1
|
Dolatabadi EN, Akbarzadeh Zaky MR, Abbas FH, Milani AE, André H, Alizadeh E. Recent Advances on Modeling Retinal Disease: Towards Efficient Gene/Drug Therapy. Exp Eye Res 2025; 256:110416. [PMID: 40320033 DOI: 10.1016/j.exer.2025.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/22/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Advanced modeling biotechnologies are required to understand retinal diseases and develop effective treatments based on the patient's genetic background, lifestyle, and environment. In this work, recent advances in different types of study models that are used in the retinal disease area of research will be explored. The retinal models to be covered are: in vivo systems (human and animal), in vitro organisms (cell lines, primary cells, patient-derived stem cells, microfluidics, organoids, and spheroids), ex vivo models (explant cultures and retinal tissue preparations), and in silico models (computational and mathematical). Moreover, the unique comprehension of models of retinal disease, advantages, and disadvantages will be scrutinized. Finally, innovations/improvements derived from models towards gene and pharmacological therapy that display promise for treating retinal illnesses are elucidated.
Collapse
Affiliation(s)
- Elham Norouz Dolatabadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatima Hashim Abbas
- Department of Aesthetic and Laser Techniques, College of Health and Medical Techniques, Al-Mustagbal University, Babylon, Iraq
| | | | - Helder André
- Department of Clinical Neuroscience, Karolinska Institute, Karolinska, Sweden
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Yang L, Yao S, Chen P, Shen M, Fu S, Xing J, Xue Y, Chen X, Wen X, Zhao Y, Li W, Ma H, Li S, Tuchin VV, Zhao Q. Unpaired fundus image enhancement based on constrained generative adversarial networks. JOURNAL OF BIOPHOTONICS 2024:e202400168. [PMID: 38962821 DOI: 10.1002/jbio.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Fundus photography (FP) is a crucial technique for diagnosing the progression of ocular and systemic diseases in clinical studies, with wide applications in early clinical screening and diagnosis. However, due to the nonuniform illumination and imbalanced intensity caused by various reasons, the quality of fundus images is often severely weakened, brings challenges for automated screening, analysis, and diagnosis of diseases. To resolve this problem, we developed strongly constrained generative adversarial networks (SCGAN). The results demonstrate that the quality of various datasets were more significantly enhanced based on SCGAN, simultaneously more effectively retaining tissue and vascular information under various experimental conditions. Furthermore, the clinical effectiveness and robustness of this model were validated by showing its improved ability in vascular segmentation as well as disease diagnosis. Our study provides a new comprehensive approach for FP and also possesses the potential capacity to advance artificial intelligence-assisted ophthalmic examination.
Collapse
Affiliation(s)
- Luyao Yang
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Shenglan Yao
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Pengyu Chen
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Mei Shen
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Suzhong Fu
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Jiwei Xing
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Yuxin Xue
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
| | - Xin Chen
- Department of Orthopedics and Traumatology of Traditional Chinese Medicine, Xiamen Third Hospital, Xiamen, China
| | - Xiaofei Wen
- Department of Interventional Radiology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yang Zhao
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Wei Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xian, China
| | - Shiying Li
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Valery V Tuchin
- Institute of Physics and Science Medical Center, Saratov State University, Saratov, Russia
| | - Qingliang Zhao
- School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
3
|
Wu J, Liu W, Zhu S, Liu H, Chen K, Zhu Y, Li Z, Yang C, Pan L, Li R, Lin C, Tian J, Ren J, Xu L, Yu H, Luo F, Huang Z, Su W, Wang N, Zhuo Y. Design, methodology, and preliminary results of the non-human primates eye study. BMC Ophthalmol 2023; 23:53. [PMID: 36750922 PMCID: PMC9903517 DOI: 10.1186/s12886-023-02796-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
PURPOSE To describe the normative profile of ophthalmic parameters in a healthy cynomolgus monkey colony, and to identify the characteristic of the spontaneous ocular disease non-human primates (NHP) models. METHODS The NHP eye study was a cross-sectional on-site ocular examination with about 1,000 macaques held in Guangdong Province, southeastern China. The NHPs (Macaca fascicularis, cynomolgus) in this study included middle-aged individuals with a high prevalence of the ocular disease. The NHP eye study (NHPES) performed the information including systematic data and ocular data. Ocular examination included measurement of intraocular pressure (IOP), anterior segment- optical coherence tomography (OCT), slit-lamp examination, fundus photography, autorefraction, electroretinography, etc. Ocular diseases included measurement of refractive error, anisometropia, cataract, pterygium, etc. RESULTS: A total of 1148 subjects were included and completed the ocular examination. The average age was 16.4 ± 4.93 years. Compared to the male participants, the females in the NHPES had shorter axial length and the mean Average retinal nerve fiber layer (RNFL) thickness (except for the nasal quadrants). The mean IOP, anterior chamber depth, lens thickness, axial length, central corneal thickness, choroid thickness and other parameters were similar in each group. CONCLUSION The NHPES is a unique and high-quality study, this is the first large macaque monkey cohort study focusing on ocular assessment along with comprehensive evaluation. Results from the NHPES will provide important information about the normal range of ophthalmic measurements in NHP.
Collapse
Affiliation(s)
- Jian Wu
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Wei Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Sirui Zhu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Hongyi Liu
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China
| | - Kezhe Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Chenlong Yang
- Department of Neurosurgery, Peking University Third Hospital, Haidian District, Beijing, China
| | - Lijie Pan
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China
| | - Ruyue Li
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China
| | - Caixia Lin
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China
| | - Jiaxin Tian
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China
| | - Jiaoyan Ren
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Liangzhi Xu
- Guangzhou Huazhen Biosciences, Guangzhou, 510900, China
| | - Hanxiang Yu
- Guangzhou Huazhen Biosciences, Guangzhou, 510900, China
| | - Fagao Luo
- Guangzhou Huazhen Biosciences, Guangzhou, 510900, China
| | - Zhiwei Huang
- Guangzhou Huazhen Biosciences, Guangzhou, 510900, China
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Ningli Wang
- Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing, 100730, China.
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, 510060, China.
| |
Collapse
|
4
|
Garner MA, Strickland RG, Girkin CA, Gross AK. Mechanisms of retinal ganglion cell injury following acute increases in intraocular pressure. FRONTIERS IN OPHTHALMOLOGY 2022; 2:1007103. [PMID: 38983517 PMCID: PMC11182138 DOI: 10.3389/fopht.2022.1007103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/26/2022] [Indexed: 07/11/2024]
Abstract
The maintenance of intraocular pressure (IOP) is critical to preserving the pristine optics required for vision. Disturbances in IOP can directly impact the optic nerve and retina, and inner retinal injury can occur following acute and chronic IOP elevation. There are a variety of animal models that have been developed to study the effects of acute and chronic elevation of IOP on the retina, retinal ganglion cell (RGC) morphology, intracellular signaling, gene expression changes, and survival. Acute IOP models induce injury that allows for the study of RGC response to well characterized injury and potential recovery. This review will focus on the initial impact of acute IOP elevation on RGC injury and recovery as these early responses may be the best targets for potential therapeutic interventions to promote RGC survival in glaucoma.
Collapse
Affiliation(s)
- Mary Anne Garner
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ryan G. Strickland
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher A. Girkin
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K. Gross
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Ophthalmology and Visual Sciences, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Retinal ganglion cell loss in an ex vivo mouse model of optic nerve cut is prevented by curcumin treatment. Cell Death Discov 2021; 7:394. [PMID: 34911931 PMCID: PMC8674341 DOI: 10.1038/s41420-021-00760-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Retinal ganglion cell (RGC) loss is a pathologic feature common to several retinopathies associated to optic nerve damage, leading to visual loss and blindness. Although several scientific efforts have been spent to understand the molecular and cellular changes occurring in retinal degeneration, an effective therapy to counteract the retinal damage is still not available. Here we show that eyeballs, enucleated with the concomitant optic nerve cut (ONC), when kept in PBS for 24 h showed retinal and optic nerve degeneration. Examining retinas and optic nerves at different time points in a temporal window of 24 h, we found a thinning of some retinal layers especially RGC's layer, observing a powerful RGC loss after 24 h correlated with an apoptotic, MAPKs and degradative pathways dysfunctions. Specifically, we detected a time-dependent increase of Caspase-3, -9 and pro-apoptotic marker levels, associated with a strong reduction of BRN3A and NeuN levels. Importantly, a powerful activation of JNK, c-Jun, and ERK signaling (MAPKs) were observed, correlated with a significant augmented SUMO-1 and UBC9 protein levels. The degradation signaling pathways was also altered, causing a significant decrease of ubiquitination level and an increased LC3B activation. Notably, it was also detected an augmented Tau protein level. Curcumin, a powerful antioxidant natural compound, prevented the alterations of apoptotic cascade, MAPKs, and SUMO-1 pathways and the degradation system, preserving the RGC survival and the retinal layer thickness. This ex vivo retinal degeneration model could be a useful method to study, in a short time window, the effect of neuroprotective tools like curcumin that could represent a potential treatment to contrast retinal cell death.
