1
|
Gong H, Zhang Y, Gao Y, Tian X, Wu P, Wei X, Guo Y. In vivo precision imaging of vicinal-dithiol-containing proteins by a FRET molecular probe sensitive to protein environment. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
2
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [PMID: 33284303 DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Parkinson's disease (PD), as the second most common neurodegenerative disease, is caused by complex pathological processes and currently remains very difficult to treat. PD brings great distress to patients and imposes a heavy economic burden on society. The number of PD patients is growing as the aging population increases worldwide. Therefore, it is crucial to develop new tools for aiding the early diagnosis and treatment of PD. The significant pathological features involved in PD include the abnormal accumulation of α-synuclein, metal ion dyshomeostasis, oxidative stress, mitochondrial dysfunction and neurotransmitter deficiencies. In recent years, fluorescent probes have emerged as a powerful bioimaging tool with potential to help understand the pathological processes of PD via the detection and monitoring of pathological features. In this review, we comprehensively summarize the design and working mechanisms of fluorescent probes along with their applications in the detection of various PD biomarkers. We also discuss the current limitations of fluorescent probes and provide perspectives on how these limitations can be overcome to develop better fluorescent probes suitable for application in clinical trials in the future. We hope that this review provides valuable information and guidance for the development of new fluorescent probes that can be used clinically in the early diagnosis of PD and contributes to the development of efficient PD drugs in the future.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Wei X, Jin T, Huang C, Jia N, Zhu W, Xu Y, Qian X. Monoarsenical-based chemical approaches for exploration of endogenous vicinal-dithiol-containing proteins (VDPs): From the design to their biological application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Hu G, Jia H, Hou Y, Han X, Gan L, Si J, Cho DH, Zhang H, Fang J. Decrease of Protein Vicinal Dithiols in Parkinsonism Disclosed by a Monoarsenical Fluorescent Probe. Anal Chem 2020; 92:4371-4378. [DOI: 10.1021/acs.analchem.9b05232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Guodong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huiyi Jia
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lu Gan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, China
| | - Jing Si
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, China
| | - Dong-Hyung Cho
- School of Life Sciences, Kyungpook National University, 80 Daehakro Bukgu, Daegu 41566, Republic of Korea
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
5
|
Hu G, Jia H, Zhao L, Cho DH, Fang J. Small molecule fluorescent probes of protein vicinal dithiols. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.039] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Inactivation of Aldehyde Dehydrogenase by Disulfiram in the Presence and Absence of Lipoic Acid or Dihydrolipoic Acid: An in Vitro Study. Biomolecules 2019; 9:biom9080375. [PMID: 31426424 PMCID: PMC6723463 DOI: 10.3390/biom9080375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 01/22/2023] Open
Abstract
The inhibition of aldehyde dehydrogenase (ALDH) by disulfiram (DSF) in vitro can be prevented and/or reversed by dithiothreitol (DTT), which is a well-known low molecular weight non-physiological redox reagent commonly used in laboratory experiments. These observations inspired us to ask the question whether the inhibition of ALDH by DSF can be preserved or abolished also by dihydrolipoic acid (DHLA), which is the only currently known low molecular weight physiological dithiol in the body of humans and other animals. It can even be metaphorized that DHLA is an "endogenous DTT". Lipoic acid (LA) is the oxidized form of DHLA. We investigated the inactivation of ALDH derived from yeast and rat liver by DSF in the presence or absence of LA or DHLA. The results clearly show that DHLA is able both to restore and protect ALDH activity blocked by DSF. The proposed mechanism is discussed.
Collapse
|
7
|
Rozmer Z, Berki T, Maász G, Perjési P. Different effects of two cyclic chalcone analogues on redox status of Jurkat T cells. Toxicol In Vitro 2014; 28:1359-65. [PMID: 25014873 DOI: 10.1016/j.tiv.2014.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
Chalcones are intermediary compounds of the biosynthetic pathway of the naturally flavonoids. Previous studies have demonstrated that chalcones and their conformationally rigid cyclic analogues have tumour cell cytotoxic and chemopreventive effects. It has been shown that equitoxic doses of the two cyclic chalcone analogues (E)-2-(4'-methoxybenzylidene)-(2) and (E)-2-(4'-methylbenzylidene)-1-benzosuberone (3) have different effect on cell cycle progress of the investigated Jurkat cells. It was also found that the compounds affect the cellular thiol status of the treated cells and show intrinsic (non-enzyme-catalyzed) reactivity towards GSH under cell-free conditions. In order to gain new insights into the cytotoxic mechanism of the compounds, effects on the redox status and glutathione level of Jurkat cells were investigated. Detection of intracellular ROS level in Jurkat cells exposed to 2 and 3 was performed using the dichlorofluorescein-assay. Compound 2 did not influence ROS activity either on 1 or 4h exposure; in contrast, chalcone 3 showed to reduce ROS level at both timepoints. The two compounds had different effects on cellular glutathione status as well. Compound 2 significantly increased the oxidized glutathione (GSSG) level showing an interference with the cellular antioxidant defence. On the contrary, chalcone 3 enhanced the reduced glutathione level, indicating enhanced cellular antioxidant activity. To investigate the chalcone-GSH conjugation reactions under cellular conditions, a combination of a RP-HPLC method with electrospray ionization mass spectrometry (ESI-MS) was performed. Chalcone-GSH adducts could not be observed either in the cell supernatant or the cell sediment after deproteinization. The investigations provide further details of dual - cytotoxic and chemopreventive - effects of the cyclic chalcone analogues.
Collapse
Affiliation(s)
- Zsuzsanna Rozmer
- Department of Pharmaceutical Chemistry, University of Pécs, P.O. Box 99, H-7602 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, University of Pécs, P.O. Box 99, H-7602 Pécs, Hungary
| | - Gábor Maász
- Department of Biochemistry and Medical Chemistry, University of Pécs, P.O. Box 99, H-7602 Pécs, Hungary
| | - Pál Perjési
- Department of Pharmaceutical Chemistry, University of Pécs, P.O. Box 99, H-7602 Pécs, Hungary.
