1
|
Sagini JPN, Possamai Rossatto FC, Souza F, Pilau E, Quines CB, Ávila DS, Ligabue-Braun R, Zimmer AR, Pereira RI, Zimmer KR. Inhibition of Staphylococcus epidermidis and Pseudomonas aeruginosa biofilms by grape and rice agroindustrial residues. Microb Pathog 2024; 197:107019. [PMID: 39442815 DOI: 10.1016/j.micpath.2024.107019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Agroindustrial wastes are generated daily and seem to be rich in bioactive molecules. Thus, they can potentially be used as source of compounds able to control bacterial biofilms. We investigated the potential of extracts from the residues of rice and grape to combat clinically important bacterial biofilms. Extracts of grape pomace and rice bran were obtained using different extractive methodologies and subjected to the evaluation of its antimicrobial and antibiofilm activities. After the in vivo toxicity, the chemical characterization of the most promising extract was assessed. The mass spectrometry analysis revealed the presence of dipeptides, alkaloids and phenolic compounds. Most grape extracts presented antibiofilm and antimicrobial activities against Staphylococcus epidermidis ATCC 35984 and Pseudomonas aeruginosa PA14. The hydromethanolic grape pomace extract obtained by ultrasound assisted extraction (MeOH 80 UAE) presented the most promising activity, being able to inhibit in 99 % and 80 % the biofilm formation of S. epidermidis and P. aeruginosa, respectively. Against the gram-negative model, this extract eradicated the biofilm by 80 %, induced the swarming motility and displayed a physical effect. It also did not present acute or chronic toxicity in Caenorhabditis elegans model. In this way, agroindustrial residues represent a promising source of molecules capable of controlling bacterial biofilms.
Collapse
Affiliation(s)
- João Pedro Nunes Sagini
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Fernanda Cristina Possamai Rossatto
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Felipe Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (Labiomass), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Eduardo Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (Labiomass), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Caroline Brandão Quines
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXCe), Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, 97500-970, Brazil
| | - Daiana Silva Ávila
- Programa de Pós-Graduação em Bioquímica, Laboratório de Bioquímica e Toxicologia em Caenorhabditis elegans (GBTOXCe), Universidade Federal do Pampa (UNIPAMPA), Uruguaiana, RS, 97500-970, Brazil
| | - Rodrigo Ligabue-Braun
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Aline Rigon Zimmer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Rebeca Inhoque Pereira
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil
| | - Karine Rigon Zimmer
- Programa de Pós-Graduação em Biociências, Laboratório de Biofilmes e Modelos Alternativos (BioModal), Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, 90050-170, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Chegene Lorestani R, Shojaeian A, Rostamian M. Phenotypic, genotypic, and metabolic resistance mechanisms of ESKAPE bacteria to chemical disinfectants: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2023; 21:1097-1123. [PMID: 37674347 DOI: 10.1080/14787210.2023.2256975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 07/31/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND The presence of resistant ESKAPE pathogens to antimicrobials including chemical disinfectants (ChDs) is a serious threat to public health worldwide. In the present study, we systematically reviewed published reports on mechanisms beyond ChD resistance of ESKAPE bacteria. RESEARCH DESIGN AND METHODS Several databases without date limitations were searched. Studies focused on the ChD resistance/tolerance mechanisms of ESKAPE bacteria were included. Meta-analysis was done to assess the frequency of tolerance and genes in ESKAPE clinical isolates. By screening of initial 6733 records, finally, 41 studies were included. RESULTS The overall tolerance to at least one ChD was 48.6%. Pseudomonas aeruginosa and Acinetobacter baumannii were highly ChD-resistant. In several studies, phenotypic changes including changes in general morphology, pump function, cell surface, and membrane, as well as metabolic changes were observed after ChD addition. The resistance gene frequency was 70.2% for norfloxacin efflux pump genes, 40.6% for qac major facilitator superfamily genes, and 22.2% for qac small multidrug resistance genes. CONCLUSION We systematically reviewed the effect of various mechanisms in the resistance process of ESKAPE bacteria to ChDs. However, except for the impact of genes, the numbers of studies investigating other mechanisms were very limited, demanding carrying out more studies in this field.
Collapse
Affiliation(s)
- Roya Chegene Lorestani
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
The Antioxidant, Antibacterial and Anti-Biofilm Properties of Rapeseed Creamed Honey Enriched with Selected Plant Superfoods. Antibiotics (Basel) 2023; 12:antibiotics12020235. [PMID: 36830146 PMCID: PMC9951885 DOI: 10.3390/antibiotics12020235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The aim of the study is to evaluate the effect of the addition of selected fruits and herbs belonging to the "superfoods" category for the bioactivity of a rapeseed honey matrix. Flavored creamed honeys with nine types of various additives (2 and 4% of content) were prepared and analyzed for the content of total phenols, flavonoids, antioxidant (FRAP, DPPH and ABTS) and antibacterial activity against four strains of bacteria. Additionally, the impact of three months of storage on the antioxidant properties of the products obtained was examined. The significant dose-dependent increase in the content of bioactive ingredients and antioxidant capacity in spiced honeys, as compared to control honey, was observed. The highest enrichment was obtained for the addition of powdered sea buckthorn leaves and black raspberry fruits. Honey with the addition of sea buckthorn leaves inhibited the growth of P. aeruginosa, S. aureus and K. pneumonia, whereas honeys with black raspberry and blackcurrant fruits showed activity only on the latter two strains. Furthermore, what is more interesting, honey supplemented with sea buckthorn leaf and black raspberry fruits inhibited S. aureus biofilm formation at the sub-minimum inhibitory concentrations (sub-MICs), showing a dose-dependent anti-biofilm effect.
Collapse
|
4
|
Piletić K, Kovač B, Perčić M, Žigon J, Broznić D, Karleuša L, Lučić Blagojević S, Oder M, Gobin I. Disinfecting Action of Gaseous Ozone on OXA-48-Producing Klebsiella pneumoniae Biofilm In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106177. [PMID: 35627712 PMCID: PMC9140702 DOI: 10.3390/ijerph19106177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023]
Abstract
Klebsiella pneumoniae is an emerging multidrug-resistant pathogen that can contaminate hospital surfaces in the form of a biofilm which is hard to remove with standard disinfectants. Because of biofilm resistance to conservative disinfectants, the application of new disinfection technologies is becoming more frequent. Ozone gas has antimicrobial activity but there is lack of data on its action against K. pneumoniae biofilm. The aim of this study was to investigate the effects and mechanisms of action of gaseous ozone on the OXA-48-procuding K. pneumoniae biofilm. A 24 h biofilm of K. pneumoniae formed on ceramic tiles was subsequently exposed to different concentrations of ozone during one and two hours to determine the optimal ozone concentration. Afterwards, the total bacteria count, total biomass and oxidative stress levels were monitored. A total of 25 ppm of gaseous ozone was determined to be optimal ozone concentration and caused reduction in total bacteria number in all strains of K. pneumoniae for 2.0 log10 CFU/cm2, followed by reduction in total biomass up to 88.15%. Reactive oxygen species levels significantly increased after the ozone treatment at 182% for the representative K. pneumoniae NCTC 13442 strain. Ozone gas in the concentration of 25 ppm caused significant biofilm reduction but did not completely eradicate the K. pneumoniae biofilm formed on ceramics. In conclusion, ozone gas has great potential to be used as an additional hygiene measure in joint combat against biofilm in hospital environments.