Collapse
|
6
|
van der Merwe Y, Murphy MC, Sims JR, Faiq MA, Yang XL, Ho LC, Conner IP, Yu Y, Leung CK, Wollstein G, Schuman JS, Chan KC. Citicoline Modulates Glaucomatous Neurodegeneration Through Intraocular Pressure-Independent Control. Neurotherapeutics 2021; 18:1339-1359. [PMID: 33846961 PMCID: PMC8423893 DOI: 10.1007/s13311-021-01033-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2021] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is a neurodegenerative disease that causes progressive, irreversible vision loss. Currently, intraocular pressure (IOP) is the only modifiable risk factor for glaucoma. However, glaucomatous degeneration may continue despite adequate IOP control. Therefore, there exists a need for treatment that protects the visual system, independent of IOP. This study sought, first, to longitudinally examine the neurobehavioral effects of different magnitudes and durations of IOP elevation using multi-parametric magnetic resonance imaging (MRI), optokinetics and histology; and, second, to evaluate the effects of oral citicoline treatment as a neurotherapeutic in experimental glaucoma. Eighty-two adult Long Evans rats were divided into six groups: acute (mild or severe) IOP elevation, chronic (citicoline-treated or untreated) IOP elevation, and sham (acute or chronic) controls. We found that increasing magnitudes and durations of IOP elevation differentially altered structural and functional brain connectivity and visuomotor behavior, as indicated by decreases in fractional anisotropy in diffusion tensor MRI, magnetization transfer ratios in magnetization transfer MRI, T1-weighted MRI enhancement of anterograde manganese transport, resting-state functional connectivity, visual acuity, and neurofilament and myelin staining along the visual pathway. Furthermore, 3 weeks of oral citicoline treatment in the setting of chronic IOP elevation significantly reduced visual brain integrity loss and visual acuity decline without altering IOP. Such effects sustained after treatment was discontinued for another 3 weeks. These results not only illuminate the close interplay between eye, brain, and behavior in glaucomatous neurodegeneration, but also support a role for citicoline in protecting neural tissues and visual function in glaucoma beyond IOP control.
Collapse
Affiliation(s)
- Yolandi van der Merwe
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew C Murphy
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey R Sims
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Muneeb A Faiq
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Xiao-Ling Yang
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leon C Ho
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ian P Conner
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yu Yu
- Pleryon Therapeutics Limited, Shenzhen, China
| | - Christopher K Leung
- University Eye Center, Hong Kong Eye Hospital, Hong Kong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gadi Wollstein
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
| | - Joel S Schuman
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Kevin C Chan
- UPMC Eye Center, Eye and Ear Institute, Ophthalmology and Visual Science Research Center, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Center for Neural Science, College of Arts and Science, New York University, New York, NY, USA.
- Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
- Neuroscience Institute, NYU Grossman School of Medicine, NYU Langone Health, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Kalatanova AV, Pobeda AS, Abasheva DA, Dolzhikov AA, Peresypkina AA, Pokrovskii MV. [Electroretinography in evaluation of neuroprotective effect in an experimental model of glaucoma]. Vestn Oftalmol 2021; 137:86-92. [PMID: 34156782 DOI: 10.17116/oftalma202113703186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
UNLABELLED For drugs that have a therapeutic effect on glaucoma through mechanisms not associated with decreasing intraocular pressure (IOP), special attention is paid to the choice of effectiveness criteria. The article examines the possibility of using a- and waves of electroretinography (ERG) in preclinical studies to predict the effectiveness of glaucoma drug candidates. PURPOSE To examine the possibility of reliably associating changes in the amplitude of a- and ERG waves with functional changes in the retina of experimental glaucoma rats with morphological evidence of loss of functional integrity of the retina. MATERIAL AND METHODS The study was carried out in the laboratory of the Research Institute of Pharmacology of Living Systems of the Belgorod State University. Adult outbred rats were used as a test system. Experimental glaucoma was modelled by multiple injections of hyaluronic acid into the anterior chamber of the eye; they were examined by recording the time history of intraocular pressure changes, and performing ERG, ophthalmoscopy, and histological examination of the retina and subcortical centers of vision. The following groups were formed: intact, pathology control, positive control. RESULTS The development of glaucoma in experimental rats was accompanied by neuronal death in the ganglionic layer of the retina; at the same time, characteristic changes were observed in the subcortical visual centers. A change in the ERG was recorded: for thewave, there was a dependence on the degree of changes in the ganglionic layer of the retina, change in the wave can also indicate the involvement of amacrine and horizontal cells in the process; for the a-wave, a correlation with the results of photoreceptor layer histology was noted, which was characterized as a deviation from the norm developing against the background of hydrodynamic load in the eye chambers. CONCLUSION ERG is suitable for use in preclinical studies of glaucoma drugs as an indicative in vivo method for diagnosing the state of the retina in animals. The use of this method is especially valuable for conducting preclinical studies of drugs that involve long-term use when ophthalmoscopy and intraocular pressure alone cannot fully characterize the course of glaucoma, and animal euthanasia seems unnecessary and inhumane.
Collapse
Affiliation(s)
| | - A S Pobeda
- Research Institute of Pharmacology of Living Systems of the Belgorod State University, Belgorod, Russia
| | | | - A A Dolzhikov
- Research Institute of Pharmacology of Living Systems of the Belgorod State University, Belgorod, Russia
| | - A A Peresypkina
- Research Institute of Pharmacology of Living Systems of the Belgorod State University, Belgorod, Russia
| | - M V Pokrovskii
- Research Institute of Pharmacology of Living Systems of the Belgorod State University, Belgorod, Russia
| |
Collapse
|
8
|
Hannon BG, Feola AJ, Gerberich BG, Read AT, Prausnitz MR, Ethier CR, Pardue MT. Using retinal function to define ischemic exclusion criteria for animal models of glaucoma. Exp Eye Res 2020; 202:108354. [PMID: 33171192 DOI: 10.1016/j.exer.2020.108354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/29/2022]
Abstract
Most animal models of glaucoma rely on induction of ocular hypertension (OHT), yet such models can suffer from high IOPs leading to undesirable retinal ischemia. Thus, animals with IOPs exceeding a threshold (e.g. > 60 mmHg) are often excluded from studies. However, due to the intermittent nature of IOP measurements, this approach may fail to detect ischemia. Conversely, it may also inappropriately eliminate animals with IOP spikes that do not induce ischemic damage. It is known that acute ischemia selectively impairs inner retinal function, which results in a reduced b-wave amplitude. Here, we explore the potential of using electroretinography (ERG) to detect ischemic damage in OHT eyes. 74 Brown Norway rats received a unilateral injection of magnetic microbeads to induce OHT, while contralateral eyes served as controls. IOP was measured every 2-3 days for 14 days after microbead injection. Retinal function was evaluated using dark-adapted bright flash ERG (2.1 log cd•s/m2) prior to, and at 7 and 14 days after, injection. We investigated two criteria for excluding animals: (IOP Criterion) a single IOP measurement > 60 mmHg; or (ERG Criterion) a b-wave amplitude below the 99.5% confidence interval for naïve eyes. 49 of 74 rats passed both criteria, 7 of 74 failed both, and 18 passed one criterion but not the other. We suggest that ERG testing can detect unwelcome ischemic damage in animal models of OHT. Since brief IOP spikes do not necessarily lead to ischemic retinal damage, and because extended periods of elevated IOP can be missed, such ERG-based criteria may provide more objective and robust exclusion criteria in future glaucoma studies.
Collapse
Affiliation(s)
- Bailey G Hannon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew J Feola
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veteran Affairs Healthcare System, Atlanta, GA, USA
| | - Brandon G Gerberich
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - A Thomas Read
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veteran Affairs Healthcare System, Atlanta, GA, USA
| | - Mark R Prausnitz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - C Ross Ethier
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veteran Affairs Healthcare System, Atlanta, GA, USA.
| |
Collapse
|
9
|
Allen RS, Douglass A, Vo H, Feola AJ. Ovariectomy worsens visual function after mild optic nerve crush in rodents. Exp Eye Res 2020; 202:108333. [PMID: 33129829 DOI: 10.1016/j.exer.2020.108333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022]
Abstract
Glaucoma is the leading cause of irreversible blindness worldwide, and women represent roughly 60% of the affected population. Early menopause and estrogen signaling defects are risk factors for glaucoma. Recently, we found that surgical menopause exacerbated visual dysfunction in an ocular hypertension model of glaucoma. Here, we investigated if surgical menopause exacerbated visual dysfunction in a model of direct retinal ganglion cell (RGC) damage via optic nerve crush (ONC). Female Long Evans rats (n = 12) underwent ovariectomy (OVX) to induce surgical menopause or Sham surgery. Eight weeks post-surgery, baseline visual function was assessed via optomotor response. Afterwards, rats underwent monocular ONC. Visual function was assessed at 4, 8, and 12 weeks post-ONC. At 12 weeks, retinal function via electroretinography and retinal nerve fiber layer (RNFL) thickness via optical coherence tomography were measured. Visual acuity was reduced after ONC (p < 0.001), with surgical menopausal animals having 31.7% lower visual acuity than Sham animals at 12 weeks (p = 0.01). RNFL thinning (p < 0.0001) and decreased RGC function (p = 0.0016) occurred at 12 weeks in ONC groups. Surgical menopause worsens visual acuity after direct RGC damage using an ONC model. This demonstrates that surgical menopause plays a role in visual function after injury.
