1
|
Seixas AI, Azevedo MM, Paes de Faria J, Fernandes D, Mendes Pinto I, Relvas JB. Evolvability of the actin cytoskeleton in oligodendrocytes during central nervous system development and aging. Cell Mol Life Sci 2019; 76:1-11. [PMID: 30302529 PMCID: PMC11105620 DOI: 10.1007/s00018-018-2915-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 01/23/2023]
Abstract
The organization of actin filaments into a wide range of subcellular structures is a defining feature of cell shape and dynamics, important for tissue development and homeostasis. Nervous system function requires morphological and functional plasticity of neurons and glial cells, which is largely determined by the dynamic reorganization of the actin cytoskeleton in response to intrinsic and extracellular signals. Oligodendrocytes are specialized glia that extend multiple actin-based protrusions to form the multilayered myelin membrane that spirally wraps around axons, increasing conduction speed and promoting long-term axonal integrity. Myelination is a remarkable biological paradigm in development, and maintenance of myelin is essential for a healthy adult nervous system. In this review, we discuss how structure and dynamics of the actin cytoskeleton is a defining feature of myelinating oligodendrocytes' biology and function. We also review "old and new" concepts to reflect on the potential role of the cytoskeleton in balancing life and death of myelin membranes and oligodendrocytes in the aging central nervous system.
Collapse
Affiliation(s)
- Ana Isabel Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal.
| | - Maria Manuela Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Joana Paes de Faria
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Diogo Fernandes
- Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory - INL, Braga, Portugal
| | - João Bettencourt Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto Campus, Porto, Portugal
| |
Collapse
|
2
|
Azevedo MM, Domingues HS, Cordelières FP, Sampaio P, Seixas AI, Relvas JB. Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics. Glia 2018; 66:1826-1844. [DOI: 10.1002/glia.23342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Maria M. Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Helena S. Domingues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Fabrice P. Cordelières
- Bordeaux Imaging Centre, UMS 3420 CNRS, CNRS-INSERM, University of Bordeaux; Bordeaux France
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Ana I. Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - João B. Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto campus; Porto Portugal
| |
Collapse
|
3
|
Ziemka-Nalecz M, Janowska J, Strojek L, Jaworska J, Zalewska T, Frontczak-Baniewicz M, Sypecka J. Impact of neonatal hypoxia-ischaemia on oligodendrocyte survival, maturation and myelinating potential. J Cell Mol Med 2017; 22:207-222. [PMID: 28782169 PMCID: PMC5742723 DOI: 10.1111/jcmm.13309] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023] Open
Abstract
Hypoxic-ischaemic episodes experienced at the perinatal period commonly lead to a development of neurological disabilities and cognitive impairments in neonates or later in childhood. Clinical symptoms often are associated with the observed alterations in white matter in the brains of diseased children, suggesting contribution of triggered oligodendrocyte/myelin pathology to the resulting disorders. To date, the processes initiated by perinatal asphyxia remain unclear, hampering the ability to develop preventions. To address the issue, the effects of temporal hypoxia-ischaemia on survival, proliferation and the myelinating potential of oligodendrocytes were evaluated ex vivo using cultures of hippocampal organotypic slices and in vivo in rat model of perinatal asphyxia. The potential engagement of gelatinases in oligodendrocyte maturation was assessed as well. The results pointed to a significant decrease in the number of oligodendrocyte progenitor cells (OPCs), which is compensated for to a certain extent by the increased rate of OPC proliferation. Oligodendrocyte maturation seemed however to be significantly altered. An ultrastructural examination of selected brain regions performed several weeks after the insult showed however that the process of developing central nervous system myelination proceeds efficiently resulting in enwrapping the majority of axons in compact myelin. The increased angiogenesis in response to neonatal hypoxic-ischaemic insult was also noticed. In conclusion, the study shows that hypoxic-ischaemic episodes experienced during the most active period of nervous system development might be efficiently compensated for by the oligodendroglial cell response triggered by the insult. The main obstacle seems to be the inflammatory process modulating the local microenvironment.
