membranes (OMM). Mitofusins are anchored to the OMM through their transmembrane domain and possess two heptad repeat domains (HR1 and HR2) in addition to their N-terminal GTPase domain. The HR1 domain was found to induce fusion via its amphipathic helix, which interacts with the lipid bilayer structure. The lipid composition of mitochondrial membranes can also impact fusion. However, the precise mode of action of lipids in mitochondrial fusion is not fully understood. In this study, we examined the role of the mitochondrial lipids phosphatidylethanolamine (PE), cardiolipin (CL) and phosphatidic acid (PA) in membrane fusion induced by the HR1 domain, both in the presence and absence of divalent cations (Ca2+ or Mg2+). Our results showed that PE, as well as PA in the presence of Ca2+, effectively stimulated HR1-mediated fusion, while CL had a slight inhibitory effect. By considering the biophysical properties of these lipids in the absence or presence of divalent cations, we inferred that the interplay between divalent cations and specific cone-shaped lipids creates regions with packing defects in the membrane, which provides a favorable environment for the amphipathic helix of HR1 to bind to the membrane and initiate fusion.
Collapse
Affiliation(s)
- Anaïs Vlieghe
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Kristina Niort
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Hugo Fumat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| | - Jean-Michel Guigner
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), CNRS UMR 7590, MNHN, IRD UR 206, 75005 Paris, France
| | - Mickaël M. Cohen
- Sorbonne Université, Institut de Biologie Physico-Chimique (IBPC), CNRS UMR 8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, 75005 Paris, France
| | - David Tareste
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm UMR-S 1266, Team Membrane Traffic in Healthy & Diseased Brain, 75014 Paris, France
| |
Collapse
|
7
|
Zhang Z, Feng Z, Zhao X, Jean D, Yu Z, Chapman ER. Functionalization and higher-order organization of liposomes with DNA nanostructures. Nat Commun 2023; 14:5256. [PMID: 37644062 PMCID: PMC10465589 DOI: 10.1038/s41467-023-41013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
Small unilamellar vesicles (SUVs) are indispensable model membranes, organelle mimics, and drug and vaccine carriers. However, the lack of robust techniques to functionalize or organize preformed SUVs limits their applications. Here we use DNA nanostructures to coat, cluster, and pattern sub-100-nm liposomes, generating distance-controlled vesicle networks, strings and dimers, among other configurations. The DNA coating also enables attachment of proteins to liposomes, and temporal control of membrane fusion driven by SNARE protein complexes. Such a convenient and versatile method of engineering premade vesicles both structurally and functionally is highly relevant to bottom-up biology and targeted delivery.
Collapse
Affiliation(s)
- Zhao Zhang
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Zhaomeng Feng
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiaowei Zhao
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Dominique Jean
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, CryoEM Shared Resource, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute, Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Moholkar DN, Kandimalla R, Gupta RC, Aqil F. Advances in lipid-based carriers for cancer therapeutics: Liposomes, exosomes and hybrid exosomes. Cancer Lett 2023; 565:216220. [PMID: 37209944 PMCID: PMC10325927 DOI: 10.1016/j.canlet.2023.216220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
Cancer has recently surpassed heart disease as the leading cause of deaths worldwide for the age group 45-65 and has been the primary focus for biomedical researchers. Presently, the drugs involved in the first-line cancer therapy are raising concerns due to high toxicity and lack of selectivity to cancer cells. There has been a significant increase in research with innovative nano formulations to entrap the therapeutic payload to enhance efficacy and eliminate or minimize toxic effects. Lipid-based carriers stand out due to their unique structural properties and biocompatible nature. The two main leaders of lipid-based drug carriers: long known liposomes and comparatively new exosomes have been well-researched. The similarity between the two lipid-based carriers is the vesicular structure with the core's capability to carry the payload. While liposomes utilize chemically derived and altered phospholipid components, the exosomes are naturally occurring vesicles with inherent lipids, proteins, and nucleic acids. More recently, researchers have focused on developing hybrid exosomes by fusing liposomes and exosomes. Combining these two types of vesicles may offer some advantages such as high drug loading, targeted cellular uptake, biocompatibility, controlled release, stability in harsh conditions and low immunogenicity.
Collapse
Affiliation(s)
- Disha N Moholkar
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Raghuram Kandimalla
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA.
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
9
|
Marie R, Rasmussen MK, Pedersen JN. Quantifying DNA-mediated liposome fusion kinetics with a fluidic trap. SOFT MATTER 2023; 19:2815-2822. [PMID: 37000534 DOI: 10.1039/d2sm01658c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Self-assembly of synthetic lipid vesicles via lipid membrane fusion is a versatile tool for creating biomimetic nano- and micron-sized particles. These so-called liposomes are used in the development of biosensing platforms, design of drug delivery schemes, and for investigating protein-mediated fusion of biological membranes. This work demonstrates DNA-induced liposome fusion in a nanofluidic trap where the reaction occurs in a 15 femtoliter volume at homogeneous mixing. In contrast to current methods for fusion in bulk, we show that the fusion reaction follows second-order kinetics with a fusion rate of (170 ± 30)/(M-1s-1) times the square number of DNA molecules per liposome. The nanofluidic trapping gives a full characterization of the size and charge of the liposomes before and after fusion. The chip-based approach limits the amount of sample (down to 440 vesicles) and can be parallelized for systematic studies in synthetic biology, diagnostics, and drug delivery.
Collapse
Affiliation(s)
- Rodolphe Marie
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads Build. 345C, 2800 Kongens Lyngby, Denmark.
| | - Martin K Rasmussen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads Build. 345C, 2800 Kongens Lyngby, Denmark.
| | - Jonas N Pedersen
- Department of Health Technology, Technical University of Denmark, Ørsteds Plads Build. 345C, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Jang E, Moon Y, Yoon SY, Diaz JAR, Lee M, Ko N, Park J, Eom SH, Lee C, Jun Y. Human atlastins are sufficient to drive the fusion of liposomes with a physiological lipid composition. J Cell Biol 2023; 222:e202109090. [PMID: 36757370 PMCID: PMC9949273 DOI: 10.1083/jcb.202109090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
The dynamin-like GTPase atlastin is believed to be the minimal machinery required for homotypic endoplasmic reticulum (ER) membrane fusion, mainly because Drosophila atlastin is sufficient to drive liposome fusion. However, it remains unclear whether mammalian atlastins, including the three human atlastins, are sufficient to induce liposome fusion, raising doubts about their major roles in mammalian cells. Here, we show that all human atlastins are sufficient to induce fusion when reconstituted into liposomes with a lipid composition mimicking that of the ER. Although the fusogenic activity of ATL1, which is predominantly expressed in neuronal cells, was weaker than that of ATL2 or ATL3, the addition of M1-spastin, a neuron-specific factor, markedly increased ATL1-mediated liposome fusion. Although we observed efficient fusion between ER microsomes isolated from cultured, non-neuronal cells that predominantly express ATL2-1, an autoinhibited isoform of ATL2, ATL2-1 failed to support liposome fusion by itself as reported previously, indicating that cellular factors enable ATL2-1 to mediate ER fusion in vivo.