Collapse
Affiliation(s)
- Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Amber Douglass
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA
| | - Harrison Vo
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA
| | - Andrew J Feola
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Atlanta, GA, USA; Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Yu H, Zhong H, Chen J, Sun J, Huang P, Xu X, Huang S, Zhong Y. Efficacy, Drug Sensitivity, and Safety of a Chronic Ocular Hypertension Rat Model Established Using a Single Intracameral Injection of Hydrogel into the Anterior Chamber. Med Sci Monit 2020; 26:e925852. [PMID: 32997651 PMCID: PMC7534505 DOI: 10.12659/msm.925852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Chronic ocular hypertension (COH) models mostly focus on changes in intraocular pressure (IOP) and loss of retinal ganglion cells (RGCs). The present study evaluated important glaucoma-related changes in visual function, response to common ocular hypotensive drugs, and safety for our previously developed rat model. Material/Methods The model was established through a single injection of hydrogel into the anterior chambers. Efficacy was assessed through F-VEP by measuring latency and amplitude of P1. We evenly divided 112 rats into 4 groups: control and COH at 2, 4, and 8 weeks. Response to 5 common drugs (brimonidine, timolol, benzamide, pilocarpine, and bimatoprost) were each tested on 6 rats and assessed using difference in IOP. Safety assessment was conducted through histological analysis of 24 rats evenly divided into 4 groups of control and COH at 2, 4, and 8 weeks. Corneal endothelial cells (CECs) of 24 additional rats were used to determine toxic effects through TUNEL and CCK-8 assays. Results P1 latency and amplitude of VEP demonstrated the model is effective in inducing optic nerve function impairment. Only the drug pilocarpine failed to have an obvious hypotensive effect, while the other 4 were effective. CECs at 2, 4, and 8 weeks showed no significant differences from control groups in results of histological analysis, TUNEL, and CCK-8 assays. Conclusions A single injection of hydrogel into the anterior chamber is effective for modeling COH, can respond to most commonly used hypotensive drugs, and is non-toxic to the eyes.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Huimin Zhong
- Shanghai Jiaotong University School of Medicine, Shanghai, China (mainland)
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China (mainland)
| |
Collapse
|
11
|
Wójcik-Gryciuk A, Gajewska-Woźniak O, Kordecka K, Boguszewski PM, Waleszczyk W, Skup M. Neuroprotection of Retinal Ganglion Cells with AAV2-BDNF Pretreatment Restoring Normal TrkB Receptor Protein Levels in Glaucoma. Int J Mol Sci 2020; 21:ijms21176262. [PMID: 32872441 PMCID: PMC7504711 DOI: 10.3390/ijms21176262] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Intravitreal delivery of brain-derived neurotrophic factor (BDNF) by injection of recombinant protein or by gene therapy can alleviate retinal ganglion cell (RGC) loss after optic nerve injury (ONI) or laser-induced ocular hypertension (OHT). In models of glaucoma, BDNF therapy can delay or halt RGCs loss, but this protection is time-limited. The decreased efficacy of BDNF supplementation has been in part attributed to BDNF TrkB receptor downregulation. However, whether BDNF overexpression causes TrkB downregulation, impairing long-term BDNF signaling in the retina, has not been conclusively proven. After ONI or OHT, when increased retinal BDNF was detected, a concomitant increase, no change or a decrease in TrkB was reported. We examined quantitatively the retinal concentrations of the TrkB protein in relation to BDNF, in a course of adeno-associated viral vector gene therapy (AAV2-BDNF), using a microbead trabecular occlusion model of glaucoma. We show that unilateral glaucoma, with intraocular pressure ( IOP) increased for five weeks, leads to a bilateral decrease of BDNF in the retina at six weeks, accompanied by up to four-fold TrkB upregulation, while a moderate BDNF overexpression in a glaucomatous eye triggers changes that restore normal TrkB concentrations, driving signaling towards long-term RGCs neuroprotection. We conclude that for glaucoma therapy, the careful selection of the appropriate BDNF concentration is the main factor securing the long-term responsiveness of RGCs and the maintenance of normal TrkB levels.
Collapse
Affiliation(s)
- Anna Wójcik-Gryciuk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
- Mediq Clinic, 05-120 Legionowo, Poland
| | - Olga Gajewska-Woźniak
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Katarzyna Kordecka
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Paweł M. Boguszewski
- Laboratory of Behavioral Methods, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
| | - Wioletta Waleszczyk
- Laboratory of Neurobiology of Vision, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland; (A.W.-G.); (K.K.); (W.W.)
| | - Małgorzata Skup
- Group of Restorative Neurobiology, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland;
- Correspondence:
| |
Collapse
|
12
|
Peripheral Latanoprost Administration Lowers Intraocular Pressure in the Wistar Rat. Ophthalmol Ther 2020; 9:1-8. [PMID: 32383108 PMCID: PMC7406633 DOI: 10.1007/s40123-020-00256-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Indexed: 01/20/2023] Open
Abstract
Purpose Instillation of latanoprost eye drops into the conjunctival sac to lower
intraocular pressure (IOP) is the most frequently used treatment for primary
open-angle glaucoma. The aim of this study was to evaluate the influence of
latanoprost on IOP in the rat when applied peripherally. Methods A rodent-dedicated tonometer was used to measure IOP in conscious adult
male normotensive Wistar rats habituated to the measurement procedure. Commercially
available 0.005% latanoprost solutions were continuously delivered to the periphery
of the eye over 7 days using mini-pumps inserted subcutaneously in the animal’s back,
and IOP was measured daily. For comparison, a solution containing an equimolar
concentration of latanoprost acid, an active compound of latanoprost, was similarly
infused into the eyes of different Wistar rats. Results Continuous subcutaneous infusion of latanoprost gradually decreased the
IOP; the stable nadir of IOP, which was 20% lower than that prior to the start of
infusion, was reached on day 3. The effect was statistically significant and fully
reversed 2 days after cessation of drug delivery. Continuous subcutaneous application
of the solution containing an equimolar amount of latanoprost acid did not
appreciably influence the IOP. Conclusion Subcutaneous continuous delivery of latanoprost decreased the IOP in the
conscious normotensive Wistar rats in this study. If this effect is confirmed in
humans, it may open the possibility of using peripheral systems of drug delivery,
which could significantly improve patient compliance.
Collapse
|
13
|
Zhang J, Fang F, Li L, Huang H, Webber HC, Sun Y, Mahajan VB, Hu Y. A Reversible Silicon Oil-Induced Ocular Hypertension Model in Mice. J Vis Exp 2019. [PMID: 31789319 DOI: 10.3791/60409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Elevated intraocular pressure (IOP) is a well-documented risk factor for glaucoma. Here we describe a novel, effective method for consistently inducing stable IOP elevation in mice that mimics the post-operative complication of using silicone oil (SO) as a tamponade agent in human vitreoretinal surgery. In this protocol, SO is injected into the anterior chamber of the mouse eye to block the pupil and prevent inflow of aqueous humor. The posterior chamber accumulates aqueous humor and this in turn increases the IOP of the posterior segment. A single SO injection produces reliable, sufficient, and stable IOP elevation, which induces significant glaucomatous neurodegeneration. This model is a true replicate of secondary glaucoma in the eye clinic. To further mimic the clinical setting, SO can be removed from the anterior chamber to reopen the drainage pathway and allow inflow of aqueous humor, which is drained through the trabecular meshwork (TM) at the angle of the anterior chamber. Because IOP quickly returns to normal, the model can be used to test the effect of lowering IOP on glaucomatous retinal ganglion cells. This method is straightforward, does not require special equipment or repeat procedures, closely simulates clinical situations, and may be applicable to diverse animal species. However, minor modifications may be required.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Stanford University School of Medicine; Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine; Department of Ophthalmology, Second Xiangya Hospital of Central South University
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine
| | - Hannah C Webber
- Department of Ophthalmology, Stanford University School of Medicine
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine; Department of Ophthalmology, Veterans Affairs Palo Alto Health Care
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine; Department of Ophthalmology, Veterans Affairs Palo Alto Health Care
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine;
| |
Collapse
|
14
|
Lani R, Dias MS, Abreu CA, Araújo VG, Gonçalo T, Nascimento-Dos-Santos G, Dantas AM, Allodi S, Fiorani M, Petrs-Silva H, Linden R. A subacute model of glaucoma based on limbal plexus cautery in pigmented rats. Sci Rep 2019; 9:16286. [PMID: 31705136 PMCID: PMC6841973 DOI: 10.1038/s41598-019-52500-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022] Open
Abstract
Glaucoma is a neurodegenerative disorder characterized by the progressive functional impairment and degeneration of the retinal ganglion cells (RGCs) and their axons, and is the leading cause of irreversible blindness worldwide. Current management of glaucoma is based on reduction of high intraocular pressure (IOP), one of its most consistent risk factors, but the disease proceeds in almost half of the patients despite such treatments. Several experimental models of glaucoma have been developed in rodents, most of which present shortcomings such as high surgical invasiveness, slow learning curves, damage to the transparency of the optic media which prevents adequate functional assessment, and variable results. Here we describe a novel and simple method to induce ocular hypertension in pigmented rats, based on low-temperature cauterization of the whole circumference of the limbal vascular plexus, a major component of aqueous humor drainage and easily accessible for surgical procedures. This simple, low-cost and efficient method produced a reproducible subacute ocular hypertension with full clinical recovery, followed by a steady loss of retinal ganglion cells and optic axons, accompanied by functional changes detected both by electrophysiological and behavioral methods.
