1
|
Jia L, Wang W, Yan Y, Hu R, Sang J, Zhao W, Wang Y, Wei W, Cui W, Yang G, Lu F, Zheng J, Liu F. General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31182-31194. [PMID: 32584021 DOI: 10.1021/acsami.0c07745] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amyloid self-assembly is pathologically linked to many neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). While many inhibitors have been developed individually for specific amyloid proteins, there are a few effective platforms to screen on a large scale general amyloid inhibitors against different amyloid proteins. Herein, we developed a new class of amyloid inhibitor probes by site-specific conjugation of aggregation-induced emission (AIE) molecules with amyloid proteins (i.e., AIE@amyloid probes) to realize a high-throughput screening of small-molecule inhibitors. Optimization of site-specific AIE conjugation with two amyloid proteins, amyloid-β protein (Aβ) and α-synuclein (αSN), enabled us to retain their high amyloidogenic properties; i.e., AIE-amyloid probes alone exhibited strong fluorescence due to amyloid-like aggregation, but they showed no fluorescence in the presence of amyloid inhibitors to prevent amyloid aggregation. From integration of AIE@amyloid probes and computational virtual screening from a large drug database, it was found that tolcapone possessed a dual inhibition against the aggregation and cytotoxicity of both Aβ and αSN. More importantly, tolcapone significantly improved the spatial cognition and recognition of Aβ-treated mice. This work represents an innovative attempt to design an AIE-based anti-amyloid drug platform for identifying new small-molecule inhibitors against amyloidogenesis in both AD and PD or other amyloid diseases.
Collapse
Affiliation(s)
- Longgang Jia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Wenjuan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yushan Yan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Rui Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingcheng Sang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenping Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ying Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Wei
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Zhejiang 315211, China
| | - Guoqiang Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
2
|
Jia L, Wang W, Sang J, Wei W, Zhao W, Lu F, Liu F. Amyloidogenicity and Cytotoxicity of a Recombinant C-Terminal His 6-Tagged Aβ 1-42. ACS Chem Neurosci 2019; 10:1251-1262. [PMID: 30537813 DOI: 10.1021/acschemneuro.8b00333] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aggregation of amyloid β peptide (Aβ) is closely associated with the occurrence and development of Alzheimer's disease (AD). Reproducible and detailed studies on the aggregation kinetics and structure of various aggregates have been conducted using recombinant Aβ peptides. While the His6-tag is commonly used in the purification of recombinant proteins due to its great simplicity and affinity, there is little information on the aggregation of His6-tagged Aβ and its corresponding cytotoxicity. Moreover, it is also unclear whether there is an effect of the His6-tag on the amyloidogenicity and cytotoxicity of recombinant Aβ1-42. Herein, a method to express and purify a mutant C-terminally His6-tagged Aβ1-42 (named as Aβ1-42-His6) from Escherichia coli was described. Aβ1-42-His6 aggregated into β-sheet-rich fibrils as shown by thioflavin T fluorescence, atomic force microscopy and circular dichroism spectroscopy. Moreover, the fibrillar recombinant Aβ1-42-His6 showed strong toxicity toward PC12 cells in vitro. Molecular dynamics simulations revealed that the His6-tag contributed little to the secondary structure and intermolecular interactions, including hydrophobic interactions, salt bridges, and hydrogen bonding of the fibrillar pentamer of Aβ1-42. This highlights the biological importance of modification on the molecular structure of Aβ. Thus, the easily purified high-quality Aβ1-42-His6 offers great advantages for screening aggregation inhibitors or in vitro confirmation of rationally designed drugs for the treatment of AD.