Collapse
Affiliation(s)
- Eunhong Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yeojin Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - So Young Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Joyce Anne R. Diaz
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Miriam Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Naho Ko
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jongseo Park
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Soo Hyun Eom
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Youngsoo Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
11
|
Eun Shin H, Wook Oh S, Park W. Hybrid Nanovesicle of Chimeric Antigen Receptor (CAR)-engineered Cell-Derived Vesicle and Drug-Encapsulated Liposome for Effective Cancer Treatment. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
12
|
Kalyana Sundaram RV, Bera M, Coleman J, Weerakkody JS, Krishnakumar SS, Ramakrishnan S. Native Planar Asymmetric Suspended Membrane for Single-Molecule Investigations: Plasma Membrane on a Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205567. [PMID: 36328714 DOI: 10.1002/smll.202205567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Cellular plasma membranes, in their role as gatekeepers to the external environment, host numerous protein assemblies and lipid domains that manage the movement of molecules into and out of cells, regulate electric potential, and direct cell signaling. The ability to investigate these roles on the bilayer at a single-molecule level in a controlled, in vitro environment while preserving lipid and protein architectures will provide deeper insights into how the plasma membrane works. A tunable silicon microarray platform that supports stable, planar, and asymmetric suspended lipid membranes (SLIM) using synthetic and native plasma membrane vesicles for single-molecule fluorescence investigations is developed. Essentially, a "plasma membrane-on-a-chip" system that preserves lipid asymmetry and protein orientation is created. By harnessing the combined potential of this platform with total internal reflection fluorescence (TIRF) microscopy, the authors are able to visualize protein complexes with single-molecule precision. This technology has widespread applications in biological processes that happen at the cellular membranes and will further the knowledge of lipid and protein assemblies.
Collapse
Affiliation(s)
- Ramalingam Venkat Kalyana Sundaram
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Manindra Bera
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jeff Coleman
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan S Weerakkody
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sathish Ramakrishnan
- Nanobiology Institute, Yale University School of Medicine, West Haven, CT, 06516, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
13
|
Ishikawa R, Yoshida S, Sawada SI, Sasaki Y, Akiyoshi K. Development and single-particle analysis of hybrid extracellular vesicles fused with liposomes using viral fusogenic proteins. FEBS Open Bio 2022; 12:1178-1187. [PMID: 35384397 PMCID: PMC9157406 DOI: 10.1002/2211-5463.13406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicles (EVs) have potential biomedical applications, particularly as a means of transport for therapeutic agents. There is a need for rapid and efficient EV‐liposome membrane fusion that maintains the integrity of hybrid EVs. We recently described Sf9 insect cell‐derived EVs on which functional membrane proteins were presented using a baculovirus‐expression system. Here, we developed hybrid EVs by membrane fusion of small liposomes and EVs equipped with baculoviral fusogenic proteins. Single‐particle analysis of EV‐liposome complexes revealed controlled introduction of liposome components into EVs. Our findings and methodology will support further applications of EV engineering in biomedicine.
Collapse
Affiliation(s)
- Raga Ishikawa
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Shosuke Yoshida
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
14
|
Piffoux M, Silva AKA, Gazeau F, Tareste D. Generation of Hybrid Extracellular Vesicles by Fusion with Functionalized Liposomes. Methods Mol Biol 2022; 2473:385-396. [PMID: 35819777 DOI: 10.1007/978-1-0716-2209-4_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs) and liposomes are natural and synthetic drug delivery systems, respectively, with their own advantages and limitations. EV/liposome fusion allows the generation of hybrid EVs that benefit from both the versatility of liposomes (tunable lipid and protein composition, surface functionalization, lumen loading, etc.) and the functionality of EVs (natural targeting properties, low immunogenicity, anti-inflammatory properties, etc.). Here, we describe the methods to (1) produce EVs and liposomes, (2) induce and monitor their fusion, and (3) purify the obtained hybrid EVs.
Collapse
Affiliation(s)
- Max Piffoux
- Laboratoire Matières et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
- Interaction Cellules Souches-Niches: Physiologie, Tumeurs Et Réparation Tissulaire, Inserm UMR 1197, Université Paris-Saclay, Villejuif, France
- Département d'oncologie Médicale, Centre Léon Bérard, Lyon, France
- Oncology Department, CITOHL, Lyon-Sud Hospital, Cancer Institute of Hospices Civils de Lyon (IC-HCL), Hospices Civils de Lyon, Lyon, France
| | | | - Florence Gazeau
- Laboratoire Matières et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - David Tareste
- Institut de Psychiatrie et Neurosciences de Paris, Inserm UMR 1266, Université de Paris, Paris, France.
| |
Collapse
|
15
|
Belhadj Z, He B, Deng H, Song S, Zhang H, Wang X, Dai W, Zhang Q. A combined "eat me/don't eat me" strategy based on extracellular vesicles for anticancer nanomedicine. J Extracell Vesicles 2020; 9:1806444. [PMID: 32944191 PMCID: PMC7480498 DOI: 10.1080/20013078.2020.1806444] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/07/2020] [Accepted: 07/05/2020] [Indexed: 12/19/2022] Open
Abstract
A long-term and huge challenge in nanomedicine is the substantial uptake and rapid clearance mediated by the mononuclear phagocyte system (MPS), which enormously hinders the development of nanodrugs. Inspired by the natural merits of extracellular vesicles, we therefore developed a combined "eat me/don't eat me" strategy in an effort to achieve MPS escape and efficient drug delivery. Methodologically, cationized mannan-modified extracellular vesicles derived from DC2.4 cells were administered to saturate the MPS (eat me strategy). Then, nanocarriers fused to CD47-enriched exosomes originated from human serum were administered to evade phagocytosis by MPS (don't eat me strategy). The nanocarriers were also loaded with antitumor drugs and functionalized with a novel homing peptide to promote the tumour tissue accumulation and cancer cell uptake (eat me strategy). The concept was proven in vitro as evidenced by the reduced endocytosis of macrophages and enhanced uptake by tumour cells, whereas prolonged circulation time and increased tumour accumulation were demonstrated in vivo. Specially, the strategy induced a 123.53% increase in tumour distribution compared to conventional nanocarrier. The study both shed light on the challenge overcoming of phagocytic evasion and provided a strategy for significantly improving therapeutic outcomes, potentially permitting active drug delivery via targeted nanomedicines.
Collapse
Affiliation(s)
- Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Siyang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
16
|
Analysis of Mitochondrial Membrane Fusion GTPase OPA1 Expressed by the Silkworm Expression System. Methods Mol Biol 2020. [PMID: 32529367 DOI: 10.1007/978-1-0716-0676-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Mitochondria are highly dynamic organelles, which move and fuse to regulate their shape, size, and fundamental function. The dynamin-related GTPases play a critical role in mitochondrial membrane fusion. In vitro reconstitution of membrane fusion using recombinant proteins and model membranes is quite useful in elucidating the molecular mechanisms underlying membrane fusion and to identify the essential elements involved in fusion. However, only a few reconstituting approaches have been reported for mitochondrial fusion machinery due to the difficulty of preparing active recombinant mitochondrial fusion GTPases. Recently, we succeeded in preparing a sufficient amount of recombinant OPA1 involved in mitochondrial inner membrane fusion using a BmNPV bacmid-silkworm expression system. In this chapter, we describe the method for the expression and purification of a membrane-anchored form of OPA1 and liposome-based in vitro reconstitution of membrane fusion.
Collapse
|
17
|
Abstract
Intracellular membrane fusion is mediated by the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins that are highly conserved and tightly regulated by a variety of factors. The exocyst complex is one of the multi-subunit tethering complexes and functions in the tethering of the secretory vesicles to the plasma membrane. We have found that the yeast Sec3, a subunit of the exocyst, binds to the t-SNARE protein Sso2 and promotes its interaction with another t-SNARE protein, Sec9. Here, we describe the structural analysis and in vitro membrane fusion assays, by which we found that Sec3 binding leads to a conformational change within Sso2, and facilitates SNARE assembly and the membrane fusion.
Collapse
Affiliation(s)
- Kunrong Mei
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Yue
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Betancourt-Solis MA, Desai T, McNew JA. The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer. J Biol Chem 2018; 293:18514-18524. [PMID: 30287684 DOI: 10.1074/jbc.ra118.003812] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/27/2018] [Indexed: 12/27/2022] Open
Abstract
The endoplasmic reticulum (ER) is composed of flattened sheets and interconnected tubules that extend throughout the cytosol and makes physical contact with all other cytoplasmic organelles. This cytoplasmic distribution requires continuous remodeling. These discrete ER morphologies require specialized proteins that drive and maintain membrane curvature. The GTPase atlastin is required for homotypic fusion of ER tubules. All atlastin homologs possess a conserved domain architecture consisting of a GTPase domain, a three-helix bundle middle domain, a hydrophobic membrane anchor, and a C-terminal cytosolic tail. Here, we examined several Drosophila-human atlastin chimeras to identify functional domains of human atlastin-1 in vitro Although all chimeras could hydrolyze GTP, only chimeras containing the human C-terminal tail, hydrophobic segments, or both could fuse membranes in vitro We also determined that co-reconstitution of atlastin with reticulon does not influence GTPase activity or membrane fusion. Finally, we found that both human and Drosophila atlastin hydrophobic membrane anchors do not span the membrane, but rather form two intramembrane hairpin loops. The topology of these hairpins remains static during membrane fusion and does not appear to play an active role in lipid mixing.