Collapse
Affiliation(s)
- Rafael Lani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Mariana S Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Andreia Abreu
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victor G Araújo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thais Gonçalo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Silvana Allodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mario Fiorani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hilda Petrs-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
15
|
A Chronic Ocular-Hypertensive Rat Model induced by Injection of the Sclerosant Agent Polidocanol in the Aqueous Humor Outflow Pathway. Int J Mol Sci 2019; 20:ijms20133209. [PMID: 31261943 PMCID: PMC6650807 DOI: 10.3390/ijms20133209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022] Open
Abstract
Background: To induce a moderate chronic ocular hypertension (OHT) by injecting polidocanol, a foamed sclerosant drug, in the aqueous humor outflow pathway. Methods: Intraocular pressure (IOP) was monitored for up to 6 months. Pattern and full-field electroretinogram (PERG and ERG) were recorded and retinal ganglion cells (RGC) and retinal nerve fiber layer (RNFL) thickness were assessed in vivo with optical coherence tomography (OCT) and ex vivo using Brn3a immunohistochemistry. Results: In the first 3 weeks post-injection, a significant IOP elevation was observed in the treated eyes (18.47 ± 3.36 mmHg) when compared with the control fellow eyes (12.52 ± 2.84 mmHg) (p < 0.05). At 8 weeks, 65% (11/17) of intervention eyes had developed an IOP increase >25% over the baseline. PERG responses were seen to be significantly reduced in the hypertensive eyes (2.25 ± 0.24 µV) compared to control eyes (1.44 ± 0.19 µV) (p < 0.01) at week 3, whereas the ERG components (photoreceptor a-wave and bipolar cell b-wave) remained unaltered. By week 24, RNFL thinning and cell loss in the ganglion cell layer was first detected (2/13, 15.3%) as assessed by OCT and light microscopy. Conclusions: This novel OHT rat model, with moderate levels of chronically elevated IOP, and abnormal PERG shows selective functional impairment of RGC.
Collapse
|
16
|
Dosmar E, Liu W, Patel G, Rogozinski A, Mieler WF, Kang-Mieler JJ. Controlled Release of Vancomycin From a Thermoresponsive Hydrogel System for the Prophylactic Treatment of Postoperative Acute Endophthalmitis. Transl Vis Sci Technol 2019; 8:53. [PMID: 31293808 PMCID: PMC6601710 DOI: 10.1167/tvst.8.3.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/22/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose To investigate the efficacy of a poly(ethylene glycol) diacrylate and poly(N-isopropylacrylamide) based thermo-responsive hydrogel drug delivery system (DDS) to deliver prophylactic vancomycin (VAN) following ocular surgery. Methods VAN was encapsulated in a hydrogel DDS and characterized in terms of initial burst, release kinetics, bioactivity, and cytotoxicity. Long-Evans rats received an intravitreal injection of Staphylococcus aureus to produce acute endophthalmitis in four experimental groups. One of four treatments were then applied: (1) bolus subconjunctival injection of VAN, (2) blank DDS, (3) saline treatment, and (4) subconjunctival injection of VAN DDS. Animals were scored for infection (0–3) at 12, 24, 48, and 72 hours, and eyes were harvested at 24 and 48 hours for histology. Results Following a 36% initial burst, VAN release from the DDS continued at a steady rate for 2 weeks plateauing at 84% after 504 hours. Bioactivity was maintained for all release samples and cytotoxicity analysis for the DDS revealed cell viability >90%. Not until after 12 hours did any of the groups show evidence of infection; however, at 24 hours, animals that received the VAN DDS had significantly lower infection scores (0 ± 0) than those that received a bolus VAN injection, blank DDS, or saline (1.5 ±1.5, 2.3 ± 0.87, and 2.9 ± 0.25; respectively). At 48 and 72 hours, the VAN DDS and bolus VAN treatment groups performed comparably and showed significantly better infection scores than the control groups. Conclusions This DDS appears to have promise as a vehicle for short term, prophylactic antibiotic delivery. Translational Relevance This DDS may prevent the development of postoperative endophthalmitis.
Collapse
Affiliation(s)
- Emily Dosmar
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Wenqiang Liu
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Geeya Patel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Alison Rogozinski
- Department of Biomedical Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN, USA
| | - William F Mieler
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer J Kang-Mieler
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
17
|
Evangelho K, Mastronardi CA, de-la-Torre A. Experimental Models of Glaucoma: A Powerful Translational Tool for the Future Development of New Therapies for Glaucoma in Humans-A Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E280. [PMID: 31212881 PMCID: PMC6630440 DOI: 10.3390/medicina55060280] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Abstract
Glaucoma is a common complex disease that leads to irreversible blindness worldwide. Even though preclinical studies showed that lowering intraocular pressure (IOP) could prevent retinal ganglion cells loss, clinical evidence suggests that lessening IOP does not prevent glaucoma progression in all patients. Glaucoma is also becoming more prevalent in the elderly population, showing that age is a recognized major risk factor. Indeed, recent findings suggest that age-related tissue alterations contribute to the development of glaucoma and have encouraged exploration for new treatment approaches. In this review, we provide information on the most frequently used experimental models of glaucoma and describe their advantages and limitations. Additionally, we describe diverse animal models of glaucoma that can be potentially used in translational medicine and aid an efficient shift to the clinic. Experimental animal models have helped to understand the mechanisms of formation and evacuation of aqueous humor, and the maintenance of homeostasis of intra-ocular pressure. However, the transfer of pre-clinical results obtained from animal studies into clinical trials may be difficult since the type of study does not only depend on the type of therapy to be performed, but also on a series of factors observed both in the experimental period and the period of transfer to clinical application. Conclusions: Knowing the exact characteristics of each glaucoma experimental model could help to diminish inconveniences related to the process of the translation of results into clinical application in humans.
Collapse
Affiliation(s)
- Karine Evangelho
- Doctorado en Ciencias Biomédicas y Biológicas, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá,11121, Colombia.
| | - Claudio A Mastronardi
- Neuroscience Research Group (NeurUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, 11121, Colombia.
| | - Alejandra de-la-Torre
- Neuroscience Research Group (NeurUROS), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, 11121, Colombia.
| |
Collapse
|
18
|
Zhang J, Li L, Huang H, Fang F, Webber HC, Zhuang P, Liu L, Dalal R, Tang PH, Mahajan VB, Sun Y, Li S, Zhang M, Goldberg JL, Hu Y. Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse. eLife 2019; 8:45881. [PMID: 31090540 PMCID: PMC6533060 DOI: 10.7554/elife.45881] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular mechanism of glaucoma and development of neuroprotectants is significantly hindered by the lack of a reliable animal model that accurately recapitulates human glaucoma. Here, we sought to develop a mouse model for the secondary glaucoma that is often observed in humans after silicone oil (SO) blocks the pupil or migrates into the anterior chamber following vitreoretinal surgery. We observed significant intraocular pressure (IOP) elevation after intracameral injection of SO, and that SO removal allows IOP to return quickly to normal. This simple, inducible and reversible mouse ocular hypertension model shows dynamic changes of visual function that correlate with progressive retinal ganglion cell (RGC) loss and axon degeneration. It may be applicable with only minor modifications to a range of animal species in which it will generate stable, robust IOP elevation and significant neurodegeneration that will facilitate selection of neuroprotectants and investigating the pathogenesis of ocular hypertension-induced glaucoma.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Liang Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Haoliang Huang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Fang Fang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hannah C Webber
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Pei Zhuang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Liang Liu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Peter H Tang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Veterans Affairs Palo Alto Health Care, Palo Alto, United States
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Veterans Affairs Palo Alto Health Care, Palo Alto, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States.,Department of Ophthalmology, Veterans Affairs Palo Alto Health Care, Palo Alto, United States
| | - Shaohua Li
- Department of Ophthalmology, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Mingchang Zhang
- Department of Ophthalmology, Tongji Medical College, Union Hospital, Huazhong University of Science & Technology, Wuhan, China
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, United States
| |
Collapse
|
19
|
Dai C, Xie J, Dai J, Li D, Khaw PT, Yin Z, Huo S, Collins A, Raisman G, Li Y. Transplantation of cultured olfactory mucosal cells rescues optic nerve axons in a rat glaucoma model. Brain Res 2019; 1714:45-51. [PMID: 30771317 DOI: 10.1016/j.brainres.2019.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE To determine whether transplantation of olfactory mucosal cells (OMCs) is able to rescue the loss of optic nerve axons after the intraocular pressure (IOP) is elevated in rats. METHODS The IOP was raised by injection of magnetic microspheres into the anterior chamber of the eye. OMCs cultured from the adult olfactory mucosa were transplanted into the region of the optic disc. RESULTS We demonstrated that although the raised IOP returned to its normal level at six weeks, there was an irreversible 58% loss of optic nerve axons in the control group. However, the loss of the axons was reduced to 23% in the group with the transplanted OMCs. The Pattern Electroretinograms (pERG) showed that the decrement of the voltage amplitudes in association with the raised IOP was significantly alleviated in the group with transplantation of OMC. CONCLUSIONS Transplantation of OMCs is able to rescue loss of optic nerve axons induced by raised IOP in the rats. The pERG recording suggested that the functional activities of the axons are also protected. TRANSLATIONAL RELEVANCE The results demonstrated the ability of the transplanted OMCs to protect against the loss of the optic nerve axons and the loss of function caused by raised IOPs. The findings provide a basis for future human clinical trials by autografting OMCs from autologous nasal epithelial biopsies to treat or delay glaucoma diseases.
