1
|
Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Adv Microb Physiol 2022; 80:85-155. [PMID: 35489794 DOI: 10.1016/bs.ampbs.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial pathogens have sophisticated systems that allow them to survive in hosts in which innate immunity is the frontline of defense. One of the substances produced by infected hosts is nitric oxide (NO) that together with its derived species leads to the so-called nitrosative stress, which has antimicrobial properties. In this review, we summarize the current knowledge on targets and protective systems that bacteria have to survive host-generated nitrosative stress. We focus on bacterial pathogens that pose serious health concerns due to the growing increase in resistance to currently available antimicrobials. We describe the role of nitrosative stress as a weapon for pathogen eradication, the detoxification enzymes, protein/DNA repair systems and metabolic strategies that contribute to limiting NO damage and ultimately allow survival of the pathogen in the host. Additionally, this systematization highlights the lack of available data for some of the most important human pathogens, a gap that urgently needs to be addressed.
Collapse
|
2
|
Keller TCS, Lechauve C, Keller AS, Brooks S, Weiss MJ, Columbus L, Ackerman H, Cortese-Krott MM, Isakson BE. The role of globins in cardiovascular physiology. Physiol Rev 2022; 102:859-892. [PMID: 34486392 PMCID: PMC8799389 DOI: 10.1152/physrev.00037.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Globin proteins exist in every cell type of the vasculature, from erythrocytes to endothelial cells, vascular smooth muscle cells, and peripheral nerve cells. Many globin subtypes are also expressed in muscle tissues (including cardiac and skeletal muscle), in other organ-specific cell types, and in cells of the central nervous system (CNS). The ability of each of these globins to interact with molecular oxygen (O2) and nitric oxide (NO) is preserved across these contexts. Endothelial α-globin is an example of extraerythrocytic globin expression. Other globins, including myoglobin, cytoglobin, and neuroglobin, are observed in other vascular tissues. Myoglobin is observed primarily in skeletal muscle and smooth muscle cells surrounding the aorta or other large arteries. Cytoglobin is found in vascular smooth muscle but can also be expressed in nonvascular cell types, especially in oxidative stress conditions after ischemic insult. Neuroglobin was first observed in neuronal cells, and its expression appears to be restricted mainly to the CNS and the peripheral nervous system. Brain and CNS neurons expressing neuroglobin are positioned close to many arteries within the brain parenchyma and can control smooth muscle contraction and thus tissue perfusion and vascular reactivity. Overall, reactions between NO and globin heme iron contribute to vascular homeostasis by regulating vasodilatory NO signals and scavenging reactive species in cells of the mammalian vascular system. Here, we discuss how globin proteins affect vascular physiology, with a focus on NO biology, and offer perspectives for future study of these functions.
Collapse
Affiliation(s)
- T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Steven Brooks
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Linda Columbus
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Hans Ackerman
- Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, Maryland
| | - Miriam M Cortese-Krott
- Myocardial Infarction Research Laboratory, Department of Cardiology, Pulmonology, and Angiology, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
3
|
Kiger L, Keith J, Freiwan A, Fernandez AG, Tillman H, Isakson BE, Weiss MJ, Lechauve C. Redox-Regulation of α-Globin in Vascular Physiology. Antioxidants (Basel) 2022; 11:antiox11010159. [PMID: 35052663 PMCID: PMC8773178 DOI: 10.3390/antiox11010159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Interest in the structure, function, and evolutionary relations of circulating and intracellular globins dates back more than 60 years to the first determination of the three-dimensional structure of these proteins. Non-erythrocytic globins have been implicated in circulatory control through reactions that couple nitric oxide (NO) signaling with cellular oxygen availability and redox status. Small artery endothelial cells (ECs) express free α-globin, which causes vasoconstriction by degrading NO. This reaction converts reduced (Fe2+) α-globin to the oxidized (Fe3+) form, which is unstable, cytotoxic, and unable to degrade NO. Therefore, (Fe3+) α-globin must be stabilized and recycled to (Fe2+) α-globin to reinitiate the catalytic cycle. The molecular chaperone α-hemoglobin-stabilizing protein (AHSP) binds (Fe3+) α-globin to inhibit its degradation and facilitate its reduction. The mechanisms that reduce (Fe3+) α-globin in ECs are unknown, although endothelial nitric oxide synthase (eNOS) and cytochrome b5 reductase (CyB5R3) with cytochrome b5 type A (CyB5a) can reduce (Fe3+) α-globin in solution. Here, we examine the expression and cellular localization of eNOS, CyB5a, and CyB5R3 in mouse arterial ECs and show that α-globin can be reduced by either of two independent redox systems, CyB5R3/CyB5a and eNOS. Together, our findings provide new insights into the regulation of blood vessel contractility.
Collapse
Affiliation(s)
- Laurent Kiger
- Inserm U955, Institut Mondor de Recherche Biomédicale, University Paris Est Creteil, 94017 Créteil, France;
| | - Julia Keith
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
| | - Abdullah Freiwan
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Alfonso G. Fernandez
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
| | - Heather Tillman
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.K.); (A.G.F.); (M.J.W.)
- Correspondence: ; Tel.: +1-(901)-595-8344; Fax: +1-(901)-595-4723
| |
Collapse
|
4
|
Marozkina N, Smith L, Zhao Y, Zein J, Chmiel JF, Kim J, Kiselar J, Davis MD, Cunningham RS, Randell SH, Gaston B. Somatic cell hemoglobin modulates nitrogen oxide metabolism in the human airway epithelium. Sci Rep 2021; 11:15498. [PMID: 34326365 PMCID: PMC8322277 DOI: 10.1038/s41598-021-94782-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
Endothelial hemoglobin (Hb)α regulates endothelial nitric oxide synthase (eNOS) biochemistry. We hypothesized that Hb could also be expressed and biochemically active in the ciliated human airway epithelium. Primary human airway epithelial cells, cultured at air–liquid interface (ALI), were obtained by clinical airway brushings or from explanted lungs. Human airway Hb mRNA data were from publically available databases; or from RT-PCR. Hb proteins were identified by immunoprecipitation, immunoblot, immunohistochemistry, immunofluorescence and liquid chromatography- mass spectrometry. Viral vectors were used to alter Hbβ expression. Heme and nitrogen oxides were measured colorimetrically. Hb mRNA was expressed in human ciliated epithelial cells. Heme proteins (Hbα, β, and δ) were detected in ALI cultures by several methods. Higher levels of airway epithelial Hbβ gene expression were associated with lower FEV1 in asthma. Both Hbβ knockdown and overexpression affected cell morphology. Hbβ and eNOS were apically colocalized. Binding heme with CO decreased extracellular accumulation of nitrogen oxides. Human airway epithelial cells express Hb. Higher levels of Hbβ gene expression were associated with airflow obstruction. Hbβ and eNOS were colocalized in ciliated cells, and heme affected oxidation of the NOS product. Epithelial Hb expression may be relevant to human airways diseases.
Collapse
Affiliation(s)
- Nadzeya Marozkina
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, 1044 W. Walnut Street, R4-474, Indianapolis, IN, 46202, USA.
| | - Laura Smith
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, 1044 W. Walnut Street, R4-474, Indianapolis, IN, 46202, USA
| | - Yi Zhao
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, 1044 W. Walnut Street, R4-474, Indianapolis, IN, 46202, USA
| | - Joe Zein
- Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James F Chmiel
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, 1044 W. Walnut Street, R4-474, Indianapolis, IN, 46202, USA
| | - Jeeho Kim
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | - Michael D Davis
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, 1044 W. Walnut Street, R4-474, Indianapolis, IN, 46202, USA
| | - Rebekah S Cunningham
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, 1044 W. Walnut Street, R4-474, Indianapolis, IN, 46202, USA
| | - Scott H Randell
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Benjamin Gaston
- Herman Wells Center for Pediatric Research, Riley Hospital for Children, Indiana University School of Medicine, 1044 W. Walnut Street, R4-474, Indianapolis, IN, 46202, USA
| |
Collapse
|
5
|
Guo K, Gao H. Physiological Roles of Nitrite and Nitric Oxide in Bacteria: Similar Consequences from Distinct Cell Targets, Protection, and Sensing Systems. Adv Biol (Weinh) 2021; 5:e2100773. [PMID: 34310085 DOI: 10.1002/adbi.202100773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/19/2021] [Indexed: 12/22/2022]
Abstract
Nitrite and nitric oxide (NO) are two active nitrogen oxides that display similar biochemical properties, especially when interacting with redox-sensitive proteins (i.e., hemoproteins), an observation serving as the foundation of the notion that the antibacterial effect of nitrite is largely attributed to NO formation. However, a growing body of evidence suggests that they are largely treated as distinct molecules by bacterial cells. Although both nitrite and NO are formed and decomposed by enzymes participating in the transformation of these nitrogen species, NO can also be generated via amino acid metabolism by bacterial NO synthetase and scavenged by flavohemoglobin. NO seemingly interacts with all hemoproteins indiscriminately, whereas nitrite shows high specificity to heme-copper oxidases. Consequently, the homeostasis of redox-sensitive proteins may be responsible for the substantial difference in NO-targets identified to date among different bacteria. In addition, most protective systems against NO damage have no significant role in alleviating inhibitory effects of nitrite. Furthermore, when functioning as signal molecules, nitrite and NO are perceived by completely different sensing systems, through which they are linked to different biological processes.