Collapse
Affiliation(s)
| | - Tanvi Desai
- From the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - James A McNew
- From the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| |
Collapse
|
19
|
Piffoux M, Silva AKA, Wilhelm C, Gazeau F, Tareste D. Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS NANO 2018; 12:6830-6842. [PMID: 29975503 DOI: 10.1021/acsnano.8b02053] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Extracellular vesicles (EVs) are recognized as nature's own carriers to transport macromolecules throughout the body. Hijacking this endogenous communication system represents an attractive strategy for advanced drug delivery. However, efficient and reproducible loading of EVs with therapeutic or imaging agents still represents a bottleneck for their use as a drug delivery system. Here, we developed a method for modifying cell-derived EVs through their fusion with liposomes containing both membrane and soluble cargoes. The fusion of EVs with functionalized liposomes was triggered by polyethylene glycol (PEG) to create smart biosynthetic hybrid vectors. This versatile method proved to be efficient to enrich EVs with exogenous lipophilic or hydrophilic compounds, while preserving their intrinsic content and biological properties. Hybrid EVs improved cellular delivery efficiency of a chemotherapeutic compound by a factor of 3-4, as compared to the free drug or the drug-loaded liposome precursor. On one side, this method allows the biocamouflage of liposomes by enriching their lipid bilayer and inner compartment with biogenic molecules. On the other side, the proposed fusion strategy enables efficient EV loading, and the pharmaceutical development of EVs with adaptable activity and drug delivery property.
Collapse
Affiliation(s)
- Max Piffoux
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Amanda K A Silva
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - Florence Gazeau
- Laboratoire Matière et Systèmes Complexes , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7057, F-75013 Paris , France
| | - David Tareste
- Institut Jacques Monod , Université Paris Diderot, Sorbonne Paris Cité , CNRS UMR 7592, F-75013 Paris , France
- Centre de Psychiatrie et Neurosciences , Université Paris Descartes, Sorbonne Paris Cité , INSERM UMR 894, F-75014 Paris , France
- Membrane Traffic in Health and Disease , Université Paris Descartes, Sorbonne Paris Cité , INSERM ERL U950, F-75014 Paris , France
| |
Collapse
|
20
|
Ramakrishnan S, Gohlke A, Li F, Coleman J, Xu W, Rothman JE, Pincet F. High-Throughput Monitoring of Single Vesicle Fusion Using Freestanding Membranes and Automated Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5849-5859. [PMID: 29694054 DOI: 10.1021/acs.langmuir.8b00116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo membrane fusion primarily occurs between highly curved vesicles and planar membranes. A better understanding of fusion entails an accurate in vitro reproduction of the process. To date, supported bilayers have been commonly used to mimic the planar membranes. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that induce membrane fusion usually have limited fluidity when embedded in supported bilayers. This alters the kinetics and prevents correct reconstitution of the overall fusion process. Also, observing content release across the membrane is hindered by the lack of a second aqueous compartment. Recently, a step toward resolving these issues was achieved by using membranes spread on holey substrates. The mobility of proteins was preserved but vesicles were prone to bind to the substrate when reaching the edge of the hole, preventing the observation of many fusion events over the suspended membrane. Building on this recent advance, we designed a method for the formation of pore-spanning lipid bilayers containing t-SNARE proteins on Si/SiO2 holey chips, allowing the observation of many individual vesicle fusion events by both lipid mixing and content release. With this setup, proteins embedded in the suspended membrane bounced back when they reached the edge of the hole which ensured vesicles did not bind to the substrate. We observed SNARE-dependent membrane fusion with the freestanding bilayer of about 500 vesicles. The time between vesicle docking and fusion is ∼1 s. We also present a new multimodal open-source software, Fusion Analyzer Software, which is required for fast data analysis.
Collapse
Affiliation(s)
- Sathish Ramakrishnan
- Laboratoire de Physique Statistique, Ecole Normale Supérieure , PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS , Paris 75005 , France
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Andrea Gohlke
- Laboratoire de Physique Statistique, Ecole Normale Supérieure , PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS , Paris 75005 , France
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Feng Li
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Jeff Coleman
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Weiming Xu
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - James E Rothman
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| | - Frederic Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure , PSL Research University, Université Paris Diderot Sorbonne Paris Cité, Sorbonne Universités UPMC Univ Paris 06, CNRS , Paris 75005 , France
- Department of Cell Biology , Yale School of Medicine , New Haven , 333 Cedar Street , Connecticut 06510 , United States
- Nanobiology Institute , 850 West Campus Drive , West Haven , Connecticut 06516 , United States
| |
Collapse
|
21
|
Daste F, Sauvanet C, Bavdek A, Baye J, Pierre F, Le Borgne R, David C, Rojo M, Fuchs P, Tareste D. The heptad repeat domain 1 of Mitofusin has membrane destabilization function in mitochondrial fusion. EMBO Rep 2018; 19:embr.201643637. [PMID: 29661855 DOI: 10.15252/embr.201643637] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/07/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.
Collapse
Affiliation(s)
- Frédéric Daste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Cécile Sauvanet
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Andrej Bavdek
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - James Baye
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Fabienne Pierre
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France.,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Rémi Le Borgne
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - Claudine David
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Manuel Rojo
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France
| | - Patrick Fuchs
- Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France
| | - David Tareste
- Membrane Traffic in Health & Disease, INSERM ERL U950, Sorbonne Paris Cité, Université Paris Descartes, Paris, France .,Institut Jacques Monod, CNRS UMR 7592, Sorbonne Paris Cité, Université Paris Diderot, Paris, France.,Centre de Psychiatrie et Neurosciences, INSERM UMR 894, Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
22
|
Yue P, Zhang Y, Mei K, Wang S, Lesigang J, Zhu Y, Dong G, Guo W. Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat Commun 2017; 8:14236. [PMID: 28112172 PMCID: PMC5267525 DOI: 10.1038/ncomms14236] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/12/2016] [Indexed: 01/04/2023] Open
Abstract
The soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) constitute the core machinery for membrane fusion during eukaryotic cell vesicular trafficking. However, how the assembly of the SNARE complex is initiated is unknown. Here we report that Sec3, a component of the exocyst complex that mediates vesicle tethering during exocytosis, directly interacts with the t-SNARE protein Sso2. This interaction promotes the formation of an Sso2-Sec9 'binary' t-SNARE complex, the early rate-limiting step in SNARE complex assembly, and stimulates membrane fusion. The crystal structure of the Sec3-Sso2 complex suggests that Sec3 binding induces conformational changes of Sso2 that are crucial for the relief of its auto-inhibition. Interestingly, specific disruption of the Sec3-Sso2 interaction in cells blocks exocytosis without affecting the function of Sec3 in vesicle tethering. Our study reveals an activation mechanism for SNARE complex assembly, and uncovers a role of the exocyst in promoting membrane fusion in addition to vesicle tethering.
