1
|
Mahadev Bhat S, Yap JQ, Ramirez-Ramirez OA, Delmotte P, Sieck GC. Cell-Based Measurement of Mitochondrial Function in Human Airway Smooth Muscle Cells. Int J Mol Sci 2023; 24:11506. [PMID: 37511264 PMCID: PMC10380259 DOI: 10.3390/ijms241411506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular mitochondrial function can be assessed using high-resolution respirometry that measures the O2 consumption rate (OCR) across a number of cells. However, a direct measurement of cellular mitochondrial function provides valuable information and physiological insight. In the present study, we used a quantitative histochemical technique to measure the activity of succinate dehydrogenase (SDH), a key enzyme located in the inner mitochondrial membrane, which participates in both the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) as Complex II. In this study, we determine the maximum velocity of the SDH reaction (SDHmax) in individual human airway smooth muscle (hASM) cells. To measure SDHmax, hASM cells were exposed to a solution containing 80 mM succinate and 1.5 mM nitroblue tetrazolium (NBT, reaction indicator). As the reaction proceeded, the change in optical density (OD) due to the reduction of NBT to its diformazan (peak absorbance wavelength of 570 nm) was measured using a confocal microscope with the pathlength for light absorbance tightly controlled. SDHmax was determined during the linear period of the SDH reaction and expressed as mmol fumarate/liter of cell/min. We determine that this technique is rigorous and reproducible, and reliable for the measurement of mitochondrial function in individual cells.
Collapse
Affiliation(s)
| | | | | | | | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (S.M.B.); (J.Q.Y.); (O.A.R.-R.); (P.D.)
| |
Collapse
|
2
|
Brown AD, Fogarty MJ, Davis LA, Dasgupta D, Mantilla CB, Sieck GC. Mitochondrial adaptations to inactivity in diaphragm muscle fibers. J Appl Physiol (1985) 2022; 133:191-204. [PMID: 35678745 PMCID: PMC9291409 DOI: 10.1152/japplphysiol.00090.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type I and IIa diaphragm muscle (DIAm) fibers comprise slow and fast fatigue-resistant motor units that are recruited to accomplish breathing and thus have a high duty cycle. In contrast, type IIx/IIb fibers comprise more fatigable fast motor units that are infrequently recruited for airway protective and straining behaviors. We hypothesize that mitochondrial structure and function in type I and IIa DIAm fibers adapt in response to inactivity imposed by spinal cord hemisection at C2 (C2SH). At 14 days after C2SH, the effect of inactivity on mitochondrial structure and function was assessed in DIAm fibers. Mitochondria in DIAm fibers were labeled using MitoTracker Green (Thermo Fisher Scientific), imaged in three-dimensions (3-D) by fluorescence confocal microscopy, and images were analyzed for mitochondrial volume density (MVD) and complexity. DIAm homogenate from either side was assessed for PGC1α, Parkin, MFN2, and DRP1 using Western blot. In alternate serial sections of the same DIAm fibers, the maximum velocity of the succinate dehydrogenase reaction (SDHmax) was determined using a quantitative histochemical technique. In all groups and both sides of the DIAm, type I and IIa DIAm fibers exhibited higher MVD, with more filamentous mitochondria and had higher SDHmax normalized to both fiber volume and mitochondrial volume compared with type IIx/IIb Diam fibers. In the inactive right side of the DIAm, mitochondria became fragmented and MVD decreased in all fiber types compared with the intact side and sham controls, consistent with the observed reduction in PGC1α and increased Parkin and DRP1 expression. In the inactive side of the DIAm, the reduction in SDHmax was found only for type I and IIa fibers. These results show that there are intrinsic fiber-type-dependent differences in the structure and function of mitochondria in DIAm fibers. Following C2SH-induced inactivity, mitochondrial structure (MVD and fragmentation) and function (SDHmax) were altered, indicating that inactivity influences all DIAm fiber types, but inactivity disproportionately affected SDHmax in the more intrinsically active type I and IIa fibers.NEW & NOTEWORTHY Two weeks of diaphragm (DIAm) inactivity imposed by C2SH caused reduced mitochondrial volume density, mitochondrial fragmentation, and a concomitant reduction of SDHmax in type I and IIa DIAm fibers on the lesioned side. Type I and IIa DIAm fibers were far more sensitive to inactivation than type IIx/IIb fibers, which exhibited little pathology. Our results indicate that mitochondria in DIAm fibers are plastic in response to varying levels of activity.
Collapse
|
3
|
Mitochondrial morphology and function varies across diaphragm muscle fiber types. Respir Physiol Neurobiol 2022; 295:103780. [PMID: 34478909 PMCID: PMC8604766 DOI: 10.1016/j.resp.2021.103780] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 01/03/2023]
Abstract
In diaphragm muscle (DIAm), type I and IIa fibers are recruited to accomplish breathing, while type IIx/IIb fibers are recruited only during expulsive/straining behaviors. Thus, type I and IIa DIAm fibers are much more active (duty cycle of ∼40 %) than type IIx/IIb fibers (duty cycle of <1%), which we hypothesized underlies intrinsic differences in mitochondrial structure and function. MitoTracker Green labeled mitochondria were imaged in 3-D using confocal microscopy. Mitochondrial volume density (MVD, per muscle fiber volume) was higher, and mitochondria were more filamentous in type I and IIa DIAm compared to type IIx/IIb fibers. The maximum velocity of the succinate dehydrogenase reaction (SDHmax), measured using a quantitative histochemical technique was found to be higher in type I and IIa DIAm fibers compared to type IIx/IIb fibers with and without normalizing for MVD. These results are consistent with fiber type differences in the intrinsic structural and functional properties of DIAm fibers and closely match differences in energetic demands.