| |
Collapse
|
8
|
Manickam N, Ahmad SS, Essex DW. Vicinal thiols are required for activation of the αIIbβ3 platelet integrin. J Thromb Haemost 2011; 9:1207-15. [PMID: 21645227 DOI: 10.1111/j.1538-7836.2011.04266.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Closely spaced thiols in proteins that interconvert between the dithiol form and disulfide bonds are called vicinal thiols. These thiols provide a mechanism to regulate protein function. We previously found that thiols in both αIIb and β3 of the αIIbβ3 fibrinogen receptor were required for platelet aggregation. METHODS AND RESULTS Using p-chloromercuribenzene sulfonate (pCMBS) we provide evidence that surface thiols in αIIbβ3 are exposed during platelet activation. Phenylarsine oxide (PAO), a reagent that binds vicinal thiols, inhibits platelet aggregation and labeling of sulfhydryls in both αIIb and β3. For the aggregation and labeling studies, binding of PAO to vicinal thiols was confirmed by reversal of PAO binding with the dithiol reagent 2,3-Dimercapto-1-propanesulfonic acid (DMPS). In contrast, the monothiol β-mercaptoethanol did not reverse the effects of PAO. Additionally, PAO did not inhibit sulfhydryl labeling of the monothiol protein albumin, confirming the specificity of PAO for vicinal thiols in αIIbβ3. As vicinal thiols represent redox sensitive sites that can be regulated by reducing equivalents from the extracellular or cytoplasmic environment, they are likely to be important in regulating activation of αIIbβ3. Additionally, when the labeled integrin was passed though a lectin column containing wheat germ agglutinin and lentil lectin a substantial amount of non-labeled αIIbβ3 eluted separately from the labeled receptor. This suggests that two populations of integrin exist on platelets that can be distinguished by thiol labeling. CONCLUSION A vicinal thiol-containing population of αIIbβ3 provides redox sensitive sites for regulation of αIIbβ3.
Collapse
Affiliation(s)
- N Manickam
- Division of Hematology, Department of Medicine, The University of Texas Health Science Center, San Antonio, TX , USA
| | | | | |
Collapse
|
9
|
Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci U S A 2009; 106:20097-102. [PMID: 19897733 DOI: 10.1073/pnas.0902675106] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capsaicin receptor TRPV1, one of the major transduction channels in the pain pathway, integrates information from extracellular milieu to control excitability of primary nociceptive neurons. Sensitization of TRPV1 heightens pain sensation to moderately noxious or even innocuous stimuli. We report here that oxidative stress markedly sensitizes TRPV1 in multiple species' orthologs. The sensitization can be recapitulated in excised inside-out membrane patches, reversed by strong reducing agents, and blocked by pretreatment with maleimide that alkylates cysteines. We identify multiple cysteines required for full modulation of TRPV1 by oxidative challenges. Robust oxidative modulation recovers the agonist sensitivity of receptors desensitized by prolonged exposure to capsaicin. Moreover, oxidative modulation operates synergistically with kinase or proton modulations. Thus, oxidative modulation is a robust mechanism tuning TRPV1 activity via covalent modification of evolutionarily conserved cysteines and may play a role in pain sensing processes during inflammation, infection, or tissue injury.
Collapse
|
10
|
Abstract
There has recently been a dramatic expansion in research in the area of redox biology with systems that utilize thiols to perform redox chemistry being central to redox control. Thiol-based reactions occur in proteins involved in platelet function, including extracellular platelet proteins. The alphaIIbbeta3 fibrinogen receptor contains free thiols that are required for the activation of this receptor to a fibrinogen-binding conformation. This process is under enzymatic control, with protein disulfide isomerase playing a central role in the activation of alphaIIbbeta3. Other integrins, such as the alpha2beta1 collagen receptor on platelets, are also regulated by protein disulfide isomerase and thiol metabolism. Low molecular weight thiols that are found in blood regulate these processes by converting redox sensitive disulfide bonds to thiols and by providing the appropriate redox potential for these reactions. Additional mechanisms of redox control of platelets involve nitric oxide that inhibits platelet responses, and reactive oxygen species that potentiate platelet thrombus formation. Specific nitrosative or oxidative modifications of thiol groups in platelets may modulate platelet function. Since many biologic processes are regulated by redox reactions that involve surface thiols, the extracellular redox state can have an important influence on health and disease status and may be a target for therapeutic intervention.
Collapse
Affiliation(s)
- David W Essex
- Department of Medicine and the Sol Sherry Thrombosis Research Center, Philadelphia, Pennsylvania 19140, USA.
| |
Collapse
|
11
|
Álvarez R, Vázquez P, Pérez F, Jiménez A, Tirado A, Irles C, González-Serratos H, Ortega A. Regulation of fast skeletal muscle activity by SERCA1 vicinal-cysteines. J Muscle Res Cell Motil 2008; 30:5-16. [DOI: 10.1007/s10974-008-9156-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 11/25/2008] [Indexed: 11/25/2022]
|
12
|
Baty J, Hampton M, Winterbourn C. Proteomic detection of hydrogen peroxide-sensitive thiol proteins in Jurkat cells. Biochem J 2005; 389:785-95. [PMID: 15801906 PMCID: PMC1180729 DOI: 10.1042/bj20050337] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thiol proteins are important in cellular antioxidant defenses and redox signalling. It is postulated that reactive oxidants cause selective thiol oxidation, but relative sensitivities of different cell proteins and critical targets are not well characterized. We exposed Jurkat cells to H2O2 for 10 min and measured changes in reversibly oxidized proteins by labelling with iodoacetamidofluorescein and two-dimensional electrophoresis. At 200 microM H2O2, which caused activation of the MAP (mitogen-activated protein) kinase ERK (extracellular-signal-regulated kinase), growth arrest and apoptosis, relatively few changes were seen. A total of 28 spots were reversibly oxidized (increased labelling intensity) and 24 decreased. The latter included isoforms of peroxiredoxins 1 and 2, which were irreversibly oxidized. Oxidation of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was striking, and other affected proteins included glutathione S-transferase P1-1, enolase, a regulatory subunit of protein kinase A, annexin VI, the mitotic checkpoint serine/threonine-protein kinase BUB1beta, HSP90beta (heat-shock protein 90beta) and proteosome components. At 20 microM H2O2, changes were fewer, but GAPDH and peroxiredoxin 2 were still modified. Dinitrochlorobenzene treatment, which inhibited cellular thioredoxin reductase and partially depleted GSH, caused reversible oxidation of several proteins, including thioredoxin 1 and peroxiredoxins 1 and 2. Most changes were distinct from those with H2O2, and changes with H2O2 were scarcely enhanced by dinitrochlorobenzene. Relatively few proteins, including deoxycytidine kinase, nucleoside diphosphate kinase and a proteosome activator subunit, responded only to the combined treatment. Thus most of the effects of H2O2 were not linked to thioredoxin oxidation. Our study has identified peroxiredoxin 2 and GAPDH as two of the most oxidant-sensitive cell proteins and has highlighted how readily peroxiredoxins undergo irreversible oxidation.