Collapse
Affiliation(s)
- Peng Yue
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yubo Zhang
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Kunrong Mei
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Shaoxiao Wang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Johannes Lesigang
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Yueyao Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gang Dong
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Nikolaus J, Karatekin E. SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy. J Vis Exp 2016. [PMID: 27585113 DOI: 10.3791/54349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the ubiquitous process of membrane fusion the opening of a fusion pore establishes the first connection between two formerly separate compartments. During neurotransmitter or hormone release via exocytosis, the fusion pore can transiently open and close repeatedly, regulating cargo release kinetics. Pore dynamics also determine the mode of vesicle recycling; irreversible resealing results in transient, "kiss-and-run" fusion, whereas dilation leads to full fusion. To better understand what factors govern pore dynamics, we developed an assay to monitor membrane fusion using polarized total internal reflection fluorescence (TIRF) microscopy with single molecule sensitivity and ~15 msec time resolution in a biochemically well-defined in vitro system. Fusion of fluorescently labeled small unilamellar vesicles containing v-SNARE proteins (v-SUVs) with a planar bilayer bearing t-SNAREs, supported on a soft polymer cushion (t-SBL, t-supported bilayer), is monitored. The assay uses microfluidic flow channels that ensure minimal sample consumption while supplying a constant density of SUVs. Exploiting the rapid signal enhancement upon transfer of lipid labels from the SUV to the SBL during fusion, kinetics of lipid dye transfer is monitored. The sensitivity of TIRF microscopy allows tracking single fluorescent lipid labels, from which lipid diffusivity and SUV size can be deduced for every fusion event. Lipid dye release times can be much longer than expected for unimpeded passage through permanently open pores. Using a model that assumes retardation of lipid release is due to pore flickering, a pore "openness", the fraction of time the pore remains open during fusion, can be estimated. A soluble marker can be encapsulated in the SUVs for simultaneous monitoring of lipid and soluble cargo release. Such measurements indicate some pores may reseal after losing a fraction of the soluble cargo.
Collapse
Affiliation(s)
- Joerg Nikolaus
- Department of Cellular and Molecular Physiology, Yale University School of Medicine; Nanobiology Institute, Yale University
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine; Nanobiology Institute, Yale University; Department of Molecular Biophysics and Biochemistry, Yale University; Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS);
| |
Collapse
|
24
|
Xu W, Nathwani B, Lin C, Wang J, Karatekin E, Pincet F, Shih W, Rothman JE. A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. J Am Chem Soc 2016; 138:4439-47. [PMID: 26938705 DOI: 10.1021/jacs.5b13107] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes are the core molecular machinery of membrane fusion, a fundamental process that drives inter- and intracellular communication and trafficking. One of the questions that remains controversial has been whether and how SNAREs cooperate. Here we show the use of self-assembled DNA-nanostructure rings to template uniform-sized small unilamellar vesicles containing predetermined maximal number of externally facing SNAREs to study the membrane-fusion process. We also incorporated lipid-conjugated complementary ssDNA as tethers into vesicle and target membranes, which enabled bypass of the rate-limiting docking step of fusion reactions and allowed direct observation of individual membrane-fusion events at SNARE densities as low as one pair per vesicle. With this platform, we confirmed at the single event level that, after docking of the templated-SUVs to supported lipid bilayers (SBL), one to two pairs of SNAREs are sufficient to drive fast lipid mixing. Modularity and programmability of this platform makes it readily amenable to studying more complicated systems where auxiliary proteins are involved.
Collapse
Affiliation(s)
| | - Bhavik Nathwani
- Wyss Institute for Biologically Inspired Engineering and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| | - Chenxiang Lin
- Wyss Institute for Biologically Inspired Engineering and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| | | | - Erdem Karatekin
- Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS) UMR8250, 45, rue des Saints Pères, 75270 Cedex 06 Paris, France
| | - Frederic Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR 8550, 24 rue Lhomond, 75005 Paris, France
| | - William Shih
- Wyss Institute for Biologically Inspired Engineering and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Department of Cancer Biology, Dana Farber Cancer Institute , Boston, Massachusetts 02115, United States
| | | |
Collapse
|
25
|
Xu W, Wang J, Rothman JE, Pincet F. Accelerating SNARE-Mediated Membrane Fusion by DNA-Lipid Tethers. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Xu W, Wang J, Rothman JE, Pincet F. Accelerating SNARE-Mediated Membrane Fusion by DNA-Lipid Tethers. Angew Chem Int Ed Engl 2015; 54:14388-92. [PMID: 26439984 DOI: 10.1002/anie.201506844] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 11/08/2022]
Abstract
SNARE proteins are the core machinery to drive fusion of a vesicle with its target membrane. Inspired by the tethering proteins that bridge the membranes and thus prepare SNAREs for docking and fusion, we developed a lipid-conjugated ssDNA mimic that is capable of regulating SNARE function, in situ. The DNA-lipid tethers consist of a 21 base pairs binding segment at the membrane distal end that can bridge two liposomes via specific base-pair hybridization. A linker at the membrane proximal end is used to control the separation distance between the liposomes. In the presence of these artificial tethers, SNARE-mediated lipid mixing is significantly accelerated, and the maximum fusion rate is obtained with the linker shorter than 40 nucleotides. As a programmable tool orthogonal to any native proteins, the DNA-lipid tethers can be further applied to regulate other biological processes where capturing and bridging of two membranes are the prerequisites for the subsequent protein function.
Collapse
Affiliation(s)
- Weiming Xu
- Nanobiology Institute, Yale University, West Haven, CT 06516 (USA).,Yale University, Department of Cell Biology, School of Medicine, New Haven, CT 06511 (USA)
| | - Jing Wang
- Nanobiology Institute, Yale University, West Haven, CT 06516 (USA).,Yale University, Department of Cell Biology, School of Medicine, New Haven, CT 06511 (USA)
| | - James E Rothman
- Nanobiology Institute, Yale University, West Haven, CT 06516 (USA). .,Yale University, Department of Cell Biology, School of Medicine, New Haven, CT 06511 (USA).
| | - Frédéric Pincet
- Nanobiology Institute, Yale University, West Haven, CT 06516 (USA). .,Yale University, Department of Cell Biology, School of Medicine, New Haven, CT 06511 (USA). .,Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, Paris, 75005 (France).
| |
Collapse
|
27
|
Motta I, Gohlke A, Adrien V, Li F, Gardavot H, Rothman JE, Pincet F. Formation of Giant Unilamellar Proteo-Liposomes by Osmotic Shock. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7091-7099. [PMID: 26038815 PMCID: PMC4950989 DOI: 10.1021/acs.langmuir.5b01173] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Giant unilamellar vesicles (GUVs), composed of a phospholipid bilayer, are often used as a model system for cell membranes. However, the study of proteo-membrane interactions in this system is limited as the incorporation of integral and lipid-anchored proteins into GUVs remains challenging. Here, we present a simple generic method to incorporate proteins into GUVs. The basic principle is to break proteo-liposomes with an osmotic shock. They subsequently reseal into larger vesicles which, if necessary, can endure the same to obtain even larger proteo-GUVs. This process does not require specific lipids or reagents, works under physiological conditions with high concentrations of protein, the proteins remains functional after incorporation. The resulting proteo-GUVs can be micromanipulated. Moreover, our protocol is valid for a wide range of protein substrates. We have successfully reconstituted three structurally different proteins, two trans-membrane proteins (TolC and the neuronal t-SNARE), and one lipid-anchored peripheral protein (GABARAP-Like 1 (GL1)). In each case, we verified that the protein remains active after incorporation and in its correctly folded state. We also measured their mobility by performing diffusion measurements via fluorescence recovery after photobleaching (FRAP) experiments on micromanipulated single GUVs. The diffusion coefficients are in agreement with previous data.
