1
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Bern MM. Extracellular vesicles: how they interact with endothelium, potentially contributing to metastatic cancer cell implants. Clin Transl Med 2017; 6:33. [PMID: 28933058 PMCID: PMC5607152 DOI: 10.1186/s40169-017-0165-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are blebs of cellular membranes, which entrap small portions of subjacent cytosol. They are released from a variety of cells, circulate in the blood for an unknown length of time and come to rest on endothelial surfaces. They contribute to an array of physiologic pathways, the complexity of which is still being investigated. They contribute to metastatic malignant cell implants and tumor-related angiogenesis, possibly abetted by the tissue factor that they carry. It is thought that the adherence of the EV to endothelium is dependent upon a combination of their P-selectin glycoprotein ligand-1 and exposed phosphatidylserine, the latter of which is normally hidden on the inner bilayer of the intact cellular membrane. This manuscript reviews what is known about EV origins, their clearance from the circulation and how they contribute to malignant cell implants upon endothelium surfaces and subsequent tumor growth.
Collapse
Affiliation(s)
- Murray M Bern
- University of New Mexico Comprehensive Cancer Center, 1201 Camino de Salud, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Yin H, Yang J, Zhang Q, Yang J, Wang H, Xu J, Zheng J. iRGD as a tumor‑penetrating peptide for cancer therapy (Review). Mol Med Rep 2017; 15:2925-2930. [PMID: 28358432 DOI: 10.3892/mmr.2017.6419] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/23/2017] [Indexed: 11/06/2022] Open
Abstract
As a tumor-targeting and ‑penetrating peptide, iRGD binds to αv integrins and neuropilin‑1 receptors, which are expressed at high levels on tumor cells and the surfaces of vasculature. Subsequently, iRGD penetrates deep into the tumor parenchyma with antitumor drugs, imaging agents, immune modulators and biological products. These substances are either chemically linked to the peptide or co‑injected with the peptide. The iRGD peptide can be readily synthesized, exhibits significantly improved penetration, compared with traditional peptides, and can effectively inhibit tumor metastasis. Therefore, the peptide is now used widely for the diagnosis and treatment of cancer. However, whether the peptide is able to promote the entry of drugs into non‑targeted cells remains to be fully elucidated. In this review, an overview of iRGD is presented, focusing on its identification, mechanism of action and previous studies on its roles in various types of cancer. Studies in previous years have demonstrated the potential of the iRGD protein for tumors diagnosis and targeted treatment, which warrants further investigation.
Collapse
Affiliation(s)
- Hong Yin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Haiyu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jinjing Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
4
|
Peptide-Based Treatment: A Promising Cancer Therapy. J Immunol Res 2015; 2015:761820. [PMID: 26568964 PMCID: PMC4629048 DOI: 10.1155/2015/761820] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/14/2014] [Indexed: 12/16/2022] Open
Abstract
Many new therapies are currently being used to treat cancer. Among these new methods, chemotherapy based on peptides has been of great interest due to the unique advantages of peptides, such as a low molecular weight, the ability to specifically target tumor cells, and low toxicity in normal tissues. In treating cancer, peptide-based chemotherapy can be mainly divided into three types, peptide-alone therapy, peptide vaccines, and peptide-conjugated nanomaterials. Peptide-alone therapy may specifically enhance the immune system's response to kill tumor cells. Peptide-based vaccines have been used in advanced cancers to improve patients' overall survival. Additionally, the combination of peptides with nanomaterials expands the therapeutic ability of peptides to treat cancer by enhancing drug delivery and sensitivity. In this review, we mainly focus on the new advances in the application of peptides in treating cancer in recent years, including diagnosis, treatment, and prognosis.