Collapse
Affiliation(s)
- Kaća Piletić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (K.P.); (B.K.)
| | - Bruno Kovač
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (K.P.); (B.K.)
| | - Marko Perčić
- Faculty of Engineering & Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia;
| | - Jure Žigon
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Dalibor Broznić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Sanja Lučić Blagojević
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia;
| | - Martina Oder
- Department of Sanitary Engineering, Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Ivana Gobin
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia; (K.P.); (B.K.)
- Correspondence:
| |
Collapse
|
5
|
Interactions between fish isolates Pseudomonas fluorescens and Staphylococcus aureus in dual-species biofilms and sensitivity to carvacrol. Food Microbiol 2020; 91:103506. [DOI: 10.1016/j.fm.2020.103506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 12/20/2022]
|
6
|
Prasath KG, Tharani H, Kumar MS, Pandian SK. Palmitic Acid Inhibits the Virulence Factors of Candida tropicalis: Biofilms, Cell Surface Hydrophobicity, Ergosterol Biosynthesis, and Enzymatic Activity. Front Microbiol 2020; 11:864. [PMID: 32457728 PMCID: PMC7226919 DOI: 10.3389/fmicb.2020.00864] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 01/13/2023] Open
Abstract
Biofilm is the fortitude of Candida species infections which eventually causes candidiasis in human. C. tropicalis is one of the predominant Candida species commonly found in systemic infections, next to C. albicans. In Candida species, biofilm maturity initiates irreversible surface attachment of cells and barricades the penetration of conventional antifungals. Hence, the current study investigated the antifungal and antivirulence potency of palmitic acid (PA) against C. tropicalis mature biofilm and its associated virulence factors. In vitro results revealed an effective inhibition of biofilm in PA-treated C. tropicalis, compared to C. albicans and C. glabrata. Also, PA reduced C. tropicalis mature biofilm at various time points. Further, PA treatment triggered apoptosis in C. tropicalis through ROS mediated mitochondrial dysfunction as demonstrated by confocal microscopic observation of PI, DAPI and DCFDA staining. PA regulated other virulence factors such as cell surface hydrophobicity, ergosterol biosynthesis, protease and lipase after 48 h of treatment. Downregulation of ERG11 (Lanosterol 14-alpha demethylase) was contributed to the reduction of ergosterol in PA-treated C. tropicalis. However, enhanced hyphal growth was observed in PA-treated C. tropicalis through upregulation HWP1 (Hyphal wall protein) and EFG1 (Enhanced filamentous growth). This study highlighted the antibiofilm and antivirulence potency of PA against C. tropicalis. Hence, PA could be applied synergistically with other antifungal agents to increase the efficacy for regulating NCAC infections.
Collapse
|
7
|
Prasath KG, Sethupathy S, Pandian SK. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteomics 2019; 208:103503. [DOI: 10.1016/j.jprot.2019.103503] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023]
|
8
|
Sivaranjani M, Srinivasan R, Aravindraja C, Karutha Pandian S, Veera Ravi A. Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms - an in vitro study. BIOFOULING 2018; 34:579-593. [PMID: 29869541 DOI: 10.1080/08927014.2018.1473387] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The present study was designed to investigate the anti-biofilm potential of alpha-mangostin (α-MG) against Acinetobacter baumannii (AB). The biofilm inhibitory concentration (BIC) of α-MG against AB was found to be 2 μg ml-1. α-MG (0.5, 1 and 2 μg ml-1) exhibited non-bactericidal concentration-dependent anti-biofilm activities against AB. However, α-MG failed to disintegrate the mature biofilms of AB even at a 10-fold increased concentration from its BIC. Results from qRT-PCR and in vitro bioassays further demonstrated that α-MG downregulated the expression of bfmR, pgaA, pgaC, csuA/B, ompA, bap, katE, and sodB genes, which correspondingly affects biofilm formation and its associated virulence traits. The present study suggests that α-MG exerts its anti-biofilm property by interrupting initial biofilm formation and the cell-to-cell signaling mechanism of AB. Additional studies are required to understand the mode of action responsible for the anti-biofilm property.
Collapse
|
9
|
Abstract
The intestinal microbiota is a complex ecosystem consisting of various microorganisms that expands human genetic repertoire and therefore affects human health and disease. The metabolic processes and signal transduction pathways of the host and intestinal microorganisms are intimately linked, and abnormal progression of each process leads to changes in the intestinal environment. Alterations in microbial communities lead to changes in functional structures based on the metabolites produced in the gut, and these environmental changes result in various bacterial infections and chronic enteric inflammatory diseases. Here, we illustrate how antibiotics are associated with an increased risk of antibiotic-associated diseases by driving intestinal environment changes that favor the proliferation and virulence of pathogens. Understanding the pathogenesis caused by antibiotics would be a crucial key to the treatment of antibiotic-associated diseases by mitigating changes in the intestinal environment and restoring it to its original state.
Collapse
Affiliation(s)
- Mi Young Yoon
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Sciences, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Brain Korea 21 Project for Medical Sciences, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Hyperbaric Oxygen Sensitizes Anoxic Pseudomonas aeruginosa Biofilm to Ciprofloxacin. Antimicrob Agents Chemother 2017; 61:AAC.01024-17. [PMID: 28874373 PMCID: PMC5655102 DOI: 10.1128/aac.01024-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is characterized by the presence of endobronchial antibiotic-tolerant biofilm, which is subject to strong oxygen (O2) depletion due to the activity of surrounding polymorphonuclear leukocytes. The exact mechanisms affecting the antibiotic susceptibility of biofilms remain unclear, but accumulating evidence suggests that the efficacy of several bactericidal antibiotics is enhanced by stimulation of aerobic respiration of pathogens, while lack of O2 increases their tolerance. In fact, the bactericidal effect of several antibiotics depends on active aerobic metabolism activity and the endogenous formation of reactive O2 radicals (ROS). In this study, we aimed to apply hyperbaric oxygen treatment (HBOT) to sensitize anoxic P. aeruginosa agarose biofilms established to mimic situations with intense O2 consumption by the host response in the cystic fibrosis (CF) lung. Application of HBOT resulted in enhanced bactericidal activity of ciprofloxacin at clinically relevant durations and was accompanied by indications of restored aerobic respiration, involvement of endogenous lethal oxidative stress, and increased bacterial growth. The findings highlight that oxygenation by HBOT improves the bactericidal activity of ciprofloxacin on P. aeruginosa biofilm and suggest that bacterial biofilms are sensitized to antibiotics by supplying hyperbaric O2.
Collapse
|
11
|
Wang P, Lee Y, Igo MM, Roper MC. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa. MOLECULAR PLANT PATHOLOGY 2017; 18:990-1000. [PMID: 27377476 PMCID: PMC6638236 DOI: 10.1111/mpp.12456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 05/07/2023]
Abstract
Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H2 O2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization.
