1
|
Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol 2023; 24:142-161. [PMID: 36168065 PMCID: PMC9892292 DOI: 10.1038/s41580-022-00531-5] [Citation(s) in RCA: 212] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 02/04/2023]
Abstract
The ability of animal cells to sense, adhere to and remodel their local extracellular matrix (ECM) is central to control of cell shape, mechanical responsiveness, motility and signalling, and hence to development, tissue formation, wound healing and the immune response. Cell-ECM interactions occur at various specialized, multi-protein adhesion complexes that serve to physically link the ECM to the cytoskeleton and the intracellular signalling apparatus. This occurs predominantly via clustered transmembrane receptors of the integrin family. Here we review how the interplay of mechanical forces, biochemical signalling and molecular self-organization determines the composition, organization, mechanosensitivity and dynamics of these adhesions. Progress in the identification of core multi-protein modules within the adhesions and characterization of rearrangements of their components in response to force, together with advanced imaging approaches, has improved understanding of adhesion maturation and turnover and the relationships between adhesion structures and functions. Perturbations of adhesion contribute to a broad range of diseases and to age-related dysfunction, thus an improved understanding of their molecular nature may facilitate therapeutic intervention in these conditions.
Collapse
Affiliation(s)
- Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Graham JB, Sunryd JC, Mathavan K, Weir E, Larsen ISB, Halim A, Clausen H, Cousin H, Alfandari D, Hebert DN. Endoplasmic reticulum transmembrane protein TMTC3 contributes to O-mannosylation of E-cadherin, cellular adherence, and embryonic gastrulation. Mol Biol Cell 2020; 31:167-183. [PMID: 31851597 PMCID: PMC7001481 DOI: 10.1091/mbc.e19-07-0408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023] Open
Abstract
Protein glycosylation plays essential roles in protein structure, stability, and activity such as cell adhesion. The cadherin superfamily of adhesion molecules carry O-linked mannose glycans at conserved sites and it was recently demonstrated that the transmembrane and tetratricopeptide repeat-containing proteins 1-4 (TMTC1-4) gene products contribute to the addition of these O-linked mannoses. Here, biochemical, cell biological, and organismal analysis was used to determine that TMTC3 supports the O-mannosylation of E-cadherin, cellular adhesion, and embryonic gastrulation. Using genetically engineered cells lacking all four TMTC genes, overexpression of TMTC3 rescued O-linked glycosylation of E-cadherin and cell adherence. The knockdown of the Tmtcs in Xenopus laevis embryos caused a delay in gastrulation that was rescued by the addition of human TMTC3. Mutations in TMTC3 have been linked to neuronal cell migration diseases including Cobblestone lissencephaly. Analysis of TMTC3 mutations associated with Cobblestone lissencephaly found that three of the variants exhibit reduced stability and missence mutations were unable to complement TMTC3 rescue of gastrulation in Xenopus embryo development. Our study demonstrates that TMTC3 regulates O-linked glycosylation and cadherin-mediated adherence, providing insight into its effect on cellular adherence and migration, as well the basis of TMTC3-associated Cobblestone lissencephaly.
Collapse
Affiliation(s)
- Jill B. Graham
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Johan C. Sunryd
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Ketan Mathavan
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Emma Weir
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Ida Signe Bohse Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Adnan Halim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
- Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen 2200, Denmark
| | - Hélène Cousin
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Dominque Alfandari
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Amherst, MA 01003
| | - Daniel N. Hebert
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Amherst, MA 01003
| |
Collapse
|
4
|
Spicer E, Suckert C, Al-Attar H, Marsden M. Integrin alpha5beta1 function is regulated by XGIPC/kermit2 mediated endocytosis during Xenopus laevis gastrulation. PLoS One 2010; 5:e10665. [PMID: 20498857 PMCID: PMC2871791 DOI: 10.1371/journal.pone.0010665] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/19/2010] [Indexed: 12/17/2022] Open
Abstract
During Xenopus gastrulation α5β1 integrin function is modulated in a temporally and spatially restricted manner, however, the regulatory mechanisms behind this regulation remain uncharacterized. Here we report that XGIPC/kermit2 binds to the cytoplasmic domain of the α5 subunit and regulates the activity of α5β1 integrin. The interaction of kermit2 with α5β1 is essential for fibronectin (FN) matrix assembly during the early stages of gastrulation. We further demonstrate that kermit2 regulates α5β1 integrin endocytosis downstream of activin signaling. Inhibition of kermit2 function impairs cell migration but not adhesion to FN substrates indicating that integrin recycling is essential for mesoderm cell migration. Furthermore, we find that the α5β1 integrin is colocalized with kermit2 and Rab 21 in embryonic and XTC cells. These data support a model where region specific mesoderm induction acts through kermit2 to regulate the temporally and spatially restricted changes in adhesive properties of the α5β1 integrin through receptor endocytosis.