Collapse
Affiliation(s)
- Kailun Guo
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
6
|
Muraki N, Takeda K, Nam D, Muraki M, Aono S. Structural Characterization of Y29F Mutant of Thermoglobin from a Hyperthermophilic Bacterium Aquifex aeolicus. CHEM LETT 2021. [DOI: 10.1246/cl.200879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Norifumi Muraki
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Kouta Takeda
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Dayeon Nam
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Megumi Muraki
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shigetoshi Aono
- Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Structural Molecular Science, The Graduate University for Advanced Studies, 38 Nishogo-naka, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
7
|
Signorelli S, Sainz M, Tabares-da Rosa S, Monza J. The Role of Nitric Oxide in Nitrogen Fixation by Legumes. FRONTIERS IN PLANT SCIENCE 2020; 11:521. [PMID: 32582223 PMCID: PMC7286274 DOI: 10.3389/fpls.2020.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/06/2020] [Indexed: 05/26/2023]
Abstract
The legume-rhizobia symbiosis is an important process in agriculture because it allows the biological nitrogen fixation (BNF) which contributes to increasing the levels of nitrogen in the soil. Nitric oxide (⋅NO) is a small free radical molecule having diverse signaling roles in plants. Here we present and discuss evidence showing the role of ⋅NO during different stages of the legume-rhizobia interaction such as recognition, infection, nodule development, and nodule senescence. Although the mechanisms by which ⋅NO modulates this interaction are not fully understood, we discuss potential mechanisms including its interaction with cytokinin, auxin, and abscisic acid signaling pathways. In matures nodules, a more active metabolism of ⋅NO has been reported and both the plant and rhizobia participate in ⋅NO production and scavenging. Although ⋅NO has been shown to induce the expression of genes coding for NITROGENASE, controlling the levels of ⋅NO in mature nodules seems to be crucial as ⋅NO was shown to be a potent inhibitor of NITROGENASE activity, to induce nodule senescence, and reduce nitrogen assimilation. In this sense, LEGHEMOGLOBINS (Lbs) were shown to play an important role in the scavenging of ⋅NO and reactive nitrogen species (RNS), potentially more relevant in senescent nodules. Even though ⋅NO can reduce NITROGENASE activity, most reports have linked ⋅NO to positive effects on BNF. This can relate mainly to the regulation of the spatiotemporal distribution of ⋅NO which favors some effects over others. Another plausible explanation for this observation is that the negative effect of ⋅NO requires its direct interaction with NITROGENASE, whereas the positive effect of ⋅NO is related to its signaling function, which results in an amplifier effect. In the near future, it would be interesting to explore the role of environmental stress-induced ⋅NO in BNF.
Collapse
Affiliation(s)
- Santiago Signorelli
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- The School of Molecular Sciences, Faculty of Science, The University of Western Australia, Crawley, WA, Australia
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA, Australia
| | - Martha Sainz
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Sofía Tabares-da Rosa
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Jorge Monza
- Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
8
|
Premont RT, Reynolds JD, Zhang R, Stamler JS. Role of Nitric Oxide Carried by Hemoglobin in Cardiovascular Physiology: Developments on a Three-Gas Respiratory Cycle. Circ Res 2019; 126:129-158. [PMID: 31590598 DOI: 10.1161/circresaha.119.315626] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A continuous supply of oxygen is essential for the survival of multicellular organisms. The understanding of how this supply is regulated in the microvasculature has evolved from viewing erythrocytes (red blood cells [RBCs]) as passive carriers of oxygen to recognizing the complex interplay between Hb (hemoglobin) and oxygen, carbon dioxide, and nitric oxide-the three-gas respiratory cycle-that insures adequate oxygen and nutrient delivery to meet local metabolic demand. In this context, it is blood flow and not blood oxygen content that is the main driver of tissue oxygenation by RBCs. Herein, we review the lines of experimentation that led to this understanding of RBC function; from the foundational understanding of allosteric regulation of oxygen binding in Hb in the stereochemical model of Perutz, to blood flow autoregulation (hypoxic vasodilation governing oxygen delivery) observed by Guyton, to current understanding that centers on S-nitrosylation of Hb (ie, S-nitrosohemoglobin; SNO-Hb) as a purveyor of oxygen-dependent vasodilatory activity. Notably, hypoxic vasodilation is recapitulated by native S-nitrosothiol (SNO)-replete RBCs and by SNO-Hb itself, whereby SNO is released from Hb and RBCs during deoxygenation, in proportion to the degree of Hb deoxygenation, to regulate vessels directly. In addition, we discuss how dysregulation of this system through genetic mutation in Hb or through disease is a common factor in oxygenation pathologies resulting from microcirculatory impairment, including sickle cell disease, ischemic heart disease, and heart failure. We then conclude by identifying potential therapeutic interventions to correct deficits in RBC-mediated vasodilation to improve oxygen delivery-steps toward effective microvasculature-targeted therapies. To the extent that diseases of the heart, lungs, and blood are associated with impaired tissue oxygenation, the development of new therapies based on the three-gas respiratory system have the potential to improve the well-being of millions of patients.
Collapse
Affiliation(s)
- Richard T Premont
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - James D Reynolds
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Anesthesiology and Perioperative Medicine (J.D.R.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| | - Rongli Zhang
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH
| | - Jonathan S Stamler
- From the Institute for Transformative Molecular Medicine (R.T.P., J.D.R., R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Department of Medicine, Cardiovascular Research Institute (R.Z., J.S.S.), Case Western Reserve University School of Medicine, OH.,Harrington Discovery Institute (R.T.P., J.D.R., J.S.S.), University Hospitals Cleveland Medical Center, OH
| |
Collapse
|
9
|
Wright NJD. A review of the actions of Nitric Oxide in development and neuronal function in major invertebrate model systems. AIMS Neurosci 2019; 6:146-174. [PMID: 32341974 PMCID: PMC7179362 DOI: 10.3934/neuroscience.2019.3.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022] Open
Abstract
Ever since the late-eighties when endothelium-derived relaxing factor was found to be the gas nitric oxide, endogenous nitric oxide production has been observed in virtually all animal groups tested and additionally in plants, diatoms, slime molds and bacteria. The fact that this new messenger was actually a gas and therefore didn't obey the established rules of neurotransmission made it even more intriguing. In just 30 years there is now too much information for useful comprehensive reviews even if limited to animals alone. Therefore this review attempts to survey the actions of nitric oxide on development and neuronal function in selected major invertebrate models only so allowing some detailed discussion but still covering most of the primary references. Invertebrate model systems have some very useful advantages over more expensive and demanding animal models such as large, easily identifiable neurons and simple circuits in tissues that are typically far easier to keep viable. A table summarizing this information along with the major relevant references has been included for convenience.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Associate professor of pharmacy, Wingate University School of Pharmacy, Wingate, NC28174, USA
| |
Collapse
|
10
|
A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical implications. REV INORG CHEM 2018. [DOI: 10.1515/revic-2018-0011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractNitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are gaseous molecules of major impact in biology. Despite their toxicity, these molecules have profound effects on mammalian physiology and major implications in therapeutics. At tiny concentrations in human biology, they play key signaling and regulatory functions and hence are now labeled as “gasotransmitters.” In this literature survey, an introduction to gasotransmitters in relevance with NO, CO and H2S has been primarily focused. A special attention has been given to the conjoint physiological, pathophysiological and therapeutic aspects of NO in this work. In addition to the aforementioned elements of the investigation being reported, this report gives a detailed account of some of the recent advancements covering the NO release from both the nitro as well as nitroso compounds. The importance of the metallic center on the eve of producing the reduction center on NO and to develop photolabile properties have been elaborated within the effect of a few examples of metallic centers. Also, theoretical investigations that have been reported in the recent past and some other current theories pertaining to NO chemistry have been enlightened in this review. From the overall study, it is eminent that a number of facts are yet to be explored in context with NO for deeper mechanistic insights, model design for these molecules, other key roles and the search to find the best fit formalism in theoretical chemistry.