Collapse
Affiliation(s)
- Isabelle Motta
- Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR 8550, 24 rue Lhomond, 75005 Paris, France
| | - Andrea Gohlke
- Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR 8550, 24 rue Lhomond, 75005 Paris, France
- Department of Cell Biology, Nanobiology Institute, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Vladimir Adrien
- Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR 8550, 24 rue Lhomond, 75005 Paris, France
- Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, CNRS, UMR 8015, Paris, France
| | - Feng Li
- Department of Cell Biology, Nanobiology Institute, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Hélène Gardavot
- Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR 8550, 24 rue Lhomond, 75005 Paris, France
| | - James E. Rothman
- Department of Cell Biology, Nanobiology Institute, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Frederic Pincet
- Laboratoire de Physique Statistique, Ecole Normale Supérieure de Paris, Université Pierre et Marie Curie, Université Paris Diderot, Centre National de la Recherche Scientifique, UMR 8550, 24 rue Lhomond, 75005 Paris, France
- Department of Cell Biology, Nanobiology Institute, School of Medicine, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
28
|
Rehman A, Archbold JK, Hu SH, Norwood SJ, Collins BM, Martin JL. Reconciling the regulatory role of Munc18 proteins in SNARE-complex assembly. IUCRJ 2014; 1:505-513. [PMID: 25485130 PMCID: PMC4224468 DOI: 10.1107/s2052252514020727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/15/2014] [Indexed: 06/04/2023]
Abstract
Membrane fusion is essential for human health, playing a vital role in processes as diverse as neurotransmission and blood glucose control. Two protein families are key: (1) the Sec1p/Munc18 (SM) and (2) the soluble N-ethylmaleimide-sensitive attachment protein receptor (SNARE) proteins. Whilst the essential nature of these proteins is irrefutable, their exact regulatory roles in membrane fusion remain controversial. In particular, whether SM proteins promote and/or inhibit the SNARE-complex formation required for membrane fusion is not resolved. Crystal structures of SM proteins alone and in complex with their cognate SNARE proteins have provided some insight, however, these structures lack the transmembrane spanning regions of the SNARE proteins and may not accurately reflect the native state. Here, we review the literature surrounding the regulatory role of mammalian Munc18 SM proteins required for exocytosis in eukaryotes. Our analysis suggests that the conflicting roles reported for these SM proteins may reflect differences in experimental design. SNARE proteins appear to require C-terminal immobilization or anchoring, for example through a transmembrane domain, to form a functional fusion complex in the presence of Munc18 proteins.
Collapse
Affiliation(s)
- Asma Rehman
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Julia K. Archbold
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Shu-Hong Hu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Suzanne J. Norwood
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Brett M. Collins
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jennifer L. Martin
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
29
|
Yu H, Rathore SS, Gulbranson DR, Shen J. The N- and C-terminal domains of tomosyn play distinct roles in soluble N-ethylmaleimide-sensitive factor attachment protein receptor binding and fusion regulation. J Biol Chem 2014; 289:25571-80. [PMID: 25063806 DOI: 10.1074/jbc.m114.591487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tomosyn negatively regulates SNARE-dependent exocytic pathways including insulin secretion, GLUT4 exocytosis, and neurotransmitter release. The molecular mechanism of tomosyn, however, has not been fully elucidated. Here, we reconstituted SNARE-dependent fusion reactions in vitro to recapitulate the tomosyn-regulated exocytic pathways. We then expressed and purified active full-length tomosyn and examined how it regulates the reconstituted SNARE-dependent fusion reactions. Using these defined fusion assays, we demonstrated that tomosyn negatively regulates SNARE-mediated membrane fusion by inhibiting the assembly of the ternary SNARE complex. Tomosyn recognizes the t-SNARE complex and prevents its pairing with the v-SNARE, therefore arresting the fusion reaction at a pre-docking stage. The inhibitory function of tomosyn is mediated by its C-terminal domain (CTD) that contains an R-SNARE-like motif, confirming previous studies carried out using truncated tomosyn fragments. Interestingly, the N-terminal domain (NTD) of tomosyn is critical (but not sufficient) to the binding of tomosyn to the syntaxin monomer, indicating that full-length tomosyn possesses unique features not found in the widely studied CTD fragment. Finally, we showed that the inhibitory function of tomosyn is dominant over the stimulatory activity of the Sec1/Munc18 protein in fusion. We suggest that tomosyn uses its CTD to arrest SNARE-dependent fusion reactions, whereas its NTD is required for the recruitment of tomosyn to vesicle fusion sites through syntaxin interaction.
Collapse
Affiliation(s)
- Haijia Yu
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Shailendra S Rathore
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Daniel R Gulbranson
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Jingshi Shen
- From the Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
30
|
Shen D, Yuan H, Hutagalung A, Verma A, Kümmel D, Wu X, Reinisch K, McNew JA, Novick P. The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. ACTA ACUST UNITED AC 2013; 202:509-26. [PMID: 23897890 PMCID: PMC3734085 DOI: 10.1083/jcb.201211148] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins to confer both specificity and directionality to vesicular traffic. A screen for mutations that affect the recruitment of the exocyst to secretory vesicles identified genes encoding clathrin and proteins that associate or colocalize with clathrin at sites of endocytosis. However, no significant colocalization of the exocyst with clathrin was seen, arguing against a direct role in exocyst recruitment. Rather, these components are needed to recycle the exocytic vesicle SNAREs Snc1p and Snc2p from the plasma membrane into new secretory vesicles where they act to recruit the exocyst. We observe a direct interaction between the exocyst subunit Sec6p and the latter half of the SNARE motif of Snc2p. An snc2 mutation that specifically disrupts this interaction led to exocyst mislocalization and a block in exocytosis in vivo without affecting liposome fusion in vitro. Overexpression of Sec4p partially suppressed the exocyst localization defects of mutations in clathrin and clathrin-associated components. We propose that the exocyst is recruited to secretory vesicles by the combinatorial signals of Sec4-GTP and the Snc proteins. This could help to confer both specificity and directionality to vesicular traffic.
Collapse
Affiliation(s)
- David Shen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yu H, Rathore SS, Shen J. Synip arrests soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent membrane fusion as a selective target membrane SNARE-binding inhibitor. J Biol Chem 2013; 288:18885-93. [PMID: 23665562 DOI: 10.1074/jbc.m113.465450] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vesicle fusion reaction in regulated exocytosis requires the concerted action of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) core fusion engine and a group of SNARE-binding regulatory factors. The regulatory mechanisms of vesicle fusion remain poorly understood in most exocytic pathways. Here, we reconstituted the SNARE-dependent vesicle fusion reaction of GLUT4 exocytosis in vitro using purified components. Using this defined fusion system, we discovered that the regulatory factor synip binds to GLUT4 exocytic SNAREs and inhibits the docking, lipid mixing, and content mixing of the fusion reaction. Synip arrests fusion by binding the target membrane SNARE (t-SNARE) complex and preventing the initiation of ternary SNARE complex assembly. Although synip also interacts with the syntaxin-4 monomer, it does not inhibit the pairing of syntaxin-4 with SNAP-23. Interestingly, synip selectively arrests the fusion reactions reconstituted with its cognate SNAREs, suggesting that the defined system recapitulates the biological functions of the vesicle fusion proteins. We further showed that the inhibitory function of synip is dominant over the stimulatory activity of Sec1/Munc18 proteins. Importantly, the inhibitory function of synip is distinct from how other fusion inhibitors arrest SNARE-dependent membrane fusion and therefore likely represents a novel regulatory mechanism of vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | |
Collapse
|
32
|
Preparation and characterization of SNARE-containing nanodiscs and direct study of cargo release through fusion pores. Nat Protoc 2013; 8:935-48. [PMID: 23598444 DOI: 10.1038/nprot.2013.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This protocol describes an assay that uses suspended nanomembranes called nanodiscs to analyze fusion events. A nanodisc is a lipid bilayer wrapped by membrane scaffold proteins. Fluorescent lipids and a protein that is part of a fusion machinery, VAMP2 in the example detailed herein, are included in the nanodiscs. Upon fusion of a nanodisc with a nonfluorescent liposome containing cognate proteins (for instance, the VAMP2 cognate syntaxin1/SNAP-25 complex), the fluorescent lipids are dispersed in the liposome and the increase in fluorescence, initially quenched in the nanodisc, is monitored on a plate reader. Because the scaffold proteins restrain pore expansion, the fusion pore eventually reseals. A reducing agent, such as dithionite, which can quench the fluorescence of accessible lipids, can then be used to determine the number of fusion events. A fluorescence-based approach can also be used to monitor the release of encapsulated cargo. From data on the total cargo release and the number of the much faster lipid-mixing events, the researcher may determine the amount of cargo released per fusion event. This assay requires 3 d for preparation and 4 h for data acquisition and analysis.