Collapse
Affiliation(s)
- Longgang Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjuan Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenping Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Jiang Z, Dong X, Yan X, Liu Y, Zhang L, Sun Y. Nanogels of dual inhibitor-modified hyaluronic acid function as a potent inhibitor of amyloid β-protein aggregation and cytotoxicity. Sci Rep 2018; 8:3505. [PMID: 29472606 PMCID: PMC5823891 DOI: 10.1038/s41598-018-21933-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 02/14/2018] [Indexed: 12/23/2022] Open
Abstract
Inhibition of amyloid β-protein (Aβ) aggregation is considered as a promising strategy for the prevention and treatment of Alzheimer’s disease. Epigallocatechin-3-gallate (EGCG) and curcumin have been recognized as effective inhibitors of Aβ aggregation. Herein, we proposed dual-inhibitor modification of hyaluronic acid (HA) to explore the synergistic effect of the two inhibitors. EGCG-modified HA (EHA) formed dispersed hydrogel structures, while EGCG-curcumin bi-modified HA (CEHA) self-assembled into nanogels like curcumin-modified HA (CHA). Thioflavin T fluorescent assays revealed that the inhibitory effect of CEHA was 69% and 55% higher than EHA and CHA, respectively, and cytotoxicity assays showed that the viability of SH-SY5Y cells incubated with Aβ and CEHA was 28% higher than that with Aβ and the mixture of EHA and CHA. These results clearly indicate the synergism of the two inhibitors. It is considered that the difference in the hydrophobicities of the two inhibitors made the bi-modification of HA provide a favorable CEHA nanostructure that coordinated different inhibition effects of the two inhibitors. This research indicates that fabrication of dual-inhibitor nanosystem is promising for the development of potent agents against Aβ aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Zhiqiang Jiang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Xin Yan
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yang Liu
- Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, Guangdong, 515063, China
| | - Lin Zhang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Li M, Dong X, Liu Y, Sun Y. Brazilin Inhibits Prostatic Acidic Phosphatase Fibrillogenesis and Decreases its Cytotoxicity. Chem Asian J 2017; 12:1062-1068. [PMID: 28303660 DOI: 10.1002/asia.201700058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/24/2017] [Indexed: 11/06/2022]
Abstract
A 39-amino acid peptide fragment that is derived from prostatic acidic phosphatase (PAP), PAP248-286 , is secreted in large amounts in human semen and forms amyloid fibrils. These fibrils can capture HIV virions and increase the attachment of virions to target cells; as such, they are called a "semen-derived enhancer of virus infection" (SEVI). Therefore, the inhibition of the formation of PAP248-286 amyloid fibrils is of great significance. Herein, we demonstrate that brazilin effectively inhibits PAP248-286 aggregation. The inhibitory effect increases with increasing brazilin concentration. Thioflavin T fluorescence assays and TEM observations confirmed that a few fibrils formed when brazilin was present with PAP248-286 in an equimolar concentration. Circular dichroism spectroscopy indicated that brazilin inhibited the secondary structural transitions from α-helices and random coils into β-sheets. Cytotoxicity assays showed that brazilin significantly decreased the cytotoxicity of the fibrils at 0.01 mmol L-1 . Isothermal titration calorimetry revealed that hydrophobic interactions were the main driving force for the binding of brazilin to the PAP248-286 monomer (dissociation constant, 4.03 μmol L-1 ), and that the binding affinity of brazilin for the fibrils was at least three orders of magnitude lower than that for the monomer. These results indicate that brazilin holds great potential as a small-molecule agent against SEVIs.