Collapse
|
4
|
Brown AD, Davis LA, Fogarty MJ, Sieck GC. Mitochondrial Fragmentation and Dysfunction in Type IIx/IIb Diaphragm Muscle Fibers in 24-Month Old Fischer 344 Rats. Front Physiol 2021; 12:727585. [PMID: 34650442 PMCID: PMC8505889 DOI: 10.3389/fphys.2021.727585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
Sarcopenia is characterized by muscle fiber atrophy and weakness, which may be associated with mitochondrial fragmentation and dysfunction. Mitochondrial remodeling and biogenesis in muscle fibers occurs in response to exercise and increased muscle activity. However, the adaptability mitochondria may decrease with age. The diaphragm muscle (DIAm) sustains breathing, via recruitment of fatigue-resistant type I and IIa fibers. More fatigable, type IIx/IIb DIAm fibers are infrequently recruited during airway protective and expulsive behaviors. DIAm sarcopenia is restricted to the atrophy of type IIx/IIb fibers, which impairs higher force airway protective and expulsive behaviors. The aerobic capacity to generate ATP within muscle fibers depends on the volume and intrinsic respiratory capacity of mitochondria. In the present study, mitochondria in type-identified DIAm fibers were labeled using MitoTracker Green and imaged in 3-D using confocal microscopy. Mitochondrial volume density was higher in type I and IIa DIAm fibers compared with type IIx/IIb fibers. Mitochondrial volume density did not change with age in type I and IIa fibers but was reduced in type IIx/IIb fibers in 24-month rats. Furthermore, mitochondria were more fragmented in type IIx/IIb compared with type I and IIa fibers, and worsened in 24-month rats. The maximum respiratory capacity of mitochondria in DIAm fibers was determined using a quantitative histochemical technique to measure the maximum velocity of the succinate dehydrogenase reaction (SDH max ). SDH max per fiber volume was higher in type I and IIa DIAm fibers and did not change with age. In contrast, SDH max per fiber volume decreased with age in type IIx/IIb DIAm fibers. There were two distinct clusters for SDH max per fiber volume and mitochondrial volume density, one comprising type I and IIa fibers and the second comprising type IIx/IIb fibers. The separation of these clusters increased with aging. There was also a clear relation between SDH max per mitochondrial volume and the extent of mitochondrial fragmentation. The results show that DIAm sarcopenia is restricted to type IIx/IIb DIAm fibers and related to reduced mitochondrial volume, mitochondrial fragmentation and reduced SDH max per fiber volume.
Collapse
|
5
|
Fogarty MJ, Rana S, Mantilla CB, Sieck GC. Quantifying mitochondrial volume density in phrenic motor neurons. J Neurosci Methods 2021; 353:109093. [PMID: 33549636 PMCID: PMC7990712 DOI: 10.1016/j.jneumeth.2021.109093] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous assessments of mitochondrial volume density within motor neurons used electron microscopy (EM) to image mitochondria. However, adequate identification and sampling of motor neurons within a particular motor neuron pool is largely precluded using EM. Here, we present an alternative method for determining mitochondrial volume density in identified motor neurons within the phrenic motor neuron (PhMN) pool, with greatly increased sampling. NEW METHOD This novel method for assessing mitochondrial volume density in PhMNs uses a combination of intrapleural injection of Alexa 488-conjugated cholera toxin B (CTB) to retrogradely label PhMNs, followed by intrathecal application of MitoTracker Red to label mitochondria. This technique was validated by comparison to 3D EM determination of mitochondrial volume density as a "gold standard". RESULTS A mean mitochondrial volume density of ∼11 % was observed across PhMNs using the new MitoTracker Red method. This compared favourably with mitochondrial volume density (∼11 %) measurements using EM. COMPARISON WITH EXISTING METHOD The range, mean and variance of mitochondrial volume density estimates in PhMNs were not different between EM and fluorescent imaging techniques. CONCLUSIONS Fluorescent imaging may be used to estimate mitochondrial volume density in a large sample of motor neurons, with results similar to EM, although EM did distinguish finer mitochondrion morphology compared to MitoTracker fluorescence. Compared to EM methods, the assessment of a larger sample size and unambiguous identification of motor neurons belonging to a specific motor neuron pool represent major advantages over previous methods.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Sabhya Rana
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, United States
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, United States.
| |
Collapse
|
6
|
Delmotte P, Marin Mathieu N, Sieck GC. TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2021; 320:L137-L151. [PMID: 33146568 PMCID: PMC7847063 DOI: 10.1152/ajplung.00305.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022] Open
Abstract
In human airway smooth muscle (hASM), mitochondrial volume density is greater in asthmatic patients compared with normal controls. There is also an increase in mitochondrial fragmentation in hASM of moderate asthmatics associated with an increase in dynamin-related protein 1 (Drp1) and a decrease in mitofusin 2 (Mfn2) expression, mitochondrial fission, and fusion proteins, respectively. Proinflammatory cytokines such TNFα contribute to hASM hyperreactivity and cell proliferation associated with asthma. However, the involvement of proinflammatory cytokines in mitochondrial remodeling is not clearly established. In nonasthmatic hASM cells, mitochondria were labeled using MitoTracker Red and imaged in three dimensions using a confocal microscope. After 24-h TNFα exposure, mitochondria in hASM cells were more fragmented, evidenced by decreased form factor and aspect ratio and increased sphericity. Associated with increased mitochondrial fragmentation, Drp1 expression increased while Mfn2 expression was reduced. TNFα also increased mitochondrial biogenesis in hASM cells reflected by increased peroxisome proliferator-activated receptor-γ coactivator 1α expression and increased mitochondrial DNA copy number. Associated with mitochondrial biogenesis, TNFα exposure also increased mitochondrial volume density and porin expression, resulting in an increase in maximum O2 consumption rate. However, when normalized for mitochondrial volume density, O2 consumption rate per mitochondrion was reduced by TNFα exposure. Associated with mitochondrial fragmentation and biogenesis, TNFα also increased hASM cell proliferation, an effect mimicked by siRNA knockdown of Mfn2 expression and mitigated by Mfn2 overexpression. The results of this study support our hypothesis that in hASM cells exposed to TNFα mitochondria are more fragmented, with an increase in mitochondrial biogenesis and mitochondrial volume density resulting in reduced O2 consumption rate per mitochondrion.
Collapse
Affiliation(s)
- Philippe Delmotte
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Natalia Marin Mathieu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Katiyar A, Antani JD, McKee BP, Gupta R, Lele PP, Lele TP. A method for direct imaging of x-z cross-sections of fluorescent samples. J Microsc 2020; 281:224-230. [PMID: 33020917 DOI: 10.1111/jmi.12965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023]
Abstract
The x-z cross-sectional profiles of fluorescent objects can be distorted in confocal microscopy, in large part due to mismatch between the refractive index of the immersion medium of typical high numerical aperture objectives and the refractive index of the medium in which the sample is present. Here, we introduce a method to mount fluorescent samples parallel to the optical axis. This mounting allows direct imaging of what would normally be an x-z cross-section of the object, in the x-y plane of the microscope. With this approach, the x-y cross-sections of fluorescent beads were seen to have significantly lower shape-distortions as compared to x-z cross-sections reconstructed from confocal z-stacks. We further tested the method for imaging of nuclear and cellular heights in cultured cells, and found that they are significantly flatter than previously reported. This approach allows improved imaging of the x-z cross-section of fluorescent samples. LAY DESCRIPTION: Optical distortions are common in confocal microscopy. In particular, the mismatch between the refractive index of the immersion medium of the microscope objective and the refractive index of the sample medium distorts the shapes of fluorescent objects in the x-z plane of the microscope. Here, we introduced a method to eliminate the shape-distortion in the x-z cross-sections. This was achieved by mounting fluorescent samples on vertical glass slides such that the cross-sections orthogonal to the glass surface could be imaged in the x-y plane of the microscope. Our method successfully improved the imaging of nuclear and cellular heights in cultured cells and revealed that the heights were significantly flatter than previously reported with conventional approaches.