Collapse
Affiliation(s)
- Peng Wang
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCA92521USA
| | - Yunho Lee
- Department of Microbiology and Molecular GeneticsUniversity of CaliforniaDavisCA95616USA
| | - Michele M. Igo
- Department of Microbiology and Molecular GeneticsUniversity of CaliforniaDavisCA95616USA
| | - M. Caroline Roper
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCA92521USA
| |
Collapse
|
12
|
Odić D, Prah J, Avguštin G. Identification of bacterial contaminants from calcium carbonate filler production lines and an evaluation of biocide based decontamination procedures. BIOFOULING 2017; 33:327-335. [PMID: 28402176 DOI: 10.1080/08927014.2017.1310848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/11/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to analyze the bacterial community in the production line of a calcium carbonate filler production company and to investigate possible causes for bacterial presence. Throughout 2012, 24 carbonate slurry and six groundwater samples were analyzed. Pseudomonas and Microbacterium were the most frequent contaminants in the slurry, whereas Pseudomonas and Brevundimonas dominated the groundwater samples. Of the 43 different bacterial strains isolated, only five were found both in the slurry and the groundwater, indicating that the latter was not a major source of contamination. The efficacy of 54 commercial biocidal formulations was tested against an artificial bacterial consortium composed of selected slurry isolates. A formulation containing 7.5-15% (v v-1) bronopol and 1.0-2.5% (v v-1) [chloroisothiazolinone (CIT) + methylisothiazolinone (MIT)] exhibited the highest efficacy. Of the possible causes for bacterial presence, sporogenesis and biocide adsorption to carbonate particles were found to be less probable compared to bacterial adsorption to particles, and the acquisition of resistance to biocides.
Collapse
Affiliation(s)
- Duško Odić
- a Microbiology and Microbial Biotechnology, Zootechnical Department, Biotechnical Faculty , University of Ljubljana , Domžale , Slovenia
| | - Jana Prah
- a Microbiology and Microbial Biotechnology, Zootechnical Department, Biotechnical Faculty , University of Ljubljana , Domžale , Slovenia
| | - Gorazd Avguštin
- a Microbiology and Microbial Biotechnology, Zootechnical Department, Biotechnical Faculty , University of Ljubljana , Domžale , Slovenia
| |
Collapse
|
13
|
Yang Y, Kitajima M, Pham T, Yu L, Ling R, Gin K, Reinhard M. UsingPseudomonas aeruginosaPAO1 to evaluate hydrogen peroxide as a biofouling control agent in membrane treatment systems. Lett Appl Microbiol 2016; 63:488-494. [DOI: 10.1111/lam.12674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Y. Yang
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - M. Kitajima
- Division of Environmental Engineering; Hokkaido University; Sapporo Japan
| | - T.P.T. Pham
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - L. Yu
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
| | - R. Ling
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
- NUS Environmental Research Institute; National University of Singapore; Singapore Singapore
| | - K.Y.H. Gin
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
- NUS Environmental Research Institute; National University of Singapore; Singapore Singapore
| | - M. Reinhard
- Department of Civil and Environmental Engineering; National University of Singapore; Singapore Singapore
- Department of Civil and Environmental Engineering; Stanford University; Stanford CA USA
| |
Collapse
|
14
|
Sethupathy S, Prasath KG, Ananthi S, Mahalingam S, Balan SY, Pandian SK. Proteomic analysis reveals modulation of iron homeostasis and oxidative stress response in Pseudomonas aeruginosa PAO1 by curcumin inhibiting quorum sensing regulated virulence factors and biofilm production. J Proteomics 2016; 145:112-126. [DOI: 10.1016/j.jprot.2016.04.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/15/2016] [Accepted: 04/17/2016] [Indexed: 01/01/2023]
|
15
|
Kolpen M, Appeldorff CF, Brandt S, Mousavi N, Kragh KN, Aydogan S, Uppal HA, Bjarnsholt T, Ciofu O, Høiby N, Jensen PØ. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions. Pathog Dis 2015; 74:ftv086. [PMID: 26458402 PMCID: PMC4655427 DOI: 10.1093/femspd/ftv086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/19/2022] Open
Abstract
Tolerance towards antibiotics of Pseudomonas aeruginosa biofilms is recognized as a major cause of therapeutic failure of chronic lung infection in cystic fibrosis (CF) patients. This lung infection is characterized by antibiotic-tolerant biofilms in mucus with zones of O2 depletion mainly due to polymorphonuclear leukocytic activity. In contrast to the main types of bactericidal antibiotics, it has not been possible to establish an association between the bactericidal effects of colistin and the production of detectable levels of OH ˙ on several strains of planktonic P. aeruginosa. Therefore, we propose that production of OH ˙ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wild-type PAO1, a catalase-deficient mutant (ΔkatA) and a colistin-resistant CF isolate cultured in microtiter plates in normoxic- or anoxic atmosphere with 1 mM nitrate. The killing of bacteria during colistin treatment was measured by CFU counts, and the OH⋅ formation was measured by 3(')-(p-hydroxylphenyl fluorescein) fluorescein (HPF) fluorescence. Validation of the assay was done by hydrogen peroxide treatment. OH⋅ formation was undetectable in aerobic PAO1 biofilms during 3 h of colistin treatment. Interestingly, we demonstrate increased susceptibility of P. aeruginosa biofilms towards colistin during anaerobic conditions. In fact, the maximum enhancement of killing by anaerobic conditions exceeded 2 logs using 4 mg L(-1) of colistin compared to killing at aerobic conditions.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Sarah Brandt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Nabi Mousavi
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Kasper N Kragh
- Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sevtap Aydogan
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Haleema A Uppal
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Oana Ciofu
- Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark Department of Immunology and Microbiology, UC-CARE, Faculty of Health Sciences University of Copenhagen, 2200 Copenhagen, Denmark
| | - Peter Ø Jensen
- Department of Clinical Microbiology, Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Sanchez-Vizuete P, Orgaz B, Aymerich S, Le Coq D, Briandet R. Pathogens protection against the action of disinfectants in multispecies biofilms. Front Microbiol 2015; 6:705. [PMID: 26236291 PMCID: PMC4500986 DOI: 10.3389/fmicb.2015.00705] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/26/2015] [Indexed: 01/09/2023] Open
Abstract
Biofilms constitute the prevalent way of life for microorganisms in both natural and man-made environments. Biofilm-dwelling cells display greater tolerance to antimicrobial agents than those that are free-living, and the mechanisms by which this occurs have been investigated extensively using single-strain axenic models. However, there is growing evidence that interspecies interactions may profoundly alter the response of the community to such toxic exposure. In this paper, we propose an overview of the studies dealing with multispecies biofilms resistance to biocides, with particular reference to the protection of pathogenic species by resident surface flora when subjected to disinfectants treatments. The mechanisms involved in such protection include interspecies signaling, interference between biocides molecules and public goods in the matrix, or the physiology and genetic plasticity associated with a structural spatial arrangement. After describing these different mechanisms, we will discuss the experimental methods available for their analysis in the context of complex multispecies biofilms.