Collapse
Affiliation(s)
- Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Strojek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Jaworska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Lafrenaye AD, Fuss B. Focal adhesion kinase can play unique and opposing roles in regulating the morphology of differentiating oligodendrocytes. J Neurochem 2010; 115:269-82. [PMID: 20649846 DOI: 10.1111/j.1471-4159.2010.06926.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During development cells of the oligodendrocyte lineage undergo significant changes in morphology when they differentiate from migratory oligodendrocyte progenitors, which are mostly bipolar, into post-migratory pre-myelinating oligodendrocytes, which extend complex and expanded process networks, and then finally into mature oligodendrocytes, which generate myelin sheaths required for efficient signal propagation within the nervous system. This extensive morphological remodeling occurs in the context of a complex extracellular environment and requires significant rearrangement of the cell's cytoskeleton. The molecular mechanisms underlying this intricate integration of signals, however, remain poorly understood. A key regulator of extracellular matrix to cytoskeleton signaling is the non-receptor tyrosine kinase FAK (focal adhesion kinase). Here, we report that FAK can regulate the morphology of differentiating post-migratory pre-myelinating oligodendrocytes in a unique and opposing fashion that is dependent on the nature of the extracellular matrix and mediated largely by FAK's catalytic activity. More specifically, FAK was found to restrict process network expansion in the presence of fibronectin but to promote morphological maturation in the presence of laminin-2. In addition, FAK's restraining role predominated for postnatal day 3-derived cells, while its maturation promoting role prevailed for postnatal day 5-derived cells. Taken together, our findings reveal a complex role of FAK in regulating the morphology of post-migratory pre-myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | |
Collapse
|
5
|
Piaton G, Gould RM, Lubetzki C. Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem 2010; 114:1243-60. [PMID: 20524961 DOI: 10.1111/j.1471-4159.2010.06831.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In multiple sclerosis, CNS demyelination is often followed by spontaneous repair, mostly achieved by adult oligodendrocyte precursor cells. Extent of this myelin repair differs, ranging from very low, limited to the plaque border, to extensive, with remyelination throughout the 'shadow plaques.' In addition to restoring neuronal connectivity, new myelin is neuroprotective. It reduces axonal loss and thus disability progression. Reciprocal communication between neurons and oligodendrocytes is essential for both myelin biogenesis and myelin repair. Hence, deciphering neuron-oligodendrocyte communication is not only important for understanding myelination per se, but also the pathophysiology that underlies demyelinating diseases and the development of innovative therapeutic strategies.
Collapse
|
6
|
Forrest AD, Beggs HE, Reichardt LF, Dupree JL, Colello RJ, Fuss B. Focal adhesion kinase (FAK): A regulator of CNS myelination. J Neurosci Res 2009; 87:3456-64. [PMID: 19224576 PMCID: PMC2760606 DOI: 10.1002/jnr.22022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of the myelin sheath is a crucial step during development because it enables fast and efficient propagation of signals within the limited space of the mammalian central nervous system (CNS). During the process of myelination, oligodendrocytes actively interact with the extracellular matrix (ECM). These interactions are considered crucial for proper and timely completion of the myelin sheath. However, the exact regulatory circuits involved in the signaling events that occur between the ECM and oligodendrocytes are currently not fully understood. Therefore, in the present study we investigated the role of a known integrator of cell-ECM signaling, namely, focal adhesion kinase (FAK), in CNS myelination via the use of conditional (oligodendrocyte-specific) and inducible FAK-knockout mice (Fak(flox/flox): PLP/CreER(T) mice). When inducing FAK knockout just prior to and during active myelination of the optic nerve, we observed a significant reduction in the number of myelinated fibers on postnatal day 14. In addition, our data revealed a decreased number of primary processes extending from oligodendrocyte cell bodies at this postnatal age and on induction of FAK knockout. In contrast, myelination appeared normal on postnatal day 28. Thus, our data suggest that FAK controls the efficiency and timing of CNS myelination during its initial stages, at least in part, by regulating oligodendrocyte process outgrowth and/or remodeling.
Collapse
Affiliation(s)
- Audrey D. Forrest
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Hilary E. Beggs
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, California, USA
| | - Louis F. Reichardt
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco, California, USA
| | - Jeffrey L. Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Raymond J. Colello
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
7
|
Dennis J, White MA, Forrest AD, Yuelling LM, Nogaroli L, Afshari FS, Fox MA, Fuss B. Phosphodiesterase-Ialpha/autotaxin's MORFO domain regulates oligodendroglial process network formation and focal adhesion organization. Mol Cell Neurosci 2008; 37:412-24. [PMID: 18164210 PMCID: PMC2267004 DOI: 10.1016/j.mcn.2007.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Revised: 10/23/2007] [Accepted: 10/30/2007] [Indexed: 10/22/2022] Open
Abstract
Development of a complex process network by maturing oligodendrocytes is a critical but currently poorly characterized step toward myelination. Here, we demonstrate that the matricellular oligodendrocyte-derived protein phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX) and especially its MORFO domain are able to promote this developmental step. In particular, the single EF hand-like motif located within PD-Ialpha/ATX's MORFO domain was found to stimulate the outgrowth of higher order branches but not process elongation. This motif was also observed to be critical for the stimulatory effect of PD-Ialpha/ATX's MORFO domain on the reorganization of focal adhesions located at the leading edge of oligodendroglial protrusions. Collectively, our data suggest that PD-Ialpha/ATX promotes oligodendroglial process network formation and expansion via the cooperative action of multiple functional sites located within the MORFO domain and more specifically, a novel signaling pathway mediated by the single EF hand-like motif and regulating the correlated events of process outgrowth and focal adhesion organization.