Collapse
Affiliation(s)
- James W. Baty
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand
| | - Mark B. Hampton
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand
- To whom correspondence should be addressed (email )
| | - Christine C. Winterbourn
- Free Radical Research Group, Department of Pathology, Christchurch School of Medicine and Health Sciences, PO Box 4345, Christchurch, New Zealand
| |
Collapse
|
13
|
Jurrmann N, Brigelius-Flohé R, Böl GF. Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J Nutr 2005; 135:1859-64. [PMID: 16046709 DOI: 10.1093/jn/135.8.1859] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Curcumin is a dietary compound with diverse anti-inflammatory and anticarcinogenic effects in several experimental models. A mechanism by which curcumin exerts these actions might be the direct modification of protein thiols, thereby altering the activity of the affected proteins. An early event in inflammatory signaling cascades is the recruitment of the interleukin-1 (IL-1) receptor-associated kinase (IRAK) to the IL-1 receptor (IL-1RI) upon stimulation with IL-1. IRAK recruitment was shown recently to be inhibited by agents that modify thiols of IRAK. We asked, therefore, whether IRAK is also a target for curcumin. Curcumin indeed blocked IRAK thiols in a murine T-cell line stably overexpressing IRAK (EL-4(IRAK)), which resulted in the inhibition of IRAK recruitment to the IL-1RI and phosphorylation of IRAK and IL-1RI-associated proteins. Inhibitory effects were not reversible by thiol-reducing agents. Thus, modification by curcumin did not occur by oxidation but rather by alkylation, as is typical for electrophilic compounds reacting as Michael addition acceptors. The block in one of the earliest events in the IL-1 signaling cascade can explain the often observed inhibition of IL-1-mediated signaling steps by curcumin further downstream. Hence, thiol modification might be a crucial step in the anti-inflammatory functions of curcumin.
Collapse
Affiliation(s)
- Nadine Jurrmann
- German Institute of Human Nutrition, Potsdam-Rehbruecke, Biochemistry of Micronutrients, Nuthetal
| | | | | |
Collapse
|
14
|
Abstract
Disulfide bonds formed in newly synthesized proteins in the endoplasmic reticulum of cells are important for protein structure and stability. Recent research, however, emphasizes a role for thiol-disulfide reactions with disulfide bond rearrangement as a dynamic process in cell and protein function, and in platelet function in particular. Protein disulfide isomerase was found on the platelet surface where it appears to play an important role in the platelet responses of aggregation and secretion, as well as activation of the platelet fibrinogen receptor, the alphaIIbbeta3 integrin. Additionally, sulfhydryl groups in alphaIIbbeta3 have been implicated in the activation of this integrin. Physiologic concentrations of reduced glutathione generate sulfhydryls in alphaIIbbeta3 and potentiate sulfhydryl-dependent reactions in alphaIIbbeta3. Sulfhydryl labeling in alphaIIbbeta3 is inhibited by phenylarsine oxide, a reagent that binds to vicinal thiols. As vicinal thiols are in equilibrium with disulfide bonds, they provide redox-sensitive sites in alphaIIbbeta3 able to respond to external or cytoplasmic reducing equivalents. Furthermore, protein disulfide isomerase and sulfhydryls are now implicated in platelet adhesion by a second platelet integrin, the alpha2beta1 collagen receptor. Most recently, extracellular sulfhydryls in the P2Y12 ADP receptor were found to be required for platelet activation by this receptor. We here provide an overview of this field with a focus on recent developments, and conclude with a working model.
Collapse
Affiliation(s)
- David W Essex
- Department of Medicine Division of Hematology, The University of Texas Health Science Center at San Antonio, 78229, USA.
| |
Collapse
|
15
|
Zhang X, Lu L, Dixon C, Wilmer W, Song H, Chen X, Rovin BH. Stress protein activation by the cyclopentenone prostaglandin 15-deoxy-Δ12,14-prostaglandin J2 in human mesangial cells. Kidney Int 2004; 65:798-810. [PMID: 14871400 DOI: 10.1111/j.1523-1755.2004.00454.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The cyclopentenone prostaglandin 15-deoxy-delta12,14-prostaglandin J2 (15dPGJ2) affects mesangial proliferation, survival and production of proinflammatory proteins. During a survey of the mesangial cell proteome after treatment with 15dPGJ2, heat shock protein 70 (HSP70) was found to be the most conspicuously up-regulated protein, suggesting that stress proteins are key mediators or modulators of the effects of 15dPGJ2. Because cyclopentenone prostaglandins are highly reactive toward intracellular thiols, the role of intracellular thiol modification in the stress response to 15dPGJ2 was examined. METHODS Human mesangial cells were treated with 15dPGJ2 and intracellular thiol status was monitored by the fluorescent thiol probe monobromobimane (MBB). Specific intracellular thiol pools were manipulated by treating the cells with buthionine sulfoximine (BSO) to deplete glutathione (GSH), or phenylarsine oxide (PAO) to modify protein vicinal dithiols. Transcription pathways were examined with reporter gene or adenoviral constructs. RESULTS 15dPGJ2 decreased mesangial GSH and other intracellular thiols, but depletion of GSH specifically with BSO did not induce HSP70. Thiol-replenishing reagents, which can restore modified protein thiols, attenuated 15dPGJ2-induced HSP70 levels. Furthermore, PAO mimicked the effects of 15dPGJ2 on HSP70. 15dPGJ2 also activated the stress-responsive transcription factor Nrf2, which requires thiol modification of its cytoplasmic inhibitor protein for transcriptional activity, and induced the Nrf2-dependent stress protein heme oxygenase-1 (HO-1). CONCLUSION 15dPGJ2 activates a stress response in human mesangial cells by covalent modification of protein thiols through its unique cyclopentenone ring structure. This stress response may be beneficial in preventing renal cell injury or death during kidney inflammation or ischemia.
Collapse
Affiliation(s)
- Xiaolan Zhang
- Department of Medicine and the Dorothy M. Davis Heart and Lung Institute, The Ohio State University College of Medicine and Public Health, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Ruddock NT, Arnett KL, Wilson BJ, Milanick MA. Chloro(2,2':6',2"-terpyridine) platinum inhibition of the renal Na+,K+-ATPase. Am J Physiol Cell Physiol 2003; 284:C1584-92. [PMID: 12734111 DOI: 10.1152/ajpcell.00139.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloro(2,2':6',2"-terpyridine) platinum, a bulky, hydrophilic reagent, inhibited the renal sodium pump with a single exponential time course. K(+) increased the rate constant of the reaction by about twofold; the K(+) concentration dependence was monotonic, with a half-maximal effect observed at 1 mM, consistent with K(+) acting at a transport site. Na(+), Mg(2+), eosin, and vanadate did not significantly alter the rate of reaction. The results of proteolysis and mass spectrometer analysis were consistent with terpyridine platinum labeling of Cys452, Cys456, or Cys457. Because phenylarsine oxide reacts with vicinal cysteines and did not prevent terpyridine platinum modification, terpyridine platinum most likely modifies Cys452. This modification prevents ADP binding; interestingly, the analogous residue in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is on the exterior of the nucleotide-binding pocket. Thus it appears that the terpyridine platinum residue is more accessible in the presence of K(+) than in its absence and that terpyridine platinum modification prevents nucleotide binding.