Collapse
Affiliation(s)
- A Katiyar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, U.S.A
| | - J D Antani
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas, 77843, U.S.A
| | - B P McKee
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, 32611, U.S.A
| | - R Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas, 77843, U.S.A
| | - P P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas, 77843, U.S.A
| | - T P Lele
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, U.S.A
| |
Collapse
|
8
|
Rana S, Zhan WZ, Mantilla CB, Sieck GC. Disproportionate loss of excitatory inputs to smaller phrenic motor neurons following cervical spinal hemisection. J Physiol 2020; 598:4693-4711. [PMID: 32735344 DOI: 10.1113/jp280130] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Motor units, comprising a motor neuron and the muscle fibre it innervates, are activated in an orderly fashion to provide varying amounts of force. A unilateral C2 spinal hemisection (C2SH) disrupts predominant excitatory input from medulla, causing cessation of inspiratory-related diaphragm muscle activity, whereas higher force, non-ventilatory diaphragm activity persists. In this study, we show a disproportionately larger loss of excitatory glutamatergic innervation to small phrenic motor neurons (PhMNs) following C2SH, as compared with large PhMNs ipsilateral to injury. Our data suggest that there is a dichotomy in the distribution of inspiratory-related descending excitatory glutamatergic input to small vs. large PhMNs that reflects their differential recruitment. ABSTRACT Excitatory glutamatergic input mediating inspiratory drive to phrenic motor neurons (PhMNs) emanates primarily from the ipsilateral ventrolateral medulla. Unilateral C2 hemisection (C2SH) disrupts this excitatory input, resulting in cessation of inspiratory-related diaphragm muscle (DIAm) activity. In contrast, after C2SH, higher force, non-ventilatory DIAm activity persists. Inspiratory behaviours require recruitment of only smaller PhMNs, whereas with more forceful expulsive/straining behaviours, larger PhMNs are recruited. Accordingly, we hypothesize that C2SH primarily disrupts glutamatergic synaptic inputs to smaller PhMNs, whereas glutamatergic synaptic inputs to larger PhMNs are preserved. We examined changes in glutamatergic presynaptic input onto retrogradely labelled PhMNs using immunohistochemistry for VGLUT1 and VGLUT2. We found that 7 days after C2SH there was an ∼60% reduction in glutamatergic inputs to smaller PhMNs compared with an ∼35% reduction at larger PhMNs. These results are consistent with a more pronounced impact of C2SH on inspiratory behaviours of the DIAm, and the preservation of higher force behaviours after C2SH. These results indicate that the source of glutamatergic synaptic input to PhMNs varies depending on motor neuron size and reflects different functional control - perhaps separate central pattern generator and premotor circuits. For smaller PhMNs, the central pattern generator for inspiration is located in the pre-Bötzinger complex and premotor neurons in the ventrolateral medulla, sending predominantly ipsilateral projections via the dorsolateral funiculus. C2SH disrupts this glutamatergic input. For larger PhMNs, a large proportion of excitatory inputs appear to exist below the C2 level or from contralateral regions of the brainstem and spinal cord.
Collapse
Affiliation(s)
- Sabhya Rana
- Departments of Physiology & Biomedical Engineering and
| | - Wen-Zhi Zhan
- Departments of Physiology & Biomedical Engineering and
| | - Carlos B Mantilla
- Departments of Physiology & Biomedical Engineering and.,Anaesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Gary C Sieck
- Departments of Physiology & Biomedical Engineering and.,Anaesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
9
|
Rana S, Mantilla CB, Sieck GC. Glutamatergic input varies with phrenic motor neuron size. J Neurophysiol 2019; 122:1518-1529. [PMID: 31389739 DOI: 10.1152/jn.00430.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Like all skeletal muscles, the diaphragm muscle accomplishes a range of motor behaviors by recruiting different motor unit types in an orderly fashion. Recruitment of phrenic motor neurons (PhMNs) is generally assumed to be based primarily on the intrinsic properties of PhMNs with an equal distribution of descending excitatory inputs to all PhMNs. However, differences in presynaptic excitatory input across PhMNs of varying sizes could also contribute to the orderly recruitment pattern. In the spinal cord of Sprague-Dawley rats, we retrogradely labeled PhMNs using cholera toxin B (CTB) and validated a robust confocal imaging-based technique that utilizes semiautomated processing to identify presynaptic glutamatergic (Glu) terminals within a defined distance around the somal membrane of PhMNs of varying size. Our results revealed an ~10% higher density of Glu terminals at PhMNs in the lower tertile of somal surface area. These smaller PhMNs are likely recruited first to accomplish lower force ventilatory behaviors of the diaphragm as compared with larger PhMNs in the upper tertile that are recruited to accomplish higher force expulsive behaviors. These results suggest that differences in excitatory synaptic input to PhMNs may also contribute to the orderly recruitment of diaphragm motor units.NEW & NOTEWORTHY The distribution of excitatory glutamatergic synaptic input to phrenic motor neurons differs across motor neurons of varying size. These findings support the size principle of motor unit recruitment that underlies graded force generation in a muscle, which is based on intrinsic electrophysiological properties of motor neurons resulting from differences in somal surface area. A higher density of glutamatergic inputs at smaller, more excitable motor neurons substantiates the earlier and more frequent recruitment of these units.