Collapse
Affiliation(s)
- Ming Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| | - Yang Liu
- Department of Biology and Guangdong Provincial Key Laboratory of Marine Biotechnology, College of Science, Shantou University, Shantou, Guangdong, 515063, P. R. China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, P. R. China
| |
Collapse
|
5
|
Wang Z, Tao S, Dong X, Sun Y. para-Sulfonatocalix[n]arenes Inhibit Amyloid β-Peptide Fibrillation and Reduce Amyloid Cytotoxicity. Chem Asian J 2016; 12:341-346. [DOI: 10.1002/asia.201601461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/24/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Ziyuan Wang
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering; Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 P.R. China
| | - Shipeng Tao
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering; Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 P.R. China
| | - Xiaoyan Dong
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering; Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 P.R. China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering; Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300354 P.R. China
| |
Collapse
|
6
|
Xiong N, Dong XY, Zheng J, Liu FF, Sun Y. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5650-5662. [PMID: 25700145 DOI: 10.1021/acsami.5b00915] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aggregation of amyloid β-protein (Aβ) into amyloid oligomers and fibrils is pathologically linked to Alzheimer's disease (AD). Hence, the inhibition of Aβ aggregation is essential for the prevention and treatment of AD, but the development of potent agents capable of inhibiting Aβ fibrillogenesis has posed significant challenges. Herein, we designed Ac-LVFFARK-NH2 (LK7) by incorporating two positively charged residues, R and K, into the central hydrophobic fragment of Aβ17-21 (LVFFA) and examined its inhibitory effect on Aβ42 aggregation and cytotoxicity by extensive physical, biophysical, and biological analyses. LK7 was observed to inhibit Aβ42 fibrillogenesis in a dose-dependent manner, but its strong self-assembly characteristic also resulted in high cytotoxicity. In order to prevent the cytotoxicity that resulted from the self-assembly of LK7, the peptide was then conjugated to the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to fabricate a nanosized inhibitor, LK7@PLGA-NPs. It was found that LK7@PLGA-NPs had little cytotoxicity because the self-assembly of the LK7 conjugated on the NPs was completely inhibited. Moreover, the NPs-based inhibitor showed remarkable inhibitory capability against Aβ42 aggregation and significantly alleviated its cytotoxicity at a low LK7@PLGA-NPs concentration of 20 μg/mL. At the same peptide concentration, free LK7 showed little inhibitory effect. It is considered that several synergetic effects contributed to the strong inhibitory ability of LK7@PLGA-NPs, including the enhanced interactions between Aβ42 and LK7@PLGA-NPs brought on by inhibiting LK7 self-assembly, restricting conformational changes of Aβ42, and thus redirecting Aβ42 aggregation into unstructured, off-pathway aggregates. The working mechanisms of the inhibitory effects of LK7 and LK7@PLGA-NPs on Aβ42 aggregation were proposed based on experimental observations. This work provides new insights into the design and development of potent NPs-based inhibitors against Aβ aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Neng Xiong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Zheng
- ‡Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fu-Feng Liu
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
7
|
Xie B, Li X, Dong XY, Sun Y. Insight into the inhibition effect of acidulated serum albumin on amyloid β-protein fibrillogenesis and cytotoxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9789-9796. [PMID: 25083748 DOI: 10.1021/la5025197] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, and aggregation of amyloid β-proteins (Aβ) into soluble oligomers and fibrils has been implicated in the pathogenesis of AD. Herein we developed acidulated serum albumin for the inhibition of Aβ42 fibrillogenesis. Bovine serum albumin (BSA) was modified with diglycolic anhydride, leading to the coupling of 14.5 more negative charges (carboxyl groups) on average on each protein surface. The acidulated BSA (A-BSA) was characterized and confirmed to keep the tertiary structure and stability of BSA. Extensive biophysical and biological analyses showed that A-BSA significantly inhibited Aβ42 fibrillogenesis and mitigated amyloid cytotoxicity. As compared to the Aβ42-treated group (cell viability, 50%), the cell viability increased to 88% by the addition of equimolar A-BSA. The inhibitory effect was remarkably higher than that of BSA at the same concentration. On the basis of the experimental findings, a mechanistic model was proposed. The model considers that Aβ42 is bound to the A-BSA surface by hydrophobic interactions, but the widely distributed negative charges on the A-BSA surface give rise to electrostatic repulsions to the bound Aβ42 that is also negatively charged. The two well-balanced opposite forces make Aβ42 adopt extended conformations instead of the β-sheet structure that is necessary for the on-pathway fibrillogenesis, even when the protein is released off the surface. Thus, A-BSA greatly slows down the fibrillation and changes the fibrillogenesis pathway, leading to the formation of less toxic aggregates. The findings and the mechanistic model offer new insights into the development of more potent inhibitors of Aβ fibrillogenesis and cytotoxicity.