Collapse
|
11
|
Lechauve C, Butcher JT, Freiwan A, Biwer LA, Keith JM, Good ME, Ackerman H, Tillman HS, Kiger L, Isakson BE, Weiss MJ. Endothelial cell α-globin and its molecular chaperone α-hemoglobin-stabilizing protein regulate arteriolar contractility. J Clin Invest 2018; 128:5073-5082. [PMID: 30295646 DOI: 10.1172/jci99933] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Arteriolar endothelial cell-expressed (EC-expressed) α-globin binds endothelial NOS (eNOS) and degrades its enzymatic product, NO, via dioxygenation, thereby lessening the vasodilatory effects of NO on nearby vascular smooth muscle. Although this reaction potentially affects vascular physiology, the mechanisms that regulate α-globin expression and dioxygenase activity in ECs are unknown. Without β-globin, α-globin is unstable and cytotoxic, particularly in its oxidized form, which is generated by dioxygenation and recycled via endogenous reductases. We show that the molecular chaperone α-hemoglobin-stabilizing protein (AHSP) promotes arteriolar α-globin expression in vivo and facilitates its reduction by eNOS. In Ahsp-/- mice, EC α-globin was decreased by 70%. Ahsp-/- and Hba1-/- mice exhibited similar evidence of increased vascular NO signaling, including arteriolar dilation, blunted α1-adrenergic vasoconstriction, and reduced blood pressure. Purified α-globin bound eNOS or AHSP, but not both together. In ECs in culture, eNOS or AHSP enhanced α-globin expression posttranscriptionally. However, only AHSP prevented oxidized α-globin precipitation in solution. Finally, eNOS reduced AHSP-bound α-globin approximately 6-fold faster than did the major erythrocyte hemoglobin reductases (cytochrome B5 reductase plus cytochrome B5). Our data support a model whereby redox-sensitive shuttling of EC α-globin between AHSP and eNOS regulates EC NO degradation and vascular tone.
Collapse
Affiliation(s)
- Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Abdullah Freiwan
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lauren A Biwer
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Julia M Keith
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Hans Ackerman
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Heather S Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
12
|
Cannavo A, Koch WJ. GRK2 as negative modulator of NO bioavailability: Implications for cardiovascular disease. Cell Signal 2017; 41:33-40. [PMID: 28077324 DOI: 10.1016/j.cellsig.2017.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 02/01/2023]
Abstract
Nitric oxide (NO), initially identified as endothelium-derived relaxing factor (EDRF), is a gaso-transmitter with important regulatory roles in the cardiovascular, nervous and immune systems. In the former, this diatomic molecule and free radical gas controls vascular tone and cardiac mechanics, among others. In the cardiovascular system, it is now understood that β-adrenergic receptor (βAR) activation is a key modulator of NO generation. Therefore, it is not surprising that the up-regulation of G protein-coupled receptor kinases (GRKs), in particular GRK2, that restrains βAR activity contributes to impaired cardiovascular functions via alteration of NO bioavailability. This review, will explore the specific interrelation between βARs, GRK2 and NO in the cardiovascular system and their inter-relationship for the pathogenesis of the onset of disease. Last, we will update the readers on the current status of GRK2 inhibitors as a potential therapeutic strategy for heart failure with an emphasis on their ability of rescuing NO bioavailability.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA.
| |
Collapse
|
13
|
Xu GG, Deshpande TM, Ghatge MS, Mehta AY, Omar ASM, Ahmed MH, Venitz J, Abdulmalik O, Zhang Y, Safo MK. Design, Synthesis, and Investigation of Novel Nitric Oxide (NO)-Releasing Prodrugs as Drug Candidates for the Treatment of Ischemic Disorders: Insights into NO-Releasing Prodrug Biotransformation and Hemoglobin-NO Biochemistry. Biochemistry 2015; 54:7178-92. [PMID: 26582149 DOI: 10.1021/acs.biochem.5b01074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed novel nitric oxide (NO)-releasing prodrugs of efaproxiral (RSR13) for their potential therapeutic applications in a variety of diseases with underlying ischemia. RSR13 is an allosteric effector of hemoglobin (Hb) that decreases the protein's affinity for oxygen, thereby increasing tissue oxygenation. NO, because of its vasodilatory property, in the form of ester prodrugs has been found to be useful in managing several cardiovascular diseases by increasing blood flow and oxygenation in ischemic tissues. We synthesized three NO-donor ester derivatives of RSR13 (DD-1, DD-2, and DD-3) by attaching the NO-releasing moieties nitrooxyethyl, nitrooxypropyl, and 1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate, respectively, to the carboxylate of RSR13. In vitro studies demonstrated that the compounds released NO in a time-dependent manner upon being incubated with l-cysteine (1.8-9.3%) or human serum (2.3-52.5%) and also reduced the affinity of Hb for oxygen in whole blood (ΔP50 of 4.9-21.7 mmHg vs ΔP50 of 25.4-32.1 mmHg for RSR13). Crystallographic studies showed RSR13, the hydrolysis product of the reaction between DD-1 and deoxygenated Hb, bound to the central water cavity of Hb. Also, the hydrolysis product, NO, was observed exclusively bound to the two α hemes, the first such HbNO structure to be reported, capturing the previously proposed physiological bis-ligated nitrosylHb species. Finally, nitrate was observed bound to βHis97. Ultraperformance liquid chromatography-mass spectrometry analysis of the compounds incubated with matrices used for the various studies demonstrated the presence of the predicted reaction products. Our findings, beyond the potential therapeutic application, provide valuable insights into the biotransformation of NO-releasing prodrugs and their mechanism of action and into hemoglobin-NO biochemistry at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | - Abdel Sattar M Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University , Alsulaymanyah, Jeddah 21589, Saudi Arabia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University , Cairo 11884, Egypt
| | | | | | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
14
|
An integrated biochemical system for nitrate assimilation and nitric oxide detoxification in Bradyrhizobium japonicum. Biochem J 2015; 473:297-309. [PMID: 26564204 PMCID: PMC4724949 DOI: 10.1042/bj20150880] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022]
Abstract
Rhizobia are recognized to establish N2-fixing symbiotic interactions with legume plants. Bradyrhizobium japonicum, the symbiont of soybeans, can denitrify and grow under free-living conditions with nitrate (NO3 (-)) or nitrite (NO2 (-)) as sole nitrogen source. Unlike related bacteria that assimilate NO3 (-), genes encoding the assimilatory NO3 (-) reductase (nasC) and NO2 (-) reductase (nirA) in B. japonicum are located at distinct chromosomal loci. The nasC gene is located with genes encoding an ABC-type NO3 (-) transporter, a major facilitator family NO3 (-)/NO2 (-) transporter (NarK), flavoprotein (Flp) and single-domain haemoglobin (termed Bjgb). However, nirA clusters with genes for a NO3 (-)/NO2 (-)-responsive regulator (NasS-NasT). In the present study, we demonstrate NasC and NirA are both key for NO3 (-) assimilation and that growth with NO3 (-), but not NO2 (-) requires flp, implying Flp may function as electron donor to NasC. In addition, bjgb and flp encode a nitric oxide (NO) detoxification system that functions to mitigate cytotoxic NO formed as a by-product of NO3 (-) assimilation. Additional experiments reveal NasT is required for NO3 (-)-responsive expression of the narK-bjgb-flp-nasC transcriptional unit and the nirA gene and that NasS is also involved in the regulatory control of this novel bipartite assimilatory NO3 (-)/NO2 (-) reductase pathway.
Collapse
|
15
|
Abstract
Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (
Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the
nshb genes, consisting of
hb1,
hb2,
hb3,
hb4 and
hb5, and a single copy of the
thb gene exist in
Oryza sativa var. indica and
O.
sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O
2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O
2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O
2-transport, O
2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice
nshb and
thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice
nshbs and
thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the
cis-elements and
trans-acting factors that regulate the expression of rice
hb genes, and the partial understanding of the evolution of rice Hbs.