Collapse
Affiliation(s)
- Sabhya Rana
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
10
|
Fogarty MJ, Gonzalez Porras MA, Mantilla CB, Sieck GC. Diaphragm neuromuscular transmission failure in aged rats. J Neurophysiol 2019; 122:93-104. [PMID: 31042426 PMCID: PMC6689786 DOI: 10.1152/jn.00061.2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
In aging Fischer 344 rats, phrenic motor neuron loss, neuromuscular junction abnormalities, and diaphragm muscle (DIAm) sarcopenia are present by 24 mo of age, with larger fast-twitch fatigue-intermediate (type FInt) and fast-twitch fatigable (type FF) motor units particularly vulnerable. We hypothesize that in old rats, DIAm neuromuscular transmission deficits are specific to type FInt and/or FF units. In phrenic nerve/DIAm preparations from rats at 6 and 24 mo of age, the phrenic nerve was supramaximally stimulated at 10, 40, or 75 Hz. Every 15 s, the DIAm was directly stimulated, and the difference in forces evoked by nerve and muscle stimulation was used to estimate neuromuscular transmission failure. Neuromuscular transmission failure in the DIAm was observed at each stimulation frequency. In the initial stimulus trains, the forces evoked by phrenic nerve stimulation at 40 and 75 Hz were significantly less than those evoked by direct muscle stimulation, and this difference was markedly greater in 24-mo-old rats. During repetitive nerve stimulation, neuromuscular transmission failure at 40 and 75 Hz worsened to a greater extent in 24-mo-old rats compared with younger animals. Because type IIx and/or IIb DIAm fibers (type FInt and/or FF motor units) display greater susceptibility to neuromuscular transmission failure at higher frequencies of stimulation, these data suggest that the age-related loss of larger phrenic motor neurons impacts nerve conduction to muscle at higher frequencies and may contribute to DIAm sarcopenia in old rats. NEW & NOTEWORTHY Diaphragm muscle (DIAm) sarcopenia, phrenic motor neuron loss, and perturbations of neuromuscular junctions (NMJs) are well described in aged rodents and selectively affect FInt and FF motor units. Less attention has been paid to the motor unit-specific aspects of nerve-muscle conduction. In old rats, increased neuromuscular transmission failure occurred at stimulation frequencies where FInt and FF motor units exhibit conduction failures, along with decreased apposition of pre- and postsynaptic domains of DIAm NMJs of these units.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | | | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
11
|
Tejedo MIA, Cervantes JCM, Roldán ASJ, Rodriguez M, Vega AG, Piazza V. 3,3'-thiodipropanol as a versatile refractive index-matching mounting medium for fluorescence microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:1136-1150. [PMID: 30891335 PMCID: PMC6420295 DOI: 10.1364/boe.10.001136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 05/25/2023]
Abstract
High resolution fluorescence microscopy requires optimization of the protocols for biological sample preparation. The optical and chemical characteristics of mounting media are among the things that could be modified to achieve optimal image formation. In our search for chemical substances that could perform as mounting media, 3,3'-thiodipropanol (TDP) emerged as a sulfide with potentially interesting characteristics. In this work, several tests of its performance as a mounting medium for fluorescence microscopy of biological samples were performed, including the labeling of filamentous actin with fluorescent phalloidins. The refractive index dispersion curve of pH-adjusted TDP was experimentally obtained in the visible range and compared to the dispersion curves of commercial and lab-made mounting media. The effects on the fluorescence of commonly used dyes were tested by using TDP as a solvent and measuring the relative fluorescence quantum yield of the dyes. By being able to mix TDP in any concentration with water and 2,2'-thiodiethanol (TDE), it was possible not only to fine-tune the refractive index of the resulting solution, but also to preserve the compatibility of TDP with the most popular and efficient fluorescent actin staining used in biological microscopy.
Collapse
Affiliation(s)
| | | | - Adrian Saul Jimenez Roldán
- Depto. de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, León, Mexico
| | - Mario Rodriguez
- Centro de Investigaciones en Óptica, Loma Del Bosque 115, León C.P. 37150, Mexico
| | - Arturo González Vega
- Depto. de Ingenierías Química, Electrónica y Biomédica, DCI, Universidad de Guanajuato, Loma del Bosque 103, León, Mexico
| | - Valeria Piazza
- Centro de Investigaciones en Óptica, Loma Del Bosque 115, León C.P. 37150, Mexico
| |
Collapse
|
12
|
Gonzalez Porras MA, Fogarty MJ, Gransee HM, Sieck GC, Mantilla CB. Frequency-dependent lipid raft uptake at rat diaphragm muscle axon terminals. Muscle Nerve 2019; 59:611-618. [PMID: 30677149 DOI: 10.1002/mus.26421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/14/2019] [Accepted: 01/20/2019] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In motor neurons, cholera toxin B (CTB) binds to the cell-surface ganglioside GM1 and is internalized and transported via structurally unique components of plasma membranes (lipid rafts). METHODS Lipid raft uptake by axon terminals adjoining type-identified rat diaphragm muscle fibers was investigated using CTB and confocal imaging. RESULTS Lipid raft uptake increased significantly at higher frequency stimulation (80 Hz), compared with lower frequency (20 Hz) and unstimulated (0 Hz) conditions. The fraction of axon terminal occupied by CTB was ∼45% at 0- or 20-Hz stimulation, and increased to ∼65% at 80 Hz. Total CTB fluorescence intensity also increased (∼20%) after 80-Hz stimulation compared with 0 Hz. DISCUSSION Evidence of increased lipid raft uptake at high stimulation frequencies supports an important role for lipid raft signaling at rat diaphragm muscle axon terminals, primarily for motor units physiologically activated at the higher frequencies. Muscle Nerve 59:611-611, 2019.