Collapse
Affiliation(s)
- Baolong Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | | | | | | |
Collapse
|
8
|
Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A, D'Arrigo C. Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1-42 and Aβpy3-42 beta-amyloids. Int J Biochem Cell Biol 2012; 44:2085-93. [PMID: 22903022 DOI: 10.1016/j.biocel.2012.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/13/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Among the different species of water-soluble β-peptides (Aβ1-42, Aβ1-40 and N-terminal truncated Aβ-peptides), Aβpy3-42 is thought to play a relevant role in Alzheimer's pathogenesis due to its abundance, resistance to proteolysis, fast aggregation kinetics, dynamic structure and high neurotoxicity. To evaluate the specific structural characteristics and neurotoxicity of Aβpy3-42, we separated different aggregation states of Aβ1-42 and Aβpy3-42 using fast protein liquid chromatography, isolating in both cases three peaks that corresponded to sa (small), ma (medium) and la (large) aggregates. Conformational analysis, by circular dichroism showed a prevailing random coil conformation for sa and ma, and typical β-sheet conformation for la. AFM and TEM show differential structural features between the three aggregates of a given β-peptide and among the aggregate of the two β-peptides. The potential toxic effects of the different aggregates were evaluated using human neuroblastoma SH-SY5Y cells in the MTT reduction, in the xCELLigence System, and in the Annexin V binding experiments. In the case of Aβ1-42 the most toxic aggregate is la, while in the case of Aβpy3-42 both sa and la are equally toxic. Aβ aggregates were found to be internalized in the cells, as estimated by confocal immunofluorescence microscopy, with a higher effect observed for Aβpy3-42, showing a good correlation with the toxic effects. Together these experiments allowed the discrimination of the intermediate states more responsible of oligomer toxicity, providing new insights on the correlation between the aggregation process and the toxicity and confirming the peculiar role in the pathogenesis of Alzheimer disease of Aβpy3-42 peptide.
Collapse
Affiliation(s)
- Denise Galante
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Chimon S, Shaibat MA, Jones CR, Calero DC, Aizezi B, Ishii Y. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nat Struct Mol Biol 2011; 14:1157-64. [PMID: 18059284 DOI: 10.1038/nsmb1345] [Citation(s) in RCA: 466] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 11/01/2007] [Indexed: 01/13/2023]
Abstract
Diffusible subfibrillar aggregates of amyloid proteins are potent neurotoxins and primary suspects in amyloid diseases including Alzheimer's disease. Despite widespread interest, the molecular structures of the amyloid intermediates and the conformational conversions in amyloid misfolding are poorly understood. Here we present a molecular-level examination of sequence-specific secondary structures and supramolecular structures of a neurotoxic amyloid intermediate of the 40-residue β-amyloid (Aβ) peptide involved in Alzheimer's disease. Using solid-state NMR and electron microscopy, we show that, before fibrillization, natively unstructured monomeric Aβ is subject to large conformational changes into a spherical amyloid intermediate of 15–35 nm diameter, which has predominantly parallel β-sheet structures. Structural comparison with Aβ fibrils demonstrates that formation of this β-sheet intermediate I(β) largely defines conformational transitions in amyloid misfolding. Neurotoxicity assays on PC12 cells show that I(β) shows higher toxicity than the fibril, indicating that the β-sheet formation may trigger neurotoxicity.
Collapse
Affiliation(s)
- Sandra Chimon
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | |
Collapse
|
11
|
Che MX, Jiang YJ, Xie YY, Jiang LL, Hu HY. Aggregation of the 35-kDa fragment of TDP-43 causes formation of cytoplasmic inclusions and alteration of RNA processing. FASEB J 2011; 25:2344-53. [PMID: 21450909 DOI: 10.1096/fj.10-174482] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
TAR DNA binding protein of 43 kDa (TDP-43) is a nuclear factor functioning in RNA processing. It is also a major deposited protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin (FTLD-U). To understand the mechanism underlying the inclusion body formation and possible functional alteration, we studied some TDP-43 fragments and their effects on RNA processing in cell models. The results show that the 35-kDa fragment of TDP-43 (namely TDP-35, residues 90-414), but not TDP-25A (184-414), is capable of forming cytoplasmic inclusion bodies and altering pre-mRNA splicing. The inclusions formed by TDP-35 can also recruit full-length TDP-43 to cytoplasmic deposition from functionally nuclear localization. The in vitro studies demonstrate that TDP-35, rather than TDP-43 and TDP-25A, is prone to aggregation, and it further serves as a seed to facilitate aggregation of full-length TDP-43. This suggests that fragmentation of TDP-43 leads to cellular redistribution, inclusion body formation, and altered RNA processing, which are implicated in the molecular pathogenesis of ALS and FTLD.
