1
|
Zhou H, Zhang F, Zhai F, Su Y, Zhou Y, Ge Z, Tilak P, Eirich J, Finkemeier I, Fu L, Li Z, Yang J, Shen W, Yuan X, Xie Y. Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling. MOLECULAR PLANT 2022; 15:651-670. [PMID: 34793984 DOI: 10.1016/j.molp.2021.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress caused by drought and high salinity is a significant environmental threat that limits plant growth and agricultural yield. Redox regulation plays an important role in plant stress responses, but the mechanisms by which plants perceive and transduce redox signals are still underexplored. Here, we report a critical function for the thiol peroxidase GPX1 in osmotic stress response in rice, where it serves as a redox sensor and transducer. GPX1 is quickly oxidized upon exposure to osmotic stress and forms an intramolecular disulfide bond, which is required for the activation of bZIP68, a VRE-like basic leucine zipper (bZIP) transcription factor involved in the ABA-independent osmotic stress response pathway. The disulfide exchange between GPX1 and bZIP68 induces homo-tetramerization of bZIP68 and thus positively regulates osmotic stress response by regulating osmotic-responsive gene expression. Furthermore, we discovered that the nuclear translocation of GPX1 is regulated by its acetylation under osmotic stress. Taken together, our findings not only uncover the redox regulation of the GPX1-bZIP68 module during osmotic stress but also highlight the coordination of protein acetylation and redox signaling in plant osmotic stress responses.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Fengchao Zhai
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Su
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Priyadarshini Tilak
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Jürgen Eirich
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Iris Finkemeier
- Institute for Biology and Biotechnology of Plants, University of Muenster, 48149 Muenster, Germany
| | - Ling Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zongmin Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center 17 for Protein Sciences ⋅ Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenbiao Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
2
|
Inceoglu B, Bettaieb A, Haj FG, Gomes AV, Hammock BD. Modulation of mitochondrial dysfunction and endoplasmic reticulum stress are key mechanisms for the wide-ranging actions of epoxy fatty acids and soluble epoxide hydrolase inhibitors. Prostaglandins Other Lipid Mediat 2017; 133:68-78. [PMID: 28847566 DOI: 10.1016/j.prostaglandins.2017.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
The arachidonic acid cascade is arguably the most widely known biologic regulatory pathway. Decades after the seminal discoveries involving its cyclooxygenase and lipoxygenase branches, studies of this cascade remain an active area of research. The third and less widely known branch, the cytochrome P450 pathway leads to highly active oxygenated lipid mediators, epoxy fatty acids (EpFAs) and hydroxyeicosatetraenoic acids (HETEs), which are of similar potency to prostanoids and leukotrienes. Unlike the COX and LOX branches, no pharmaceuticals currently are marketed targeting the P450 branch. However, data support therapeutic benefits from modulating these regulatory lipid mediators. This is being approached by stabilizing or mimicking the EpFAs or even by altering the diet. These approaches lead to predominantly beneficial effects on a wide range of apparently unrelated states resulting in an enigma of how this small group of natural chemical mediators can have such diverse effects. EpFAs are degraded by soluble epoxide hydrolase (sEH) and stabilized by inhibiting this enzyme. In this review, we focus on interconnected aspects of reported mechanisms of action of EpFAs and inhibitors of soluble epoxide hydrolase (sEHI). The sEHI and EpFAs are commonly reported to maintain homeostasis under pathological conditions while remaining neutral under normal physiological conditions. Here we provide a conceptual framework for the unique and broad range of biological activities ascribed to epoxy fatty acids. We argue that their mechanism of action pivots on their ability to prevent mitochondrial dysfunction, to reduce subsequent ROS formation and to block resulting cellular signaling cascades, primarily the endoplasmic reticulum stress. By stabilizing the mitochondrial - ROS - ER stress axis, the range of activity of EpFAs and sEHI display an overlap with the disease conditions including diabetes, fibrosis, chronic pain, cardiovascular and neurodegenerative diseases, for which the above outlined mechanisms play key roles.
Collapse
Affiliation(s)
- Bora Inceoglu
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996-0840, United States; Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840, United States.
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, CA 95616, United States; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
3
|
Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637:34-55. [PMID: 26883165 PMCID: PMC4821765 DOI: 10.1016/j.brainres.2016.02.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 12/12/2022]
Abstract
Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.