Collapse
Affiliation(s)
- Pilar Sanchez-Vizuete
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Belen Orgaz
- Department of Nutrition, Food Science and Technology, Faculty of Veterinary, Complutense University de MadridMadrid, Spain
| | - Stéphane Aymerich
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| | - Dominique Le Coq
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
- CNRS, Jouy-en-JosasFrance
| | - Romain Briandet
- INRA, UMR1319 MICALIS, Jouy-en-JosasFrance
- AgroParisTech, UMR MICALIS, Jouy-en-JosasFrance
| |
Collapse
|
17
|
Su S, Panmanee W, Wilson JJ, Mahtani HK, Li Q, VanderWielen BD, Makris TM, Rogers M, McDaniel C, Lipscomb JD, Irvin RT, Schurr MJ, Lancaster JR, Kovall RA, Hassett DJ. Catalase (KatA) plays a role in protection against anaerobic nitric oxide in Pseudomonas aeruginosa. PLoS One 2014; 9:e91813. [PMID: 24663218 PMCID: PMC3963858 DOI: 10.1371/journal.pone.0091813] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/14/2014] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a common bacterial pathogen, responsible for a high incidence of nosocomial and respiratory infections. KatA is the major catalase of PA that detoxifies hydrogen peroxide (H2O2), a reactive oxygen intermediate generated during aerobic respiration. Paradoxically, PA displays elevated KatA activity under anaerobic growth conditions where the substrate of KatA, H2O2, is not produced. The aim of the present study is to elucidate the mechanism underlying this phenomenon and define the role of KatA in PA during anaerobiosis using genetic, biochemical and biophysical approaches. We demonstrated that anaerobic wild-type PAO1 cells yielded higher levels of katA transcription and expression than aerobic cells, whereas a nitrite reductase mutant ΔnirS produced ∼50% the KatA activity of PAO1, suggesting that a basal NO level was required for the increased KatA activity. We also found that transcription of the katA gene was controlled, in part, by the master anaerobic regulator, ANR. A ΔkatA mutant and a mucoid mucA22 ΔkatA bacteria demonstrated increased sensitivity to acidified nitrite (an NO generator) in anaerobic planktonic and biofilm cultures. EPR spectra of anaerobic bacteria showed that levels of dinitrosyl iron complexes (DNIC), indicators of NO stress, were increased significantly in the ΔkatA mutant, and dramatically in a ΔnorCB mutant compared to basal levels of DNIC in PAO1 and ΔnirS mutant. Expression of KatA dramatically reduced the DNIC levels in ΔnorCB mutant. We further revealed direct NO-KatA interactions in vitro using EPR, optical spectroscopy and X-ray crystallography. KatA has a 5-coordinate high spin ferric heme that binds NO without prior reduction of the heme iron (Kd ∼6 μM). Collectively, we conclude that KatA is expressed to protect PA against NO generated during anaerobic respiration. We proposed that such protective effects of KatA may involve buffering of free NO when potentially toxic concentrations of NO are approached.
Collapse
Affiliation(s)
- Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jeffrey J. Wilson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Harry K. Mahtani
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qian Li
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Bradley D. VanderWielen
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Thomas M. Makris
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Melanie Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Cameron McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Randall T. Irvin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael J. Schurr
- Department of Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Jack R. Lancaster
- Departments of Anesthesiology, Cell, Developmental and Integrative Biology, and Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Daniel J. Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
18
|
Plyuta VA, Andreenko JV, Kuznetsov AE, Khmel’ IA. Formation of Pseudomonas aeruginosa PAO1 biofilms in the presence of hydrogen peroxide. The effect of the aiiA gene. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2013. [DOI: 10.3103/s089141681304006x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Jiang G, Yuan Z. Synergistic inactivation of anaerobic wastewater biofilm by free nitrous acid and hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2013; 250-251:91-98. [PMID: 23434484 DOI: 10.1016/j.jhazmat.2013.01.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/10/2013] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
Free nitrous acid (FNA) was recently revealed to be a strong biocide for microbes in anaerobic biofilm, achieving approximately 1-log (90%) inactivation at a concentration of 0.2-0.3 mgHNO2-N/L with an exposure time longer than 6h. The combined biocidal effects of FNA and hydrogen peroxide (H2O2) on anaerobic wastewater biofilm are investigated in this study. H2O2 greatly enhances the inactivation of microorganisms by FNA. About 2-log (99%) of microbial inactivation was achieved when biofilms were exposed to FNA at 0.2 mgN/L or above and H2O2 at 30 mg/L or above for 6h or longer. It was found, through response surface methodology and ridge analysis, that FNA is the primary inactivation agent and H2O2 enhances its efficiency. The loss and the subsequent slow recovery of biological activity in biofilm reactors subjected to FNA and H2O2 dosing confirmed that the chemical combination could achieve higher microbial inactivation than with FNA alone. Reaction simulation shows that intermediates of reactions between FNA and H2O2, like peroxynitrite and nitrogen dioxide, would be produced at elevated levels and are likely responsible for the synergism between FNA and H2O2. The combination of FNA and H2O2 could potentially provide an effective solution to sewer biofilm control.
Collapse
Affiliation(s)
- Guangming Jiang
- Advanced Water Management Centre, Gehrmann Building, Research Road, The University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
20
|
The stringent response controls catalases in Pseudomonas aeruginosa and is required for hydrogen peroxide and antibiotic tolerance. J Bacteriol 2013; 195:2011-20. [PMID: 23457248 DOI: 10.1128/jb.02061-12] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa, a human opportunistic pathogen, possesses a number of antioxidant defense enzymes under the control of multiple regulatory systems. We recently reported that inactivation of the P. aeruginosa stringent response (SR), a starvation stress response controlled by the alarmone (p)ppGpp, caused impaired antioxidant defenses and antibiotic tolerance. Since catalases are key antioxidant enzymes in P. aeruginosa, we compared the levels of H2O2 susceptibility and catalase activity in P. aeruginosa wild-type and ΔrelA ΔspoT (ΔSR) mutant cells. We found that the SR was required for optimal catalase activity and mediated H2O2 tolerance during both planktonic and biofilm growth. Upon amino acid starvation, induction of the SR upregulated catalase activity. Full expression of katA and katB also required the SR, and this regulation occurred through both RpoS-independent and RpoS-dependent mechanisms. Furthermore, overexpression of katA was sufficient to restore H2O2 tolerance and to partially rescue the antibiotic tolerance of ΔSR cells. All together, these results suggest that the SR regulates catalases and that this is an important mechanism in protecting nutrient-starved and biofilm bacteria from H2O2- and antibiotic-mediated killing.
Collapse
|
21
|
Biocide tolerance in bacteria. Int J Food Microbiol 2013; 162:13-25. [PMID: 23340387 DOI: 10.1016/j.ijfoodmicro.2012.12.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/24/2012] [Accepted: 12/15/2012] [Indexed: 02/07/2023]
Abstract
Biocides have been employed for centuries, so today a wide range of compounds showing different levels of antimicrobial activity have become available. At the present time, understanding the mechanisms of action of biocides has also become an important issue with the emergence of bacterial tolerance to biocides and the suggestion that biocide and antibiotic resistance in bacteria might be linked. While most of the mechanisms providing antibiotic resistance are agent specific, providing resistance to a single antimicrobial or class of antimicrobial, there are currently numerous examples of efflux systems that accommodate and, thus, provide tolerance to a broad range of structurally unrelated antimicrobials, both antibiotics and biocides. If biocide tolerance becomes increasingly common and it is linked to antibiotic resistance, not only resistant (even multi-resistant) bacteria could be passed along the food chain, but also there are resistance determinants that can spread and lead to the emergence of new resistant microorganisms, which can only be detected and monitored when the building blocks of resistance traits are understood on the molecular level. This review summarizes the main advances reached in understanding the mechanism of action of biocides, the mechanisms of bacterial resistance to both biocides and antibiotics, and the incidence of biocide tolerance in bacteria of concern to human health and the food industry.