Collapse
Affiliation(s)
- Jameel Dennis
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Michael A. White
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Audrey D. Forrest
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Larra M. Yuelling
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Luciana Nogaroli
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
- Graduate Program in Biological Sciences, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil
| | - Fatemah S. Afshari
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Michael A. Fox
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| |
Collapse
|
8
|
Sloane JA, Vartanian TK. Myosin Va controls oligodendrocyte morphogenesis and myelination. J Neurosci 2007; 27:11366-75. [PMID: 17942731 PMCID: PMC6673025 DOI: 10.1523/jneurosci.2326-07.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/13/2007] [Accepted: 08/15/2007] [Indexed: 11/21/2022] Open
Abstract
A product of myosin Va mutations, Griscelli's syndrome type 1 (GS1) is characterized by several neurologic deficits including quadraparesis, mental retardation, and seizures. Although multiple studies have not clearly established a cause for the neurologic deficits linked with GS1, a few reports suggest that GS1 is associated with abnormal myelination, which could cause the neurologic deficits seen with GS1. In this report, we investigate whether myosin Va is critical to oligodendrocyte morphology and to myelination in vivo. We found that myosin Va-null mice exhibit significantly impaired myelination of the brain, optic nerve, and spinal cord. Oligodendrocytes express myosin Va and loss of myosin Va function resulted in significantly smaller lamellas and decreased process number, length, and branching of oligodendrocytes. Loss of myosin Va function also blocked distal localization of vesicle-associated membrane protein 2 (VAMP2), which is known to associate with myosin Va. When VAMP2 function was disrupted, oligodendrocytes exhibited similar morphologic deficits to what is seen with functional ablation of myosin Va. Our findings establish a role for both myosin Va and VAMP2 in oligodendrocyte function as it relates to myelination.
Collapse
Affiliation(s)
- Jacob A. Sloane
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02215
| | - Timothy K. Vartanian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts 02215
| |
Collapse
|
9
|
Gregg C, Shikar V, Larsen P, Mak G, Chojnacki A, Yong VW, Weiss S. White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci 2007; 27:1812-23. [PMID: 17314279 PMCID: PMC6673564 DOI: 10.1523/jneurosci.4441-06.2007] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myelination, the process in which oligodendrocytes coat CNS axons with a myelin sheath, represents an important but poorly understood form of neural plasticity that may be sexually dimorphic in the adult CNS. Remission of multiple sclerosis during pregnancy led us to hypothesize that remyelination is enhanced in the maternal brain. Here we report an increase in the generation of myelin-forming oligodendrocytes and in the number of myelinated axons in the maternal murine CNS. Remarkably, pregnant mice have an enhanced ability to remyelinate white matter lesions. The hormone prolactin regulates oligodendrocyte precursor proliferation and mimics the regenerative effects of pregnancy. This suggests that maternal white matter plasticity imparts a striking ability to repair demyelination and identifies prolactin as a potential therapeutic agent.