Collapse
Affiliation(s)
- Nancy T Ruddock
- Department of Physiology, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
17
|
Böl GF, Jurrmann N, Brigelius-Flohé R. Recruitment of the interleukin-1 receptor (IL-1RI)-associated kinase IRAK to the IL-1RI is redox regulated. Biol Chem 2003; 384:609-17. [PMID: 12751790 DOI: 10.1515/bc.2003.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interleukin-1 signaling is initiated by recruitment of adapter proteins and kinases to the type I interleukin-1 receptor (IL-1RI). It is modulated by accompanying redox processes at various levels, such as (auto-) phosphorylation of the IL-1RI-associated kinase IRAK, the phosphorylation of IkappaB and translocation and transcriptional activity of NF-kappaB. Here we demonstrate that the thiol-modifying agents diamide, menadione, and phenylarsine oxide (PAO) block the recruitment of IRAK to the receptor without inhibiting kinase activity in the immunoprecipitated IL-1RI complex in the human epithelial cell line ECV304 and the murine T cell line EL-4. Inhibition of IRAK receptor association by menadione is reversible in a GSH-dependent manner, while the PAO effect proved to be irreversible. Phospholipid hydroperoxide glutathione peroxidase attenuates inhibition by menadione. Recruitment correlates with the presence of thiol groups in IRAK that were available for IAIT-labeling. We conclude that recruitment of IRAK to the IL-1RI is redox regulated by the glutathione system, a reduced status being a prerequisite for an appropiate IL-1 response.
Collapse
Affiliation(s)
- Gaby-Fleur Böl
- Department of Vitamins and Atherosclerosis, German Institute of Human Nutrition, D-14558 Potsdam-Rehbrücke, Germany
| | | | | |
Collapse
|
18
|
Dünschede F, Zwicker K, Ackermann H, Zimmer G. ADP- and oligomycin-sensitive redox behavior of F0 b thiol in ATPsynthase depends on neighbored primary structure: investigations using 14-C-labeled alpha lipoic acid. Biofactors 2003; 19:19-32. [PMID: 14757974 DOI: 10.1002/biof.5520190104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purified ATPsynthase of bovine heart mitochondria has been analyzed for its mobility and reactivity of oligomycin-sensitive sulfhydryl regions in presence of the substrate ADP and oligomycin. Labeling of thiol groups at the hydrophobic F_0 region of the ATPsynthase was increased in the enzyme initially treated with SDS, N-ethylmaleimide and dithiothreitol (modified enzyme). After dialysis or gel permeation the ATPsynthase was treated with [14C] alpha lipoic acid at a molar ratio of 35-85/1 (lipoic acid/ATPsynthase) corresponding to 4-8.6 nmol/mg protein. Under these conditions, ATPase activity of the native enzyme was significantly decreased. After preincubation with ADP, PAGE of the native, [14C] labeled enzyme revealed an increase of radioactivity at a region of 25 kDa deduced to Cys 197 of subunit b. In the modified enzyme the increase in radioactivity was found at 10 kDa. In this context, the sequence Lys-Cys-Ile around Cys 197 of subunit b suggests excessive reactivity of this thiol, as well as ready reversibility by -SH-S-S- interchange. Therefore, previously observed reaction by thiol reagents and antioxidants from outside the mitochondrion can be interpreted with Cys 197 of F0 b. It accounts for sulfhydryl unmasked by binding of ADP at F1.
Collapse
Affiliation(s)
- Fritz Dünschede
- Allgemein- und Abdominalchirurgie, Universitätsklinik Mainz, Germany
| | | | | | | |
Collapse
|
19
|
Camera E, Picardo M. Analytical methods to investigate glutathione and related compounds in biological and pathological processes. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:181-206. [PMID: 12450659 DOI: 10.1016/s1570-0232(02)00618-9] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reduced glutathione (GSH, gamma-L-glutamyl-L-cysteinylglycine) is a fundamental low-molecular mass antioxidant that serves several biological functions. Upon enzymatic and non-enzymatic oxidation, GSH forms glutathione disulfide (GSSG) and, under particular conditions, may generate other oxidative products. The determination of GSH, its precursors, and metabolites in several bio-matrices is a useful tool in studying oxidative stress. Many separative and non-separative methods have been developed and improved for the assay of GSH and related compounds. At present, high-performance liquid chromatography and capillary electrophoresis are the most used separative techniques to determine GSH and congeners. The review will deal with analytical methods developed over the last few years for the determination of GSH and related compounds, and with the procedures performed in sample pre-treatment in order to minimize analytical errors. Since GSH, GSSG, and related compounds lack of strong chromophores or fluorophores, it is advantageous, in many assays, to derivatize the compounds in order to improve the detection limit with UV-Vis and to allow fluorescence, thus the most commonly used labeling agents are also described.
Collapse
Affiliation(s)
- Emanuela Camera
- Laboratorio di Fisiopatologia Cutanea dell'Istituto Dermatologico San Gallicano (IRCCS), Via San Gallicano 25/A, I-00153 Rome, Italy.
| | | |
Collapse
|
20
|
Bogumil R, Ullrich V. Phenylarsine oxide affinity chromatography to identify proteins involved in redox regulation: dithiol-disulfide equilibrium in serine/threonine phosphatase calcineurin. Methods Enzymol 2002; 348:271-80. [PMID: 11885280 DOI: 10.1016/s0076-6879(02)48645-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Ralf Bogumil
- Mathematisch-Naturwissenschaftliche Sektion Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
21
|
Affiliation(s)
- Neil Donoghue
- Centre for Thrombosis and Vascular Research, University of New South Wales, Sydney NSW 2052, Australia
| | | |
Collapse
|
22
|
Affiliation(s)
- Neil Donoghue
- Center for Thrombosis and Vascular Research, School of Pathology, University of New South Wales, 2052 Sydney, Australia
| | | |
Collapse
|
23
|
Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 2002; 124:6063-76. [PMID: 12022841 DOI: 10.1021/ja017687n] [Citation(s) in RCA: 717] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We recently introduced a method (Griffin, B. A.; Adams, S. R.; Tsien, R. Y. Science 1998, 281, 269-272 and Griffin, B. A.; Adams, S. R.; Jones, J.; Tsien, R. Y. Methods Enzymol. 2000, 327, 565-578) for site-specific fluorescent labeling of recombinant proteins in living cells. The sequence Cys-Cys-Xaa-Xaa-Cys-Cys, where Xaa is an noncysteine amino acid, is genetically fused to or inserted within the protein, where it can be specifically recognized by a membrane-permeant fluorescein derivative with two As(III) substituents, FlAsH, which fluoresces only after the arsenics bind to the cysteine thiols. We now report kinetics and dissociation constants ( approximately 10(-11) M) for FlAsH binding to model tetracysteine peptides. Affinities in vitro and detection limits in living cells are optimized with Xaa-Xaa = Pro-Gly, suggesting that the preferred peptide conformation is a hairpin rather than the previously proposed alpha-helix. Many analogues of FlAsH have been synthesized, including ReAsH, a resorufin derivative excitable at 590 nm and fluorescing in the red. Analogous biarsenicals enable affinity chromatography, fluorescence anisotropy measurements, and electron-microscopic localization of tetracysteine-tagged proteins.