Collapse
|
33
|
Yu H, Rathore SS, Davis EM, Ouyang Y, Shen J. Doc2b promotes GLUT4 exocytosis by activating the SNARE-mediated fusion reaction in a calcium- and membrane bending-dependent manner. Mol Biol Cell 2013; 24:1176-84. [PMID: 23427263 PMCID: PMC3623638 DOI: 10.1091/mbc.e12-11-0810] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Reconstitution of GLUT4 vesicle fusion in a defined fusion system shows that the C2-domain factor Doc2b activates the SNARE-dependent fusion reaction by a calcium- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic release. The glucose transporter GLUT4 plays a central role in maintaining body glucose homeostasis. On insulin stimulation, GLUT4-containing vesicles fuse with the plasma membrane, relocating GLUT4 from intracellular reservoirs to the cell surface to uptake excess blood glucose. The GLUT4 vesicle fusion reaction requires soluble N-ethylmaleimide–sensitive factor attachment protein receptors (SNAREs) as the core fusion engine and a group of regulatory proteins. In particular, the soluble C2-domain factor Doc2b plays a key role in GLUT4 vesicle fusion, but its molecular mechanism has been unclear. Here we reconstituted the SNARE-dependent GLUT4 vesicle fusion in a defined proteoliposome fusion system. We observed that Doc2b binds to GLUT4 exocytic SNAREs and potently accelerates the fusion kinetics in the presence of Ca2+. The stimulatory activity of Doc2b requires intact Ca2+-binding sites on both the C2A and C2B domains. Using electron microscopy, we observed that Doc2b strongly bends the membrane bilayer, and this membrane-bending activity is essential to the stimulatory function of Doc2b in fusion. These results demonstrate that Doc2b promotes GLUT4 exocytosis by accelerating the SNARE-dependent fusion reaction by a Ca2+- and membrane bending–dependent mechanism. Of importance, certain features of Doc2b function appear to be distinct from how synaptotagmin-1 promotes synaptic neurotransmitter release, suggesting that exocytic Ca2+ sensors may possess divergent mechanisms in regulating vesicle fusion.
Collapse
Affiliation(s)
- Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
34
|
Boswell KL, James DJ, Esquibel JM, Bruinsma S, Shirakawa R, Horiuchi H, Martin TFJ. Munc13-4 reconstitutes calcium-dependent SNARE-mediated membrane fusion. ACTA ACUST UNITED AC 2012; 197:301-12. [PMID: 22508512 PMCID: PMC3328385 DOI: 10.1083/jcb.201109132] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Munc13-4 is a Ca2+-dependent membrane- and SNARE-binding protein that promotes membrane fusion. Munc13-4 is a widely expressed member of the CAPS/Munc13 protein family proposed to function in priming secretory granules for exocytosis. Munc13-4 contains N- and C-terminal C2 domains (C2A and C2B) predicted to bind Ca2+, but Ca2+-dependent regulation of Munc13-4 activity has not been described. The C2 domains bracket a predicted SNARE-binding domain, but whether Munc13-4 interacts with SNARE proteins is unknown. We report that Munc13-4 bound Ca2+ and restored Ca2+-dependent granule exocytosis to permeable cells (platelets, mast, and neuroendocrine cells) dependent on putative Ca2+-binding residues in C2A and C2B. Munc13-4 exhibited Ca2+-stimulated SNARE interactions dependent on C2A and Ca2+-dependent membrane binding dependent on C2B. In an apparent coupling of membrane and SNARE binding, Munc13-4 stimulated SNARE-dependent liposome fusion dependent on putative Ca2+-binding residues in both C2A and C2B domains. Munc13-4 is the first priming factor shown to promote Ca2+-dependent SNARE complex formation and SNARE-mediated liposome fusion. These properties of Munc13-4 suggest its function as a Ca2+ sensor at rate-limiting priming steps in granule exocytosis.
Collapse
Affiliation(s)
- Kristin L Boswell
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Fusion of single proteoliposomes with planar, cushioned bilayers in microfluidic flow cells. Nat Protoc 2012; 7:903-20. [PMID: 22517259 DOI: 10.1038/nprot.2012.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many biological processes rely on membrane fusion, and therefore assays to study its mechanisms are necessary. Here we report an assay with sensitivity to single-vesicle, and even to single-molecule events using fluorescently labeled vesicle-associated v-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) liposomes and target-membrane-associated t-SNARE-reconstituted planar, supported bilayers (t-SBLs). Docking and fusion events can be detected using conventional far-field epifluorescence or total internal reflection fluorescence microscopy. In this assay, fusion is dependent on SNAP-25, one of the t-SNARE subunits that is required for fusion in vivo. The success of the assay is due to the use of: (i) bilayers covered with a thin layer of poly(ethylene glycol) (PEG) to control bilayer-bilayer and bilayer-substrate interactions, and (ii) microfluidic flow channels that present many advantages, such as the removal of nonspecifically bound liposomes by flow. The protocol takes 6-8 d to complete. Analysis can take up to 2 weeks.
Collapse
|
36
|
Xia T, Tong J, Rathore SS, Gu X, Dickerson JA. Network motif comparison rationalizes Sec1/Munc18-SNARE regulation mechanism in exocytosis. BMC SYSTEMS BIOLOGY 2012; 6:19. [PMID: 22423977 PMCID: PMC3439672 DOI: 10.1186/1752-0509-6-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 03/16/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Network motifs, recurring subnetwork patterns, provide significant insight into the biological networks which are believed to govern cellular processes. METHODS We present a comparative network motif experimental approach, which helps to explain complex biological phenomena and increases the understanding of biological functions at the molecular level by exploring evolutionary design principles of network motifs. RESULTS Using this framework to analyze the SM (Sec1/Munc18)-SNARE (N-ethylmaleimide-sensitive factor activating protein receptor) system in exocytic membrane fusion in yeast and neurons, we find that the SM-SNARE network motifs of yeast and neurons show distinct dynamical behaviors. We identify the closed binding mode of neuronal SM (Munc18-1) and SNARE (syntaxin-1) as the key factor leading to mechanistic divergence of membrane fusion systems in yeast and neurons. We also predict that it underlies the conflicting observations in SM overexpression experiments. Furthermore, hypothesis-driven lipid mixing assays validated the prediction. CONCLUSION Therefore this study provides a new method to solve the discrepancies and to generalize the functional role of SM proteins.
Collapse
Affiliation(s)
- Tian Xia
- Biomedical Informatics Center, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
37
|
Jotwani A, Richerson DN, Motta I, Julca-Zevallos O, Melia TJ. Approaches to the Study of Atg8-Mediated Membrane Dynamics In Vitro. Methods Cell Biol 2012; 108:93-116. [DOI: 10.1016/b978-0-12-386487-1.00005-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Read JA, Duncan R. Biophysical and functional assays for viral membrane fusion peptides. Methods 2011; 55:122-6. [PMID: 21958986 DOI: 10.1016/j.ymeth.2011.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 11/26/2022] Open
Abstract
Membrane fusion is a protein catalyzed biophysical reaction that involves the simultaneous intermixing of two phospholipid bilayers and of the aqueous compartments bound by their respective bilayers. In the case of enveloped virus fusogens, short hydrophobic or amphipathic fusion peptides that are components of the larger fusion complex are essential for the membrane merger event. The process of cell-cell membrane fusion and syncytium formation induced by the nonenveloped fusogenic orthoreoviruses is driven by the Fusion-Associated Small Transmembrane (FAST) proteins, which are similarly dependent on the action of fusion peptides. In this article, we describe some simple methods for the biophysical characterization of viral membrane fusion peptides. Liposomes serve as an ideal model system for characterizing peptide-membrane interactions because their size, shape and composition can be readily manipulated. We present details of fluorescence assays used to elucidate the kinetics of membrane fusion as well as complimentary assays used to characterize peptide-induced liposome binding and aggregation.