Collapse
|
22
|
Kim SG, Yoon YH, Choi JW, Rha KS, Park YH. Effect of furanone on experimentally induced Pseudomonas aeruginosa biofilm formation: in vitro study. Int J Pediatr Otorhinolaryngol 2012; 76:1575-8. [PMID: 22884365 DOI: 10.1016/j.ijporl.2012.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 07/09/2012] [Accepted: 07/10/2012] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The purpose of this study was to evaluate the effect of furanone as a quorum sensing inhibitor with an antibiotic agent on experimentally induced Pseudomonas aeruginosa biofilm formation in an in vitro model. MATERIALS AND METHODS Bacterial cultures on agar plates and induction of biofilm formations were done in four different conditions; P. aeruginosa only (group 1), P. aeruginosa+ciprofloxacin (group 2), P. aeruginosa+furanone (group 3), and P. aeruginosa+furanone+ciprofloxacin (group 4). After biofilm formation on a silicone tympanostomy tube with P. aeruginosa was established, they were treated with ciprofloxacin, furanone, and ciprofloxacin with furanone respectively. All agar plates were processed for colony counts 1 day after incubation, and silicone tympanostomy tubes were observed using scanning electron microscopy 2 days after incubation. Any changes visualized on the biofilm lining the silicone tympanostomy tubes after treatment initiation were evaluated again 2 days after each treatment. RESULTS There was no bacterial growth on the agar plate in group 4 compared to other groups and the formations of a biofilm on the surface of silicone tympanostomy tubes in group 4 were devoid. Little change to the original biofilm overlying the silicone tympanostomy tubes after each treatment was noted. CONCLUSION This study demonstrates that furanone may have a role as a QSI and can be helpful in preventing biofilm formation with ciprofloxacin in experimentally induced P. aeruginosa biofilms based on an in vitro model.
Collapse
Affiliation(s)
- Sun Gui Kim
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
23
|
Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 2011; 6:e16105. [PMID: 21267455 PMCID: PMC3022656 DOI: 10.1371/journal.pone.0016105] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 12/07/2010] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa, a gram-negative bacterium of clinical importance, forms more robust biofilm during anaerobic respiration, a mode of growth presumed to occur in abnormally thickened mucus layer lining the cystic fibrosis (CF) patient airway. However, molecular basis behind this anaerobiosis-triggered robust biofilm formation is not clearly defined yet. Here, we identified a morphological change naturally accompanied by anaerobic respiration in P. aeruginosa and investigated its effect on the biofilm formation in vitro. A standard laboratory strain, PAO1 was highly elongated during anaerobic respiration compared with bacteria grown aerobically. Microscopic analysis demonstrated that cell elongation likely occurred as a consequence of defective cell division. Cell elongation was dependent on the presence of nitrite reductase (NIR) that reduces nitrite (NO2−) to nitric oxide (NO) and was repressed in PAO1 in the presence of carboxy-PTIO, a NO antagonist, demonstrating that cell elongation involves a process to respond to NO, a spontaneous byproduct of the anaerobic respiration. Importantly, the non-elongated NIR-deficient mutant failed to form biofilm, while a mutant of nitrate reductase (NAR) and wild type PAO1, both of which were highly elongated, formed robust biofilm. Taken together, our data reveal a role of previously undescribed cell biological event in P. aeruginosa biofilm formation and suggest NIR as a key player involved in such process.
Collapse
|
24
|
|
25
|
Yoon SS. Anaerobiosis ofPseudomonas aeruginosa: Implications for Treatments of Airway Infection. ACTA ACUST UNITED AC 2010. [DOI: 10.4167/jbv.2010.40.2.59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sang Sun Yoon
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Panmanee W, Hassett DJ. Differential roles of OxyR-controlled antioxidant enzymes alkyl hydroperoxide reductase (AhpCF) and catalase (KatB) in the protection of Pseudomonas aeruginosa against hydrogen peroxide in biofilm vs. planktonic culture. FEMS Microbiol Lett 2009; 295:238-44. [PMID: 19456869 DOI: 10.1111/j.1574-6968.2009.01605.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The role of the Pseudomonas aeruginosa OxyR-controlled antioxidants alkyl hydroperoxide reductase CF (AhpCF) and catalase B (KatB) was evaluated in biofilm vs. planktonic culture upon exposure to hydrogen peroxide. AhpCF was found to be critical for survival of biofilm bacteria while KatB was more important for survival of planktonic free-swimming organisms.
Collapse
Affiliation(s)
- Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | |
Collapse
|
27
|
The peptidoglycan-associated lipoprotein OprL helps protect a Pseudomonas aeruginosa mutant devoid of the transactivator OxyR from hydrogen peroxide-mediated killing during planktonic and biofilm culture. J Bacteriol 2008; 190:3658-69. [PMID: 18310335 DOI: 10.1128/jb.00022-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OxyR controls H(2)O(2)-dependent gene expression in Pseudomonas aeruginosa. Without OxyR, diluted (<10(7)/ml) organisms are easily killed by micromolar H(2)O(2). The goal of this study was to define proteins that contribute to oxyR mutant survival in the presence of H(2)O(2). We identified proteins in an oxyR mutant that were oxidized by using 2,4-dinitrophenylhydrazine for protein carbonyl detection, followed by identification using a two-dimensional gel/matrix-assisted laser desorption ionization-time of flight approach. Among these was the peptidoglycan-associated lipoprotein, OprL. A double oxyR oprL mutant was constructed and was found to be more sensitive to H(2)O(2) than the oxyR mutant. Provision of the OxyR-regulated alkyl hydroperoxide reductase, AhpCF, but not AhpB or the catalase, KatB, helped protect this strain against H(2)O(2). Given the sensitivity of oxyR oprL bacteria to planktonic H(2)O(2), we next tested the hypothesis that the biofilm mode of growth might protect such organisms from H(2)O(2)-mediated killing. Surprisingly, biofilm-grown oxyR oprL mutants, which (in contrast to planktonic cells) possessed no differences in catalase activity compared to the oxyR mutant, were sensitive to killing by as little as 0.5 mM H(2)O(2). Transmission electron microscopy studies revealed that the integrity of both cytoplasmic and outer membranes of oxyR and oxyR oprL mutants were compromised. These studies suggest that sensitivity to the important physiological oxidant H(2)O(2) in the exquisitely sensitive oxyR mutant bacteria is based not only upon the presence and location of OxyR-controlled antioxidant enzymes such as AhpCF but also on structural reinforcement by the peptidoglycan-associated lipoprotein OprL, especially during growth in biofilms.