Collapse
Affiliation(s)
- Stephen R Adams
- Department of Pharmacology, Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, and Biomedical Sciences Program, University of California, San Diego, La Jolla, California 92093-0647, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim SO, Merchant K, Nudelman R, Beyer WF, Keng T, DeAngelo J, Hausladen A, Stamler JS. OxyR: a molecular code for redox-related signaling. Cell 2002; 109:383-96. [PMID: 12015987 DOI: 10.1016/s0092-8674(02)00723-7] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Redox regulation has been perceived as a simple on-off switch in proteins (corresponding to reduced and oxidized states). Using the transcription factor OxyR as a model, we have generated, in vitro, several stable, posttranslational modifications of the single regulatory thiol (SH), including S-NO, S-OH, and S-SG, and shown that each occurs in vivo. These modified forms of OxyR are transcriptionally active but differ in structure, cooperative properties, DNA binding affinity, and promoter activities. OxyR can thus process different redox-related signals into distinct transcriptional responses. More generally, our data suggest a code for redox control through which allosteric proteins can subserve either graded (cooperative) or maximal (noncooperative) responses, and through which differential responsivity to redox-related signals can be achieved.
Collapse
Affiliation(s)
- Sung Oog Kim
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Gitler C, Zarmi B, Kalef E, Meller R, Zor U, Goldman R. Calcium-dependent oxidation of thioredoxin during cellular growth initiation. Biochem Biophys Res Commun 2002; 290:624-8. [PMID: 11785944 DOI: 10.1006/bbrc.2001.6214] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fraction of cell thiol proteins in the oxidized disulfide form were quantified during mitogen-induced HaCaT keratinocyte growth initiation. Oxidized thioredoxin increased from 11 +/- 1.2% in resting cells to 80 and 61% 2 min after addition of bradykinin or EGF. Thioredoxin oxidation was transient returning toward normal values by 20 min. The disulfide forms of other cellular proteins rose in parallel with thioredoxin oxidation. The oxidation of thioredoxin depended on a rise in cytosolic calcium. It was prevented by preloading cells with BAPTA, a Ca(2+) chelator and induced by addition of Ca(2+)-ionophore A23187 or of thapsigargin. In cell extracts, thioredoxin reductase was inhibited by micromolar calcium. The rise in cytosolic Ca(2+) led to a concomitant burst of H(2)O(2) formation. The oxidizing intracellular milieu suggests that redox regulation actively participates in the growth initiation cascade. The role of peroxiredoxins and ASK 1 cascade activation are discussed in this context.
Collapse
Affiliation(s)
- Carlos Gitler
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | | | | | | | | | | |
Collapse
|
26
|
Donoghue N, Yam PT, Jiang XM, Hogg PJ. Presence of closely spaced protein thiols on the surface of mammalian cells. Protein Sci 2000; 9:2436-45. [PMID: 11206065 PMCID: PMC2144521 DOI: 10.1110/ps.9.12.2436] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It has been proposed that certain cell-surface proteins undergo redox reactions, that is, transfer of hydrogens and electrons between closely spaced cysteine thiols that can lead to reduction, formation, or interchange of disulfide bonds. This concept was tested using a membrane-impermeable trivalent arsenical to identify closely spaced thiols in cell-surface proteins. We attached the trivalent arsenical, phenylarsenoxide, to the thiol of reduced glutathione to produce 4-(N-(S-glutathionylacetyl)amino)phenylarsenoxide (GSAO). GSAO bound tightly to synthetic, peptide, and protein dithiols like thioredoxin, but not to monothiols. To identify cell-surface proteins that contain closely spaced thiols, we attached a biotin moiety through a spacer arm to the primary amino group of the gamma-glutamyl residue of GSAO (GSAO-B). Incorporation of GSAO-B into proteins was assessed by measuring the biotin using streptavidin-peroxidase. Up to 12 distinct proteins were labeled with GSAO-B on the surface of endothelial and fibrosarcoma cells. The pattern of labeled proteins differed between the different cell types. Protein disulfide isomerase was one of the proteins on the endothelial and fibrosarcoma cell surface that incorporated GSAO-B. These findings demonstrate that the cell-surface environment can support the existence of closely spaced protein thiols and suggest that at least some of these thiols are redox active.
Collapse
Affiliation(s)
- N Donoghue
- Centre for Thrombosis and Vascular Research, School of Pathology, University of New South Wales, Sydney, Australia
| | | | | | | |
Collapse
|
27
|
Trebitsh T, Levitan A, Sofer A, Danon A. Translation of chloroplast psbA mRNA is modulated in the light by counteracting oxidizing and reducing activities. Mol Cell Biol 2000; 20:1116-23. [PMID: 10648596 PMCID: PMC85229 DOI: 10.1128/mcb.20.4.1116-1123.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Light has been proposed to stimulate the translation of Chlamydomonas reinhardtii chloroplast psbA mRNA by activating a protein complex associated with the 5' untranslated region of this mRNA. The protein complex contains a redox-active regulatory site responsive to thioredoxin. We identified RB60, a protein disulfide isomerase-like member of the protein complex, as carrying the redox-active regulatory site composed of vicinal dithiol. We assayed in parallel the redox state of RB60 and translation of psbA mRNA in intact chloroplasts. Light activated the specific oxidation of RB60, on the one hand, and reduced RB60, probably via the ferredoxin-thioredoxin system, on the other. Higher light intensities increased the pool of reduced RB60 and the rate of psbA mRNA translation, suggesting that a counterbalanced action of reducing and oxidizing activities modulates the translation of psbA mRNA in parallel with fluctuating light intensities. In the dark, chemical reduction of the vicinal dithiol site did not activate translation. These results suggest a mechanism by which light primes redox-regulated translation by an unknown mechanism and then the rate of translation is determined by the reduction-oxidation of a sensor protein located in a complex bound to the 5' untranslated region of the chloroplast mRNA.