Collapse
Affiliation(s)
- Jolene A Read
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H4R2
| | | |
Collapse
|
39
|
Krishnakumar SS, Radoff DT, Kümmel D, Giraudo CG, Li F, Khandan L, Baguley SW, Coleman J, Reinisch KM, Pincet F, Rothman JE. A conformational switch in complexin is required for synaptotagmin to trigger synaptic fusion. Nat Struct Mol Biol 2011; 18:934-40. [PMID: 21785412 DOI: 10.1038/nsmb.2103] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/19/2011] [Indexed: 11/09/2022]
Abstract
The crystal structure of complexin bound to a prefusion SNAREpin mimetic shows that the accessory helix extends away from the SNAREpin in an 'open' conformation, binding another SNAREpin and inhibiting its assembly, to clamp fusion. In contrast, the accessory helix in the postfusion complex parallels the SNARE complex in a 'closed' conformation. Here we use targeted mutations, FRET spectroscopy and a functional assay that reconstitutes Ca(2+)-triggered exocytosis to show that the conformational switch from open to closed in complexin is needed for synaptotagmin-Ca(2+) to trigger fusion. Triggering fusion requires the zippering of three crucial aspartate residues in the switch region (residues 64-68) of v-SNARE. Conformational switching in complexin is integral to clamp release and is probably triggered when its accessory helix is released from its trans-binding to the neighboring SNAREpin, allowing the v-SNARE to complete zippering and open a fusion pore.
Collapse
Affiliation(s)
- Shyam S Krishnakumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu Y, Seven AB, Su L, Jiang QX, Rizo J. Membrane bridging and hemifusion by denaturated Munc18. PLoS One 2011; 6:e22012. [PMID: 21765933 PMCID: PMC3130787 DOI: 10.1371/journal.pone.0022012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/10/2011] [Indexed: 11/19/2022] Open
Abstract
Neuronal Munc18-1 and members of the Sec1/Munc18 (SM) protein family play a critical function(s) in intracellular membrane fusion together with SNARE proteins, but the mechanism of action of SM proteins remains highly enigmatic. During experiments designed to address this question employing a 7-nitrobenz-2-oxa-1,3-diazole (NBD) fluorescence de-quenching assay that is widely used to study lipid mixing between reconstituted proteoliposomes, we observed that Munc18-1 from squid (sMunc18-1) was able to increase the apparent NBD fluorescence emission intensity even in the absence of SNARE proteins. Fluorescence emission scans and dynamic light scattering experiments show that this phenomenon arises at least in part from increased light scattering due to sMunc18-1-induced liposome clustering. Nuclear magnetic resonance and circular dichroism data suggest that, although native sMunc18-1 does not bind significantly to lipids, sMunc18-1 denaturation at 37°C leads to insertion into membranes. The liposome clustering activity of sMunc18-1 can thus be attributed to its ability to bridge two membranes upon (perhaps partial) denaturation; correspondingly, this activity is hindered by addition of glycerol. Cryo-electron microscopy shows that liposome clusters induced by sMunc18-1 include extended interfaces where the bilayers of two liposomes come into very close proximity, and clear hemifusion diaphragms. Although the physiological relevance of our results is uncertain, they emphasize the necessity of complementing fluorescence de-quenching assays with alternative experiments in studies of membrane fusion, as well as the importance of considering the potential effects of protein denaturation. In addition, our data suggest a novel mechanism of membrane hemifusion induced by amphipathic macromolecules that does not involve formation of a stalk intermediate.
Collapse
Affiliation(s)
- Yi Xu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Alpay B. Seven
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Lijing Su
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Qiu-Xing Jiang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
41
|
A fast, single-vesicle fusion assay mimics physiological SNARE requirements. Proc Natl Acad Sci U S A 2010; 107:3517-21. [PMID: 20133592 DOI: 10.1073/pnas.0914723107] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Almost all known intracellular fusion reactions are driven by formation of trans-SNARE complexes through pairing of vesicle-associated v-SNAREs with complementary t-SNAREs on target membranes. However, the number of SNARE complexes required for fusion is unknown, and there is controversy about whether additional proteins are required to explain the fast fusion which can occur in cells. Here we show that single vesicles containing the synaptic/exocytic v-SNAREs VAMP/synaptobrevin fuse rapidly with planar, supported bilayers containing the synaptic/exocytic t-SNAREs syntaxin-SNAP25. Fusion rates decreased dramatically when the number of externally oriented v-SNAREs per vesicle was reduced below 5-10, directly establishing this as the minimum number required for rapid fusion. Docking-to-fusion delay time distributions were consistent with a requirement that 5-11 t-SNAREs be recruited to achieve fusion, closely matching the v-SNARE requirement.
Collapse
|
42
|
Orso G, Pendin D, Liu S, Tosetto J, Moss TJ, Faust JE, Micaroni M, Egorova A, Martinuzzi A, McNew JA, Daga A. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 2009; 460:978-83. [PMID: 19633650 DOI: 10.1038/nature08280] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 07/13/2009] [Indexed: 01/10/2023]
Abstract
Establishment and maintenance of proper architecture is essential for endoplasmic reticulum (ER) function. Homotypic membrane fusion is required for ER biogenesis and maintenance, and has been shown to depend on GTP hydrolysis. Here we demonstrate that Drosophila Atlastin--the fly homologue of the mammalian GTPase atlastin 1 involved in hereditary spastic paraplegia--localizes on ER membranes and that its loss causes ER fragmentation. Drosophila Atlastin embedded in distinct membranes has the ability to form trans-oligomeric complexes and its overexpression induces enlargement of ER profiles, consistent with excessive fusion of ER membranes. In vitro experiments confirm that Atlastin autonomously drives membrane fusion in a GTP-dependent fashion. In contrast, GTPase-deficient Atlastin is inactive, unable to form trans-oligomeric complexes owing to failure to self-associate, and incapable of promoting fusion in vitro. These results demonstrate that Atlastin mediates membrane tethering and fusion and strongly suggest that it is the GTPase activity that is required for ER homotypic fusion.
Collapse
Affiliation(s)
- Genny Orso
- Eugenio Medea Scientific Institute, Conegliano 31015, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Thongthai W, Weninger K. Photoinactivation of sindbis virus infectivity without inhibition of membrane fusion. Photochem Photobiol 2008; 85:801-6. [PMID: 19067945 DOI: 10.1111/j.1751-1097.2008.00475.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoinactivation of enveloped viruses is commonly associated with damage to fusion proteins and inhibition of membrane fusion capacity. Here we show that photobleaching of Sindbis virus labeled with the membrane localized dye, R18 (octadecyl rhodamine B) causes a dramatic loss of infectivity without observable changes in low-pH triggered membrane fusion to liposomes. Sindbis labeled with DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) also maintains low-pH triggered membrane fusion capacity, but in contrast to R18, extensive photobleaching of DiI-labeled virus has little effect on infectivity. Electrophoretic gel analysis suggests no cross-linking of viral fusion proteins following photobleaching of dye-labeled Sindbis. These observations have implications for live-cell, single particle tracking studies of dye-labeled Sindbis virus. Our observations suggest that R18 and DiI have different propensities for spontaneous flip-flop in lipid bilayers.