Collapse
Affiliation(s)
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Heather M Gransee
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
Fogarty MJ, Omar TS, Zhan WZ, Mantilla CB, Sieck GC. Phrenic motor neuron loss in aged rats. J Neurophysiol 2018; 119:1852-1862. [PMID: 29412773 DOI: 10.1152/jn.00868.2017] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is the age-related reduction of muscle mass and specific force. In previous studies, we found that sarcopenia of the diaphragm muscle (DIAm) is evident by 24 mo of age in both rats and mice and is associated with selective atrophy of type IIx and IIb muscle fibers and a decrease in maximum specific force. These fiber type-specific effects of sarcopenia resemble those induced by DIAm denervation, leading us to hypothesize that sarcopenia is due to an age-related loss of phrenic motor neurons (PhMNs). To address this hypothesis, we determined the number of PhMNs in young (6 mo old) and old (24 mo old) Fischer 344 rats. Moreover, we determined age-related changes in the size of PhMNs, since larger PhMNs innervate type IIx and IIb DIAm fibers. The PhMN pool was retrogradely labeled and imaged with confocal microscopy to assess the number of PhMNs and the morphometry of PhMN soma and proximal dendrites. In older animals, there were 22% fewer PhMNs, a 19% decrease in somal surface area, and a 21% decrease in dendritic surface area compared with young Fischer 344 rats. The age-associated loss of PhMNs involved predominantly larger PhMNs. These results are consistent with an age-related denervation of larger, more fatigable DIAm motor units, which are required primarily for high-force airway clearance behaviors. NEW & NOTEWORTHY Diaphragm muscle sarcopenia in rodent models is well described in the literature; however, the relationship between sarcopenia and frank phrenic motor neuron (MN) loss is unexplored in these models. We quantify a 22% loss of phrenic MNs in old (24 mo) compared with young (6 mo) Fischer 344 rats. We also report reductions in phrenic MN somal and proximal dendritic morphology that relate to decreased MN heterogeneity in old compared with young Fischer 344 rats.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Tanya S Omar
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,Department of Anesthesiology, Mayo Clinic College of Medicine , Rochester, Minnesota
| |
Collapse
|
14
|
Smith ER, Meng Y, Moore R, Tse JD, Xu AG, Xu XX. Nuclear envelope structural proteins facilitate nuclear shape changes accompanying embryonic differentiation and fidelity of gene expression. BMC Cell Biol 2017; 18:8. [PMID: 28088180 PMCID: PMC5237523 DOI: 10.1186/s12860-017-0125-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/07/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nuclear size and shape are specific to a cell type, function, and location, and can serve as indicators of disease and development. We previously found that lamin A/C and associated nuclear envelope structural proteins were upregulated when murine embryonic stem (ES) cells differentiated to primitive endoderm cells. Here we further investigated the morphological changes of nuclei that accompany this differentiation. RESULTS The nuclei of undifferentiated wild type cells were found shaped as flattened, irregular ovals, whereas nuclei of Gata4-positive endoderm cells were more spherical, less flattened, and with a slightly reduced volume. The morphological change was confirmed in the trophectoderm and primitive endoderm lineages of E4.5 blastocysts, compared to larger and more irregularly shaped of the nuclei of the inner cell mass. We established ES cells genetically null for the nuclear lamina proteins lamin A/C or the inner nuclear envelope protein emerin, or compound mutant for both lamin A/C and emerin. ES cells deficient in lamin A/C differentiated to endoderm but less efficiently, and the nuclei remained flattened and failed to condense. The size and shape of emerin-deficient nuclei also remained uncondensed after treatment with RA. The emerin/lamin A/C double knockout ES cells failed to differentiate to endoderm cells, though the nuclei condensed but retained a generally flattened ellipsoid shape. Additionally, ES cells deficient for lamin A/C and/or emerin had compromised ability to undergo endoderm differentiation, where the differentiating cells often exhibited coexpression of pluripotent and differentiation markers, such as Oct3/4 and Gata4, respectively, indicating an infidelity of gene regulation. CONCLUSIONS The results suggest that changes in nuclear size and shape, which are mediated by nuclear envelope structural proteins lamin A/C and/or emerin, also impact gene regulation and lineage differentiation in early embryos. Nevertheless, mice lacking both lamin A/C and emerin were born at the expected frequency, indicating their embryonic development is completed despite the observed protein deficiency.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA.
| | - Yue Meng
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Robert Moore
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Jeffrey D Tse
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Arn G Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Papanicolaou Building, Room 415 [M877] 1550 NW 10th Avenue, Miami, FL, 33136, USA
| |
Collapse
|
15
|
Alvarez-Argote S, Gransee HM, Mora JC, Stowe JM, Jorgenson AJ, Sieck GC, Mantilla CB. The Impact of Midcervical Contusion Injury on Diaphragm Muscle Function. J Neurotrauma 2015; 33:500-9. [PMID: 26413840 DOI: 10.1089/neu.2015.4054] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Midcervical contusion injuries disrupt descending ipsilateral excitatory bulbospinal projections to phrenic motoneurons, compromising ventilation. We hypothesized that a unilateral contusion injury at C3 versus C5 would differentially impact phrenic activity reflecting more prominent disruption of ipsilateral descending excitatory drive to more caudal segments of the phrenic motor pool with more cranial injuries. Phrenic motoneuron counts and evidence of diaphragm muscle denervation at individual neuromuscular junctions (NMJ) were evaluated at 14 days post-injury after unilateral contusion injury (100 kDynes). Whole body plethysmography and chronic diaphragm EMG were measured before the injury and at 3, 7, and 14 days post-injury. Contusion injuries at either level resulted in a similarly sized cavity. C3 contusion resulted in loss of 39 ± 13% of ipsilateral phrenic motoneurons compared with 13 ± 21% after C5 contusion (p = 0.003). Cervical contusion injuries resulted in diaphragm muscle denervation (C3 contusion: 17 ± 4%; C5 contusion: 7 ± 4%; p = 0.047). The pattern of denervation revealed segmental innervation of the diaphragm muscle, with greater denervation ventrally after C3 contusion and dorsally after C5 contusion. Overall, diaphragm root mean square electromyography activity did not change ipsilaterally after C3 or C5 contusion, but increased contralaterally (∼ 11%) after C3 contusion only on the first day post-injury (p = 0.026). Similarly, there were no significant changes in breathing parameters during eupnea or exposure to hypoxia (10% O2) - hypercapnia (5% CO2) at any time post-injury. Unilateral midcervical contusions minimally impair ventilatory behaviors despite phrenic motoneuron loss and diaphragm muscle denervation.