Collapse
Affiliation(s)
- Chao Dai
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China; Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Qingdao Xin Shi Jie Eye Hospital, Qingdao 266000, People's Republic of China
| | - Jing Xie
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Jiaman Dai
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Daqing Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Peng T Khaw
- The National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 2PD, UK
| | - Zhengqin Yin
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Shujia Huo
- Southwest Hospital, Southwest Eye Hospital, Army Medical University, Chongqing 400038, People's Republic of China; Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Andrew Collins
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Geoffrey Raisman
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Ying Li
- Spinal Repair Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
20
|
Calkins DJ, Lambert WS, Formichella CR, McLaughlin WM, Sappington RM. The Microbead Occlusion Model of Ocular Hypertension in Mice. Methods Mol Biol 2018; 1695:23-39. [PMID: 29190015 DOI: 10.1007/978-1-4939-7407-8_3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glaucoma is a common optic neuropathy that leads to vision loss through the degeneration of retinal ganglion cells (RGCs) and their axons. RGC degeneration in glaucoma is associated with sensitivity to intraocular pressure (IOP) and elevated IOP (also known as ocular hypertension) is the primary modifiable risk factor. Ocular hypertension is the primary characteristic of rodent models for glaucoma research. Intracameral injection of microbeads has evolved as a preferred method of IOP elevation in rodents, particularly in mice. Here, we outline the protocol and method for the Microbead Occlusion Model in mice. We highlight the importance of anesthesia choice and the utilization of glass micropipettes in combination with a micromanipulator and microsyringe pump for the successful execution of the model.
Collapse
Affiliation(s)
- David J Calkins
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Wendi S Lambert
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Cathryn R Formichella
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - William M McLaughlin
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rebecca M Sappington
- The Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA. .,Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA. .,Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
21
|
Morrison JC, Johnson EC, Cepurna WO. Hypertonic Saline Injection Model of Experimental Glaucoma in Rats. Methods Mol Biol 2018; 1695:11-21. [PMID: 29190014 DOI: 10.1007/978-1-4939-7407-8_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A reliable method of creating chronic elevation of intraocular pressure (IOP) in rodents is an important tool in reproducing and studying the mechanisms of optic nerve injury that occur in glaucoma. In addition, such a model could provide a valuable method for testing potential neuroprotective treatments. This paper outlines the basic methods for producing obstruction of aqueous humor outflow and IOP elevation by injecting hypertonic saline (a sclerosant) into the aqueous outflow pathway. This is one of several rodent glaucoma models in use today. In this method, a plastic ring is placed around the equator of the eye to restrict injected saline to the limbus. By inserting a small glass microneedle in an aqueous outflow vein in the episclera and injecting hypertonic saline toward the limbus, the saline is forced into Schlemm's canal and across the trabecular meshwork. The resultant inflammation and scarring of the anterior chamber angle occurs gradually, resulting in a rise in IOP after approximately 1 week. This article will describe the equipment necessary for producing this model and the steps of the technique itself.
Collapse
Affiliation(s)
- John C Morrison
- Casey Eye Institute, Oregon Health and Science University, 3375 S.W. Terwilliger Blvd, Portland, OR, 97239, USA.
| | - Elaine C Johnson
- Casey Eye Institute, Oregon Health and Science University, 3375 S.W. Terwilliger Blvd, Portland, OR, 97239, USA
| | - William O Cepurna
- Casey Eye Institute, Oregon Health and Science University, 3375 S.W. Terwilliger Blvd, Portland, OR, 97239, USA
| |
Collapse
|
22
|
Bui BV. Understanding glaucoma pathogenesis. Clin Exp Ophthalmol 2017; 45:853. [DOI: 10.1111/ceo.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bang V Bui
- Department of Optometry and Vision Sciences; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
23
|
Liu HH, Zhang L, Shi M, Chen L, Flanagan JG. Comparison of laser and circumlimbal suture induced elevation of intraocular pressure in albino CD-1 mice. PLoS One 2017; 12:e0189094. [PMID: 29190824 PMCID: PMC5708743 DOI: 10.1371/journal.pone.0189094] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/18/2017] [Indexed: 12/23/2022] Open
Abstract
Animal models of ocular hypertension are important tools for glaucoma studies. Both acute transient models and chronic models of ocular hypertension may be useful to investigate specific aspects of neurodegeneration. In this study, we compare the intraocular pressure (IOP) and inner retinal changes induced by 1) laser photocoagulation of both episcleral veins and limbal vessels and 2) circumlimbal suture in CD-1 mice. The suture group is divided into 3 subgroups depending on the level of the immediate IOP spike (acute > 55 mmHg or chronic < 55 mmHg) and time period of monitoring (7 or 28 days). The laser group is followed for 7 days. IOP data show that it peaks at 5 hours and returns to normal level within 7 days in the laser group. In all suture groups, IOP spikes initially and decreases gradually, but it remains significantly elevated at 7 days. In 7 days, the acute suture model generates rapid loss of retinal nerve fiber layer (RNFL) and retinal ganglion cells (RGCs) when compared to the gradual loss by the chronic suture model, possibly due to retinal ischemia and reperfusion within the first few hours after treatment. The laser model falls between the acute suture and chronic suture models resulting in less RNFL and RGC loss than the acute suture model but significantly more loss than the chronic suture model. These results suggest that when using suture models of IOP elevation, it is critical to take the initial IOP spike into consideration and to choose between the acute and chronic models depending on respective research purposes.
Collapse
Affiliation(s)
- Hsin-Hua Liu
- School of Optometry and Vision Science, University of California, Berkeley, California, United States of America
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States of America
- * E-mail:
| | - Liwei Zhang
- School of Optometry and Vision Science, University of California, Berkeley, California, United States of America
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States of America
| | - Meng Shi
- School of Optometry and Vision Science, University of California, Berkeley, California, United States of America
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States of America
| | - Lu Chen
- School of Optometry and Vision Science, University of California, Berkeley, California, United States of America
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States of America
| | - John G. Flanagan
- School of Optometry and Vision Science, University of California, Berkeley, California, United States of America
- Center for Eye Disease and Development, Vision Science Graduate Program, University of California, Berkeley, California, United States of America
| |
Collapse
|
24
|
Abbhi V, Saini L, Mishra S, Sethi G, Kumar AP, Piplani P. Design and synthesis of benzimidazole-based Rho kinase inhibitors for the treatment of glaucoma. Bioorg Med Chem 2017; 25:6071-6085. [DOI: 10.1016/j.bmc.2017.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 12/19/2022]
|
25
|
Wang R, Seifert P, Jakobs TC. Astrocytes in the Optic Nerve Head of Glaucomatous Mice Display a Characteristic Reactive Phenotype. Invest Ophthalmol Vis Sci 2017; 58:924-932. [PMID: 28170536 PMCID: PMC5300248 DOI: 10.1167/iovs.16-20571] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Optic nerve head astrocytes, a subtype of white-matter astrocytes, become reactive early in the course of glaucoma. It was shown recently that in the DBA/2J mouse model of inherited glaucoma optic nerve astrocytes extend new longitudinal processes into the axon bundles before ganglion cell loss becomes apparent. The present study aims at testing whether this behavior of astrocytes is typical of early glaucomatous damage. Methods Mice expressing green fluorescent protein in individual astrocytes were used to evaluate the early response of astrocytes in the glial lamina of the optic nerve head after increasing the IOP using the microbead occlusion method. Tissue sections from the glial lamina were imaged consecutively by confocal and electron microscopy. Results Confocal and electron microscope images show that astrocytes close to the myelination transition zone in the hypertensive nerve heads extend new processes that follow the longitudinal axis of the optic nerve and invade axon bundles in the nerve head. Ultrastructurally, the longitudinal processes were largely devoid of subcellular organelles except for degenerating mitochondria. Conclusions The longitudinal processes are a common feature of glaucomatous optic nerve astrocytes, whereas they are not observed after traumatic nerve injury. Thus, astrocytes appear to fine-tune their responses to the nature and/or timing of the injury to the neurons that they surround.