Collapse
Affiliation(s)
- Mei-Xia Che
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd., Shanghai 200031, China
| | | | | | | | | |
Collapse
|
12
|
Hochdörffer K, März-Berberich J, Nagel-Steger L, Epple M, Meyer-Zaika W, Horn AHC, Sticht H, Sinha S, Bitan G, Schrader T. Rational design of β-sheet ligands against Aβ42-induced toxicity. J Am Chem Soc 2011; 133:4348-58. [PMID: 21381732 DOI: 10.1021/ja107675n] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A β-sheet-binding scaffold was equipped with long-range chemical groups for tertiary contacts toward specific regions of the Alzheimer's Aβ fibril. The new constructs contain a trimeric aminopyrazole carboxylic acid, elongated with a C-terminal binding site, whose influence on the aggregation behavior of the Aβ(42) peptide was studied. MD simulations after trimer docking to the anchor point (F19/F20) suggest distinct groups of complex structures each of which featured additional specific interactions with characteristic Aβ regions. Members of each group also displayed a characteristic pattern in their antiaggregational behavior toward Aβ. Specifically, remote lipophilic moieties such as a dodecyl, cyclohexyl, or LPFFD fragment can form dispersive interactions with the nonpolar cluster of amino acids between I31 and V36. They were shown to strongly reduce Thioflavine T (ThT) fluorescence and protect cells from Aβ lesions (MTT viability assays). Surprisingly, very thick fibrils and a high β-sheet content were detected in transmission electron microscopy (TEM) and CD spectroscopic experiments. On the other hand, distant single or multiple lysines which interact with the ladder of stacked E22 residues found in Aβ fibrils completely dissolve existing β-sheets (ThT, CD) and lead to unstructured, nontoxic material (TEM, MTT). Finally, the triethyleneglycol spacer between heterocyclic β-sheet ligand and appendix was found to play an active role in destabilizing the turn of the U-shaped protofilament. Fluorescence correlation spectroscopy (FCS) and sedimentation velocity analysis (SVA) provided experimental evidence for some smaller benign aggregates of very thin, delicate structure (TEM, MTT). A detailed investigation by dynamic light scattering (DLS) and other methods proved that none of the new ligands acts as a colloid. The evolving picture for the disaggregation mechanism by these new hybrid ligands implies transformation of well-ordered fibrils into less structured aggregates with a high molecular weight. In the few cases where fibrillar components remain, these display a significantly altered morphology and have lost their acute cellular toxicity.
Collapse
Affiliation(s)
- Katrin Hochdörffer
- Universität Duisburg-Essen, Fachbereich Chemie, Universitätstrasse 5, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Borwankar T, Röthlein C, Zhang G, Techen A, Dosche C, Ignatova Z. Natural Osmolytes Remodel the Aggregation Pathway of Mutant Huntingtin Exon 1. Biochemistry 2011; 50:2048-60. [DOI: 10.1021/bi1018368] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tejas Borwankar
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Christoph Röthlein
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Gong Zhang
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Anne Techen
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Carsten Dosche
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| | - Zoya Ignatova
- Department of Biochemistry, Institute of Biochemistry and Biology, and ‡Department of Physical Chemistry, Insitute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14467 Potsdam, Germany
| |
Collapse
|
14
|
Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 2011; 144:67-78. [PMID: 21215370 DOI: 10.1016/j.cell.2010.11.050] [Citation(s) in RCA: 531] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 09/06/2010] [Accepted: 11/11/2010] [Indexed: 11/27/2022]
Abstract
Protein aggregation is linked with neurodegeneration and numerous other diseases by mechanisms that are not well understood. Here, we have analyzed the gain-of-function toxicity of artificial β sheet proteins that were designed to form amyloid-like fibrils. Using quantitative proteomics, we found that the toxicity of these proteins in human cells correlates with the capacity of their aggregates to promote aberrant protein interactions and to deregulate the cytosolic stress response. The endogenous proteins that are sequestered by the aggregates share distinct physicochemical properties: They are relatively large in size and significantly enriched in predicted unstructured regions, features that are strongly linked with multifunctionality. Many of the interacting proteins occupy essential hub positions in cellular protein networks, with key roles in chromatin organization, transcription, translation, maintenance of cell architecture and protein quality control. We suggest that amyloidogenic aggregation targets a metastable subproteome, thereby causing multifactorial toxicity and, eventually, the collapse of essential cellular functions.