Collapse
|
5
|
Zhang L, Geng X, Zhou J, Wang Y, Gao H, Zhou Y, Huang J. Fabrication of poly(γ-glutamic acid)-based biopolymer as the targeted drug delivery system with enhanced cytotoxicity to APN/CD13 over-expressed cells. J Drug Target 2015; 23:453-61. [DOI: 10.3109/1061186x.2014.1003139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
D'Onofrio N, Caraglia M, Grimaldi A, Marfella R, Servillo L, Paolisso G, Balestrieri ML. Vascular-homing peptides for targeted drug delivery and molecular imaging: meeting the clinical challenges. Biochim Biophys Acta Rev Cancer 2014; 1846:1-12. [PMID: 24704283 DOI: 10.1016/j.bbcan.2014.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/20/2014] [Accepted: 03/22/2014] [Indexed: 12/12/2022]
Abstract
The vasculature of each organ expresses distinct molecular signatures critically influenced by the pathological status. The heterogeneous profile of the vascular beds has been successfully unveiled by the in vivo phage display, a high-throughput tool for mapping normal, diseased, and tumor vasculature. Specific challenges of this growing field are targeted therapies against cancer and cardiovascular diseases, as well as novel bioimaging diagnostic tools. Tumor vasculature-homing peptides have been extensively evaluated in several preclinical and clinical studies both as targeted-therapy and diagnosis. To date, results from several Phase I and II trials have been reported and many other trials are currently ongoing or recruiting patients. In this review, advances in the identification of novel peptide ligands and their corresponding receptors on tumor endothelium through the in vivo phage display technology are discussed. Emphasis is given to recent findings in the clinical setting of vascular-homing peptides selected by in vivo phage display for the treatment of advanced malignancies and their altered vascular beds.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Luigi Servillo
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy
| | - Giuseppe Paolisso
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Piazza Miraglia 2, 80138 Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, via L. de Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
7
|
Gao Y, Xie J, Chen H, Gu S, Zhao R, Shao J, Jia L. Nanotechnology-based intelligent drug design for cancer metastasis treatment. Biotechnol Adv 2013; 32:761-77. [PMID: 24211475 DOI: 10.1016/j.biotechadv.2013.10.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
Abstract
Traditional chemotherapy used today at clinics is mainly inherited from the thinking and designs made four decades ago when the Cancer War was declared. The potency of those chemotherapy drugs on in-vitro cancer cells is clearly demonstrated at even nanomolar levels. However, due to their non-specific effects in the body on normal tissues, these drugs cause toxicity, deteriorate patient's life quality, weaken the host immunosurveillance system, and result in an irreversible damage to human's own recovery power. Owing to their unique physical and biological properties, nanotechnology-based chemotherapies seem to have an ability to specifically and safely reach tumor foci with enhanced efficacy and low toxicity. Herein, we comprehensively examine the current nanotechnology-based pharmaceutical platforms and strategies for intelligent design of new nanomedicines based on targeted drug delivery system (TDDS) for cancer metastasis treatment, analyze the pros and cons of nanomedicines versus traditional chemotherapy, and evaluate the importance that nanomaterials can bring in to significantly improve cancer metastasis treatment.
Collapse
Affiliation(s)
- Yu Gao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Jingjing Xie
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Haijun Chen
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China; Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Fuzhou University, Fujian 350108, China
| | - Songen Gu
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Rongli Zhao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Jingwei Shao
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Institute, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
8
|
Loi M, Di Paolo D, Soster M, Brignole C, Bartolini A, Emionite L, Sun J, Becherini P, Curnis F, Petretto A, Sani M, Gori A, Milanese M, Gambini C, Longhi R, Cilli M, Allen TM, Bussolino F, Arap W, Pasqualini R, Corti A, Ponzoni M, Marchiò S, Pastorino F. Novel phage display-derived neuroblastoma-targeting peptides potentiate the effect of drug nanocarriers in preclinical settings. J Control Release 2013; 170:233-41. [PMID: 23714122 DOI: 10.1016/j.jconrel.2013.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 04/23/2013] [Accepted: 04/29/2013] [Indexed: 01/20/2023]
Abstract
Molecular targeting of drug delivery nanocarriers is expected to improve their therapeutic index while decreasing their toxicity. Here we report the identification and characterization of novel peptide ligands specific for cells present in high-risk neuroblastoma (NB), a childhood tumor mostly refractory to current therapies. To isolate such targeting moieties, we performed combined in vitro/ex-vivo phage display screenings on NB cell lines and on tumors derived from orthotopic mouse models of human NB. By designing proper subtractive protocols, we identified phage clones specific either for the primary tumor, its metastases, or for their respective stromal components. Globally, we isolated 121 phage-displayed NB-binding peptides: 26 bound the primary tumor, 15 the metastatic mass, 57 and 23 their respective microenvironments. Of these, five phage clones were further validated for their specific binding ex-vivo to biopsies from stage IV NB patients and to NB tumors derived from mice. All five clones also targeted tumor cells and vasculature in vivo when injected into NB-bearing mice. Coupling of the corresponding targeting peptides with doxorubicin-loaded liposomes led to a significant inhibition in tumor volume and enhanced survival in preclinical NB models, thereby paving the way to their clinical development.