Collapse
Affiliation(s)
- Raúl Arredondo-Peter
- Laboratorio de Biofísica y Biología Molecular, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62210, Mexico
| | - Jose F Moran
- Instituto de Agrobiotecnología, IdAB-CSIC-Universidad Pública de Navarra-Gobierno de Navarra, Navarre, E-31192, Spain
| | - Gautam Sarath
- Grain, Forage and Bioenergy Research Unit, USDA-ARS, University of Nebraska-Lincoln, Lincoln, NE, 68583-0937, USA
| |
Collapse
|
16
|
Yi J, Soares AS, Richter-Addo GB. Crystallographic characterization of the nitric oxide derivative of R-state human hemoglobin. Nitric Oxide 2014; 39:46-50. [PMID: 24769418 DOI: 10.1016/j.niox.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
Nitric oxide (NO) is a signaling agent that is biosynthesized in vivo. NO binds to the heme center in human hemoglobin (Hb) to form the HbNO adduct. This reaction of NO with Hb has been studied for many decades. Of continued interest has been the effect that the bound NO ligand has on the geometrical parameters of the resulting heme-NO active site. Although the crystal structure of a T-state human HbNO complex has been published previously, that of the high affinity R-state HbNO derivative has not been reported to date. We have crystallized and solved the three-dimensional X-ray structure of R-state human HbNO to 1.90 Å resolution. The differences in the FeNO bond parameters and H-bonding patterns between the α and β subunits contribute to understanding of the observed enhanced stability of the α(FeNO) moieties relative to the β(FeNO) moieties in human R-state HbNO.
Collapse
Affiliation(s)
- Jun Yi
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA; Department of Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Alexei S Soares
- Macromolecular Crystallography Research Resource, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - George B Richter-Addo
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
| |
Collapse
|
17
|
Wei L, Derrien B, Gautier A, Houille-Vernes L, Boulouis A, Saint-Marcoux D, Malnoë A, Rappaport F, de Vitry C, Vallon O, Choquet Y, Wollman FA. Nitric oxide-triggered remodeling of chloroplast bioenergetics and thylakoid proteins upon nitrogen starvation in Chlamydomonas reinhardtii. THE PLANT CELL 2014; 26:353-72. [PMID: 24474630 PMCID: PMC3963581 DOI: 10.1105/tpc.113.120121] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/04/2013] [Accepted: 01/10/2014] [Indexed: 05/18/2023]
Abstract
Starving microalgae for nitrogen sources is commonly used as a biotechnological tool to boost storage of reduced carbon into starch granules or lipid droplets, but the accompanying changes in bioenergetics have been little studied so far. Here, we report that the selective depletion of Rubisco and cytochrome b6f complex that occurs when Chlamydomonas reinhardtii is starved for nitrogen in the presence of acetate and under normoxic conditions is accompanied by a marked increase in chlororespiratory enzymes, which converts the photosynthetic thylakoid membrane into an intracellular matrix for oxidative catabolism of reductants. Cytochrome b6f subunits and most proteins specifically involved in their biogenesis are selectively degraded, mainly by the FtsH and Clp chloroplast proteases. This regulated degradation pathway does not require light, active photosynthesis, or state transitions but is prevented when respiration is impaired or under phototrophic conditions. We provide genetic and pharmacological evidence that NO production from intracellular nitrite governs this degradation pathway: Addition of a NO scavenger and of two distinct NO producers decrease and increase, respectively, the rate of cytochrome b6f degradation; NO-sensitive fluorescence probes, visualized by confocal microscopy, demonstrate that nitrogen-starved cells produce NO only when the cytochrome b6f degradation pathway is activated.
Collapse
Affiliation(s)
- Lili Wei
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Benoit Derrien
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Arnaud Gautier
- École Normale Supérieure,
Département de Chimie, Unité Mixte de Recherche, CNRS–Ecole
Normale Supérieure–Université Pierre et Marie Curie 8640,
75231 Paris Cedex 05, France
| | - Laura Houille-Vernes
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alix Boulouis
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Denis Saint-Marcoux
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Alizée Malnoë
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Fabrice Rappaport
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Catherine de Vitry
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Olivier Vallon
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Yves Choquet
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141,
CNRS/Université Pierre et Marie Curie, Institut de Biologie
Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
18
|
Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:875-87. [PMID: 24118423 DOI: 10.1111/tpj.12340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/09/2023]
Abstract
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.
Collapse
Affiliation(s)
- Martha Sainz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Doctor A, Stamler JS. Nitric oxide transport in blood: a third gas in the respiratory cycle. Compr Physiol 2013; 1:541-68. [PMID: 23737185 DOI: 10.1002/cphy.c090009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The trapping, processing, and delivery of nitric oxide (NO) bioactivity by red blood cells (RBCs) have emerged as a conserved mechanism through which regional blood flow is linked to biochemical cues of perfusion sufficiency. We present here an expanded paradigm for the human respiratory cycle based on the coordinated transport of three gases: NO, O₂, and CO₂. By linking O₂ and NO flux, RBCs couple vessel caliber (and thus blood flow) to O₂ availability in the lung and to O₂ need in the periphery. The elements required for regulated O₂-based signal transduction via controlled NO processing within RBCs are presented herein, including S-nitrosothiol (SNO) synthesis by hemoglobin and O₂-regulated delivery of NO bioactivity (capture, activation, and delivery of NO groups at sites remote from NO synthesis by NO synthase). The role of NO transport in the respiratory cycle at molecular, microcirculatory, and system levels is reviewed. We elucidate the mechanism through which regulated NO transport in blood supports O₂ homeostasis, not only through adaptive regulation of regional systemic blood flow but also by optimizing ventilation-perfusion matching in the lung. Furthermore, we discuss the role of NO transport in the central control of breathing and in baroreceptor control of blood pressure, which subserve O₂ supply to tissue. Additionally, malfunctions of this transport and signaling system that are implicated in a wide array of human pathophysiologies are described. Understanding the (dys)function of NO processing in blood is a prerequisite for the development of novel therapies that target the vasoactive capacities of RBCs.
Collapse
Affiliation(s)
- Allan Doctor
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO, USA
| | | |
Collapse
|
20
|
Rahaman MM, Straub AC. The emerging roles of somatic globins in cardiovascular redox biology and beyond. Redox Biol 2013; 1:405-10. [PMID: 24191233 PMCID: PMC3814953 DOI: 10.1016/j.redox.2013.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022] Open
Abstract
The vertebrate globins are a group of hemoproteins with the intrinsic capacity to regulate gaseous ligands and redox signaling required for cardiovascular biology. This graphical review will provide a comprehensive synopsis of somatic cardiovascular globins focusing on expression, function and redox signaling - an emerging area in both physiology and disease.
Collapse
Affiliation(s)
- Mizanur M. Rahaman
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Adam C. Straub
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15216, USA
- Correspondence to: University of Pittsburgh School of Medicine, Vascular Medicine Institute, E1254 Biomedical Science Tower, 200 Lothrop St., Pittsburgh, PA 15216, USA. Tel.: +1 412 648 7097; fax: +1 412 648 5980.
| |
Collapse
|
21
|
Lewinska A, Grzelak A, Bartosz G. Application of aYHB1-GFPreporter to detect nitrosative stress in yeast. Redox Rep 2013; 13:161-71. [DOI: 10.1179/135100008x259268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
22
|
Kosmachevskaya OV, Shumaev KB, Nasybullina EI, Gubkina SA, Topunov AF. Interaction of S-nitrosoglutathione with methemoglobin under conditions of modeling carbonyl stress. Hemoglobin 2013; 37:205-18. [PMID: 23662713 DOI: 10.3109/03630269.2013.773911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Maillard reaction is the key process in protein modification during pathologies connected with carbonyl stress. It was shown in system modeling that Maillard reaction interaction of L-lysine (L-lys) with methylglyoxal (MG) led to the formation of compounds reducing methemoglobin (metHb). Under the above conditions and in the presence of S-nitrosoglutathione (GSNO), metHb nitrosylation took place. Processes of metHb reduction and nitrosylation had the lag phase that was dependent on the presence of oxygen (O2) in the reaction mixture. Oxygen interacting with organic free radicals of the Maillard reaction inhibited hemoglobin (Hb) reduction and hence Hb nitrosylation during the first minutes of the reaction. It was also shown that the yield of organic free-radical intermediates of the L-lys with MG was increased in the presence of GSNO and metHb. All effects described could be a result of the formation of active red-ox GSNO derivates in the Maillard reaction. These derivates are probably mediators of one-electron oxidation of dialkylimine by MG. Anion radicals of S-nitrosothiols can function as such mediators.