Collapse
Affiliation(s)
- Heidi Olzscha
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kim J, Harada R, Kobayashi M, Kobayashi N, Sode K. The inhibitory effect of pyrroloquinoline quinone on the amyloid formation and cytotoxicity of truncated alpha-synuclein. Mol Neurodegener 2010; 5:20. [PMID: 20482893 PMCID: PMC2881056 DOI: 10.1186/1750-1326-5-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 05/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) involves the selective damage of dopaminergic neuron cells resulting from the accumulation and fibril formation of alpha-synuclein. Recently, it has been shown that not only full-length alpha-synuclein, but also C-terminal truncated forms exist in the normal brain, as well as Lewy bodies, which are cytoplasmic inclusions in PD. It is known that truncated alpha-synuclein has a much higher ability to aggregate and fibrillate than full-length alpha-synuclein. Since the fibrils and precursor oligomers of alpha-synuclein are cytotoxic to the neuron, inhibitors that prevent the formation of oligomers and/or fibrils might open the way to a novel therapeutic approach to PD. However, no inhibitor for truncated alpha-synuclein has been reported yet. RESULTS In this study, we first characterized the aggregation and cytotoxicity of C-truncated alpha-synuclein119 and alpha-synuclein133 which have been found in both the normal and the pathogenic brain. Alpha-synuclein119 aggregated more rapidly and enhanced significantly the fibril formation of alpha-synuclein. Although both of alpha-synuclein119 and alpha-synuclein133 showed a high cytotoxicity, alpha-synuclein133 showed a similar aggregation with full-length alpha-synuclein and no acceleration effect. We showed that PQQ dramatically inhibits the fibril formation of C-terminal truncated alpha-synuclein110119, and 133 as well as the mixtures of full-length alpha-synuclein with these truncated variants. Moreover, PQQ decreases the cytotoxicity of truncated alpha-synuclein. CONCLUSIONS Our results demonstrate that PQQ inhibits the amyloid fibril formation and cytotoxicity of the C-truncated alpha-synuclein variants. We believe that PQQ is a strong candidate for a reagent compound in the treatment of PD.
Collapse
Affiliation(s)
- Jihoon Kim
- Department of Biotechnology, Graduate School of Engineering, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| | | | | | | | | |
Collapse
|
16
|
Bedford L, Hay D, Paine S, Rezvani N, Mee M, Lowe J, Mayer RJ. Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:683-90. [PMID: 18976704 DOI: 10.1016/j.bbadis.2008.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/17/2008] [Accepted: 10/20/2008] [Indexed: 01/24/2023]
Abstract
Neuropathological investigations have identified major hallmarks of chronic neurodegenerative disease. These include protein aggregates called Lewy bodies in dementia with Lewy bodies and Parkinson's disease. Mutations in the alpha-synuclein gene have been found in familial disease and this has led to intense focused research in vitro and in transgenic animals to mimic and understand Parkinson's disease. A decade of transgenesis has lead to overexpression of wild type and mutated alpha-synuclein, but without faithful reproduction of human neuropathology and movement disorder. In particular, widespread regional neuronal cell death in the substantia nigra associated with human disease has not been described. The intraneuronal protein aggregates (inclusions) in all of the human chronic neurodegenerative diseases contain ubiquitylated proteins. There could be several reasons for the accumulation of ubiquitylated proteins, including malfunction of the ubiquitin proteasome system (UPS). This hypothesis has been genetically tested in mice by conditional deletion of a proteasomal regulatory ATPase gene. The consequences of gene ablation in the forebrain include extensive neuronal death and the production of Lewy-like bodies containing ubiquitylated proteins as in dementia with Lewy bodies. Gene deletion in catecholaminergic neurons, including in the substantia nigra, recapitulates the neuropathology of Parkinson's disease.