Collapse
Affiliation(s)
- Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman; Ageing and Dementia Research Group, Sultan Qaboos University, Oman
| | - Ghazi Daradkeh
- Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, Oman
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Lubna Mahmood
- Department of Nutritional Sciences, Qatar University, Qatar
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Song BJ, Akbar M, Abdelmegeed MA, Byun K, Lee B, Yoon SK, Hardwick JP. Mitochondrial dysfunction and tissue injury by alcohol, high fat, nonalcoholic substances and pathological conditions through post-translational protein modifications. Redox Biol 2015; 3:109-23. [PMID: 25465468 PMCID: PMC4297931 DOI: 10.1016/j.redox.2014.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are critically important in providing cellular energy ATP as well as their involvement in anti-oxidant defense, fat oxidation, intermediary metabolism and cell death processes. It is well-established that mitochondrial functions are suppressed when living cells or organisms are exposed to potentially toxic agents including alcohol, high fat diets, smoking and certain drugs or in many pathophysiological states through increased levels of oxidative/nitrative stress. Under elevated nitroxidative stress, cellular macromolecules proteins, DNA, and lipids can undergo different oxidative modifications, leading to disruption of their normal, sometimes critical, physiological functions. Recent reports also indicated that many mitochondrial proteins are modified via various post-translation modifications (PTMs) and primarily inactivated. Because of the recently-emerging information, in this review, we specifically focus on the mechanisms and roles of five major PTMs (namely oxidation, nitration, phosphorylation, acetylation, and adduct formation with lipid-peroxides, reactive metabolites, or advanced glycation end products) in experimental models of alcoholic and nonalcoholic fatty liver disease as well as acute hepatic injury caused by toxic compounds. We also highlight the role of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) in some of these PTM changes. Finally, we discuss translational research opportunities with natural and/or synthetic anti-oxidants, which can prevent or delay the onset of mitochondrial dysfunction, fat accumulation and tissue injury. Hepatotoxic agents including alcohol and high fat elevate nitroxidative stress. Increased nitroxidative stress promotes post-translational protein modifications. Post-translational protein modifications of many proteins lead to their inactivation. Inactivation of mitochondrial proteins contributes to mitochondrial dysfunction. Mitochondrial dysfunction contributes to necrotic or apoptotic tissue injury.
Collapse
|
5
|
Yun JW, Son MJ, Abdelmegeed MA, Banerjee A, Morgan TR, Yoo SH, Song BJ. Binge alcohol promotes hypoxic liver injury through a CYP2E1-HIF-1α-dependent apoptosis pathway in mice and humans. Free Radic Biol Med 2014; 77:183-94. [PMID: 25236742 PMCID: PMC4304203 DOI: 10.1016/j.freeradbiomed.2014.08.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/11/2022]
Abstract
Binge drinking, a common pattern of alcohol ingestion, is known to potentiate liver injury caused by chronic alcohol abuse. This study was aimed at investigating the effects of acute binge alcohol on hypoxia-inducible factor-1α (HIF-1α)-mediated liver injury and the roles of alcohol-metabolizing enzymes in alcohol-induced hypoxia and hepatotoxicity. Mice and human specimens assigned to binge or nonbinge groups were analyzed for blood alcohol concentration (BAC), alcohol-metabolizing enzymes, HIF-1α-related protein nitration, and apoptosis. Binge alcohol promoted acute liver injury in mice with elevated levels of ethanol-inducible cytochrome P450 2E1 (CYP2E1) and hypoxia, both of which were colocalized in the centrilobular areas. We observed positive correlations among elevated BAC, CYP2E1, and HIF-1α in mice and humans exposed to binge alcohol. The CYP2E1 protein levels (r = 0.629, p = 0.001) and activity (r = 0.641, p = 0.001) showed a significantly positive correlation with BAC in human livers. HIF-1α levels were also positively correlated with BAC (r = 0.745, p < 0.001) or CYP2E1 activity (r = 0.792, p < 0.001) in humans. Binge alcohol promoted protein nitration and apoptosis with significant correlations observed between inducible nitric oxide synthase and BAC, CYP2E1, or HIF-1α in human specimens. Binge-alcohol-induced HIF-1α activation and subsequent protein nitration or apoptosis seen in wild type were significantly alleviated in the corresponding Cyp2e1-null mice, whereas pretreatment with an HIF-1α inhibitor, PX-478, prevented HIF-1α elevation with a trend of decreased levels of 3-nitrotyrosine and apoptosis, supporting the roles of CYP2E1 and HIF-1α in binge-alcohol-mediated protein nitration and hepatotoxicity. Thus binge alcohol promotes acute liver injury in mice and humans at least partly through a CYP2E1-HIF-1α-dependent apoptosis pathway.