Collapse
Affiliation(s)
- Olga V Kosmachevskaya
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | | | |
Collapse
|
23
|
Zhang H, Fu H, Wang J, Sun L, Jiang Y, Zhang L, Gao H. Impacts of nitrate and nitrite on physiology of Shewanella oneidensis. PLoS One 2013; 8:e62629. [PMID: 23626841 PMCID: PMC3633839 DOI: 10.1371/journal.pone.0062629] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/22/2013] [Indexed: 12/17/2022] Open
Abstract
Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen is present. Here we undertook a study to elucidate the basis for nitrate and nitrite inhibition of growth under aerobic conditions. We discovered that nitrate in the form of NaNO3 exerts its inhibitory effects as a precursor to nitrite at low concentrations and as an osmotic-stress provider (Na(+)) at high concentrations. In contrast, nitrite is extremely toxic, with 25 mM abolishing growth completely. We subsequently found that oxygen represses utilization of all EAs but nitrate. To order to utilize EAs with less positive redox potential, such as nitrite and fumarate, S. oneidensis must enter the stationary phase, when oxygen respiration becomes unfavorable. In addition, we demonstrated that during aerobic respiration the cytochrome bd oxidase confers S. oneidensis resistance to nitrite, which likely functions via nitric oxide (NO).
Collapse
Affiliation(s)
- Haiyan Zhang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Huihui Fu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jixuan Wang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Linlin Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yaoming Jiang
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lili Zhang
- College of Life Sciences, Tarim University, Alar, Xinjiang, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Vinogradov SN, Bailly X, Smith DR, Tinajero-Trejo M, Poole RK, Hoogewijs D. Microbial eukaryote globins. Adv Microb Physiol 2013; 63:391-446. [PMID: 24054801 DOI: 10.1016/b978-0-12-407693-8.00009-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A bioinformatics survey of about 120 protist and 240 fungal genomes and transcriptomes revealed a broad array of globins, representing five of the eight subfamilies identified in bacteria. Most conspicuous is the absence of protoglobins and globin-coupled sensors, except for a two-domain globin in Leishmanias, that comprises a nucleotidyl cyclase domain, and the virtual absence of truncated group 3 globins. In contrast to bacteria, co-occurrence of more than two globin subfamilies appears to be rare in protists. Although globins were lacking in the Apicomplexa and the Microsporidia intracellular pathogens, they occurred in the pathogenic Trypanosomatidae, Stramenopiles and certain fungi. Flavohaemoglobins (FHbs) and related single-domain globins occur across the protist groups. Fungi are unique in having FHbs co-occurring with sensor single-domain globins (SSDgbs). Obligately biotrophic fungi covered in our analysis lack globins. Furthermore, SSDgbs occur only in a heterolobosean amoeba, Naegleria and the stramenopile Hyphochytrium. Of the three subfamilies of truncated Mb-fold globins, TrHb1s appear to be the most widespread, occurring as multiple copies in chlorophyte and ciliophora genomes, many as multidomain proteins. Although the ciliates appear to have only TrHb1s, the chlorophytes have Mb-like globins and TrHb2s, both closely related to the corresponding plant globins. The presently available number of protist genomes is inadequate to provide a definitive census of their globins. Bayesian molecular analyses of single-domain 3/3 Mb-fold globins suggest a close relationship of chlorophyte and haptophyte globins, including choanoflagellate and Capsaspora globins to land plant symbiotic and non-symbiotic haemoglobins and to vertebrate neuroglobins.
Collapse
|
25
|
Sanders BC, Rhine MA, Harrop TC. Properties of {FeNO}8 and {CoNO}9 Metal Nitrosyls in Relation to Nitroxyl Coordination Chemistry. MOLECULAR DESIGN IN INORGANIC BIOCHEMISTRY 2013. [DOI: 10.1007/430_2012_87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
26
|
Gardner PR. Hemoglobin: a nitric-oxide dioxygenase. SCIENTIFICA 2012; 2012:683729. [PMID: 24278729 PMCID: PMC3820574 DOI: 10.6064/2012/683729] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/04/2012] [Indexed: 05/09/2023]
Abstract
Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs). Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.
Collapse
Affiliation(s)
- Paul R. Gardner
- Miami Valley Biotech, 1001 E. 2nd Street, Suite 2445, Dayton, OH 45402, USA
| |
Collapse
|
27
|
Justino MC, Ecobichon C, Fernandes AF, Boneca IG, Saraiva LM. Helicobacter pylori has an unprecedented nitric oxide detoxifying system. Antioxid Redox Signal 2012; 17:1190-200. [PMID: 22236381 DOI: 10.1089/ars.2011.4304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS The ability of pathogens to cope with the damaging effects of nitric oxide (NO), present in certain host niches and produced by phagocytes that support innate immunity, relies on multiple strategies that include the action of detoxifying enzymes. As for many other pathogens, these systems remained unknown for Helicobacter pylori. This work aimed at identifying and functionally characterizing an H. pylori system involved in NO protection. RESULTS In the present work, the hp0013 gene of H. pylori is shown to be related to NO resistance, as its inactivation increases the susceptibility of H. pylori to nitrosative stress, and significantly decreases the NADPH-dependent NO reduction activity of H. pylori cells. The recombinant HP0013 protein is able to complement an NO reductase-deficient Escherichia coli strain and exhibits significant NO reductase activity. Mutation of hp0013 renders H. pylori more vulnerable to nitric oxide synthase-dependent macrophage killing, and decreases the ability of the pathogen to colonize mice stomachs. INNOVATION Phylogenetic studies reveal that HP0013, which shares no significant amino acid sequence similarity to the other so far known microbial NO detoxifiers, belongs to a novel family of proteins with a widespread distribution in the microbial world. CONCLUSION H. pylori HP0013 represents an unprecedented enzymatic NO detoxifying system for the in vivo microbial protection against nitrosative stress.
Collapse
Affiliation(s)
- Marta C Justino
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
28
|
Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK, Columbus L, Gaston B, Isakson BE. Endothelial cell expression of haemoglobin α regulates nitric oxide signalling. Nature 2012; 491:473-7. [PMID: 23123858 PMCID: PMC3531883 DOI: 10.1038/nature11626] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 09/27/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Adam C Straub
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Most bacteria generate nitric oxide (NO) either aerobically by NO synthases or anaerobically from nitrite. Far from being a mere by-product of nitrate respiration, bacterial NO has diverse physiological roles. Many proteins undergo NO-mediated posttranslational modification (S-nitrosylation) in anaerobically grown Escherichia coli. The regulation of one such protein, OxyR, represents a redox signaling paradigm in which the same transcription factor controls different protective genes depending on its S-nitrosylation versus S-oxidation status. We discuss a structural model that may explain the remarkable stability and specificity of OxyR S-nitrosylation.
Collapse
Affiliation(s)
- Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
30
|
|
31
|
Forrester MT, Foster MW. Protection from nitrosative stress: a central role for microbial flavohemoglobin. Free Radic Biol Med 2012; 52:1620-33. [PMID: 22343413 DOI: 10.1016/j.freeradbiomed.2012.01.028] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/22/2012] [Accepted: 01/27/2012] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) is an inevitable product of life in an oxygen- and nitrogen-rich environment. This reactive diatomic molecule exhibits microbial cytotoxicity, in large part by facilitating nitrosative stress and inhibiting heme-containing proteins within the aerobic respiratory chain. Metabolism of NO is therefore essential for microbial life. In many bacteria, fungi, and protozoa, the evolutionarily ancient flavohemoglobin (flavoHb) converts NO and O(2) to inert nitrate (NO(3)(-)) and undergoes catalytic regeneration via flavin-dependent reduction. Since its identification, widespread efforts have characterized roles for flavoHb in microbial nitrosative stress protection. Subsequent genomic studies focused on flavoHb have elucidated the transcriptional machinery necessary for inducible NO protection, such as NsrR in Escherichia coli, as well as additional proteins that constitute a nitrosative stress protection program. As an alternative strategy, flavoHb has been heterologously employed in higher eukaryotic organisms such as plants and human tumors to probe the function(s) of endogenous NO signaling. Such an approach may also provide a therapeutic route to in vivo NO depletion. Here we focus on the molecular features of flavoHb, the hitherto characterized NO-sensitive transcriptional machinery responsible for its induction, the roles of flavoHb in resisting mammalian host defense systems, and heterologous applications of flavoHb in plant/mammalian systems (including human tumors), as well as unresolved questions surrounding this paradigmatic NO-consuming enzyme.