Collapse
Affiliation(s)
- T Trebitsh
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
28
|
Winterbourn CC, Metodiewa D. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 1999; 27:322-8. [PMID: 10468205 DOI: 10.1016/s0891-5849(99)00051-9] [Citation(s) in RCA: 599] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reactivities of glutathione, cysteine, cysteamine, penicillamine, N-acetylcysteine, dithiothreitol and captopril with superoxide generated from xanthine oxidase and hypoxanthine, and with reagent hydrogen peroxide, have been investigated. Rates of thiol loss on adding hydrogen peroxide, and superoxide-dependent thiol loss and oxygen uptake were measured. The relative reactivities of the different thiols with both oxidants were inversely related to the pK of the thiol group, such that at pH 7.4, penicillamine was the most reactive. N-acetylcysteine weakly reactive and no reaction was seen with captopril. For hydrogen peroxide, the calculated rate constants for the reaction with the thiolate anion all fell within the range 18-26 M(-1) s(-1). With superoxide, our results are consistent with each thiol reacting via a short chain that consumes oxygen and regenerates superoxide. Only with some of the thiols, was the consumed oxygen recovered as hydrogen peroxide. Reported values for the rate constant for the reaction of thiols with superoxide vary over four orders of magnitude, with the highest being > 10(5) M(-1) s(-1). Due to the complexity of the chain reaction, no study so far has been able to obtain accurate values and we consider the best estimates to be in the 30 to 1000 M(-1) s(-1) range.
Collapse
Affiliation(s)
- C C Winterbourn
- Department of Pathology, Christchurch School of Medicine, New Zealand.
| | | |
Collapse
|
29
|
Zai A, Rudd MA, Scribner AW, Loscalzo J. Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest 1999; 103:393-9. [PMID: 9927500 PMCID: PMC407899 DOI: 10.1172/jci4890] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since thiols can undergo nitrosation and the cell membrane is rich in thiol-containing proteins, we considered the possibility that membrane surface thiols may regulate cellular entry of NO. Recently, protein disulfide isomerase (PDI), a protein that catalyzes thio-disulfide exchange reactions, has been found on the cell-surface membrane. We hypothesized that cell-surface PDI reacts with NO, catalyzes S-nitrosation reactions, and facilitates NO transfer from the extracellular to intracellular compartment. We observed that PDI catalyzes the S-nitrosothiol-dependent oxidation of the heme group of myoglobin (15-fold increase in the rate of oxidation compared with control), and that NO reduces the activity of PDI by 73.1 +/- 21.8% (P < 0.005). To assess the role of PDI in the cellular action of NO, we inhibited human erythroleukemia (HEL) cell-surface PDI expression using an antisense phosphorothioate oligodeoxynucleotide directed against PDI mRNA. This oligodeoxynucleotide decreased cell-surface PDI content by 74.1 +/- 9.3% and PDI folding activity by 46.6 +/- 3.5% compared with untreated or "scrambled" phosphorothioate oligodeoxynucleotide-treated cells (P < 0.0001). This decrease in cell-surface PDI was associated with a significant decrease in cyclic guanosine monophosphate (cGMP) generation after S-nitrosothiol exposure (65.4 +/- 26.7% reduction compared with control; P < 0.05), with no effect on cyclic adenosine monophosphate (cAMP) generation after prostaglandin E1 exposure. These data demonstrate that the cellular entry of NO involves a transnitrosation mechanism catalyzed by cell-surface PDI. These observations suggest a unique mechanism by which extracellular NO gains access to the intracellular environment.
Collapse
Affiliation(s)
- A Zai
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, Massachusetts 02118-2394, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Several biochemical techniques are based on chromatography or electrophoresis for the determination of thiols from biological samples. These techniques are indispensable for the accurate and sensitive detection of specific thiols. Flow cytometric determination of cellular thiols is a powerful technique that is perhaps best suited for clinical application, particularly for cells in blood or other body fluids. Information can be obtained from a small sample amount with a relatively little and quick sample treatment. This technique offers an unique advantage to study the thiol status of a subset of cells because data are collected from individual cells. Multiparameter flow cytometry allows the study of different subsets of immunotyped cells. A major drawback of the flow cytometric method is the lack of specificity for the determination of distinct thiols. The reaction between MBB and thiols is not specific for any particular intracellular thiol, although almost all of the entire thiol-reacted bimane emission is specific for thiols in general. This limitation can be partly overcome by the treatment of cells with known thiol regulatory agents as described in the section on the differential assessment of cellular thiols.
Collapse
Affiliation(s)
- C K Sen
- University of California, Berkeley 94720-3200, USA
| | | | | |
Collapse
|
31
|
Abstract
Stimulation of the Interleukin-1 receptor type I (IL-1-RI) with IL-1 activates an associated serine/threonine kinase, IRAK, which phosphorylates downstream targets, resulting in NFkappaB activation. The signaling cascade is accompanied by oxidative processes and contains putative targets for redox regulation. Preincubation of the murine T cell line EL-4 and the human umbilical cord vein endothelial cell line ECV 304 with thiol modifying compounds like diamide, menadione or phenylarsine oxide inhibited the IL-1-induced phosphorylation of an endogenous substrate with a molecular mass of 60 kD. In the endothelial cell line, a second target of about 85 kD was phosphorylated after IL-1 stimulation, which was also inhibited by thiol modification. These data suggest that IL-1 signal transduction depends on free thiols which might be targets for redox regulation not only in lymphocytes, but also in endothelial cells.
Collapse
Affiliation(s)
- G F Böl
- German Institute of Human Nutrition, Department of Vitamins and Atherosclerosis, Potsdam-Rehbrücke.
| | | | | |
Collapse
|
32
|
Friedrichs B, Müller C, Brigelius-Flohé R. Inhibition of tumor necrosis factor-alpha- and interleukin-1-induced endothelial E-selectin expression by thiol-modifying agents. Arterioscler Thromb Vasc Biol 1998; 18:1829-37. [PMID: 9848873 DOI: 10.1161/01.atv.18.12.1829] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expression of endothelial-leukocyte adhesion molecules has been postulated to be regulated by redox-sensitive events. Tumor necrosis factor-alpha (TNF-alpha)- and interleukin-1 (IL-1)-induced E-selectin expression was analyzed after pretreating human umbilical vein endothelial cells with different thiol-modifying agents, ie, diamide, phenylarsine oxide, N-ethylmaleimide, and diethyl maleate. E-selectin protein expression was quantified by indirect immunofluorescence. All compounds suppressed the cytokine-induced E-selectin expression in a concentration-dependent manner, whereas the antioxidant N-acetylcysteine showed no effect. The inhibitory effect of diamide (100 micromol/L, 1 hour) was reversible within 6 hours when the cells were allowed to recover before application of cytokines. Reversibility was strongly delayed when cells were deprived of glutathione by buthionine sulfoximine pretreatment. Glutathione depletion alone did not influence cytokine-induced E-selectin expression. Analysis of cellular glutathione status showed a 3-fold increase in oxidized glutathione after diamide treatment. Monochlorobimane labeling also revealed a decrease in total cellular thiols. During recovery, the glutathione status was restored within 1 hour, whereas total thiol content and E-selectin expression needed at least 6 hours to return to baseline. Complete inhibition of E-selectin expression by the vicinal thiol blocker phenylarsine oxide (0.5 micromol/L) was reversed by dithiols like dithiothreitol or dimercaptopropanol, but not by the monothiol 2-mercaptoethanol. These data suggest that proteins with essential thiols, most probably vicinal thiols. are involved in the IL-1- and TNF-alpha-mediated induction of E-selectin. These thiols must be in the reduced state; oxidation or other modification thereof attenuates or abolishes the cells' response to the cytokines.