Collapse
Affiliation(s)
| | - Heather M Gransee
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Juan C Mora
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Jessica M Stowe
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Amy J Jorgenson
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota
| | - Gary C Sieck
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,2 Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota
| | - Carlos B Mantilla
- 1 Department of Physiology and Biomedical Engineering, Mayo Clinic , Rochester, Minnesota.,2 Department of Anesthesiology, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
16
|
Greising SM, Stowe JM, Sieck GC, Mantilla CB. Role of TrkB kinase activity in aging diaphragm neuromuscular junctions. Exp Gerontol 2015; 72:184-91. [PMID: 26517952 DOI: 10.1016/j.exger.2015.10.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022]
Abstract
Brain derived neurotrophic factor (BDNF) acting through the tropomyosin-related kinase receptor B (TrkB) enhances neuromuscular transmission in the diaphragm muscle of adult mice, reflecting presynaptic effects. With aging, BDNF enhancement of neuromuscular transmission is lost. We hypothesize that disrupting BDNF/TrkB signaling in early old age will reveal a period of susceptibility evident by morphological changes at neuromuscular junctions (NMJ). Adult, male TrkB(F616A) mice (n=25) at 6 and 18 months of age, were used to examine the structural properties of diaphragm muscle NMJs (n=1097). Confocal microscopy was used to compare pre- and post-synaptic morphology and denervation following a 7 day treatment with the phosphoprotein phosphatase-1 derivative 1NMPP1, which inhibits TrkB kinase activity in TrkB(F616A) mice vs. vehicle treatment. In early old age (18 months), presynaptic terminal volume decreased compared to 6 month old diaphragm NMJs (~20%). Inhibition of TrkB kinase activity significantly decreased the presynaptic terminal volume (~20%) and motor end-plate 2D planar area (~10%), independent of age group. Inhibition of TrkB kinase activity in early old age significantly reduced overlap of pre- and post-synaptic structures and increased the proportion of denervated NMJs (to ~20%). Collectively these results support a period of susceptibility in early old age when BDNF/TrkB signaling at diaphragm NMJs supports the maintenance of NMJs structure and muscle innervation.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jessica M Stowe
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Anesthesiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
17
|
Mantilla CB, Stowe JM, Sieck DC, Ermilov LG, Greising SM, Zhang C, Shokat KM, Sieck GC. TrkB kinase activity maintains synaptic function and structural integrity at adult neuromuscular junctions. J Appl Physiol (1985) 2014; 117:910-20. [PMID: 25170066 DOI: 10.1152/japplphysiol.01386.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the tropomyosin-related kinase receptor B (TrkB) by brain-derived neurotrophic factor acutely regulates synaptic transmission at adult neuromuscular junctions (NMJs). The role of TrkB kinase activity in the maintenance of NMJ function and structure at diaphragm muscle NMJs was explored using a chemical-genetic approach that permits reversible inactivation of TrkB kinase activity in TrkB(F616A) mice by 1NMPP1. Inhibiting TrkB kinase activity for 7 days resulted in significant, yet reversible, impairments in neuromuscular transmission at diaphragm NMJs. Neuromuscular transmission failure following 2 min of repetitive phrenic nerve stimulation increased from 42% in control to 59% in 1NMPP1-treated TrkB(F616A) mice (P = 0.010). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment improved neuromuscular transmission (P = 0.006). Electrophysiological measurements at individual diaphragm NMJs documented lack of differences in quantal content in control and 1NMPP1-treated mice (P = 0.845). Morphological changes at diaphragm NMJs were modest following inhibition and recovery of TrkB kinase activity. Three-dimensional reconstructions of diaphragm NMJs revealed no differences in volume at motor end plates (labeled by α-bungarotoxin; P = 0.982) or presynaptic terminals (labeled by synaptophysin; P = 0.515). Inhibition of TrkB kinase activity by 1NMPP1 resulted in more compact NMJs, with increased apposition of presynaptic terminals and motor end plates (P = 0.017) and reduced fragmentation of motor end plates (P = 0.005). Recovery of TrkB kinase activity following withdrawal of 1NMPP1 treatment resulted in postsynaptic remodeling likely reflecting increased gutter depth (P = 0.007), without significant presynaptic changes. These results support an essential role for TrkB kinase activity in maintaining synaptic function and structural integrity at NMJs in the adult mouse diaphragm muscle.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| | - Jessica M Stowe
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Dylan C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Leonid G Ermilov
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sarah M Greising
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Chao Zhang
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Kevan M Shokat
- Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota; Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota; and
| |
Collapse
|
18
|
Mantilla CB, Gransee HM, Zhan WZ, Sieck GC. Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. Exp Neurol 2013; 247:101-9. [PMID: 23583688 DOI: 10.1016/j.expneurol.2013.04.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/09/2023]
Abstract
A C2 cervical spinal cord hemisection (SH) interrupts descending inspiratory-related drive to phrenic motoneurons located between C3 and C5 in rats, paralyzing the ipsilateral hemidiaphragm muscle. There is gradual recovery of rhythmic diaphragm muscle activity ipsilateral to cervical spinal cord injury over time, consistent with neuroplasticity and strengthening of spared, contralateral descending premotor input to phrenic motoneurons. Brain-derived neurotrophic factor (BDNF) signaling through the tropomyosin related kinase receptor subtype B (TrkB) plays an important role in neuroplasticity following spinal cord injury. We hypothesized that 1) increasing BDNF/TrkB signaling at the level of the phrenic motoneuron pool by intrathecal BDNF delivery enhances functional recovery of rhythmic diaphragm activity after SH, and 2) inhibiting BDNF/TrkB signaling by quenching endogenous neurotrophins with the soluble fusion protein TrkB-Fc or by knocking down TrkB receptor expression in phrenic motoneurons using intrapleurally-delivered siRNA impairs functional recovery after SH. Diaphragm EMG electrodes were implanted bilaterally to verify complete hemisection at the time of SH and 3days post-SH. After SH surgery in adult rats, an intrathecal catheter was placed at C4 to chronically infuse BDNF or TrkB-Fc using an implanted mini-osmotic pump. At 14days post-SH, all intrathecal BDNF treated rats (n=9) displayed recovery of ipsilateral hemidiaphragm EMG activity, compared to 3 out of 8 untreated SH rats (p<0.01). During eupnea, BDNF treated rats exhibited 76±17% of pre-SH root mean squared EMG vs. only 5±3% in untreated SH rats (p<0.01). In contrast, quenching endogenous BDNF with intrathecal TrkB-Fc treatment completely prevented functional recovery up to 14days post-SH (n=7). Immunoreactivity of the transcription factor cAMP response element-binding protein (CREB), a downstream effector of TrkB signaling, increased in phrenic motoneurons following BDNF treatment (n=6) compared to artificial cerebrospinal fluid treatment (n=6; p<0.001). Intrapleural injections of non-sense or TrkB siRNA were administered after SH to specifically target phrenic motoneurons. At 14days post-SH, none out of 9 TrkB siRNA treated rats displayed functional recovery compared to 5 out of 9 non-sense siRNA treated rats. These results indicate that BDNF/TrkB signaling in phrenic motoneuron pool plays a critical role in functional recovery after cervical spinal cord injury.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
19
|
Sieck DC, Zhan WZ, Fang YH, Ermilov LG, Sieck GC, Mantilla CB. Structure-activity relationships in rodent diaphragm muscle fibers vs. neuromuscular junctions. Respir Physiol Neurobiol 2011; 180:88-96. [PMID: 22063925 DOI: 10.1016/j.resp.2011.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/01/2022]
Abstract
The diaphragm muscle (DIAm) is a highly active muscle of mixed fiber type composition. We hypothesized that consistent with greater activation history and proportion of fatigue-resistant fibers, neuromuscular transmission failure is lower in the mouse compared to the rat DIAm, and that neuromuscular junction (NMJ) morphology will match their different functional demands. Minute ventilation and duty cycle were higher in the mouse than in the rat. The proportion of fatigue-resistant fibers was similar in the rat and mouse; however the contribution of fatigue-resistant fibers to total DIAm mass was higher in the mouse. Neuromuscular transmission failure was less in mice than in rats. Motor end-plate area differed across fibers in rat but not in mouse DIAm, where NMJs displayed greater complexity overall. Thus, differences across species in activation history and susceptibility to neuromuscular transmission failure are reflected in the relative contribution of fatigue resistant muscle fibers to total DIAm mass, but not in type-dependent morphological differences at the NMJ.