Collapse
Affiliation(s)
- Monica Loi
- Experimental Therapy Unit, Laboratory of Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tillotson BJ, Cho YK, Shusta EV. Cells and cell lysates: a direct approach for engineering antibodies against membrane proteins using yeast surface display. Methods 2013; 60:27-37. [PMID: 22449570 PMCID: PMC3405166 DOI: 10.1016/j.ymeth.2012.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 03/09/2012] [Indexed: 01/16/2023] Open
Abstract
Membrane proteins (MPs) are often desirable targets for antibody engineering. However, the majority of antibody engineering platforms depend implicitly on aqueous solubility of the target antigen which is often problematic for MPs. Recombinant, soluble forms of MPs have been successfully employed as antigen sources for antibody engineering, but heterologous expression and purification of soluble MP fragments remains a challenging and time-consuming process. Here we present a more direct approach to aid in the engineering of antibodies to MPs. By combining yeast surface display technology directly with whole cells or detergent-solubilized whole-cell lysates, antibody libraries can be screened against MP antigens in their near-native conformations. We also describe how the platform can be adapted for antibody characterization and antigen identification. This collection of compatible methods serves as a basis for antibody engineering against MPs and it is predicted that these methods will mature in parallel with developments in membrane protein biochemistry and solubilization technology.
Collapse
Affiliation(s)
- Benjamin J. Tillotson
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, 1415 Engineering Dr., Madison, WI 53706
| | - Yong Ku Cho
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, 1415 Engineering Dr., Madison, WI 53706
| | - Eric V. Shusta
- University of Wisconsin-Madison, Dept. of Chemical and Biological Engineering, 1415 Engineering Dr., Madison, WI 53706
| |
Collapse
|
10
|
Li ZJ, Cho CH. Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med 2012; 10 Suppl 1:S1. [PMID: 23046982 PMCID: PMC3445867 DOI: 10.1186/1479-5876-10-s1-s1] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tumor vasculature expresses a distinct set of molecule signatures on the endothelial cell surface different from the resting blood vessels of other organs and tissues in the body. This makes them an attractive target for cancer therapy and molecular imaging. The current technology using the in vivo phage display biopanning allows us to quickly isolate and identify peptides potentially homing to various tumor blood vessels. Tumor-homing peptides in conjugation with chemotherapeutic drugs or imaging contrast have been extensively tested in various preclinical and clinical studies. These tumor-homing peptides have valuable potential as targeting probes for tumor molecular imaging and drug delivery. In this review, we summarize the recent advances about the applications of tumor-homing peptides selected by in vivo phage display library screening against tumor vasculature. We also introduce the characteristics of the latest discovered tumor-penetrating peptides in their potential clinical applications.
Collapse
Affiliation(s)
- Zhi Jie Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR.
| | | |
Collapse
|
11
|
Abstract
Each organ and pathology has a unique vascular ZIP code that can be targeted with affinity ligands. In vivo peptide phage display can be used for unbiased mapping of the vascular diversity. Remarkably, some of the peptides identified by such screens not only bind to target vessels but also elicit biological responses. Recently identified tissue-penetrating CendR peptides trigger vascular exit and parenchymal spread of a wide range of conjugated and coadministered payloads. This review is designed to serve as a practical guide for researchers interested in setting up ex vivo and in vivo phage display technology. We focus on T7 coliphage platform that our lab prefers to use due to its versatility, physical resemblance of phage particles to clinical nanoparticles, and ease of manipulation.
Collapse
|
12
|
Cochran R, Cochran F. Phage display and molecular imaging: expanding fields of vision in living subjects. Biotechnol Genet Eng Rev 2011; 27:57-94. [PMID: 21415893 DOI: 10.1080/02648725.2010.10648145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vivo molecular imaging enables non-invasive visualization of biological processes within living subjects, and holds great promise for diagnosis and monitoring of disease. The ability to create new agents that bind to molecular targets and deliver imaging probes to desired locations in the body is critically important to further advance this field. To address this need, phage display, an established technology for the discovery and development of novel binding agents, is increasingly becoming a key component of many molecular imaging research programs. This review discusses the expanding role played by phage display in the field of molecular imaging with a focus on in vivo applications. Furthermore, new methodological advances in phage display that can be directly applied to the discovery and development of molecular imaging agents are described. Various phage library selection strategies are summarized and compared, including selections against purified target, intact cells, and ex vivo tissue, plus in vivo homing strategies. An outline of the process for converting polypeptides obtained from phage display library selections into successful in vivo imaging agents is provided, including strategies to optimize in vivo performance. Additionally, the use of phage particles as imaging agents is also described. In the latter part of the review, a survey of phage-derived in vivo imaging agents is presented, and important recent examples are highlighted. Other imaging applications are also discussed, such as the development of peptide tags for site-specific protein labeling and the use of phage as delivery agents for reporter genes. The review concludes with a discussion of how phage display technology will continue to impact both basic science and clinical applications in the field of molecular imaging.