Collapse
Affiliation(s)
- Christopher Gregg
- Hotchkiss Brain Institute, Departments of Cell Biology, and Anatomy and Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Viktor Shikar
- Hotchkiss Brain Institute, Departments of Cell Biology, and Anatomy and Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Peter Larsen
- Hotchkiss Brain Institute, Departments of Cell Biology, and Anatomy and Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Gloria Mak
- Hotchkiss Brain Institute, Departments of Cell Biology, and Anatomy and Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Andrew Chojnacki
- Hotchkiss Brain Institute, Departments of Cell Biology, and Anatomy and Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - V. Wee Yong
- Hotchkiss Brain Institute, Departments of Cell Biology, and Anatomy and Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Samuel Weiss
- Hotchkiss Brain Institute, Departments of Cell Biology, and Anatomy and Clinical Neurosciences, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
10
|
Fox MA, Alexander JK, Afshari FS, Colello RJ, Fuss B. Phosphodiesterase-I alpha/autotaxin controls cytoskeletal organization and FAK phosphorylation during myelination. Mol Cell Neurosci 2005; 27:140-50. [PMID: 15485770 DOI: 10.1016/j.mcn.2004.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 05/12/2004] [Accepted: 06/08/2004] [Indexed: 11/26/2022] Open
Abstract
Myelination within the central nervous system (CNS) involves substantial morphogenesis of oligodendrocytes requiring plastic changes in oligodendrocyte-extracellular matrix (ECM) interactions, that is, adhesion. Our previous studies indicated that a regulator of such adhesive plasticity is oligodendrocyte-released phosphodiesterase-I alpha/autotaxin (PD-I alpha/ATX). We report here, that PD-I alpha/ATX's adhesion antagonism is mediated by a protein fragment different from the one that stimulates tumor cell motility. Furthermore, PD-I alpha/ATX's adhesion-antagonizing fragment causes a reorganized distribution of the focal adhesion components vinculin and paxillin and an integrin-dependent reduction in focal adhesion kinase (FAK) phosphorylation at tyrosine residue 925 (pFAK-925). In vivo, a similar reduction in pFAK-925 occurs at the onset of myelination when PD-I alpha/ATX expression is significantly upregulated. Most importantly, it can also be induced by the application of exogenous PD-I alpha/ATX. Our data, therefore, suggest that PD-I alpha/ATX participates in the regulation of myelination via a novel signaling pathway leading to changes in integrin-dependent focal adhesion assembly and consequently oligodendrocyte-ECM interactions.
Collapse
Affiliation(s)
- Michael A Fox
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | |
Collapse
|
11
|
Rodriguez-Gabin AG, Almazan G, Larocca JN. Vesicle transport in oligodendrocytes: probable role of Rab40c protein. J Neurosci Res 2004; 76:758-70. [PMID: 15160388 DOI: 10.1002/jnr.20121] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracellular membrane trafficking plays an essential role in the structural and functional organization of oligodendrocytes, which synthesize a large amount of membrane to form myelin. Rab proteins are key components in intracellular vesicular transport. We cloned a novel Rab protein from an oligodendrocyte cDNA library, designating it Rab40c because of its homology with Rab40a and Rab40b. The DNA sequence of Rab40c shows an 843-base pair open reading frame. The deduced amino acid sequence is a protein with 281 amino acids, with a molecular weight of 31,466 Da and an isoelectric point of 9.83. Rab40c presents a number of distinct structural features including a carboxyl terminal extension and amino acid substitutions in the consensus sequence of the GTP-binding motifs. The carboxyl terminal region contains motifs that permit isoprenylation and palmitoylation. Binding studies indicate that Rab40c binds guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S) with a K(d) of 21 microM and has a higher affinity for guanosine triphosphate (GTP) than for guanosine diphosphate (GDP). Rab40c is localized in the perinuclear recycling compartment, suggesting its involvement in endocytic events such as receptor recycling. The importance of this recycling in myelin formation is suggested by the increase in both Rab40c mRNA and Rab40c protein as oligodendrocytes differentiate.
Collapse
Affiliation(s)
- A G Rodriguez-Gabin
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
12
|
Chauvet N, Privat A, Prieto M. Differential expression of p120 catenin in glial cells of the adult rat brain. J Comp Neurol 2004; 479:15-29. [PMID: 15389614 DOI: 10.1002/cne.20301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
p120 catenin (p120ctn) is involved in the regulation of cadherin-mediated adhesion and the dynamic organization of the actin cytoskeleton by modulating RhoGTPase activity. We have previously described the distribution of p120ctn during rat brain development and provided substantial evidence for the potential involvement of p120ctn in morphogenetic events and plasticity in the central nervous system. Here, we analyzed the cellular and ultrastructural distribution of p120ctn in glial cells of the adult rat forebrain. The highest intensity of immunostaining for p120ctn was found in cells of the choroid plexus and ependyma and was mainly restricted to the plasma membrane. However, p120ctn was almost absent from astrocytes. In contrast, in tanycytes, a particular glial cell exhibiting remarkable morphological plasticity, p120ctn, was localized at the plasma membrane and also in the cytoplasm. We show that a large subpopulation of oligodendrocytes expressed multiple isoforms, whereas other neural cells predominantly expressed isoform 1, and that p120ctn immunoreactivity was distributed through the cytoplasm and at certain portions of the plasma membrane. Finally, p120ctn was expressed by a small population of cortical NG2-expressing cells, whereas it was expressed by a large population of these cells in the white matter. However, in both regions, proliferating NG2-positive cells consistently expressed p120ctn. The expression of p120ctn by cells of the oligodendrocyte lineage suggests that p120ctn may participate in oligodendrogenesis and myelination. Moreover, the expression of p120ctn by various cell types and its differential subcellular distribution strongly suggest that p120ctn may serve multiple functions in the central nervous system.