Collapse
Affiliation(s)
- Michael T Forrester
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
32
|
Cazade PA, Huang J, Yosa J, Szymczak JJ, Meuwly M. Atomistic simulations of reactive processes in the gas- and condensed-phase. INT REV PHYS CHEM 2012. [DOI: 10.1080/0144235x.2012.694694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Hoogewijs D, Dewilde S, Vierstraete A, Moens L, Vinogradov SN. A phylogenetic analysis of the globins in fungi. PLoS One 2012; 7:e31856. [PMID: 22384087 PMCID: PMC3287990 DOI: 10.1371/journal.pone.0031856] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/13/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND All globins belong to one of three families: the F (flavohemoglobin) and S (sensor) families that exhibit the canonical 3/3 α-helical fold, and the T (truncated 3/3 fold) globins characterized by a shortened 2/2 α-helical fold. All eukaryote 3/3 hemoglobins are related to the bacterial single domain F globins. It is known that Fungi contain flavohemoglobins and single domain S globins. Our aims are to provide a census of fungal globins and to examine their relationships to bacterial globins. RESULTS Examination of 165 genomes revealed that globins are present in >90% of Ascomycota and ~60% of Basidiomycota genomes. The S globins occur in Blastocladiomycota and Chytridiomycota in addition to the phyla that have FHbs. Unexpectedly, group 1 T globins were found in one Blastocladiomycota and one Chytridiomycota genome. Phylogenetic analyses were carried out on the fungal globins, alone and aligned with representative bacterial globins. The Saccharomycetes and Sordariomycetes with two FHbs form two widely divergent clusters separated by the remaining fungal sequences. One of the Saccharomycete groups represents a new subfamily of FHbs, comprising a previously unknown N-terminal and a FHb missing the C-terminal moiety of its reductase domain. The two Saccharomycete groups also form two clusters in the presence of bacterial FHbs; the surrounding bacterial sequences are dominated by Proteobacteria and Bacilli (Firmicutes). The remaining fungal FHbs cluster with Proteobacteria and Actinobacteria. The Sgbs cluster separately from their bacterial counterparts, except for the intercalation of two Planctomycetes and a Proteobacterium between the Fungi incertae sedis and the Blastocladiomycota and Chytridiomycota. CONCLUSION Our results are compatible with a model of globin evolution put forward earlier, which proposed that eukaryote F, S and T globins originated via horizontal gene transfer of their bacterial counterparts to the eukaryote ancestor, resulting from the endosymbiotic events responsible for the origin of mitochondria and chloroplasts.
Collapse
Affiliation(s)
- David Hoogewijs
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
34
|
Astier J, Rasul S, Koen E, Manzoor H, Besson-Bard A, Lamotte O, Jeandroz S, Durner J, Lindermayr C, Wendehenne D. S-nitrosylation: an emerging post-translational protein modification in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:527-533. [PMID: 21893248 DOI: 10.1016/j.plantsci.2011.02.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/21/2011] [Accepted: 02/22/2011] [Indexed: 05/26/2023]
Abstract
Increasing evidences support the assumption that nitric oxide (NO) acts as a physiological mediator in plants. Understanding its pleiotropic effects requires a deep analysis of the molecular mechanisms underlying its mode of action. In the recent years, efforts have been made in the identification of plant proteins modified by NO at the post-translational level, notably by S-nitrosylation. This reversible process involves the formation of a covalent bond between NO and reactive cysteine residues. This research has now born fruits and numerous proteins regulated by S-nitrosylation have been identified and characterized. This review describes the basic principle of S-nitrosylation as well as the Biotin Switch Technique and its recent adaptations allowing the identification of S-nitrosylated proteins in physiological contexts. The impact of S-nitrosylation on the structure/function of selected proteins is further discussed.
Collapse
Affiliation(s)
- Jéremy Astier
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, F-21065 Dijon cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abbruzzetti S, Faggiano S, Spyrakis F, Bruno S, Mozzarelli A, Astegno A, Dominici P, Viappiani C. Oxygen and nitric oxide rebinding kinetics in nonsymbiotic hemoglobin AHb1 from Arabidopsis thaliana. IUBMB Life 2011; 63:1094-100. [PMID: 22034287 DOI: 10.1002/iub.546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 07/02/2011] [Indexed: 01/26/2023]
Abstract
Type 1 nonsymbiotic hemoglobin from Arabidopsis thaliana (AHb1) shows a partial bis-histidyl hexacoordination but can reversibly bind diatomic ligands. The physiological function is still unclear, but the high oxygen affinity rules out a function related to O2 sensing, carrying, or storing. To gain insight into its possible functional roles, we have investigated its O2 and NO rebinding kinetics after laser flash photolysis. The rate constants of the rebinding from the primary docking site for both O2 and NO are higher than CO, with lower photolysis yields. Moreover, the amplitude of the geminate phase increases and, as for CO, the numerical analysis of the experimental curves suggests the existence of an internal pathway leading, with high rate, to an additional docking site. However, the accessibility to this site seems to be strongly ligand-dependent, being lower for O2 and higher for NO.
Collapse
|
36
|
Abstract
Protein S-nitrosylation (the binding of a nitric oxide [NO] group to a cysteine thiol) is a major mechanism through which the ubiquitous cellular influence of NO is exerted. Disruption of S-nitrosylation is associated with a wide range of pathophysiologic conditions. Hemoglobin (Hb) exemplifies both of these concepts. It is the prototypical S-nitrosylated protein in that it binds, activates, and deploys NO. Within red blood cells (RBCs), Hb is S-nitrosylated during the respiratory cycle and thereby conveys NO bioactivity that may be dispensed to regulate local blood flow in the physiologic response known as hypoxic vasodilation. Hb thus both delivers oxygen directly and delivers vasoactivity to potentially optimize tissue perfusion in concert with local metabolic demand. Accordingly, decreased levels of S-nitrosylated Hb (also known as S-nitrosohemoglobin) and/or impaired delivery of RBC-derived NO bioactivity have been observed in a variety of disease states that are characterized by tissue hypoxemia. It has been shown recently that storage of blood depletes S-nitrosylated Hb, accompanied by reduced ability of RBCs to induce vasodilation. This defect appears to account in significant part for the impaired ability of banked RBCs to deliver oxygen. Renitrosylation can correct this impairment and thus may offer a means to ameliorate the disruptions in tissue perfusion produced by transfusion.
Collapse
Affiliation(s)
- James D Reynolds
- Institute for Transformative Molecular Medicine, Department of Medicine, Case Western Reserve University and University Hospitals, Cleveland, Ohio, USA
| | | | | |
Collapse
|
37
|
Chang SC, Chen HF, Chou MH, Wang HC, Su HY, Wong ML. Haemoglobin in normal and neoplastic canine mammary glands. Vet Comp Oncol 2011; 8:302-9. [PMID: 21062412 DOI: 10.1111/j.1476-5829.2010.00229.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four types of globins for oxygen transport are known in vertebrates, and the haemoglobin is responsible for carrying oxygen in blood. In this study, we found that haemoglobin was also expressed in canine mammary glands. Samples were taken from 26 malignant mammary tumors, 16 normal mammary glands and 10 other normal tissues. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting and mass spectrometry were used to investigate haemoglobin in mammary tissues. The results indicated that normal canine mammary glands expressed high levels of haemoglobin protein as shown by Coomassie blue staining. The identity of haemoglobin was confirmed by immunoblotting and mass spectrometry, and the mass spectrometry data revealed that both alpha-haemoglobin and beta-haemoglobin were expressed. Relative to normal mammary glands, the levels of haemoglobin expression in mammary tumors were lower. Our results also indicated that the haemoglobin was endogenously produced in mammary gland tissues and was not derived from the erythroid cells.