Collapse
Affiliation(s)
- B Friedrichs
- German Institute of Human Nutrition Potsdam-Rehbrücke and the Institute of Nutritional Science, University of Potsdam Potsdam-Rehbrücke, Germany
| | | | | |
Collapse
|
33
|
Tewes F, Böl GF, Brigelius-Flohé R. Thiol modulation inhibits the interleukin (IL)-1-mediated activation of an IL-1 receptor-associated protein kinase and NF-kappa B. Eur J Immunol 1997; 27:3015-21. [PMID: 9394832 DOI: 10.1002/eji.1830271139] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interleukin-1 receptor type I (IL-1RI) is associated with other proteins thus forming a complex system by which IL-1 exerts its various signals. The initiating event is still uncertain, but activation of a recently described receptor-associated protein kinase is one of the earliest events detectable (Martin et al., Eur. J. Immunol. 1994. 24: 1566). IL-1 signaling is commonly accompanied by oxidative processes and is thought to be subject to redox regulation. We therefore investigated whether the activation of the IL-1RI-associated protein kinase could be a target for redox regulation and whether an altered activity of the kinase could influence IL-1-mediated NF-kappa B activation. A murine T cell line, EL4, was stimulated with IL-1 with and without pretreatment with different compounds known to influence the cellular redox status. Thiol modifying agents like diamide, menadione, pyrrolidine dithiocarbamate (PDTC), diethyl dithiocarbamate or phenylarsine oxide inhibited the IL-1-induced activation of the IL-1RI-associated protein kinase. N-Acetylcysteine, alpha,alpha'-dipyridyl, aminotriazole or nitrofurantoin did not show any effect. The inhibition by PDTC was reversible unless glutathione synthesis was blocked by buthionine sulfoximine. The described conditions which inhibited or prevented the activation of the IL-1RI-associated kinase similarly impaired the activation of NF-kappa B in EL4 cells. From these observations we conclude that free thiols in the IL-1RI complex are essential for the activation of the IL-1RI-associated protein kinase and that this process is mandatory for IL-1 signaling leading to NF-kappa B activation.
Collapse
Affiliation(s)
- F Tewes
- German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | | | | |
Collapse
|
34
|
Gitler C, Zarmi B, Kalef E. General method to identify and enrich vicinal thiol proteins present in intact cells in the oxidized, disulfide state. Anal Biochem 1997; 252:48-55. [PMID: 9324940 DOI: 10.1006/abio.1997.2294] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Some 5% of the soluble proteins of L1210 murine leukemia lymphoblasts contain surface vicinal thiols (Kalef, E., Walfish, P. G., and Gitler, C. (1993) Anal. Biochem. 212, 325-334). Redox dithiol to intraprotein disulfide conversion could regulate the cellular function of these proteins. A general method is presented to identify and enrich vicinal thiol proteins existing in cells in their oxidized, disulfide state. The method is based on the in situ blockage by cell permeable N-ethylmaleimide (NEM) of readily accessible cellular protein sulfhydryls. Following removal of the excess NEM, disulfide-containing proteins were identified by reduction with DTT and specific labeling with N-iodoacetyl-[125I]-3-iodotyrosine. The vicinal thiol proteins formed could also be enriched, prior to labeling with [125I]IAIT, by their selective binding to Sepha-rose-aminohexanoyl-4-aminophenylarsine oxide. Exponentially growing L1210 lymphoblasts contain more than 20 proteins with thiols in the oxidized, disulfide state. The majority derive from vicinal thiol proteins. The fraction oxidized, in some proteins, represents almost the totality of the protein present in the cell. Exposure of lymphoblasts to diamide increases the number and concentration of proteins with intraprotein disulfides. This method allows sensitive direct identification of vicinal thiol proteins that participate in redox regulation and those that are targets to oxidative stress conditions.
Collapse
Affiliation(s)
- C Gitler
- Department of Membrane Research and Biophysics, Weizmann Institute of Science, Rehovot, Israel.
| | | | | |
Collapse
|
35
|
Ye B, Gitler C, Gressel J. A high-sensitivity, single-gel, polyacrylamide gel electrophoresis method for the quantitative determination of glutathione reductases. Anal Biochem 1997; 246:159-65. [PMID: 9073351 DOI: 10.1006/abio.1996.9985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A new method is described that allows the selective staining and quantification of gluthathione reductases (EC 1.6.4.2) in cell extracts following acrylamide gel electrophoresis. The method is based on modifications of two previous procedures; it uses DTNB [5,5'-dithiobis(2-nitrobenzoic acid)] to develop a yellow color on reaction with GSH formed from the NADPH-dependent reduction of oxidized glutathione. This is followed by specific counterstaining of glutathione reductase with dichlorophenolindophenol/nitroblue tetrazolium. The use of DTNB in the initial staining step inhibits enzymes other than glutathione reductase that could be stained with the dichlorophenolindophenol/nitroblue tetrazolium counterstain. Enzymes such as thioredoxin reductase, which can directly reduce DTNB with NADPH, may be nonselectively stained by this new procedure. Plant ferredoxin-thioredoxin reductase is not reduced by NADPH and therefore does not appear. Glutathione reductase stains much quicker with DTNB in the presence of GSSG than with thioredoxin reductase, allowing them to be distinguished, if parallel gels are run without GSSG, where the two enzymes react at the same rate. The sequential use of two staining procedures results in distinct, sharp permanent bands that can be used to quantify the activity of glutathione reductase while precluding artifacts generated by the previous methods.
Collapse
Affiliation(s)
- B Ye
- Department of Plant Genetics, Weizmann Institute of Science Rehovot, Israel
| | | | | |
Collapse
|
36
|
Sen CK, Roy S, Han D, Packer L. Regulation of cellular thiols in human lymphocytes by alpha-lipoic acid: a flow cytometric analysis. Free Radic Biol Med 1997; 22:1241-57. [PMID: 9098099 DOI: 10.1016/s0891-5849(96)00552-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Modulation of cellular thiols is an effective therapeutic strategy, particularly in the treatment of AIDS. Lipoic acid, a metabolic antioxidant, functions as a redox modulator and has proven clinically beneficial effects. It is also used as a dietary supplement. We utilized the specific capabilities of N-ethylmaleimide to block total cellular thiols, phenylarsine oxide to block vicinal dithiols, and buthionine sulfoximine to deplete cellular GSH to flow cytometrically investigate how these thiol pools are influenced by exogenous lipoate treatment. Low concentrations of lipoate and its analogue lipoamide increased Jurkat cell GSH in a dose-dependent manner between 10 (25 microM for lipoamide) to 100 microM. This was also observed in mitogenically stimulated peripheral blood lymphocytes (PBL). Studies with Jurkat cells and its Wurzburg subclone showed that lipoate dependent increase in cellular GSH was similar in CD4+ and - cells. Chronic (16 week) exposure of cells to lipoate resulted in further increase of total cellular thiols, vicinal dithiols, and GSH. High concentration (2 and 5 mM) of lipoate exhibited cell shrinkage, thiol depletion, and DNA fragmentation effects. Based on similar effects of octanoic acid, the cytotoxic effects of lipoate at high concentration could be attributed to its fatty acid structure. In certain diseases such as AIDS and cancer, elevated plasma glutamate lowers cellular GSH by inhibiting cystine uptake. Low concentrations of lipoate and lipoamide were able to bypass the adverse effect of elevated extracellular glutamate. A heterogeneity in the thiol status of PBL was observed. Lipoate, lipoamide, or N-acetylcysteine corrected the deficient thiol status of cell subpopulations. Hence, the favorable effects of low concentrations of lipoate treatment appears clinically relevant.