Collapse
Affiliation(s)
- Rui Wang
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China 2Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Philip Seifert
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| | - Tatjana C Jakobs
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary/Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
26
|
Osswald CR, Guthrie MJ, Avila A, Valio JA, Mieler WF, Kang-Mieler JJ. In Vivo Efficacy of an Injectable Microsphere-Hydrogel Ocular Drug Delivery System. Curr Eye Res 2017; 42:1293-1301. [PMID: 28557571 DOI: 10.1080/02713683.2017.1302590] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Demonstrate in vivo that controlled and extended release of a low dose of anti-vascular endothelial growth factor (anti-VEGF) from a microsphere-hydrogel drug delivery system (DDS) has a therapeutic effect in a laser-induced rat model of choroidal neovascularization (CNV). METHODS Anti-VEGF (ranibizumab or aflibercept) was loaded into poly(lactic-co-glycolic acid) microspheres that were then suspended within an injectable poly(N-isopropylacrylamide)-based thermo-responsive hydrogel DDS.The DDS was shown previously to release bioactive anti-VEGF for ~200 days. CNV was induced using an Ar-green laser. The four experimental groups were as follows: (i) non-treated, (ii) drug-free DDS, (iii) anti-VEGF-loaded DDS, and (iv) bolus injection of anti-VEGF. CNV lesion areas were measured based on fluorescein angiograms and quantified using a multi-Otsu thresholding technique. Intraocular pressure (IOP) and dark-adapted electroretinogram (ERG) were also obtained pre- and post-treatment (1, 2, 4, 8, and 12 weeks). RESULTS The anti-VEGF-loaded DDS group had significantly smaller (60%) CNV lesion areas than non-treated animals throughout the study. A small transient increase in IOP was seen immediately after injection; however, all IOP measurements at all time points were within the normal range. There were no significant changes in ERG maximal response compared to pre-treatment measurements for the drug-loaded DDS, which suggests no adverse effects on retinal cellular function. CONCLUSIONS The current study demonstrates that the DDS can effectively decrease laser-induced CNV lesions in a murine model. Controlled and extended release from our DDS achieved greater treatment efficacy using an order of magnitude less drug than what is required with bolus administration. This suggests that our DDS may provide a significant advantage in the treatment of posterior segment eye diseases.
Collapse
Affiliation(s)
- Christian R Osswald
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Micah J Guthrie
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Abigail Avila
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - Joseph A Valio
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| | - William F Mieler
- b Department of Ophthalmology and Visual Sciences , University of Illinois at Chicago , Chicago , IL , USA
| | - Jennifer J Kang-Mieler
- a Department of Biomedical Engineering , Illinois Institute of Technology , Chicago , IL , USA
| |
Collapse
|
27
|
Garcia TB, Hollborn M, Bringmann A. Expression and signaling of NGF in the healthy and injured retina. Cytokine Growth Factor Rev 2017; 34:43-57. [PMID: 27964967 DOI: 10.1016/j.cytogfr.2016.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2016] [Indexed: 01/02/2023]
Abstract
This review summarizes the present knowledge concerning the retinal localization of the nerve growth factor (NGF), its precursor proNGF, and the receptors TrkA and p75NTR in the developing and mature rodent retina. We further discuss the changes in the expression of NGF and the receptors in experimental models of retinal disorders and diseases like inherited retinitis pigmentosa, retinal detachment, glaucoma, and diabetic retinopathy. Since proNGF is now recognized as a bioactive signaling molecule which induces cell death through p75NTR activation, the role of proNGF in the induction of retinal cell loss under neurodegenerative conditions is also highlighted. In addition, we present the evidences for a potential therapeutic intervention with NGF for the treatment of retinal neurodegenerative diseases. Different strategies have been developed and experimentally tested in mice and rats in order to reduce cell loss and Müller cell gliosis, e.g., increasing the availability of endogenous NGF, administration of exogenous NGF, activation of TrkA, and inhibition of p75NTR. Here, we discuss the several lines of evidence supporting a protective effect of NGF on retinal cell loss, with specific emphasis on photoreceptor and retinal ganglion cell degeneration. A better understanding of the mechanisms underlying the effects of NGF and proNGF in the modulation of neurodegeneration and gliosis in the retina will help to develop efficient therapeutic strategies for various retinal diseases.
Collapse
Affiliation(s)
| | - Margrit Hollborn
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Zhao D, Nguyen CTO, Wong VHY, Lim JKH, He Z, Jobling AI, Fletcher EL, Chinnery HR, Vingrys AJ, Bui BV. Characterization of the Circumlimbal Suture Model of Chronic IOP Elevation in Mice and Assessment of Changes in Gene Expression of Stretch Sensitive Channels. Front Neurosci 2017; 11:41. [PMID: 28239332 PMCID: PMC5301305 DOI: 10.3389/fnins.2017.00041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/19/2017] [Indexed: 12/30/2022] Open
Abstract
To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (−15 ± 4%), bipolar cell (−15 ± 4%) and ganglion cell responses (−19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior −12 ± 5%; temporal, −7% ± 2%; inferior −9 ± 4%; nasal −8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.
Collapse
Affiliation(s)
- Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, University of Melbourne Parkville, VIC, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne Parkville, VIC, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
29
|
Chen L, Zhao Y, Zhang H. Comparative Anatomy of the Trabecular Meshwork, the Optic Nerve Head and the Inner Retina in Rodent and Primate Models Used for Glaucoma Research. Vision (Basel) 2016; 1:vision1010004. [PMID: 31740629 PMCID: PMC6848998 DOI: 10.3390/vision1010004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/26/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022] Open
Abstract
Glaucoma is a heterogeneous group of ocular disorders with a multi-faceted etiology. Although numerous studies on glaucoma using different animal models have been published, it is unwise to simply generalize the results of one model to all glaucomatous situations because of the differences in the anatomy and morphology of animal eyes in comparison with humans’. In this review, we highlight the differences in the trabecular meshwork (TM) tissue, lamina cribrosa (LC) region, optic nerve head (ONH) and the inner layer of the retina in mice, rats and monkeys. In comparison with humans, non-human primates show TM, retina and ONH that are anatomically almost identical. The rat model shows many similarities in the aqueous outflow pathway compared to humans. The mouse ONH lacks collagenous LC, and this finding is observed across different mouse strains. The tissue structure of the ONH in rodents is similar to that in humans, although the blood supply shows differences. The number of cells in the ganglion layer depends on the rodent strain. Despite some differences from humans, rodents are a good choice for studying different types of glaucoma, and the modeling method should be selected based on the experimental needs and the hypothesis being tested.
Collapse
Affiliation(s)
| | | | - Hong Zhang
- Correspondence: ; Tel.: +86-139-7167-9079; Fax: +86-027-8366-3688
| |
Collapse
|
30
|
Becker S, Reinehr S, Dick HB, Joachim SC. [Complement activation after induction of ocular hypertension in an animal model]. Ophthalmologe 2016; 112:41-8. [PMID: 24942221 DOI: 10.1007/s00347-014-3100-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although an elevated intraocular pressure (IOP) is known as the main risk factor for glaucoma, many studies also showed an involvement of the immune system in this disease. In this study we investigated if a moderate increase in IOP leads to activation of the complement system. METHODS The IOP was elevated experimentally in the left eye of rats, whereas the fellow eye served as the control. The IOP was measured at regular intervals. The number of retinal ganglion cells (RGC) was quantified via NeuN staining. To evaluate the activation of the complement system staining for C3, membrane attack complex (MAC), and mannose-binding lectin (MBL) was performed. Furthermore, we investigated possible glia activation (GFAP and vimentin) and apoptosis (Bax). RESULTS A moderate elevation of the IOP was noted from day 11 after induction of ocular hypertension (OHT) until the end of the study (28 days, p = 0.0005). In the OHT-group significantly fewer RGCs (p = 0.02) were detected. Additionally, we noted significant C3 and MAC activation in the ganglion cell layer (C3, p = 0.001 and MAC, p = 0.02) as well as in the total retina (C3, p = 0.002 and MAC, p = 0.012). An activation via the lectin pathway by MBL staining could not be detected (p = 0.40). At this point in time no alterations with regard to glia cells were noted (GFAP, p = 0.97 and vimentin, p = 0.99). No apoptosis via Bax pathway could be observed (p = 0.90). CONCLUSION The results suggest that the complement system is involved in the loss of RGCs even by a moderate IOP elevation which was indicated by significantly more C3 and MAC depositions in the OHT group.
Collapse
Affiliation(s)
- S Becker
- Experimental Eye Research Institute, Universitäts-Augenklinik, Ruhr-Universität Bochum, In der Schornau 23-25, 44892, Bochum, Deutschland
| | | | | | | |
Collapse
|
31
|
Gossman CA, Linn DM, Linn C. Glaucoma-inducing Procedure in an In Vivo Rat Model and Whole-mount Retina Preparation. J Vis Exp 2016. [PMID: 27023167 DOI: 10.3791/53831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glaucoma is a disease of the central nervous system affecting retinal ganglion cells (RGCs). RGC axons making up the optic nerve carry visual input to the brain for visual perception. Damage to RGCs and their axons leads to vision loss and/or blindness. Although the specific cause of glaucoma is unknown, the primary risk factor for the disease is an elevated intraocular pressure. Glaucoma-inducing procedures in animal models are a valuable tool to researchers studying the mechanism of RGC death. Such information can lead to the development of effective neuroprotective treatments that could aid in the prevention of vision loss. The protocol in this paper describes a method of inducing glaucoma - like conditions in an in vivo rat model where 50 µl of 2 M hypertonic saline is injected into the episcleral venous plexus. Blanching of the vessels indicates successful injection. This procedure causes loss of RGCs to simulate glaucoma. One month following injection, animals are sacrificed and eyes are removed. Next, the cornea, lens, and vitreous are removed to make an eyecup. The retina is then peeled from the back of the eye and pinned onto sylgard dishes using cactus needles. At this point, neurons in the retina can be stained for analysis. Results from this lab show that approximately 25% of RGCs are lost within one month of the procedure when compared to internal controls. This procedure allows for quantitative analysis of retinal ganglion cell death in an in vivo rat glaucoma model.