Collapse
Affiliation(s)
- S-C Chang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
38
|
Functional analysis and subcellular location of two flavohemoglobins from Aspergillus oryzae. Fungal Genet Biol 2011; 48:200-7. [DOI: 10.1016/j.fgb.2010.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 01/28/2023]
|
39
|
Cai H, Roach TA, Dabek M, Somerville KS, Acharya S, Hosmane RS. Bis[2-(3-carboxyphenoxy)carbonylethyl]phosphinic acid (m-BCCEP): a novel affinity cross-linking reagent for the beta-cleft modification of human hemoglobin. Bioconjug Chem 2010; 21:1494-507. [PMID: 20715854 DOI: 10.1021/bc100113y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and synthesis of bis[2-(3-carboxyphenoxy)carbonylethyl]phosphinic acid (m-BCCEP, 1) as a site-directed affinity reagent for cross-linking human hemoglobin have been reported as part of our long-term goal to generate artificial blood for emergency transfusions. Molecular modeling techniques were used to design the reagent, employing crystal coordinates of human hemoglobin A(0) imported from the Protein Data Bank. It was synthesized in four steps commencing from 3-hydroxybenzoic acid. The reagent 1 was converted to its trisodium salt to allow effective cross-linking in an aqueous medium. The reagent 1, as its trisodium salt, was found to specifically cross-link stroma-free human hemoglobin A(0) in the beta-cleft under oxygenated reaction conditions at neutral pH. The SDS-PAGE analyses of the modified hemoglobin pointed to the molecular mass range of 32 kDa as anticipated. The HPLC analyses of the product suggested that the cross-link had formed between the beta(1)-beta(2) subunits. Molecular dynamics simulation studies on the reagent-HbA(0) complex suggested that the predominant amino acid residues involved in the cross-linking are N-terminus Val-1 or Lys-82 on one of the beta-subunits and Lys-144 on the other. These predictions were borne out by MALDI-TOF MS analyses data of the peptide fragments obtained from tryptic digestion of the cross-linked product. The data also suggested the presence of a minor cross-link between Val-1 and Lys-82 on the opposing subunits. The oxygen equilibrium measurements of the m-BCCEP-modified hemoglobin product at 37 degrees C showed oxygen affinity (P(50) = 25.8 Torr) comparable to that of the natural whole blood (P(50) = 27.0 Torr) and significantly lower than that of stroma-free hemoglobin (P(50) = 14.19 Torr) assayed under identical conditions. The measured Hill coefficient value of 1.91 of the m-BCCEP-modified Hb product points to the reasonable retainment of oxygen-binding cooperativity after the cross-link formation.
Collapse
Affiliation(s)
- Hongyi Cai
- Laboratory for Drug Design and Synthesis, Department of Chemistry and Biochemistry, University of Maryland-Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
40
|
Mastronicola D, Testa F, Forte E, Bordi E, Pucillo LP, Sarti P, Giuffrè A. Flavohemoglobin and nitric oxide detoxification in the human protozoan parasite Giardia intestinalis. Biochem Biophys Res Commun 2010; 399:654-8. [PMID: 20691663 DOI: 10.1016/j.bbrc.2010.07.137] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/18/2022]
Abstract
Flavohemoglobins (flavoHbs), commonly found in bacteria and fungi, afford protection from nitrosative stress by degrading nitric oxide (NO) to nitrate. Giardia intestinalis, a microaerophilic parasite causing one of the most common intestinal human infectious diseases worldwide, is the only pathogenic protozoon as yet identified coding for a flavoHb. By NO amperometry we show that, in the presence of NADH, the recombinant Giardia flavoHb metabolizes NO with high efficacy under aerobic conditions (TN=116+/-10s(-1) at 1microM NO, T=37 degrees C). The activity is [O(2)]-dependent and characterized by an apparent K(M,O2)=22+/-7microM. Immunoblotting analysis shows that the protein is expressed at low levels in the vegetative trophozoites of Giardia; accordingly, these cells aerobically metabolize NO with low efficacy. Interestingly, in response to nitrosative stress (24-h incubation with 5mM nitrite) flavoHb expression is enhanced and the trophozoites thereby become able to metabolize NO efficiently, the activity being sensitive to both cyanide and carbon monoxide. The NO-donors S-nitrosoglutathione (GSNO) and DETA-NONOate mimicked the effect of nitrite on flavoHb expression. We propose that physiologically flavoHb contributes to NO detoxification in G. intestinalis.
Collapse
Affiliation(s)
- Daniela Mastronicola
- Department of Biochemical Sciences, CNR Institute of Molecular Biology and Pathology and Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza University of Rome, I-00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Scott NL, Xu Y, Shen G, Vuletich DA, Falzone CJ, Li Z, Ludwig M, Pond MP, Preimesberger MR, Bryant DA, Lecomte JTJ. Functional and Structural Characterization of the 2/2 Hemoglobin from Synechococcus sp. PCC 7002,. Biochemistry 2010; 49:7000-11. [DOI: 10.1021/bi100463d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Yu Xu
- Department of Biochemistry and Molecular Biology
| | | | | | | | - Zhongkui Li
- Department of Biochemistry and Molecular Biology
| | | | | | | | | | | |
Collapse
|
42
|
Meilhoc E, Cam Y, Skapski A, Bruand C. The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:748-59. [PMID: 20459314 DOI: 10.1094/mpmi-23-6-0748] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) is crucial in animal- and plant-pathogen interactions, during which it participates in host defense response and resistance. Indications for the presence of NO during the symbiotic interaction between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti have been reported but the role of NO in symbiosis is far from being elucidated. Our objective was to understand the role or roles played by NO in symbiosis. As a first step toward this goal, we analyzed the bacterial response to NO in culture, using a transcriptomic approach. We identified approximately 100 bacterial genes whose expression is upregulated in the presence of NO. Surprisingly, most of these genes are regulated by the two-component system FixLJ, known to control the majority of rhizobial genes expressed in planta in mature nodules, or the NO-dedicated regulator NnrR. Among the genes responding to NO is hmp, encoding a putative flavohemoglobin. We report that an hmp mutant displays a higher sensitivity toward NO in culture and leads to a reduced nitrogen fixation efficiency in planta. Because flavohemoglobins are known to detoxify NO in numerous bacterial species, this result is the first indication of the importance of the bacterial NO response in symbiosis.
Collapse
Affiliation(s)
- Eliane Meilhoc
- Laboratoire des Interactions Plantes Microorganismes, UMR441-2594 INRA-CNRS BP52627, R-31320 Castanet-Tolosan, France.
| | | | | | | |
Collapse
|
43
|
Hill BG, Dranka BP, Bailey SM, Lancaster JR, Darley-Usmar VM. What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology. J Biol Chem 2010; 285:19699-704. [PMID: 20410298 PMCID: PMC2888379 DOI: 10.1074/jbc.r110.101618] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO) regulates biological processes through signaling mechanisms that exploit its unique biochemical properties as a free radical. For the last several decades, the key aspects of the chemical properties of NO relevant to biological systems have been defined, but it has been a challenge to assign these to specific cellular processes. Nevertheless, it is now clear that the high affinity of NO for transition metal centers, particularly iron, and the rapid reaction of NO with oxygen-derived free radicals can explain many of its biological and pathological properties. Emerging studies also highlight a growing importance of the secondary metabolites of NO-dependent reactions in the post-translational modification of key metabolic and signaling proteins. In this minireview, we emphasize the current understanding of the biochemistry of NO and place it in a biological context.
Collapse
Affiliation(s)
- Bradford G Hill
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2180, USA
| | | | | | | | | |
Collapse
|
44
|
Gutierrez FRS, Mineo TWP, Pavanelli WR, Guedes PMM, Silva JS. The effects of nitric oxide on the immune system during Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2010; 104 Suppl 1:236-45. [PMID: 19753479 DOI: 10.1590/s0074-02762009000900030] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 05/29/2009] [Indexed: 01/08/2023] Open
Abstract
Trypanosoma cruzi infection triggers substantial production of nitric oxide (NO), which has been shown to have protective and toxic effects on the host's immune system. Sensing of trypomastigotes by phagocytes activates the inducible NO-synthase (NOS2) pathway, which produces NO and is largely responsible for macrophage-mediated killing of T. cruzi. NO is also responsible for modulating virtually all steps of innate and adaptive immunity. However, NO can also cause oxidative stress, which is especially damaging to the host due to increased tissue damage. The cytokines IFN-gamma and TNF-alpha, as well as chemokines, are strong inducers of NOS2 and are produced in large amounts during T. cruzi acute infection. Conversely, TGF-beta and IL-10 negatively regulate NO production. Here we discuss the recent evidence describing the mechanisms by which NO is able to exert its antimicrobial and immune regulatory effects, the mechanisms involved in the oxidative stress response during infection and the implications of NO for the development of therapeutic strategies against T. cruzi.