Collapse
|
28
|
Physiology and genetic traits of reverse osmosis membrane biofilms: a case study with Pseudomonas aeruginosa. ISME JOURNAL 2007; 2:180-94. [PMID: 18049459 DOI: 10.1038/ismej.2007.108] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biofilm formation of Pseudomonas aeruginosa on the surface of a reverse osmosis (RO) membrane was studied using a synthetic wastewater medium to simulate conditions relevant to reclamation of secondary wastewater effluent. P. aeruginosa biofilm physiology and spatial activity were analyzed following growth on the membrane using a short-life green fluorescent protein derivative expressed in a growth-dependent manner. As a consequence of the limiting carbon source prevailing in the suspended culture of the RO unit, a higher distribution of active cells was observed in the biofilm close to the membrane surface, likely due to the higher nutrient levels induced by concentration polarization effects. The faster growth of the RO-sessile cells compared to the planktonic cells in the RO unit was reflected by the transcriptome of the two cultures analyzed with DNA microarrays. In contrast to the findings recently reported in gene expression studies of P. aeruginosa biofilms, in the RO system, genes related to stress, adaptation, chemotaxis and resistance to antibacterial agents were induced in the planktonic cells. In agreement with the findings of previous P. aeruginosa biofilm studies, motility- and attachment-related genes were repressed in the RO P. aeruginosa biofilm. Supported by the microarray data, an increase in both motility and chemotaxis phenotypes was observed in the suspended cells. The increase in nutrient concentration in close proximity to the membrane is suggested to enhance biofouling by chemotaxis response of the suspended cells and their swimming toward the membrane surface.
Collapse
|
29
|
Jain A, Nishad KK, Bhosle NB. Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces. BIOFOULING 2007; 23:171-7. [PMID: 17653928 DOI: 10.1080/08927010701269641] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The effect of 2, 4-dinitrophenol (DNP) on the extracelluar polysaccharides (EPS), cell surface charge, and the hydrophobicity of six marine bacterial cultures was studied, and its influence on attachment of these bacteria to glass and polystyrene was evaluated. DNP treatment did not influence cell surface charge and EPS production, but had a significant effect on hydrophobicity of both hydrophilic (p = 0.05) and hydrophobic (p = 0.01) cultures. Significant reduction in the attachment of all the six cultures to glass (p = 0.02) and polystyrene (p = 0.03) was observed after DNP treatment. Moreover, hydrophobicity but not the cell surface charge or EPS production influenced bacterial cell attachment to glass and polystyrene. From this study, it was evident that DNP treatment influenced bacterial cell surface hydrophobicity, which in turn, reduced bacterial adhesion to surfaces.
Collapse
Affiliation(s)
- Anand Jain
- Marine Corrosion and Material Research Division, National Institute of Oceanography, Dona Paula, Goa, India.
| | | | | |
Collapse
|
30
|
Parvatiyar K, Alsabbagh EM, Ochsner UA, Stegemeyer MA, Smulian AG, Hwang SH, Jackson CR, McDermott TR, Hassett DJ. Global analysis of cellular factors and responses involved in Pseudomonas aeruginosa resistance to arsenite. J Bacteriol 2005; 187:4853-64. [PMID: 15995200 PMCID: PMC1169530 DOI: 10.1128/jb.187.14.4853-4864.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impact of arsenite [As(III)] on several levels of cellular metabolism and gene regulation was examined in Pseudomonas aeruginosa. P. aeruginosa isogenic mutants devoid of antioxidant enzymes or defective in various metabolic pathways, DNA repair systems, metal storage proteins, global regulators, or quorum sensing circuitry were examined for their sensitivity to As(III). Mutants lacking the As(III) translocator (ArsB), superoxide dismutase (SOD), catabolite repression control protein (Crc), or glutathione reductase (Gor) were more sensitive to As(III) than wild-type bacteria. The MICs of As(III) under aerobic conditions were 0.2, 0.3, 0.8, and 1.9 mM for arsB, sodA sodB, crc, and gor mutants, respectively, and were 1.5- to 13-fold less than the MIC for the wild-type strain. A two-dimensional gel/matrix-assisted laser desorption ionization-time of flight analysis of As(III)-treated wild-type bacteria showed significantly (>40-fold) increased levels of a heat shock protein (IbpA) and a putative allo-threonine aldolase (GlyI). Smaller increases (up to 3.1-fold) in expression were observed for acetyl-coenzyme A acetyltransferase (AtoB), a probable aldehyde dehydrogenase (KauB), ribosomal protein L25 (RplY), and the probable DNA-binding stress protein (PA0962). In contrast, decreased levels of a heme oxygenase (HemO/PigA) were found upon As(III) treatment. Isogenic mutants were successfully constructed for six of the eight genes encoding the aforementioned proteins. When treated with sublethal concentrations of As(III), each mutant revealed a marginal to significant lag period prior to resumption of apparent normal growth compared to that observed in the wild-type strain. Our results suggest that As(III) exposure results in an oxidative stress-like response in P. aeruginosa, although activities of classic oxidative stress enzymes are not increased. Instead, relief from As(III)-based oxidative stress is accomplished from the collective activities of ArsB, glutathione reductase, and the global regulator Crc. SOD appears to be involved, but its function may be in the protection of superoxide-sensitive sulfhydryl groups.
Collapse
Affiliation(s)
- Kislay Parvatiyar
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, OH 45267-0524, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Haque H, Cutright TJ, Newby BMZ. Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed in solution and entrapped in silicone coatings. BIOFOULING 2005; 21:109-19. [PMID: 16109600 DOI: 10.1080/08927010500222551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.
Collapse
|
32
|
Fonseca AP, Extremina C, Fonseca AF, Sousa JC. Effect of subinhibitory concentration of piperacillin/tazobactam on Pseudomonas aeruginosa. J Med Microbiol 2004; 53:903-910. [PMID: 15314198 DOI: 10.1099/jmm.0.45637-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subinhibitory concentrations (sub-MICs) of antibiotics, although not able to kill bacteria, can modify their physico-chemical characteristics and the architecture of their outermost surface and may interfere with some bacterial functions. This study investigated the ability of sub-MIC piperacillin/tazobactam (P/T) to interfere with the bacterial virulence parameters of adhesiveness, cell-surface hydrophobicity, motility, biofilm formation and sensitivity to oxidative stress. Antimicrobial activity against five Pseudomonas aeruginosa clinical isolates, representative of clonal lineages of 96 strains of nosocomial origin, and six control strains (ATCC 27853, PAO1, AK1, MT1562, PT623, PAO1algC) was evaluated in vitro using the NCCLS microdilution method. The effects of sub-MIC on bacterial adhesion and biofilm formation were studied using a modified microtitre plate assay. The relative cell-surface hydrophobicity of P. aeruginosa strains was determined by measuring their ability to adhere to n-hexadecane. P. aeruginosa that had been exposed overnight to P/T and incubated with P/T in the plate were also screened for their ability to swim using flagella and to twitch and for their sensitivity to oxidative stress. The results obtained showed that the impact of sub-MIC P/T on bacterial characteristics was different for the various strains of P. aeruginosa. There was a change in bacterial morphology and hydrophobicity that could explain a significant decrease in adhesion values in all clinical isolates and controls tested, a decrease in biofilm formation, a significant increase in sensitivity to oxidative stress, a significant decrease in flagellum-mediated swimming and a decrease in type IV fimbriae-mediated twitching. The results obtained indicate that sub-MIC P/T interferes with the pathogenic potential of P. aeruginosa.