Collapse
Affiliation(s)
| | - David M Linn
- Department of Biomedical Sciences, Grand Valley State University
| | - Cindy Linn
- Department of Biological Sciences, Western Michigan University;
| |
Collapse
|
32
|
Microbead models in glaucoma. Exp Eye Res 2015; 141:9-14. [DOI: 10.1016/j.exer.2015.06.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022]
|
33
|
Pazos M, Yang H, Gardiner SK, Cepurna WO, Johnson EC, Morrison JC, Burgoyne CF. Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model. Exp Eye Res 2015; 145:173-186. [PMID: 26500195 DOI: 10.1016/j.exer.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE To characterize early optic nerve head (ONH) structural change in rat experimental glaucoma (EG). METHODS Unilateral intraocular pressure (IOP) elevation was induced in Brown Norway rats by hypertonic saline injection into the episcleral veins and animals were sacrificed 4 weeks later by perfusion fixation. Optic nerve cross-sections were graded from 1 (normal) to 5 (extensive injury) by 5 masked observers. ONHs with peripapillary retina and sclera were embedded, serial sectioned, 3-D reconstructed, delineated, and quantified. Overall and animal-specific EG versus Control eye ONH parameter differences were assessed globally and regionally by linear mixed effect models with significance criteria adjusted for multiple comparisons. RESULTS Expansions of the optic nerve and surrounding anterior scleral canal opening achieved statistical significance overall (p < 0.0022), and in 7 of 8 EG eyes (p < 0.005). In at least 5 EG eyes, significant expansions (p < 0.005) in Bruch's membrane opening (BMO) (range 3-10%), the anterior and posterior scleral canal openings (8-21% and 5-21%, respectively), and the optic nerve at the anterior and posterior scleral canal openings (11-30% and 8-41%, respectively) were detected. Optic nerve expansion was greatest within the superior and inferior quadrants. Optic nerve expansion at the posterior scleral canal opening was significantly correlated to optic nerve damage (R = 0.768, p = 0.042). CONCLUSION In the rat ONH, the optic nerve and surrounding BMO and neurovascular scleral canal expand early in their response to chronic experimental IOP elevation. These findings provide phenotypic landmarks and imaging targets for detecting the development of experimental glaucomatous optic neuropathy in the rat eye.
Collapse
Affiliation(s)
- Marta Pazos
- Hospital de l'Esperança, Parc de Salut Mar, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hongli Yang
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, USA
| | - Stuart K Gardiner
- Devers Eye Institute, Discoveries in Sight Research Laboratories, Legacy Research Institute, Portland, OR, USA
| | - William O Cepurna
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Elaine C Johnson
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - John C Morrison
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Claude F Burgoyne
- Devers Eye Institute, Optic Nerve Head Research Laboratory, Legacy Research Institute, Portland, OR, USA.
| |
Collapse
|
34
|
Zhi Z, Cepurna W, Johnson E, Jayaram H, Morrison J, Wang RK. Evaluation of the effect of elevated intraocular pressure and reduced ocular perfusion pressure on retinal capillary bed filling and total retinal blood flow in rats by OMAG/OCT. Microvasc Res 2015; 101:86-95. [PMID: 26186381 DOI: 10.1016/j.mvr.2015.07.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/04/2015] [Accepted: 07/04/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To determine if retinal capillary filling is preserved in the face of acutely elevated intraocular pressure (IOP) in anesthetized rats, despite a reduction in total retinal blood flow (RBF), using optical microangiography/optical coherence tomography (OMAG/OCT). METHODS OMAG provided the capability of depth-resolved imaging of the retinal microvasculature down to the capillary level. Doppler OCT was applied to measure the total RBF using an enface integration approach. The microvascular pattern, capillary density, and total RBF were monitored in vivo as the IOP was increased from 10 to 100mmHg in 10mmHg intervals and returned back to 10mmHg. RESULTS In animals with mean arterial pressure (MAP) of 102±4mmHg (n=10), when IOP was increased from 0 to 100mmHg, the capillary density remained at or above 80% of baseline for the IOP up to 60mmHg [or ocular perfusion pressure (OPP) at 40mmHg]. This was then decreased, achieving 60% of baseline at IOP 70mmHg and OPP of 30mmHg. Total RBF was unaffected by moderate increases in IOP up to 30mmHg, beyond which total RBF decreased linearly, reaching 50% of baseline at IOP 60mmHg and OPP 40mmHg. Both capillary density and total RBF were totally extinguished at 100mmHg, but fully recovered when IOP returned to baseline. By comparison, a separate group of animals with lower MAP (mean=75±6mmHg, n=7) demonstrated comparable decreases in both capillary filling and total RBF at IOPs that were 20mmHg lower than in the initial group. Both were totally extinguished at 80mmHg, but fully recovered when IOP returned to baseline. Relationships of both parameters to OPP were unchanged. CONCLUSION Retinal capillary filling and total RBF responses to IOP elevation can be monitored non-invasively by OMAG/OCT and both are influenced by OPP. Retinal capillary filling was relatively preserved down to a perfusion pressure of 40mmHg, despite a linear reduction in total RBF.
Collapse
Affiliation(s)
- Zhongwei Zhi
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - William Cepurna
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elaine Johnson
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hari Jayaram
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - John Morrison
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Department of Ophthalmology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
35
|
Abstract
Glaucoma is a group of progressive optic neuropathies, characterized by the degeneration of retinal ganglion cells related to the level of intraocular pressure and other factors. The exact pathogenesis of glaucoma is not known, and current therapeutic options are not sufficient to prevent or recover vision loss in glaucoma patients. Functional, repeatable, and easy-to-use animal models are therefore needed. Because of their inherent advantages, rodent animals, including mice and rats, have been widely developed as models to study various aspects of glaucoma and to evaluate possible novel therapies. However, no single model has been shown to emulate all aspects of glaucoma. In this review, we discuss currently available rodent animal models of glaucoma, their strengths and weaknesses, and the possible implications for current glaucoma research.
Collapse
Affiliation(s)
- Shida Chen
- From the Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
36
|
Fortune B. In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 2015; 141:139-53. [PMID: 26048475 DOI: 10.1016/j.exer.2015.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
The goal of this review is to summarize the most common imaging methods currently applied for in vivo assessment of ocular structure in animal models of experimental glaucoma with an emphasis on translational relevance to clinical studies of the human disease. The most common techniques in current use include optical coherence tomography and scanning laser ophthalmoscopy. In reviewing the application of these and other imaging modalities to study glaucomatous optic neuropathy, this article is organized into three major sections: 1) imaging the optic nerve head, 2) imaging the retinal nerve fiber layer and 3) imaging retinal ganglion cell soma and dendrites. The article concludes with a brief section on possible future directions.
Collapse
Affiliation(s)
- Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, 1225 NE Second Avenue, Portland, OR 97232, USA.
| |
Collapse
|
37
|
Rat optic nerve head anatomy within 3D histomorphometric reconstructions of normal control eyes. Exp Eye Res 2015; 139:1-12. [PMID: 26021973 DOI: 10.1016/j.exer.2015.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/24/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to three-dimensionally (3D) characterize the principal macroscopic and microscopic relationships within the rat optic nerve head (ONH) and quantify them in normal control eyes. Perfusion-fixed, trephinated ONH from 8 normal control eyes of 8 Brown Norway Rats were 3D histomorphometrically reconstructed, visualized, delineated and parameterized. The rat ONH consists of 2 scleral openings, (a superior neurovascular and inferior arterial) separated by a thin connective tissue strip we have termed the "scleral sling". Within the superior opening, the nerve abuts a prominent extension of Bruch's Membrane (BM) superiorly and is surrounded by a vascular plexus, as it passes through the sclera, that is a continuous from the choroid into and through the dural sheath and contains the central retinal vein (CRV), (inferiorly). The inferior scleral opening contains the central retinal artery and three long posterior ciliary arteries which obliquely pass through the sclera to obtain the choroid. Bruch's Membrane Opening (BMO) is irregular and vertically elongated, enclosing the nerve (superiorly) and CRV and CRA (inferiorly). Overall mean BMO Depth, BMO Area, Choroidal Thickness and peripapillary Scleral Thickness were 29 μm, 56.5 × 10(3) μm(2), 57 μm and 104 μm respectively. Mean anterior scleral canal opening (ASCO) and posterior scleral canal opening (PSCO) radii were 201 ± 15 μm and 204 ± 16 μm, respectively. Mean optic nerve area at the ASCO and PSCO were 46.3 × 10(3)±4.4 × 10(3) μm(2) and 44.1 × 10(3)±4.5 × 10(3) μm(2) respectively. In conclusion, the 3D complexity of the rat ONH and the extent to which it differs from the primate have been under-appreciated within previous 2D studies. Properly understood, these anatomic differences may provide new insights into the relative susceptibilities of the rat and primate ONH to elevated intraocular pressure.