Collapse
Affiliation(s)
- Dylan C Sieck
- Department of Anesthesiology, College of Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The neuregulin (NRG) family of trophic factors is present in the central and peripheral nervous systems and participates in the survival, proliferation, and differentiation of many different cell types, including motoneurons. NRG1 was first characterized by its role in the formation of the neuromuscular junction, and recently it was shown to play a crucial role in modulating glutamatergic and cholinergic transmission in the central nervous system of adult rats. However, little is known about NRG1's role in adult motor systems. Motoneurons receive dense glutamatergic and cholinergic input. We hypothesized that NRG1 is present at synapses on phrenic motoneurons. Confocal microscopy and 3D reconstruction techniques were used to determine the distribution of NRG1 and its colocalization with these different neurotransmitter systems. We found that NRG1 puncta are present around retrogradely labeled motoneurons and are distributed predominantly at motoneuron somata and primary dendrites. NRG1 is present exclusively at synaptic sites (identified using the presynaptic marker synaptophysin), making up ∼30% of all synapses at phrenic motoneurons. Overall, NRG1 immunoreactivity is found predominantly at cholinergic synapses (75% ± 14% colocalize with the vesicular acetylcholine transporter; VAChT). Nearly all (99% ± 1%) VAChT-immunoreactive synapses expressed NRG1. NRG1 also is present at a subset of glutamatergic synapses expressing the vesicular glutamate transporter (VGLUT) type 2 (∼6%) but not those expressing VGLUT type 1. Overall, 26% ± 6% of NRG1 synapses are VGLUT2 immunoreactive. These findings provide the first evidence suggesting that NRG1 may modulate synaptic activity in adult motor systems.
Collapse
Affiliation(s)
- Amine N Issa
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
21
|
Mantilla CB, Zhan WZ, Sieck GC. Retrograde labeling of phrenic motoneurons by intrapleural injection. J Neurosci Methods 2009; 182:244-9. [PMID: 19559048 PMCID: PMC2727569 DOI: 10.1016/j.jneumeth.2009.06.016] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 10/20/2022]
Abstract
Studies of motoneuron plasticity during development or in response to injury or disease rely on the ability to correctly identify motoneurons innervating specific muscle groups. Commonly, injections of retrograde tracer molecules into a target muscle or into a transected nerve are used to label specific motoneuron pools. However, intramuscular injection does not consistently label all motoneurons in the target pool; and either injection site may involve additional surgical procedures and muscle or nerve perturbations. For instance, retrograde labeling of phrenic motoneurons by injection into the diaphragm muscle is commonly employed in studies of plasticity in respiratory motor control. Diaphragm intramuscular injection involves a laparotomy, and this additional surgery may limit the ability to conduct labeling studies particularly in small animals. In the present study, we provide validation of a novel method for phrenic motoneuron labeling using intrapleural injection of Alexa 488-conjugated cholera toxin subunit B. Only phrenic motoneurons were labeled in the cervical spinal cord as verified by co-staining with rhodamine-conjugated dextran injected into the diaphragm muscle or applied via phrenic nerve dip. Thoracic intercostal motoneurons and some dorsal root ganglia neurons were also labeled by intrapleural injection, but there was no evidence of trans-synaptic labeling. Phrenic motoneuron labeling was not present if the phrenic nerve was transected prior to intrapleural injection. This novel method is ideally suited for morphological studies and analyses of mRNA expression in isolated phrenic motoneurons using techniques such as laser capture microdissection.
Collapse
Affiliation(s)
- Carlos B Mantilla
- Department of Physiology & Biomedical Engineering, Mayo Clinic, USA.
| | | | | |
Collapse
|
22
|
Yoshimori T, Takamatsu H. 3-D measurement of osmotic dehydration of isolated and adhered PC-3 cells. Cryobiology 2008; 58:52-61. [PMID: 18977212 DOI: 10.1016/j.cryobiol.2008.10.128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 10/06/2008] [Accepted: 10/07/2008] [Indexed: 11/17/2022]
Abstract
Cell dehydration during freezing results from an elevated concentration of electrolytes in the extracellular medium that is deeply involved in cellular injury. We undertook real-time threedimensional (3-D) observation of osmotic dehydration of cells, motivated by a comparison of cellular responses between isolated cells in suspension and cultured cells adhering to a surface since several studies have suggested a difference in freeze tolerance between cell suspensions and monolayers. A laser confocal scanner was used with a perfusion microscope to capture sectional images of chloromethylbenzamido (DiI)-stained PC-3 cells that were exposed to an increase in NaCl concentration from 0.15 to 0.5M at 23 degrees C. Change in cell volume was determined from reconstructed 3-D images taken every 2.5s. When cells were exposed to an elevated NaCl concentration, isolated cells contracted and markedly distorted from their original spherical shape. In contrast, adhered cells showed only a reduction in height and kept their basal area constant. Apparent membrane hydraulic conductivity did not vary considerably between isolated and adhered cells, suggesting a negligible effect of the cytoskeletal structure on the rate of water transport. The surface area that contributed to water transport in adhered PC-3 cells was nearly equal to or slightly smaller than that present in isolated cells. Therefore, the similarity in properties and dimensions between isolated and adhered cells indicate that there will be similar extents of dehydration, resulting in a similar degree of supercooling during freezing.