Collapse
Affiliation(s)
- Jun-Won Yun
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Min-Jeong Son
- Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Mohamed A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Atrayee Banerjee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Timothy R Morgan
- Gastroenterology Service, Veterans Administration Long Beach Healthcare System, Long Beach, CA 90822, USA; Division of Gastroenterology, University of California at Irvine, Irvine, CA 92697, USA
| | - Seong-Ho Yoo
- Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea.
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA.
| |
Collapse
|
6
|
Loss of TAK1 increases cell traction force in a ROS-dependent manner to drive epithelial-mesenchymal transition of cancer cells. Cell Death Dis 2013; 4:e848. [PMID: 24113182 PMCID: PMC3824649 DOI: 10.1038/cddis.2013.339] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/23/2013] [Accepted: 08/25/2013] [Indexed: 01/09/2023]
Abstract
Epithelial–mesenchymal transition (EMT) is a crucial step in tumor progression, and the TGFβ–SMAD signaling pathway as an inductor of EMT in many tumor types is well recognized. However, the role of non-canonical TGFβ–TAK1 signaling in EMT remains unclear. Herein, we show that TAK1 deficiency drives metastatic skin squamous cell carcinoma earlier into EMT that is conditional on the elevated cellular ROS level. The expression of TAK1 is consistently reduced in invasive squamous cell carcinoma biopsies. Tumors derived from TAK1-deficient cells also exhibited pronounced invasive morphology. TAK1-deficient cancer cells adopt a more mesenchymal morphology characterized by higher number of focal adhesions, increase surface expression of integrin α5β1 and active Rac1. Notably, these mutant cells exert an increased cell traction force, an early cellular response during TGFβ1-induced EMT. The mRNA level of ZEB1 and SNAIL, transcription factors associated with mesenchymal phenotype is also upregulated in TAK1-deficient cancer cells compared with control cancer cells. We further show that TAK1 modulates Rac1 and RhoA GTPases activities via a redox-dependent downregulation of RhoA by Rac1, which involves the oxidative modification of low-molecular weight protein tyrosine phosphatase. Importantly, the treatment of TAK1-deficient cancer cells with Y27632, a selective inhibitor of Rho-associated protein kinase and antioxidant N-acetylcysteine augment and hinders EMT, respectively. Our findings suggest that a dysregulated balance in the activation of TGFβ–TAK1 and TGFβ–SMAD pathways is pivotal for TGFβ1-induced EMT. Thus, TAK1 deficiency in metastatic cancer cells increases integrin:Rac-induced ROS, which negatively regulated Rho by LMW-PTP to accelerate EMT.
Collapse
|
7
|
Increased nitroxidative stress promotes mitochondrial dysfunction in alcoholic and nonalcoholic fatty liver disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:781050. [PMID: 23691267 PMCID: PMC3649774 DOI: 10.1155/2013/781050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/27/2013] [Indexed: 12/15/2022]
Abstract
Increased nitroxidative stress causes mitochondrial dysfunctions through oxidative modifications of mitochondrial DNA, lipids, and proteins. Persistent mitochondrial dysfunction sensitizes the target cells/organs to other pathological risk factors and thus ultimately contributes to the development of more severe disease states in alcoholic and nonalcoholic fatty liver disease. The incidences of nonalcoholic fatty liver disease continuously increase due to high prevalence of metabolic syndrome including hyperlipidemia, hypercholesterolemia, obesity, insulin resistance, and diabetes. Many mitochondrial proteins including the enzymes involved in fat oxidation and energy supply could be oxidatively modified (including S-nitrosylation/nitration) under increased nitroxidative stress and thus inactivated, leading to increased fat accumulation and ATP depletion. To demonstrate the underlying mechanism(s) of mitochondrial dysfunction, we employed a redox proteomics approach using biotin-N-maleimide (biotin-NM) as a sensitive biotin-switch probe to identify oxidized Cys residues of mitochondrial proteins in the experimental models of alcoholic and acute liver disease. The aims of this paper are to briefly describe the mechanisms, functional consequences, and detection methods of mitochondrial dysfunction. We also describe advantages and limitations of the Cys-targeted redox proteomics method with alternative approaches. Finally, we discuss various applications of this method in studying oxidatively modified mitochondrial proteins in extrahepatic tissues or different subcellular organelles and translational research.