Collapse
Affiliation(s)
- A P Fonseca
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal 2IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal 3Department of Microbiology, Faculty of Pharmacy, University of Porto, Portugal
| | - C Extremina
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal 2IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal 3Department of Microbiology, Faculty of Pharmacy, University of Porto, Portugal
| | - A F Fonseca
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal 2IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal 3Department of Microbiology, Faculty of Pharmacy, University of Porto, Portugal
| | - J C Sousa
- Department of Microbiology, Faculty of Medicine, University of Porto, Portugal 2IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Portugal 3Department of Microbiology, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
33
|
Stapper AP, Narasimhan G, Ohman DE, Barakat J, Hentzer M, Molin S, Kharazmi A, Høiby N, Mathee K. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 2004; 53:679-690. [PMID: 15184541 DOI: 10.1099/jmm.0.45539-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced byPseudomonas aeruginosastrain PAO1 and its alginate-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg+PAOmucA22and Alg−PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (bip) and Community Statistics (comstat) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating that the production of alginate is not critical for biofilm formation. Observation over a period of 5 days indicated a three-stage development pattern consisting of initiation, establishment and maturation. Furthermore, this study showed that phenotypically distinguishable biofilms can be quantitatively differentiated.
Collapse
Affiliation(s)
- Andres Plata Stapper
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Giri Narasimhan
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Dennis E Ohman
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Johnny Barakat
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Morten Hentzer
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren Molin
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Arsalan Kharazmi
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Niels Høiby
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Kalai Mathee
- Department of Biological Sciences1 and School of Computer Science2, Florida International University, Miami, FL 33199, USA 3Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA 4Section of Molecular Microbiology, The Technical University of Denmark, DK-2800 Lyngby, Denmark 5Department of Clinical Microbiology, University Hospital of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
34
|
|
35
|
|
36
|
Affiliation(s)
- N Zelver
- MSU TechLink, Montana State University, Bozeman, Montana 59718, USA
| | | | | | | |
Collapse
|
37
|
Bollinger N, Hassett DJ, Iglewski BH, Costerton JW, McDermott TR. Gene expression in Pseudomonas aeruginosa: evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol 2001; 183:1990-6. [PMID: 11222597 PMCID: PMC95094 DOI: 10.1128/jb.183.6.1990-1996.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prior studies established that the Pseudomonas aeruginosa oxidative stress response is influenced by iron availability, whereas more recent evidence demonstrated that it was also controlled by quorum sensing (QS) regulatory circuitry. In the present study, sodA (encoding manganese-cofactored superoxide dismutase [Mn-SOD]) and Mn-SOD were used as a reporter gene and endogenous reporter enzyme, respectively, to reexamine control mechanisms that govern the oxidative stress response and to better understand how QS and a nutrient stress response interact or overlap in this bacterium. In cells grown in Trypticase soy broth (TSB), Mn-SOD was found in wild-type stationary-phase planktonic cells but not in a lasI or lasR mutant. However, Mn-SOD activity was completely suppressed in the wild-type strain when TSB was supplemented with iron. Reporter gene studies indicated that sodA transcription could be variably induced in iron-starved cells of all three strains, depending on growth stage. Iron starvation induction of sodA was greatest in the wild-type strain and least in the lasR mutant and was maximal in stationary-phase cells. Reporter experiments in the wild-type strain showed increased lasI::lacZ transcription in response to iron limitation, whereas the expression level in the las mutants was minimal and iron starvation induction of lasI::lacZ did not occur. Studies comparing Mn-SOD activity in P. aeruginosa biofilms and planktonic cultures were also initiated. In wild-type biofilms, Mn-SOD was not detected until after 6 days, although in iron-limited wild-type biofilms Mn-SOD was detected within the initial 24 h of biofilm establishment and formation. Unlike planktonic bacteria, Mn-SOD was constitutive in the lasI and lasR mutant biofilms but could be suppressed if the growth medium was amended with 25 microM ferric chloride. This study demonstrated that (i) the nutritional status of the cell must be taken into account when one is evaluating QS-based gene expression; (ii) in the biofilm mode of growth, QS may also have negative regulatory functions; (iii) QS-based gene regulation models based on studies with planktonic cells must be modified in order to explain biofilm gene expression behavior; and (iv) gene expression in biofilms is dynamic.
Collapse
Affiliation(s)
- N Bollinger
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
38
|
Frederick JR, Elkins JG, Bollinger N, Hassett DJ, McDermott TR. Factors affecting catalase expression in Pseudomonas aeruginosa biofilms and planktonic cells. Appl Environ Microbiol 2001; 67:1375-9. [PMID: 11229935 PMCID: PMC92738 DOI: 10.1128/aem.67.3.1375-1379.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work with Pseudomonas aeruginosa showed that catalase activity in biofilms was significantly reduced relative to that in planktonic cells. To better understand biofilm physiology, we examined possible explanations for the differential expression of catalase in cells cultured in these two different conditions. For maximal catalase activity, biofilm cells required significantly more iron (25 microM as FeCl(3)) in the medium, whereas planktonic cultures required no addition of iron. However, iron-stimulated catalase activity in biofilms was still only about one-third that in planktonic cells. Oxygen effects on catalase activity were also investigated. Nitrate-respiring planktonic cultures produced approximately twice as much catalase activity as aerobic cultures grown in the presence of nitrate; the nitrate stimulation effect could also be demonstrated in biofilms. Cultures fermenting arginine had reduced catalase levels; however, catalase repression was also observed in aerobic cultures grown in the presence of arginine. It was concluded that iron availability, but not oxygen availability, is a major factor affecting catalase expression in biofilms.
Collapse
Affiliation(s)
- J R Frederick
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | | | |
Collapse
|
39
|
Howell ML, Alsabbagh E, Ma JF, Ochsner UA, Klotz MG, Beveridge TJ, Blumenthal KM, Niederhoffer EC, Morris RE, Needham D, Dean GE, Wani MA, Hassett DJ. AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J Bacteriol 2000; 182:4545-56. [PMID: 10913088 PMCID: PMC94626 DOI: 10.1128/jb.182.16.4545-4556.2000] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we have cloned the ankB gene, encoding an ankyrin-like protein in Pseudomonas aeruginosa. The ankB gene is composed of 549 bp encoding a protein of 183 amino acids that possesses four 33-amino-acid ankyrin repeats that are a hallmark of erythrocyte and brain ankyrins. The location of ankB is 57 bp downstream of katB, encoding a hydrogen peroxide-inducible catalase, KatB. Monomeric AnkB is a 19.4-kDa protein with a pI of 5.5 that possesses 22 primarily hydrophobic amino acids at residues 3 to 25, predicting an inner-membrane-spanning motif with the N terminus in the cytoplasm and the C terminus in the periplasm. Such an orientation in the cytoplasmic membrane and, ultimately, periplasmic space was confirmed using AnkB-BlaM and AnkB-PhoA protein fusions. Circular dichroism analysis of recombinant AnkB minus its signal peptide revealed a secondary structure that is approximately 65% alpha-helical. RNase protection and KatB- and AnkB-LacZ translational fusion analyses indicated that katB and ankB are part of a small operon whose transcription is induced dramatically by H(2)O(2), and controlled by the global transactivator OxyR. Interestingly, unlike the spherical nature of ankyrin-deficient erythrocytes, the cellular morphology of an ankB mutant was identical to that of wild-type bacteria, yet the mutant produced more membrane vesicles. The mutant also exhibited a fourfold reduction in KatB activity and increased sensitivity to H(2)O(2), phenotypes that could be complemented in trans by a plasmid constitutively expressing ankB. Our results suggest that AnkB may form an antioxidant scaffolding with KatB in the periplasm at the cytoplasmic membrane, thus providing a protective lattice work for optimal H(2)O(2) detoxification.