Collapse
Affiliation(s)
- Wor Thongthai
- Department of Physics, North Carolina State University, Raleigh, USA
| | | |
Collapse
|
44
|
Curtis LB, Doneske B, Liu X, Thaller C, McNew JA, Janz R. Syntaxin 3b is a t-SNARE specific for ribbon synapses of the retina. J Comp Neurol 2008; 510:550-9. [PMID: 18683220 PMCID: PMC2893228 DOI: 10.1002/cne.21806] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previous studies have demonstrated that ribbon synapses in the retina do not contain the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system. In contrast, ribbon synapses of the retina contain the related isoform syntaxin 3. In addition to its localization in ribbon synapses, syntaxin 3 is also found in nonneuronal cells, where it has been implicated in the trafficking of transport vesicles to the apical plasma membrane of polarized cells. The syntaxin 3 gene codes for four different splice forms, syntaxins 3A, 3B, 3C, and 3D. We demonstrate here by using analysis of EST databases, RT-PCR, in situ hybridization, and Northern blot analysis that cells in the mouse retina express only syntaxin 3B. In contrast, nonneuronal tissues, such as kidney, express only syntaxin 3A. The two major syntaxin isoforms (3A and 3B) have an identical N-terminal domain but differ in the C-terminal half of the SNARE domain and the C-terminal transmembrane domain. These two domains are thought to be directly involved in synaptic vesicle fusion. The interaction of syntaxin 1A and syntaxin 3B with other synaptic proteins was examined. We found that both proteins bind Munc18/N-sec1 with similar affinity. In contrast, syntaxin 3B had a much lower binding affinity for the t-SNARE SNAP25 compared with syntaxin 1A. By using an in vitro fusion assay, we could demonstrate that vesicles containing syntaxin 3B and SNAP25 could fuse with vesicles containing synaptobrevin2/VAMP2, demonstrating that syntaxin 3B can function as a t-SNARE.
Collapse
Affiliation(s)
- Leigh B Curtis
- Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
45
|
Rodkey TL, Liu S, Barry M, McNew JA. Munc18a scaffolds SNARE assembly to promote membrane fusion. Mol Biol Cell 2008; 19:5422-34. [PMID: 18829865 DOI: 10.1091/mbc.e08-05-0538] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Munc18a is an SM protein required for SNARE-mediated fusion. The molecular details of how Munc18a acts to enhance neurosecretion have remained elusive. Here, we use in vitro fusion assays to characterize how specific interactions between Munc18a and the neuronal SNAREs enhance the rate and extent of fusion. We show that Munc18a interacts directly and functionally with the preassembled t-SNARE complex. Analysis of Munc18a point mutations indicates that Munc18a interacts with helix C of the Syntaxin1a NRD in the t-SNARE complex. Replacement of the t-SNARE SNAP25b with yeast Sec9c had little effect, suggesting that Munc18a has minimal contact with SNAP25b within the t-SNARE complex. A chimeric Syntaxin built of the Syntaxin1a NRD and the H3 domain of yeast Sso1p and paired with Sec9c eliminated stimulation of fusion, suggesting that Munc18a/Syntaxin1a H3 domain contacts are important. Additionally, a Syntaxin1A mutant lacking a flexible linker region that allows NRD movement abolished stimulation of fusion. These experiments suggest that Munc18a binds to the Syntaxin1a NRD and H3 domain within the assembled t-SNARE complex, positioning them for productive VAMP2 binding. In this capacity, Munc18a serves as a platform for trans-SNARE complex assembly that facilitates efficient SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- Travis L Rodkey
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | | | | | | |
Collapse
|
46
|
Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J 2008; 27:2031-42. [PMID: 18650938 DOI: 10.1038/emboj.2008.139] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 06/27/2008] [Indexed: 12/22/2022] Open
Abstract
The homotypic fusion of yeast vacuoles, each with 3Q- and 1R-SNARE, requires SNARE chaperones (Sec17p/Sec18p and HOPS) and regulatory lipids (sterol, diacylglycerol and phosphoinositides). Pairs of liposomes of phosphatidylcholine/phosphatidylserine, bearing three vacuolar Q-SNAREs on one and the R-SNARE on the other, undergo slow lipid mixing, but this is unaffected by HOPS and inhibited by Sec17p/Sec18p. To study these essential fusion components, we reconstituted proteoliposomes of a more physiological composition, bearing vacuolar lipids and all four vacuolar SNAREs. Their fusion requires Sec17p/Sec18p and HOPS, and each regulatory lipid is important for rapid fusion. Although SNAREs can cause both fusion and lysis, fusion of these proteoliposomes with Sec17p/Sec18p and HOPS is not accompanied by lysis. Sec17p/Sec18p, which disassemble SNARE complexes, and HOPS, which promotes and proofreads SNARE assembly, act synergistically to form fusion-competent SNARE complexes, and this synergy requires phosphoinositides. This is the first chemically defined model of the physiological interactions of these conserved fusion catalysts.
Collapse
|
47
|
James DJ, Khodthong C, Kowalchyk JA, Martin TFJ. Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. ACTA ACUST UNITED AC 2008; 182:355-66. [PMID: 18644890 PMCID: PMC2483516 DOI: 10.1083/jcb.200801056] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI 4,5-P2) on the plasma membrane is essential for vesicle exocytosis but its role in membrane fusion has not been determined. Here, we quantify the concentration of PI 4,5-P2 as ∼6 mol% in the cytoplasmic leaflet of plasma membrane microdomains at sites of docked vesicles. At this concentration of PI 4,5-P2 soluble NSF attachment protein receptor (SNARE)–dependent liposome fusion is inhibited. Inhibition by PI 4,5-P2 likely results from its intrinsic positive curvature–promoting properties that inhibit formation of high negative curvature membrane fusion intermediates. Mutation of juxtamembrane basic residues in the plasma membrane SNARE syntaxin-1 increase inhibition by PI 4,5-P2, suggesting that syntaxin sequesters PI 4,5-P2 to alleviate inhibition. To define an essential rather than inhibitory role for PI 4,5-P2, we test a PI 4,5-P2–binding priming factor required for vesicle exocytosis. Ca2+-dependent activator protein for secretion promotes increased rates of SNARE-dependent fusion that are PI 4,5-P2 dependent. These results indicate that PI 4,5-P2 regulates fusion both as a fusion restraint that syntaxin-1 alleviates and as an essential cofactor that recruits protein priming factors to facilitate SNARE-dependent fusion.
Collapse
Affiliation(s)
- Declan J James
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
48
|
Affiliation(s)
- James A McNew
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas 77251-1892, USA.
| |
Collapse
|
49
|
Liu S, Wilson KA, Rice-Stitt T, Neiman AM, McNew JA. In vitro fusion catalyzed by the sporulation-specific t-SNARE light-chain Spo20p is stimulated by phosphatidic acid. Traffic 2007; 8:1630-43. [PMID: 17714435 DOI: 10.1111/j.1600-0854.2007.00628.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sec9p and Spo20p are two SNAP25 family SNARE proteins specialized for different developmental stages in yeast. Sec9p interacts with Sso1/2p and Snc1/2p to mediate intracellular trafficking between post-Golgi vesicles and the plasma membrane during vegetative growth. Spo20p replaces Sec9p in the generation of prospore membranes during sporulation. The function of Spo20p requires enzymatically active Spo14p, which is a phosphatidylcholine (PC)-specific phospholipase D that hydrolyzes PC to generate phosphatidic acid (PA). Phosphatidic acid is required to localize Spo20p properly during sporulation; however, it seems to have additional roles that are not fully understood. Here we compared the fusion mediated by all combinations of the Sec9p or Spo20p C-terminal domains with Sso1p/Sso2p and Snc1p/Snc2p. Our results show that Spo20p forms a less efficient SNARE complex than Sec9p. The combination of Sso2p/Spo20c is the least fusogenic t-SNARE complex. Incorporation of PA in the lipid bilayer stimulates SNARE-mediated membrane fusion by all t-SNARE complexes, likely by decreasing the energetic barrier during membrane merger. This effect may allow the weak SNARE complex containing Spo20p to function during sporulation. In addition, PA can directly interact with the juxtamembrane region of Sso1p, which contributes to the stimulatory effects of PA on membrane fusion. Our results suggest that the fusion strength of SNAREs, the composition of organelle lipids and lipid-SNARE interactions may be coordinately regulated to control the rate and specificity of membrane fusion.
Collapse
Affiliation(s)
- Song Liu
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|