Collapse
|
8
|
Paulech J, Solis N, Edwards AV, Puckeridge M, White MY, Cordwell SJ. Large-Scale Capture of Peptides Containing Reversibly Oxidized Cysteines by Thiol-Disulfide Exchange Applied to the Myocardial Redox Proteome. Anal Chem 2013; 85:3774-80. [DOI: 10.1021/ac400166e] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jana Paulech
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Nestor Solis
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Alistair V.G. Edwards
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Max Puckeridge
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Melanie Y. White
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| | - Stuart J. Cordwell
- School
of Molecular Bioscience and ‡Discipline of Pathology, School of Medical
Sciences, The University of Sydney, Australia
2006
| |
Collapse
|
9
|
Andreazza AC. Combining redox-proteomics and epigenomics to explain the involvement of oxidative stress in psychiatric disorders. MOLECULAR BIOSYSTEMS 2013; 8:2503-12. [PMID: 22710408 DOI: 10.1039/c2mb25118c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Psychiatric disorders affect approximately 10% of adults in North-America. The complex nature of these illnesses makes the search for their pathophysiology a challenge. However, studies have consistently shown that mitochondrial dysfunction and oxidative stress are common features across major psychiatric disorders, including bipolar disorder and schizophrenia. Nevertheless, little is known about specific targets of oxidation in the brain. The search for redox sensors (protein targets for oxidation) will offer information about which pathways are regulated by oxidation in psychiatric disorders. Additionally, DNA is also a target for oxidative damage and recently, studies have suggested that oxidation of cytosine and guanosine can serve as an epigenetic modulator by decreasing or preventing further DNA methylation. Therefore, this review aims to discuss how we can use redox-proteomics and epigenomics to help explain the role of oxidative damage in major psychiatric disorders, which may ultimately lead to the identification of targets for development of new medications.
Collapse
Affiliation(s)
- Ana Cristina Andreazza
- Department of Psychiatry, University of Toronto, Medical Science Building, Room 4204, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
10
|
Yang X, Greenhaw J, Shi Q, Roberts DW, Hinson JA, Muskhelishvili L, Davis K, Salminen WF. Mouse liver protein sulfhydryl depletion after acetaminophen exposure. J Pharmacol Exp Ther 2013; 344:286-94. [PMID: 23093024 PMCID: PMC3533414 DOI: 10.1124/jpet.112.199067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 10/01/2012] [Indexed: 01/27/2023] Open
Abstract
Acetaminophen (APAP)-induced liver injury is the leading cause of acute liver failure in many countries. This study determined the extent of liver protein sulfhydryl depletion not only in whole liver homogenate but also in the zonal pattern of sulfhydryl depletion within the liver lobule. A single oral gavage dose of 150 or 300 mg/kg APAP in B6C3F1 mice produced increased serum alanine aminotransferase levels, liver necrosis, and glutathione depletion in a dose-dependent manner. Free protein sulfhydryls were measured in liver protein homogenates by labeling with maleimide linked to a near infrared fluorescent dye followed by SDS-polyacrylamide gel electrophoresis. Global protein sulfhydryl levels were decreased significantly (48.4%) starting at 1 hour after the APAP dose and maintained at this reduced level through 24 hours. To visualize the specific hepatocytes that had reduced protein sulfhydryl levels, frozen liver sections were labeled with maleimide linked to horseradish peroxidase. The centrilobular areas exhibited dramatic decreases in free protein sulfhydryls while the periportal regions were essentially spared. These protein sulfhydryl-depleted regions correlated with areas exhibiting histopathologic injury and APAP binding to protein. The majority of protein sulfhydryl depletion was due to reversible oxidation since the global- and lobule-specific effects were essentially reversed when the samples were reduced with tris(2-carboxyethy)phosphine before maleimide labeling. These temporal and zonal pattern changes in protein sulfhydryl oxidation shed new light on the importance that changes in protein redox status might play in the pathogenesis of APAP hepatotoxicity.