Collapse
Affiliation(s)
- M L Howell
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hassett DJ, Alsabbagh E, Parvatiyar K, Howell ML, Wilmott RW, Ochsner UA. A protease-resistant catalase, KatA, released upon cell lysis during stationary phase is essential for aerobic survival of a Pseudomonas aeruginosa oxyR mutant at low cell densities. J Bacteriol 2000; 182:4557-63. [PMID: 10913089 PMCID: PMC94627 DOI: 10.1128/jb.182.16.4557-4563.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Pseudomonas aeruginosa oxyR mutant was dramatically sensitive to H(2)O(2), despite possessing wild-type catalase activity. Oxygen-dependent oxyR phenotypes also included an inability to survive aerobic serial dilution in Luria broth and to resist aminoglycosides. Plating the oxyR mutant after serial dilution in its own spent culture supernatant, which contained the major catalase KatA, or under anaerobic conditions allowed for survival. KatA was resistant to sodium dodecyl sulfate, proteinase K, pepsin, trypsin, chymotrypsin and the neutrophil protease cathepsin G. When provided in trans and expressed constitutively, the OxyR-regulated genes katB, ahpB, and ahpCF could not restore both the serial dilution defect and H(2)O(2) resistance; only oxyR itself could do so. The aerobic dilution defect could be complemented, in part, by only ahpB and ahpCF, suggesting that the latter gene products could possess a catalase-like activity. Aerobic Luria broth was found to generate approximately 1.2 microM H(2)O(2) min(-1) via autoxidation, a level sufficient to kill serially diluted oxyR and oxyR katA bacteria and explain the molecular mechanism behind the aerobic serial dilution defect. Taken together, our results indicate that inactivation of OxyR renders P. aeruginosa exquisitely sensitive to both H(2)O(2) and aminoglycosides, which are clinically and environmentally important antimicrobials.
Collapse
Affiliation(s)
- D J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0524, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 2000; 182:4533-44. [PMID: 10913087 PMCID: PMC94625 DOI: 10.1128/jb.182.16.4533-4544.2000] [Citation(s) in RCA: 206] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa possesses an extensive armament of genes involved in oxidative stress defense, including katB-ankB, ahpB, and ahpC-ahpF. Transcription of these genes was regulated in response to H(2)O(2), paraquat, or organic peroxides. Expression of katB-lacZ and the observed KatB catalase levels in P. aeruginosa PAO1 were induced up to 250-fold after exposure to oxidative stress-generating compounds. Also, ahpB-lacZ and ahpC-lacZ expression was 90- and 3-fold higher, respectively, upon exposure to paraquat. The dose- and time-response curves revealed that 1 microM paraquat was sufficient for half-maximal activation of each reporter fusion within 5 min of exposure. Expression of these genes was not observed in a DeltaoxyR mutant, indicating that OxyR was essential for this response. The transcriptional start sites of katB-ankB, ahpB, and ahpC-ahpF were mapped, putative OxyR-binding sites were identified upstream of the -35 promoter elements, and direct binding of purified OxyR protein to these target promoters was demonstrated. The oxyR mutant was hypersusceptible to oxidative stress-generating agents, including H(2)O(2) and paraquat, in spite of total KatA catalase activity being comparable to that of the wild type. The oxyR phenotype was fully complemented by a plasmid containing the oxyR gene, while any of the katB, ahpB, or ahpCF genes alone resulted in only marginal complementation. Increased katB-lacZ expression and higher KatB catalase levels were detected in a DeltaahpCF background compared to wild-type bacteria, suggesting a compensatory function for KatB in the absence of AhpCF. In P. aeruginosa, oxyR is located upstream of recG, encoding a putative DNA repair enzyme. oxyR-lacZ and recG-lacZ reporter activities and oxyR-recG mRNA analysis showed that oxyR and recG are organized in an operon and expressed constitutively with regard to oxidative stress from a single promoter upstream of oxyR. Mutants affected in recG but not oxyR were dramatically impaired in DNA damage repair as measured by sensitivity to UV irradiation. In conclusion, we present evidence that the oxyR-recG locus is essential for oxidative stress defense and for DNA repair.
Collapse
Affiliation(s)
- U A Ochsner
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Stewart PS, Roe F, Rayner J, Elkins JG, Lewandowski Z, Ochsner UA, Hassett DJ. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2000; 66:836-8. [PMID: 10653761 PMCID: PMC91906 DOI: 10.1128/aem.66.2.836-838.2000] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The penetration of hydrogen peroxide into biofilms formed by wild-type and catalase-deficient Pseudomonas aeruginosa strains was measured using microelectrodes. A flowing stream of hydrogen peroxide (50 mM, 1 h) was unable to penetrate or kill wild-type biofilms but did penetrate and partially kill biofilms formed by an isogenic strain in which the katA gene was knocked out. Catalase protects aggregated bacteria by preventing full penetration of hydrogen peroxide into the biofilm.
Collapse
Affiliation(s)
- P S Stewart
- Center for Biofilm Engineering, Montana State University-Bozeman, Bozeman, Montana 59717-3980, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH. Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 1999; 34:1082-93. [PMID: 10594832 DOI: 10.1046/j.1365-2958.1999.01672.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Quorum sensing (QS) governs the production of virulence factors and the architecture and sodium dodecyl sulphate (SDS) resistance of biofilm-grown Pseudomonas aeruginosa. P. aeruginosa QS requires two transcriptional activator proteins known as LasR and RhlR and their cognate autoinducers PAI-1 (N-(3-oxododecanoyl)-L-homoserine lactone) and PAI-2 (N-butyryl-L-homoserine lactone) respectively. This study provides evidence of QS control of genes essential for relieving oxidative stress. Mutants devoid of one or both autoinducers were more sensitive to hydrogen peroxide and phenazine methosulphate, and some PAI mutant strains also demonstrated decreased expression of two superoxide dismutases (SODs), Mn-SOD and Fe-SOD, and the major catalase, KatA. The expression of sodA (encoding Mn-SOD) was particularly dependent on PAI-1, whereas the influence of autoinducers on Fe-SOD and KatA levels was also apparent but not to the degree observed with Mn-SOD. beta-Galactosidase reporter fusion results were in agreement with these findings. Also, the addition of both PAIs to suspensions of the PAI-1/2-deficient double mutant partially restored KatA activity, while the addition of PAI-1 only was sufficient for full restoration of Mn-SOD activity. In biofilm studies, catalase activity in wild-type bacteria was significantly reduced relative to planktonic bacteria; catalase activity in the PAI mutants was reduced even further and consistent with relative differences observed between each strain grown planktonically. While wild-type and mutant biofilms contained less catalase activity, they were more resistant to hydrogen peroxide treatment than their respective planktonic counterparts. Also, while catalase was implicated as an important factor in biofilm resistance to hydrogen peroxide insult, other unknown factors seemed potentially important, as PAI mutant biofilm sensitivity appeared not to be incrementally correlated to catalase levels.
Collapse
Affiliation(s)
- D J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, 231 Bethesda Avenue, Cincinnati, OH 45257-0524, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|