Collapse
Affiliation(s)
- C K Sen
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, USA
| | | | | | | |
Collapse
|
37
|
Stancato LF, Silverstein AM, Gitler C, Groner B, Pratt WB. Use of the thiol-specific derivatizing agent N-iodoacetyl-3-[125I]iodotyrosine to demonstrate conformational differences between the unbound and hsp90-bound glucocorticoid receptor hormone binding domain. J Biol Chem 1996; 271:8831-6. [PMID: 8621522 DOI: 10.1074/jbc.271.15.8831] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The hormone binding domain (HBD) of the glucocorticoid receptor (GR) contains five cysteine residues, with three of them being spaced close to one another in the steroid binding pocket. The HBD also contains the contact region for the chaperone protein hsp90, which must be bound to the GR for it to have a steroid binding conformation. Binding of hsp90 to the receptor through its HBD inactivates the DNA binding domain (DBD). The DBD contains a number of cysteines essential to its DNA binding activity. Here, we assess the effects of hsp90 binding on the accessibility of cysteine residues in both the HBD and DBD to derivatization by a thiol-specific reagent. We report that N-iodoacetyltyrosine (IAT) inactivates steroid binding activity of the immunopurified, untransformed GR.hsp90 complex in a manner that is prevented by the sulfhydryl reagents cysteine and dithiothreitol but is not reversed by them. The 125I-labeled IAT derivative N-iodoacetyl-3-[125I]iodotyrosine ([125I]IAIT) covalently labels the immunopurified, hsp90-bound receptor in a thiol-specific manner. Dissociation of hsp90 leads to an approximately 2-fold increase in [125I]IAIT labeling of the full-length, 100-kDa GR. The increase in thiol labeling is related to the presence of hsp90 because it is blocked by molybdate, which prevents hsp90 dissociation. Cleavage of the [125I]IAIT-labeled receptor with trypsin yields a 15-kDa labeled fragment containing the DBD and a 30-kDa labeled fragment containing all of the cysteines in the HBD and the contact region for hsp90. Dissociation of hsp90 from the GR results in a 2.3-fold increase in [125I]IAIT labeling of the 15-kDa fragment and a 50% decrease in labeling of the 30-kDa fragment. These data are consistent with the proposal that dissociation of hsp90 from the GR produces a conformational change in the HBD such that some of the thiols that are exposed in the GR*hsp90 complex become buried and are no longer accessible to the [125I]IAIT probe. In contrast, binding of the GR to hsp90 restricts access of cysteines in the DBD to this small thiol-derivatizing agent, a restriction that is relieved as a result of unmasking or conformational change accompanying hsp90 dissociation.
Collapse
Affiliation(s)
- L F Stancato
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
38
|
Vermeij P, Vinke E, Keltjens JT, Van der Drift C. Purification and properties of coenzyme F390 hydrolase from Methanobacterium thermoautotrophicum (strain Marburg). EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 234:592-7. [PMID: 8536708 DOI: 10.1111/j.1432-1033.1995.592_b.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
8-Hydroxyadenylylated coenzyme F420 (coenzyme F390-A) is formed in methanogenic bacteria upon oxidative stress. After reinstatement of anaerobic conditions, coenzyme F390 is degraded into coenzyme F420 and AMP. The enzyme catalyzing the latter reaction, coenzyme F390 hydrolase, was purified to homogeneity from Methanobacterium thermoautotrophicum strain Marburg 355-fold to a specific activity of 12.1 mumol.min-1.mg protein-1. The enzyme consisted of one polypeptide of approximately 27 kDa. Coenzyme F390 hydrolase displayed an apparent Km for coenzyme F390 of 40 microM. The enzyme required the presence of a reducing agent like dithiothreitol to become active. Activity could be manipulated by applying various ratios of reduced and oxidized dithiothreitol. Activation proceeded by a two-electron reduction, which indicates that one S-S bridge is involved the activation/inactivation of the enzyme. Dithiothreitol could be replaced by the methanogenic C1-carrier 2-mercaptoethanesulfonate (H-S-CoM), but not by N7-mercaptoheptanoyl-L-threonine phosphate (H-S-HTP) or other naturally occurring thiol-containing compounds. The addition of the heterodisulfide of H-S-CoM and H-S-HTP (CoM-S-S-HTP) diminished the stimulatory effect of H-S-CoM.
Collapse
Affiliation(s)
- P Vermeij
- Department of Microbiology, Faculty of Science, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
39
|
Pafford CM, Simples JE, Strong JA. Effects of the protein tyrosine phosphatase inhibitor phenylarsine oxide on excision-activated calcium channels in Lymnaea neurons. Cell Calcium 1995; 18:400-10. [PMID: 8581968 DOI: 10.1016/0143-4160(95)90055-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Most calcium channels are tightly regulated, closed in the resting cell, and open only in response to specific physiological signals such as depolarization or binding of a particular ligand. In addition, calcium permeable channels which can be activated experimentally by excising a small patch of plasma membrane from the cell have been described in several preparations, including neurons and cardiac muscle. Little is known about possible physiological regulators of these channels. We examined an excision-activated calcium channel from neurons of the pond snail Lymnaea stagnalis. This channel, the 'HP channel', is divalent selective and voltage-independent. In this report, we show that excision activation can occur very rapidly (within 200-400 ms after patch excision), and that this activity can be at least partially inhibited by 'cramming' the isolated membrane patch back into the cell's cytoplasm. We also show that excision activation is inhibited in cells which have been pretreated with inhibitors of protein tyrosine phosphatases, either pervanadate (0.5 mM) or phenylarsine oxide (1-7 microM). The effect of phenylarsine oxide is not seen in cells which have been pretreated with tyrosine kinase inhibitors (genistein or herbimycin A). The results suggest that tyrosine phosphorylation signalling pathways may play a role in the physiological regulation of these channels.
Collapse
Affiliation(s)
- C M Pafford
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|