Collapse
Affiliation(s)
- Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas (X.Y., J.G., Q.S.); Department of Pediatrics (D.W.R.) and Department of Pharmacology and Toxicology (J.A.H.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, Arkansas (L.M., K.D.); and PAREXEL International, Bethesda, Maryland (W.F.S.)
| | - James Greenhaw
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas (X.Y., J.G., Q.S.); Department of Pediatrics (D.W.R.) and Department of Pharmacology and Toxicology (J.A.H.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, Arkansas (L.M., K.D.); and PAREXEL International, Bethesda, Maryland (W.F.S.)
| | - Qiang Shi
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas (X.Y., J.G., Q.S.); Department of Pediatrics (D.W.R.) and Department of Pharmacology and Toxicology (J.A.H.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, Arkansas (L.M., K.D.); and PAREXEL International, Bethesda, Maryland (W.F.S.)
| | | | | | - Levan Muskhelishvili
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas (X.Y., J.G., Q.S.); Department of Pediatrics (D.W.R.) and Department of Pharmacology and Toxicology (J.A.H.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, Arkansas (L.M., K.D.); and PAREXEL International, Bethesda, Maryland (W.F.S.)
| | - Kelly Davis
- Division of Systems Biology, National Center for Toxicological Research, Jefferson, Arkansas (X.Y., J.G., Q.S.); Department of Pediatrics (D.W.R.) and Department of Pharmacology and Toxicology (J.A.H.), University of Arkansas for Medical Sciences, Little Rock, Arkansas; Toxicologic Pathology Associates, National Center for Toxicological Research, Jefferson, Arkansas (L.M., K.D.); and PAREXEL International, Bethesda, Maryland (W.F.S.)
| | | |
Collapse
|
11
|
Song BJ, Abdelmegeed MA, Yoo SH, Kim BJ, Jo SA, Jo I, Moon KH. Post-translational modifications of mitochondrial aldehyde dehydrogenase and biomedical implications. J Proteomics 2011; 74:2691-702. [PMID: 21609791 DOI: 10.1016/j.jprot.2011.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/27/2011] [Accepted: 05/06/2011] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) represent large family members of NAD(P)+-dependent dehydrogenases responsible for the irreversible metabolism of many endogenous and exogenous aldehydes to the corresponding acids. Among 19 ALDH isozymes, mitochondrial ALDH2 is a low Km enzyme responsible for the metabolism of acetaldehyde and lipid peroxides such as malondialdehyde and 4-hydroxynonenal, both of which are highly reactive and toxic. Consequently, inhibition of ALDH2 would lead to elevated levels of acetaldehyde and other reactive lipid peroxides following ethanol intake and/or exposure to toxic chemicals. In addition, many East Asian people with a dominant negative mutation in ALDH2 gene possess a decreased ALDH2 activity with increased risks for various types of cancer, myocardial infarct, alcoholic liver disease, and other pathological conditions. The aim of this review is to briefly describe the multiple post-translational modifications of mitochondrial ALDH2, as an example, after exposure to toxic chemicals or under different disease states and their pathophysiological roles in promoting alcohol/drug-mediated tissue damage. We also briefly mention exciting preclinical translational research opportunities to identify small molecule activators of ALDH2 and its isozymes as potentially therapeutic/preventive agents against various disease states where the expression or activity of ALDH enzymes is altered or inactivated.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Sokolowska I, Woods AG, Wagner J, Dorler J, Wormwood K, Thome J, Darie CC. Mass Spectrometry for Proteomics-Based Investigation of Oxidative Stress and Heat Shock Proteins. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1083.ch013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Izabela Sokolowska
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Alisa G. Woods
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Jessica Wagner
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Jeannette Dorler
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Kelly Wormwood
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Johannes Thome
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| | - Costel C. Darie
- Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, 8 Clarkson Avenue, Potsdam, New York, 13699-5810, U.S.A
- Department of Psychiatry, University of Rostock, Gehlsheimer Straße 20, D-18147 Rostock, Germany
| |
Collapse
|