Collapse
Affiliation(s)
- Lynn Bedford
- School of Biomedical Sciences and Molecular Medical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Findeis MA. The role of amyloid beta peptide 42 in Alzheimer's disease. Pharmacol Ther 2007; 116:266-86. [PMID: 17716740 DOI: 10.1016/j.pharmthera.2007.06.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 02/07/2023]
Abstract
During the last 20 years, an expanding body of research has elucidated the central role of amyloid precursor protein (APP) processing and amyloid beta peptide (Abeta) production in the risk, onset, and progression of the neurodegenerative disorder Alzheimer's disease (AD), the most common form of dementia. Ongoing research is establishing a greater level of detail for our understanding of the normal functions of APP, its proteolysis products, and the mechanisms by which this processing occurs. The importance of this processing machinery in normal cellular function, such as Notch processing, has revealed specific concerns about targeting APP processing for therapeutic purposes. Aspects of AD that are now well studied include direct and indirect genetic and other risk factors for AD, APP processing, and Abeta production. Emerging from these studies is the particular importance of the long form of Abeta, Abeta42. Elevated Abeta42 levels, as well as particularly the elevation of the ratio of Abeta42 to the shorter major form Abeta40, has been identified as important in early events in the pathogenesis of AD. The specific pathological importance of Abeta42 has drawn attention to seeking drugs that will selectively lower the levels of this peptide through reduced production or increased clearance while allowing normal protein processing to remain substantially intact. An increasing variety of compounds that modulate APP processing to reduce Abeta levels are being identified, some with Abeta42 selectivity. Such compounds are now reaching clinical evaluation to determine how they may be of benefit in the treatment of AD.
Collapse
Affiliation(s)
- Mark A Findeis
- Satori Pharmaceuticals Incorporated, 222 Berkeley Street, Suite 1040, Boston, MA 02116, USA.
| |
Collapse
|
18
|
Bose M, Gestwicki JE, Devasthali V, Crabtree GR, Graef IA. ‘Nature-inspired’ drug–protein complexes as inhibitors of Aβ aggregation. Biochem Soc Trans 2005; 33:543-7. [PMID: 16042540 DOI: 10.1042/bst0330543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Protein–protein interactions are a regulatory mechanism for a number of physiological and pathological cellular processes. Neurodegenerative diseases, such as AD (Alzheimer's disease), are associated with the accelerated production or delayed clearance of protein aggregates. Hence, inhibition of pathologic protein–protein interactions is a very attractive mechanism for drug development. This review focuses on a novel therapeutic strategy to inhibit the de novo formation of protein aggregates. Inspired by strategies used in Nature and optimized over millions of years of evolution, we have created a bifunctional molecule [SLF (synthetic ligand for FK506-binding protein)–CR (Congo Red)] that is able to block Aβ (amyloid β) aggregation by borrowing the surface and steric bulk of a cellular chaperone.
Collapse
Affiliation(s)
- M Bose
- Department of Pathology, Howard Hughes Medical Institute, Stanford University Medical School, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
19
|
Li HT, Lin DH, Luo XY, Zhang F, Ji LN, Du HN, Song GQ, Hu J, Zhou JW, Hu HY. Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. Implication for dopaminergic neurodegeneration. FEBS J 2005; 272:3661-72. [PMID: 16008565 DOI: 10.1111/j.1742-4658.2005.04792.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fibrillization of alpha-synuclein (alpha-Syn) is closely associated with the formation of Lewy bodies in neurons and dopamine (DA) is a potent inhibitor for the process, which is implicated in the causative pathogenesis of Parkinson's disease (PD). To elucidate any molecular mechanism that may have biological relevance, we tested the inhibitory abilities of DA and several analogs including chemically synthetic and natural polyphenols in vitro. The MS and NMR characterizations strongly demonstrate that DA and its analogs inhibit alpha-Syn fibrillization by a mechanism where the oxidation products (quinones) of DA analogs react with the amino groups of alpha-Syn chain, generating alpha-Syn-quinone adducts. It is likely that the amino groups of alpha-Syn undergo nucleophilic attack on the quinone moiety of DA analogs to form imino bonds. The covalently cross-linked alpha-Syn adducts by DA are primarily large molecular mass oligomers, while those by catechol and p-benzoquinone (or hydroquinone) are largely monomers or dimers. The DA quinoprotein retains the same cytotoxicity as the intact alpha-Syn, suggesting that the oligomeric intermediates are the major elements that are toxic to the neuronal cells. This finding implies that the reaction of alpha-Syn with DA is relevant to the selective dopaminergic loss in PD.