Collapse
Affiliation(s)
- Norbert Chauvet
- Institut National de la Santé et de la Recherche Médicale U583, Institut des Neurosciences de Montpellier, 34095 Montpellier, France.
| | | | | |
Collapse
|
13
|
Fox MA, Colello RJ, Macklin WB, Fuss B. Phosphodiesterase-Ialpha/autotaxin: a counteradhesive protein expressed by oligodendrocytes during onset of myelination. Mol Cell Neurosci 2003; 23:507-19. [PMID: 12837632 DOI: 10.1016/s1044-7431(03)00073-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The initial stages of central nervous system (CNS) myelination require complex interactions of oligodendrocytes with their surrounding extracellular environment. In the present study, we demonstrate that commencing with active myelination oligodendrocytes express phosphodiesterase-Ialpha/autotaxin [PD-Ialpha/ATX (NPP-2)] as a non-membrane-associated extracellular factor. As such a component of the extracellular environment, PD-Ialpha/ATX has the ability to antagonize the adhesive interactions between oligodendroglial cells and known extracellular matrix (ECM) molecules present in the developing CNS. This counteradhesion requires intracellular signaling through heterotrimeric G proteins on fibronectin substrates and thus represents an active cellular response. Similar counteradhesive effects in other systems have been attributed to the activity of matricellular proteins, which support intermediate stages of cell adhesion thought to facilitate cellular locomotion and remodeling. Thus, the release of PD-Ialpha/ATX may be critically involved in the regulation of the initial stages of myelination, i.e., oligodendrocyte remodeling, via modulation of oligodendrocyte-ECM interactions in a matricellular fashion.
Collapse
Affiliation(s)
- Michael A Fox
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
14
|
Myelin proteolipid protein forms a complex with integrins and may participate in integrin receptor signaling in oligodendrocytes. J Neurosci 2002. [PMID: 12196561 DOI: 10.1523/jneurosci.22-17-07398.2002] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myelination of axons in the CNS by oligodendrocytes is a process critical to rapid and efficient impulse conduction. A new role for the myelin proteolipid protein (PLP), the most abundant protein of CNS myelin, has been identified, in studies showing PLP interaction with signaling proteins in oligodendrocytes. In particular, these studies suggest that the PLP protein may be involved in signaling through integrins in oligodendrocytes. Stimulation of muscarinic acetylcholine receptors on oligodendrocytes induced formation of a tripartite complex containing PLP, calreticulin, and alpha(v)-integrin. PLP interacted directly with the cytoplasmic domain of the alpha(v)-integrin. Complex formation was mediated by phospholipase C and Ca2+ binding to the high affinity binding site on calreticulin. This complex appears important for binding of fibronectin to oligodendrocytes. These data establish a novel function for PLP as a part of the integrin signaling complex in oligodendrocytes and suggest that neurotransmitter-mediated integrin receptor signaling may be involved in myelinogenesis.
Collapse
|
15
|
Saulnier R, De Repentigny Y, Yong VW, Kothary R. Alterations in myelination in the central nervous system of dystonia musculorum mice. J Neurosci Res 2002; 69:233-42. [PMID: 12111805 DOI: 10.1002/jnr.10289] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Dystonia musculorum (dt) is an autosomal recessive sensory neuropathy in mice resulting from a mutation in the gene encoding the cytoskeletal linker protein Bpag1. In addition to neurodegeneration, dt mice display myelination abnormalities in the peripheral nervous system. In this report we investigated whether myelination abnormalities are also present in the central nervous system of dt(Tg4) mice. Transcripts for both neural isoforms of Bpag1 (a1 and a2) were detected in optic nerves and spinal cords of wild-type mice. Light microscopy of resin-embedded thin sections revealed a reduction in myelinated axons in both optic nerves and spinal cords in dt(Tg4) mice. As well, hypermyelinated axons were detected in these tissues. Ultrastructural analysis of optic nerves and spinal cords from dt(Tg4) mice revealed an increase in the number of amyelinated axons, the presence of hypo- and hypermyelinated axons, and redundant myelin that course away from axons. Changes in the level of myelin proteins accompanied the morphological alterations. Myelin-associated glycoprotein levels were reduced in optic nerves of dt(Tg4) mice, and myelin basic protein levels were altered in optic nerves, sciatic nerves, and spinal cords of affected mice. Short-term cultures of oligodendrocytes derived from dt(Tg4) mice did not show morphological alterations.
Collapse
Affiliation(s)
- Ron Saulnier
- Ottawa Health Research Institute and The University of Ottawa Center for Neuromuscular Disease, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|