Collapse
Affiliation(s)
- R Cochran
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford CA, USA
| | | |
Collapse
|
13
|
Driessen WHP, Bronk LF, Edwards JK, Proneth B, Souza GR, Decuzzi P, Pasqualini R, Arap W. On the synergistic effects of ligand-mediated and phage-intrinsic properties during in vivo selection. ADVANCES IN GENETICS 2010; 69:115-33. [PMID: 20807605 DOI: 10.1016/s0065-2660(10)69005-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Phage display has been used as a powerful tool in the discovery and characterization of ligand-receptor complexes that can be utilized for therapeutic applications as well as to elucidate disease mechanisms. While the basic properties of phage itself have been well described, the behavior of phage in an in vivo setting is not as well understood due to the complexity of the system. Here, we take a dual approach in describing the biophysical mechanisms and properties that contribute to the efficacy of in vivo phage targeting. We begin by considering the interaction between phage and target by applying a kinetic model of ligand-receptor complexation and internalization. The multivalent display of peptides on the pIII capsid of phage is also discussed as an augmenting factor in the binding affinity of phage-displayed peptides to cellular targets accessible in a microenvironment of interest. Lastly, we examine the physical properties of the total phage particle that facilitate improved delivery and targeting in vivo compared to free peptides.
Collapse
Affiliation(s)
- Wouter H P Driessen
- David H. Koch Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang J, Faust SM, Rabinowitz JE. The next step in gene delivery: molecular engineering of adeno-associated virus serotypes. J Mol Cell Cardiol 2010; 50:793-802. [PMID: 21029739 DOI: 10.1016/j.yjmcc.2010.10.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 12/29/2022]
Abstract
Delivery is at the heart of gene therapy. Viral DNA delivery systems are asked to avoid the immune system, transduce specific target cell types while avoiding other cell types, infect dividing and non-dividing cells, insert their cargo within the host genome without mutagenesis or to remain episomal, and efficiently express transgenes for a substantial portion of a lifespan. These sought-after features cannot be associated with a single delivery system, or can they? The Adeno-associated virus family of gene delivery vehicles has proven to be highly malleable. Pseudotyping, using AAV serotype 2 terminal repeats to generate designer shells capable of transducing selected cell types, enables the packaging of common genomes into multiple serotypes virions to directly compare gene expression and tropism. In this review the ability to manipulate this virus will be examined from the inside out. The influence of host cell factors and organism biology including the immune response on the molecular fate of the viral genome will be discussed as well as differences in cellular trafficking patterns and uncoating properties that influence serotype transduction. Re-engineering the prototype vector AAV2 using epitope insertion, chemical modification, and molecular evolution not only demonstrated the flexibility of the best-studied serotype, but now also expanded the tool kit for molecular modification of all AAV serotypes. Current AAV research has changed its focus from examination of wild-type AAV biology to the feedback of host cell/organism on the design and development of a new generation of recombinant AAV delivery vehicles. This article is part of a Special Section entitled "Special Section: Cardiovascular Gene Therapy".
Collapse
Affiliation(s)
- Jinhui Wang
- Thomas Jefferson University Center for Translational Medicine, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
15
|
Li ZJ, Wu WKK, Ng SSM, Yu L, Li HT, Wong CCM, Wu YC, Zhang L, Ren SX, Sun XG, Chan KM, Cho CH. A novel peptide specifically targeting the vasculature of orthotopic colorectal cancer for imaging detection and drug delivery. J Control Release 2010; 148:292-302. [PMID: 20854857 DOI: 10.1016/j.jconrel.2010.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/26/2010] [Accepted: 09/14/2010] [Indexed: 01/26/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the fourth most frequent cause of cancer deaths worldwide. Ligand-mediated diagnosis and targeted therapy would have vital clinical applications in cancer treatment. In this study, an orthotopic model of colorectal cancer was established in mice. In vivo phage library selection was then utilized to isolate peptides specifically recognizing the vasculature of colorectal cancer tissues. A phage (termed TCP-1 phage) was isolated by this manner and it homed to the colorectal cancer tissues by 11- to 94-fold more than other organs. Chemical synthetic peptide (CTPSPFSHC, termed TCP-1) displayed by TCP-1 phage inhibited the homing ability of the phage to the tumor mass when co-injected intravenously with the TCP-1 phage into mice with colon cancer. Meanwhile, immunostaining analysis indicated that TCP-1 phage and peptide localized in the vasculature of the colorectal cancer tissue, but not of normal tissues. Moreover, TCP-1 peptide bound to blood vessels of surgical tissue samples of human colorectal cancer. After intravenous injection of FITC-labeled TCP-1 into the tumor-bearing mice for 20h, there was a strong fluorescent signal in the tumors but not other tissues when observed under blue light. In addition, TCP-1 conjugated with a pro-apoptotic peptide specifically induced apoptosis of tumor-associated blood vessels in vivo. The data define a novel peptide TCP-1 as an effective agent for imaging detection and drug delivery for colorectal cancer.