Collapse
Affiliation(s)
- Fredy R S Gutierrez
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | | | | | | | | |
Collapse
|
45
|
Mishra S, Meuwly M. Atomistic Simulation of NO Dioxygenation in Group I Truncated Hemoglobin. J Am Chem Soc 2010; 132:2968-82. [DOI: 10.1021/ja9078144] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
46
|
Kapralov A, Vlasova II, Feng W, Maeda A, Walson K, Tyurin VA, Huang Z, Aneja RK, Carcillo J, Bayır H, Kagan VE. Peroxidase activity of hemoglobin-haptoglobin complexes: covalent aggregation and oxidative stress in plasma and macrophages. J Biol Chem 2009; 284:30395-407. [PMID: 19740759 PMCID: PMC2781594 DOI: 10.1074/jbc.m109.045567] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/04/2009] [Indexed: 12/31/2022] Open
Abstract
As a hemoprotein, hemoglobin (Hb) can, in the presence of H(2)O(2), act as a peroxidase. In red blood cells, this activity is regulated by the reducing environment. For stroma-free Hb this regulation is lost, and the potential for Hb to become a peroxidase is high and further increased by inflammatory cells generating superoxide. The latter can be converted into H(2)O(2) and feed Hb peroxidase activity. Haptoglobins (Hp) bind with extracellular Hb and reportedly weaken Hb peroxidase activity. Here we demonstrate that: (i) Hb peroxidase activity is retained upon binding with Hp; (ii) in the presence of H(2)O(2), Hb-Hp peroxidase complexes undergo covalent cross-linking; (iii) peroxidase activity of Hb-Hp complexes and aggregates consumes reductants such as ascorbate and nitric oxide; (iv) cross-linked Hb-Hp aggregates are taken up by macrophages at rates exceeding those for noncovalently cross-linked Hb-Hp complexes; (v) the engulfed Hb-Hp aggregates activate superoxide production and induce intracellular oxidative stress (deplete endogenous glutathione and stimulate lipid peroxidation); (vi) Hb-Hp aggregates cause cytotoxicity to macrophages; and (vii) Hb-Hp aggregates are present in septic plasma. Overall, our data suggest that under conditions of severe inflammation and oxidative stress, peroxidase activity of Hb-Hp covalent aggregates may cause macrophage dysfunction and microvascular vasoconstriction, which are commonly seen in severe sepsis and hemolytic diseases.
Collapse
Affiliation(s)
- Alexandr Kapralov
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Irina I. Vlasova
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
- the
Research Institute of Physico-Chemical Medicine, Moscow 119992, Russia
| | - Weihong Feng
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Akihiro Maeda
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Karen Walson
- From the
Center for Free Radical and Antioxidant Health
- Critical Care Medicine, and
- the
Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Vladimir A. Tyurin
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | - Zhentai Huang
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| | | | | | - Hülya Bayır
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
- Critical Care Medicine, and
- the
Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15219 and
| | - Valerian E. Kagan
- From the
Center for Free Radical and Antioxidant Health
- the Departments of
Environmental and Occupational Health and
| |
Collapse
|
47
|
Peroxynitrite scavenging by ferryl sperm whale myoglobin and human hemoglobin. Biochem Biophys Res Commun 2009; 390:27-31. [PMID: 19766099 DOI: 10.1016/j.bbrc.2009.09.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/14/2009] [Indexed: 11/21/2022]
Abstract
Globins protect from the oxidative and nitrosative cell damage. Here, kinetics of peroxynitrite scavenging by ferryl sperm whale myoglobin (MbFe(IV)O) and human hemoglobin (HbFe(IV)O), between pH 5.8 and 8.3 at 20.0 degrees C, are reported. In the absence of CO(2), values of the second-order rate constant for peroxynitrite scavenging by MbFe(IV)O and HbFe(IV)O (i.e., for MbFe(III) and HbFe(III) formation; k(on)) are 4.6 x 10(4)M(-1)s(-1) and 3.3 x 10(4)M(-1)s(-1), respectively, at pH 7.1. Values of k(on) increase on decreasing pH with pK(a) values of 6.9 and 6.7, this suggests that the ONOOH species reacts preferentially with MbFe(IV)O and HbFe(IV)O. In the presence of CO(2) (=1.2 x 10(-3)M), values of k(on) for peroxynitrite scavenging by MbFe(IV)O and HbFe(IV)O are essentially pH-independent, the average k(on) values are 7.1 x 10(4)M(-1)s(-1) and 1.2 x 10(5)M(-1)s(-1), respectively. As a whole, MbFe(IV)O and HbFe(IV)O, obtained by treatment with H(2)O(2), undertake within the same cycle H(2)O(2) and peroxynitrite detoxification.
Collapse
|
48
|
Mishra S, Meuwly M. Nitric oxide dynamics in truncated hemoglobin: docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations. Biophys J 2009; 96:2105-18. [PMID: 19289037 DOI: 10.1016/j.bpj.2008.11.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/28/2022] Open
Abstract
Atomistic simulations of nitric oxide (NO) dynamics and migration in the trHbN of Mycobacterium tuberculosis are reported. From extensive molecular dynamics simulations (48 ns in total), the structural and energetic properties of the ligand docking sites in the protein have been characterized and a connectivity network between the ligand docking sites has been built. Several novel migration and exit pathways are found and are analyzed in detail. The interplay between a hydrogen-bonding network involving residues Tyr(33) and Gln(58) and the bound O(2) ligand is discussed and the role of Phe(62) residue in ligand migration is examined. It is found that Phe(62) is directly involved in controlling ligand migration. This is reminiscent of His(64) in myoglobin, which also plays a central role in CO migration pathways. Finally, infrared spectra of the NO molecule in different ligand docking sites of the protein are calculated. The pocket-specific spectra are typically blue-shifted by 5-10 cm(-1), which should be detectable in future spectroscopic experiments.
Collapse
|
49
|
Heller A. Apoptosis-inducing high (.)NO concentrations are not sustained either in nascent or in developed cancers. ChemMedChem 2009; 3:1493-9. [PMID: 18759245 DOI: 10.1002/cmdc.200800257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide ((.)NO) induces apoptosis at high concentrations by S-nitrosating proteins such as glyceraldehyde-3-phosphate dehydrogenase. This literature analysis revealed that failure to sustain high (.)NO concentrations is common to all cancers. In cervical, gastric, colorectal, breast, and lung cancer, the cause of this failure is the inadequate expression of inducible nitric oxide synthase (iNOS), resulting from the inhibition of iNOS expression by TGF-beta1 at the mRNA level. In bladder, renal, and prostate cancer, the reason for the insufficient (.)NO levels is the depletion of arginine, resulting from arginase overexpression. Arginase competes with iNOS for arginine, catalyzing its hydrolysis to ornithine and urea. In gliomas and ovarian sarcomas, low (.)NO levels are caused by inhibition of iNOS by N-chlorotaurine, produced by infiltrating neutrophils. Stimulated neutrophils express myeloperoxidase, catalyzing H2O2 oxidation of Cl- to HOCl, which N-chlorinates taurine at its concentration of 19 mM in neutrophils. In squamous cell carcinomas of the skin, ovarian cancers, lymphomas, Hodgkin's disease, and breast cancers, low (.)NO concentrations arise from the inhibition of iNOS by N-bromotaurine, produced by eosinophil-peroxidase-expressing infiltrating eosinophils. Eosinophil peroxidase catalyzes the H2O2 oxidation of Br- to HOBr, which N-brominates taurine to N-bromotaurine at its concentration of 15 mM in eosinophils. In microvascularized tumors, the (.)NO concentration is further depleted; (.)NO is rapidly consumed by red blood cells (RBCs) through S-nitrosation of RBC glutathione and hemoglobin, and by oxidation to nitrate by RBC oxyhemoglobin. Angiogenesis-inhibiting antibodies are currently used to treat cancers; their mode of action is not, as previously thought, reduction of the tumor O2 or nutrient supply. They actually decrease the loss of (.)NO to RBCs.
Collapse
Affiliation(s)
- Adam Heller
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
50
|
Zhou S, Fushinobu S, Nakanishi Y, Kim SW, Wakagi T, Shoun H. Cloning and characterization of two flavohemoglobins from Aspergillus oryzae. Biochem Biophys Res Commun 2009; 381:7-11. [PMID: 19351585 DOI: 10.1016/j.bbrc.2009.01.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 11/16/2022]
Abstract
Two flavohemoglobin (FHb) genes, fhb1 and fhb2, were cloned from Aspergillus oryzae. The amino acid sequences of the deduced FHb1 and FHb2 showed high identity to other FHbs except for the predicted mitochondrial targeting signal in the N-terminus of FHb2. The recombinant proteins displayed absorption spectra similar to those of other FHbs. FHb1 and FHb2 were estimated to be a monomer and a dimer in solution, respectively. Both of the isozymes exhibit high NO dioxygenase (NOD) activity. FHb1 utilizes either NADH or NADPH as an electron donor, whereas FHb2 can only use NADH. These results suggest that FHb1 and FHb2 are fungal counterparts of bacterial FHbs and act as NO detoxification enzymes in the cytosol and mitochondria, respectively. This study is the first to show that a microorganism contains two isozymes of FHb and that intracellular localization of the isozymes could differ.
Collapse
Affiliation(s)
- Shengmin Zhou
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|