Collapse
Affiliation(s)
- Erin Spicer
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Catherine Suckert
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Hyder Al-Attar
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Mungo Marsden
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- * E-mail:
| |
Collapse
|
5
|
Davidson LA, Dzamba BD, Keller R, Desimone DW. Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev Dyn 2008; 237:2684-92. [PMID: 18629871 PMCID: PMC2628587 DOI: 10.1002/dvdy.21600] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cell motility and matrix assembly have traditionally been studied in isolation because of a lack of suitable model systems in which both can be observed simultaneously. With embryonic tissues from the gastrulating frog Xenopus laevis we observe stages of fibronectin fibrillogenesis coincident with protrusive activity in the overlying cells. Using live confocal time-lapse images collected from Cy3-tagged fibronectin and plasma membrane tethered green fluorescent protein, we describe the movement and the elaboration of a complex fibrillar network undergoing topological rearrangements of fibrils on the surface of an embryonic tissue. Discrete processes of annealing, polymerization, stretching, breaking, and recoiling are recorded. Elaboration and maintenance of the complex topology of the extracellular matrix appears to require filamentous actin. These findings support a mechanical-model in which cell tractive forces elaborate the complex topological fibrillar network and are part of a homeostatic mechanism for the regulation of the extracellular matrix.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, USA.
| | | | | | | |
Collapse
|
6
|
Evidence for the evolution of tenascin and fibronectin early in the chordate lineage. Int J Biochem Cell Biol 2008; 41:424-34. [PMID: 18761101 DOI: 10.1016/j.biocel.2008.08.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/24/2008] [Accepted: 08/01/2008] [Indexed: 11/23/2022]
Abstract
Fibronectin and tenascin are extracellular matrix glycoproteins that play important roles in cell adhesion and motility. In a previous study we provided evidence that tenascin first appeared early in the chordate lineage. As tenascin has been proposed to act, in part, through modulation of cell-fibronectin interactions, we sought here to identify fibronectin genes in non-vertebrate chordates and other invertebrates to determine if tenascin and fibronectin evolved separately or together, and to identify phylogenetically conserved features of both proteins. We found that the genome of the urochordate Ciona savignyi contains both a tenascin gene and a gene encoding a fibronectin-like protein with fibronectin type 1, 2 and 3 repeats. The genome of the cephalochordate Branchiostoma floridae (amphioxus) also has a tenascin gene. However, we could not identify a fibronectin-like gene in B. floridae, nor could we identify fibronectin or tenascin genes in echinoderms, protostomes or cnidarians. If urochordates are more closely related to vertebrates, tenascin may have evolved before fibronectin in an ancestor common to tunicates and amphioxus. Alternatively, tenascin and fibronectin may have evolved in an ancestor common to B. floridae and C. savignyi and the fibronectin gene was subsequently lost in the cephalochordate lineage. The fibronectin-like gene from C. savignyi does not encode the RGD motif for integrin binding found in all vertebrate fibronectins, and it lacks most of the fibronectin type 1 domains believed to be critical for fibrillogenesis. In contrast, the tenascin gene in B. floridae encodes multiple RGD motifs, suggesting that integrin binding is fundamental to tenascin function.
Collapse
|
7
|
Sato KI. Signal transduction of fertilization in frog eggs and anti-apoptotic mechanism in human cancer cells: common and specific functions of membrane microdomains. Open Biochem J 2008; 2:49-59. [PMID: 18949075 PMCID: PMC2570554 DOI: 10.2174/1874091x00802010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 02/07/2023] Open
Abstract
Membrane microdomains or lipid/membrane rafts are distinct areas on the plasma membranes, where a specific subset of lipids (e.g. cholesterol, sphingolipids) and proteins (e.g. glycosylphosphatidylinositol-anchored proteins, growth factor receptor/kinases) are getting together and functioning for several aspects of cellular functions. Our recent investigation has revealed that fertilization of African clawed frog, Xenopus laevis, requires cholesterol-dependent nature of egg membrane microdomains. Moreover, fertilization of Xenopus eggs involves proteolytic cleavage of the extracellular part and subsequent phosphorylation of a cytoplasmic tyrosine residue of uroplakin III, an egg membrane microdomain-associated protein. Protease activity toward uroplakin III seems to be derived from fertilizing sperm, while phosphorylation of uroplakin III seems to be catalyzed by the egg tyrosine kinase Src, whose activation is required for cytoplasmic rearrangement of fertilized eggs; so-called 'egg activation'. Therefore, it is assumed that uroplakin III serves an integral part of signal transduction in fertilization of Xenopus. Our more recent study on human cancer cells has revealed that a similar but distinct scheme of signal transduction operates in anti-apoptotic growth of cells. Namely, in human bladder carcinoma cells, cooperation of uroplakin III and Src, both of which localize to the membrane microdomains, allows cells to escape from apoptotic cell death and proliferate under culture conditions deprived of serum. In this review, I briefly introduce about biology of fertilization and cancer, and then present and discuss our experimental data on general importance and specific features of membrane microdomains in Xenopus fertilization and anti-apoptosis in human bladder carcinoma cells.
Collapse
Affiliation(s)
- Ken-Ichi Sato
- Laboratory of Cell and Developmental Biology, Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan.
| |
Collapse
|