Collapse
Affiliation(s)
- Zhi Jie Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Michelfelder S, Trepel M. Adeno-associated viral vectors and their redirection to cell-type specific receptors. ADVANCES IN GENETICS 2010; 67:29-60. [PMID: 19914449 DOI: 10.1016/s0065-2660(09)67002-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Efficient and specific delivery of genes to the cell type of interest is a crucial issue in gene therapy. Adeno-associated virus (AAV) has gained particular interest as gene vector recently and is therefore the focus of this chapter. Its low frequency of random integration into the genome and the moderate immune response make AAV an attractive platform for vector design. Like in most other vector systems, the tropism of AAV vectors limits their utility for certain tissues especially upon systemic application. This may in part be circumvented by using AAV serotypes with an in vivo gene transduction pattern most closely fitting the needs of the application. Also, the tropism of AAV capsids may be changed by combining parts of the natural serotype diversity. In addition, peptides mediating binding to the cell type of interest can be identified by random phage display library screening and subsequently be introduced into an AAV capsid region critical for receptor binding. Such peptide insertions can abrogate the natural tropism of AAV capsids and result in detargeting from the liver in vivo. In a novel approach, cell type-directed vector capsids can be selected from random peptide libraries displayed on viral capsids or serotype-shuffling libraries in vitro and in vivo for optimized transduction of the cell type or tissue of interest.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Martin Trepel
- Department of Oncology and Hematology, Hubertus Wald Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| |
Collapse
|
17
|
Giordano RJ, Edwards JK, Tuder RM, Arap W, Pasqualini R. Combinatorial ligand-directed lung targeting. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2009; 6:411-5. [PMID: 19687212 PMCID: PMC3266014 DOI: 10.1513/pats.200903-014aw] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/26/2009] [Indexed: 12/13/2022]
Abstract
Phage display of random peptide libraries is a powerful, unbiased method frequently used to discover ligands for virtually any protein of interest and to reveal functional protein-protein interaction partners. Moreover, in vivo phage display permits selection of peptides that bind specifically to different vascular beds without any previous knowledge pertaining to the nature of their corresponding receptors. Vascular targeting exploits molecular differences inherent in blood vessels within given organs and tissues, as well as diversity between normal and angiogenic blood vessels. Over the years, our group has identified phage capable of homing to lung blood vessels based on screenings using immortalized lung endothelial cells combined with in vivo selections after intravenous administration of combinatorial libraries. Peptides targeting lung vasculature have been extensively characterized and a lead homing peptide has shown interesting biological properties, bringing novel insights as to the implications of lung endothelial cell apoptosis in the pathogenesis of emphysema. We have also designed and developed targeted nanoparticles with imaging capabilities and/or drug delivery functions by combining phage display technology and elemental gold (Au) nanoparticles, constituting a promising platform for the development of therapeutic agents for imaging and treatment of lung disorders. Given the important role of the endothelium in the pathogenesis and progression of several diseases associated with the airways, ligand-directed discovery of lung vascular markers is an important milestone toward the development of future targeted therapies.
Collapse
Affiliation(s)
- Ricardo J. Giordano
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Julianna K. Edwards
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Rubin M. Tuder
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Wadih Arap
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| | - Renata Pasqualini
- University of Texas M. D. Anderson Cancer Center, Houston, Texas; and University of Colorado Denver, School of Medicine, Aurora, Colorado
| |
Collapse
|
18
|
Abstract
When aptamers first emerged almost two decades ago, most were RNA species that bound and tagged or inhibited simple target ligands. Very soon after, the 'selectionologists' developing aptamer technology quickly realized more potential for the aptamer. In recent years, advances in aptamer techniques have enabled the use of aptamers as small molecule inhibitors, diagnostic tools and even therapeutics. Aptamers are now being employed in novel applications. We review, herein, some of the recent and exciting applications of aptamers in cell-specific recognition and delivery.
Collapse
Affiliation(s)
- Amy C. Yan
- Department of Biochemistry, Albert Einstein College of Medicine, Lab: (718) 678-1025, Office: (718) 678-1024
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Lab: (718) 678-1025, Office: (718) 678-1024
| |
Collapse
|