Collapse
Affiliation(s)
- Takashi Yoshimori
- Department of Mechanical Engineering Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Takamatsu
- Department of Mechanical Engineering Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
23
|
Jones CW, Smolinski D, Keogh A, Kirk TB, Zheng MH. Confocal laser scanning microscopy in orthopaedic research. ACTA ACUST UNITED AC 2005; 40:1-71. [PMID: 15966255 DOI: 10.1016/j.proghi.2005.02.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Confocal laser scanning microscopy (CLSM) is a type of high-resolution fluorescence microscopy that overcomes the limitations of conventional widefield microscopy and facilitates the generation of high-resolution 3D images from relatively thick sections of tissue. As a comparatively non-destructive imaging technique, CLSM facilitates the in situ characterization of tissue microstructure. Images generated by CLSM have been utilized for the study of articular cartilage, bone, muscle, tendon, ligament and menisci by the foremost research groups in the field of orthopaedics including those teams headed by Bush, Errington, Guilak, Hall, Hunziker, Knight, Mow, Poole, Ratcliffe and White. Recent evolutions in techniques and technologies have facilitated a relatively widespread adoption of this imaging modality, with increased "user friendliness" and flexibility. Applications of CLSM also exist in the rapidly advancing field of orthopaedic implants and in the investigation of joint lubrication.
Collapse
MESH Headings
- Animals
- Biomedical Engineering
- Bone and Bones/cytology
- Cartilage, Articular/chemistry
- Cartilage, Articular/cytology
- Cartilage, Articular/metabolism
- Cells, Cultured
- Chondrocytes/chemistry
- Chondrocytes/cytology
- Collagen/chemistry
- Fluorescent Dyes
- Forecasting
- Humans
- Imaging, Three-Dimensional
- Immunohistochemistry
- Joints/cytology
- Ligaments/cytology
- Microscopy, Confocal/instrumentation
- Microscopy, Confocal/methods
- Microscopy, Fluorescence, Multiphoton/instrumentation
- Microscopy, Fluorescence, Multiphoton/methods
- Orthopedics
- Osteoclasts/cytology
- Research
- Tendons/cytology
Collapse
Affiliation(s)
- C W Jones
- School of Mechanical Engineering, The University of Western Australia, MDBP M050, 35 Stirling Highway, Crawley WA 6009, Australia.
| | | | | | | | | |
Collapse
|
24
|
Brown AW, Bjelke B, Fuxe K. Motor response to amphetamine treatment, task-specific training, and limited motor experience in a postacute animal stroke model. Exp Neurol 2004; 190:102-8. [PMID: 15473984 DOI: 10.1016/j.expneurol.2004.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/22/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
Despite advances in acute treatment of ischemic cerebrovascular events, the most common clinical outcome is disabling neurological impairment. Despite experimental evidence that psychostimulant treatment can positively affect recovery rate after focal brain lesions, beyond rehabilitation therapies there are no currently accepted medical treatments indicated for diminishing neurological impairment after clinically established stroke. To test the effect of amphetamine, task-specific training, limiting motor experience, and their interaction on motor recovery in a postacute animal model of stroke, animals were nonaversively trained in beam walking before a unilateral photochemical sensorimotor cortex lesion and tested for 10 days after lesion. Animals were randomized to groups receiving: a single session of motor training 24 h after lesion; a single injection of amphetamine 2 mg/kg 24 h after lesion; beam-walking experience limited to testing on days 1 and 10 after lesion; and groups that received amphetamine treatment combined with training or combined with limited experience. Motor recovery was maximally enhanced by training, delayed by amphetamine treatment, and most negatively affected by limiting beam-walking experience during the recovery period. These findings support physical training after stroke, indicating that limiting physical activity negatively affects motor recovery and raises questions about the role of stimulant treatment to enhance motor recovery in the postacute phase after stroke.
Collapse
Affiliation(s)
- Allen W Brown
- Department of Physical Medicine and Rehabilitation, Mayo Clinic and Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
25
|
Geiger PC, Cody MJ, Macken RL, Sieck GC. Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol (1985) 2000; 89:695-703. [PMID: 10926656 DOI: 10.1152/jappl.2000.89.2.695] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, myosin heavy chain (MHC) content per half sarcomere, an estimate of the number of cross bridges available for force generation, was determined in rat diaphragm muscle (Dia(m)) fibers expressing different MHC isoforms. We hypothesize that fiber-type differences in maximum specific force [force per cross-sectional area (CSA)] reflect the number of cross bridges present per CSA. Studies were performed on single, Triton X-100-permeabilized rat Dia(m) fibers. Maximum specific force was determined by activation of single Dia(m) fibers in the presence of a high-calcium solution (pCa, -log Ca(2+) concentration of 4.0). SDS-PAGE and Western blot analyses were used to determine MHC isoform composition and MHC content per half sarcomere. Differences in maximum specific force across fast MHC isoforms were eliminated when controlled for half-sarcomere MHC content. However, the force produced by slow fibers remained below that of fast fibers when normalized for the number of cross bridges available. On the basis of these results, the lower force produced by slow fibers may be due to less force per cross bridge compared with fast fibers.
Collapse
Affiliation(s)
- P C Geiger
- Departments of Anesthesiology and of Physiology and Biophysics, Mayo Clinic and Foundation, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
26
|
Zhan WZ, Mantilla CB, Zhan P, Bitton A, Prakash YS, de Troyer A, Sieck GC. Regional differences in serotonergic input to canine parasternal intercostal motoneurons. J Appl Physiol (1985) 2000; 88:1581-9. [PMID: 10797116 DOI: 10.1152/jappl.2000.88.5.1581] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is a mediolateral gradient in activation of the parasternal intercostal (PI) muscle during inspiration. In the present study, we tested the hypotheses that serotonergic [5-hydroxytryptamine (5-HT)] input from descending central drive and/or intrinsic size-related properties of PI motoneurons leads to the differential activation of PI muscles. In dogs, PI motoneurons innervating the medial and lateral regions of the PI muscles at the T(3)-T(5) interspaces were retrogradely labeled by intramuscular injection of cholera toxin B subunit. After a 10-day survival period, PI motoneurons and 5-HT terminals were visualized by using immunohistochemistry and confocal imaging. There were no differences in motoneuron morphology among motoneurons innervating the medial and lateral regions of the PI muscle. However, the number of 5-HT terminals and the 5-HT terminal density (normalized for surface area) were greater in motoneurons innervating the medial region of the PI muscle compared with the lateral region. These results suggest that differences in distribution of 5-HT input may contribute to regional differences in PI muscle activation during inspiration and that differences in PI motoneuron recruitment do not relate to size.
Collapse
Affiliation(s)
- W Z Zhan
- Department of Anesthesiology, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|