Collapse
Affiliation(s)
- Hong-Tao Li
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Milton NGN. Phosphorylated amyloid-beta: the toxic intermediate in alzheimer's disease neurodegeneration. Subcell Biochem 2005; 38:381-402. [PMID: 15709490 DOI: 10.1007/0-387-23226-5_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Phosphorylated Amyloid-beta (Abeta) was identified in Alzheimer's disease (AD) brain. Using an anti-sense peptide approach the human cyclin-dependent kinase-1 (CDK-1) was identified as being responsible for Abeta phosphorylation. The phosphorylated Abeta peptide showed increased neurotoxicity and reduced ability to form Congo red-positive fibrils. Mutation of the serine 26 residue and inhibition of Abeta phosphorylation by the CDK-1 inhibitor olomoucine prevented Abeta toxicity, suggesting that the phosphorylated Abeta peptide represents a toxic intermediate. Cannabinoids prevented phosphorylated Abeta toxicity. The results from this study suggest that Abeta phosphorylation could play a role in AD pathology and represent a novel therapeutic target.
Collapse
Affiliation(s)
- Nathaniel G N Milton
- Department of Clinical Neurosciences, Royal Free & University College Medical School, University College London, London, UK
| |
Collapse
|
21
|
Abstract
The amyloid-beta (Abeta) peptide has been implicated in the pathology of Alzheimer's disease (AD). Using an antisense peptide approach a novel interaction between Abeta and the human cdc2 kinase was identified. The Abeta 1-42, 1-40 and 25-35 peptides were shown to be substrates for the cdc2 kinase and phosphorylated on the Serine 26 residue. Phosphorylated Abeta (pSAbeta) was found in extracts from NT-2 neurons and AD brain. In NT-2 neurons the levels of pSAbeta were increased in the presence of exogenous Abeta and this increase was prevented by a cdc2 protein kinase inhibitor, olomoucine, that also prevented Abeta cytotoxicity. The results from this study suggest that Abeta phosphorylation by cdc2 could play a role in the brain pathology of AD.
Collapse
Affiliation(s)
- N G Milton
- Department of Molecular Pathology & Clinical Biochemistry, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London
| |
Collapse
|
22
|
Milton NG, Mayor NP, Rawlinson J. Identification of amyloid-beta binding sites using an antisense peptide approach. Neuroreport 2001; 12:2561-6. [PMID: 11496149 DOI: 10.1097/00001756-200108080-00054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The amyloid-beta (A beta) peptide is a cytotoxic peptide implicated in the pathology of Alzheimer's disease (AD). Catalase and the endoplasmic reticulum A beta binding dehydrogenase (ERAB) are both inhibited by characterized fragments of the A beta peptide. In order to target such proteins it is essential to determine which components of these enzymes interact with A beta. This study reports the use of antisense peptide methodology to identify specific A beta-binding domains. Synthetic peptides corresponding to the regions of catalase and ERAB identified showed specific binding to A beta and also prevented A beta cytotoxicity. Antisense peptide methodology has identified A beta recognition sequences and may also be applied to the identification of novel A beta protein interactions to identify targets for use in the treatment of AD.
Collapse
Affiliation(s)
- N G Milton
- Department of Molecular Pathology and Clinical Biochemistry, Royal Free and University College Medical School, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | | | | |
Collapse
|