Collapse
|
38
|
Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. BMC Cell Biol 2015; 16:14. [PMID: 25943884 PMCID: PMC4429416 DOI: 10.1186/s12860-015-0060-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Background Optineurin is a gene associated with normal tension glaucoma and amyotrophic lateral sclerosis. It has been reported previously that in cultured RGC5 cells, the turnover of endogenous optineurin involves mainly the ubiquitin-proteasome pathway (UPP). When optineurin is upregulated or mutated, the UPP function is compromised as evidenced by a decreased proteasome β5 subunit (PSMB5) level and autophagy is induced for clearance of the optineurin protein. Results Adeno-associated type 2 viral (AAV2) vectors for green fluorescence protein (GFP) only, GFP-tagged wild-type and Glu50Lys (E50K) mutated optineurin were intravitreally injected into rats for expression in retinal ganglion cells (RGCs). Following intravitreal injections, eyes that received optineurin vectors exhibited retinal thinning, as well as RGC and axonal loss compared to GFP controls. By immunostaining and Western blotting, the level of PSMB5 and autophagic substrate degradation marker p62 was reduced, and the level of autophagic marker microtubule associated protein 1 light chain 3 (LC3) was enhanced. The UPP impairment and autophagy induction evidently occurred in vivo as in vitro. The optineurin level, RGC and axonal counts, and apoptosis in AAV2-E50K-GFP-injected rat eyes were averted to closer to normal limits after treatment with rapamycin, an autophagic enhancer. Conclusions The UPP function was reduced and autophagy was induced when wild-type and E50K optineurin was overexpressed in rat eyes. This study validates the in vitro findings, confirming that UPP impairment and autophagy induction also occur in vivo. In addition, rapamycin is demonstrated to clear the accumulated mutant optineurin. This agent may potentially be useful for rescuing of the adverse optineurin phenotypes in vivo.
Collapse
|
39
|
Valiente-Soriano FJ, Salinas-Navarro M, Jiménez-López M, Alarcón-Martínez L, Ortín-Martínez A, Bernal-Garro JM, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP, Vidal-Sanz M. Effects of ocular hypertension in the visual system of pigmented mice. PLoS One 2015; 10:e0121134. [PMID: 25811653 PMCID: PMC4374934 DOI: 10.1371/journal.pone.0121134] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/12/2015] [Indexed: 11/21/2022] Open
Abstract
To study the effects of ocular hypertension (OHT) on the visual system of C57BL/6 pigmented mice, the limbal and episcleral veins of the left eye were laser photocoagulated (LP). LP increased the intraocular pressure during the first five days (d), reaching basal values at 7d. To investigate the effect of OHT on the retinal ganglion cell (RGC) retrograde axonal transport, hydroxistilbamidine methanesulfonate (OHSt) was applied to both superior colliculi (SCi) and the retinas were dissected 2 or 4 weeks after LP. To determine RGC survival, these same retinas were immunoreacted against Brn3a (general RGC population) and melanopsin (intrinsically photosensitive RGCs, m+RGCs). To study whether OHT affected non-RGC neurons in the ganglion cell layer (GCL), RGCs were immunodetected with Brn3a and all GCL nuclei counterstained with DAPI in a group of animals examined 4 weeks post-LP. Innervation of the SCi was examined at 10 days, 8 or 14 weeks after LP with the orthogradely transported cholera toxin subunit-B. OHT resulted in diffuse and sectorial loss of OHSt+RGCs (50% at 2 weeks and 62% at 4 weeks) and in a comparable loss of Brn3a+RGCs at the same time intervals. m+RGCs decreased to 59% at 2 weeks and to 46% at 4 weeks, such loss was diffuse, did not parallel the sectorial loss of the general RGC population and was more severe in the superior-temporal retina. In the GCL, cell loss is selective for RGCs and does not affect other non-RGC neurons. The retinotectal innervation appeared significantly reduced at 10 days (55.7%) and did not progress further up to 14 weeks (46.6%). Thus, LP-induced OHT results in retrograde degeneration of RGCs and m+RGCs, as well as in the loss of CTB-labelled retinotectal terminals.
Collapse
Affiliation(s)
- Francisco J. Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Luis Alarcón-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - José M. Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - María P. Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia. 30.100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca) 30.100 Murcia, Spain
- * E-mail:
| |
Collapse
|
40
|
Li Y, Li D, Ying X, Khaw PT, Raisman G. An energy theory of glaucoma. Glia 2015; 63:1537-52. [PMID: 25808326 DOI: 10.1002/glia.22825] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 11/11/2022]
Abstract
A radial array of fortified astrocytes (FASTs) is the load bearing structure of the rat optic nerve head (ONH). At the retinal end the ONH is suspended on a fluid filled extracellular space occupied by modified pigment cells which generate a glomerular-like formation of villi. We propose that regulation of fluid in and out of this space may contribute to buffering the normal fluctuations of intraocular pressure. The energy requirement for the fluid transfer process is provided by the dense vascularity of the ONH and is reflected in the giant mitochondria of the FASTs. We propose that glaucoma occurs when a maintained rise in pressure overwhelms the capacity of this regulatory system. Under these circumstances the FAST array becomes detached from its anchorage in the surrounding ONH sheath. Progressively driven backwards by the pressure, the FASTs degenerate. We propose that the degeneration of the FASTs is associated with ischemic damage caused by the backward stretching of their blood supply. Retraction of the FAST processes deprives the retinal ganglion cell axons of their energy support, resulting in axotomy. We consider that our previously observed rescue of axons and FASTs by transplantation of olfactory ensheathing cells is due to replacement of this lost energy source.
Collapse
Affiliation(s)
- Ying Li
- Department of Brain Repair and Rehabilitation, Spinal Research Unit, UCL Institute of Neurology, London, United Kingdom
| | - Daqing Li
- Department of Brain Repair and Rehabilitation, Spinal Research Unit, UCL Institute of Neurology, London, United Kingdom
| | - Xi Ying
- Department of Ophthalmology, Southwest Hospital/Southwest Eye Hospital, Third Military Medical University, Chongqing, China
| | - Peng T Khaw
- NIHR Biomedical Research Centre Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK
| | - Geoffrey Raisman
- Department of Brain Repair and Rehabilitation, Spinal Research Unit, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
41
|
Mayordomo-Febrer A, López-Murcia M, Morales-Tatay J, Monleón-Salvado D, Pinazo-Durán M. Metabolomics of the aqueous humor in the rat glaucoma model induced by a series of intracamerular sodium hyaluronate injection. Exp Eye Res 2015; 131:84-92. [DOI: 10.1016/j.exer.2014.11.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/25/2014] [Accepted: 11/30/2014] [Indexed: 12/16/2022]
|
42
|
Dekeyster E, Aerts J, Valiente-Soriano FJ, De Groef L, Vreysen S, Salinas-Navarro M, Vidal-Sanz M, Arckens L, Moons L. Ocular hypertension results in retinotopic alterations in the visual cortex of adult mice. Curr Eye Res 2015; 40:1269-83. [PMID: 25615273 DOI: 10.3109/02713683.2014.990983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE Glaucoma is a group of optic neuropathies characterized by the loss of retinal ganglion cells (RGCs). Since ocular hypertension (OHT) is a main risk factor, current therapies are predominantly based on lowering eye pressure. However, a subset of treated patients continues to lose vision. More research into pathological mechanisms underlying glaucoma is therefore warranted in order to develop novel therapeutic strategies. In this study we investigated the impact of OHT from eye to brain in mice. METHODS Monocular hypertension (mOHT) was induced in CD-1 mice by laser photocoagulation (LP) of the perilimbal and episcleral veins. The impact on the retina and its main direct target area, the superficial superior colliculus (sSC), was examined via immunostainings for Brn3a, VGluT2 and GFAP. Alterations in neuronal activity in V1 and extrastriate areas V2L and V2M were assessed using in situ hybridization for the activity reporter gene zif268. RESULTS Transient mOHT resulted in diffuse and sectorial RGC degeneration. In the sSC contralateral to the OHT eye, a decrease in VGluT2 immunopositive synaptic connections was detected one week post LP, which appeared to be retinotopically linked to the sectorial RGC degeneration patterns. In parallel, hypoactivity was discerned in contralateral retinotopic projection zones in V1 and V2. Despite complete cortical reactivation 4 weeks post LP, in the sSC no evidence for recovery of RGC synapse density was found and also the concomitant inflammation was not completely resolved. Nevertheless, sSC neurons appeared healthy upon histological inspection and subsequent analysis of cell density revealed no differences between the ipsi- and contralateral sSC. CONCLUSION In addition to RGC death, OHT induces loss of synaptic connections and neuronal activity in the visual pathway and is accompanied by an extensive immune response. Our findings stress the importance of looking beyond the eye and including the whole visual system in glaucoma research.
Collapse
Affiliation(s)
- Eline Dekeyster
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Jeroen Aerts
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | | | - Lies De Groef
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Samme Vreysen
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | - Manuel Salinas-Navarro
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| | - Manuel Vidal-Sanz
- c Department of Ophthalmology , University of Murcia and IMIB-Arrixaca , Murcia , Spain
| | - Lutgarde Arckens
- b Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology , KU Leuven , Leuven , Belgium and
| | - Lieve Moons
- a Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
43
|
Ortín-Martínez A, Salinas-Navarro M, Nadal-Nicolás FM, Jiménez-López M, Valiente-Soriano FJ, García-Ayuso D, Bernal-Garro JM, Avilés-Trigueros M, Agudo-Barriuso M, Villegas-Pérez MP, Vidal-Sanz M. Laser-induced ocular hypertension in adult rats does not affect non-RGC neurons in the ganglion cell layer but results in protracted severe loss of cone-photoreceptors. Exp Eye Res 2015; 132:17-33. [PMID: 25576772 DOI: 10.1016/j.exer.2015.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 11/19/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
Abstract
To investigate the long-term effects of laser-photocoagulation (LP)-induced ocular hypertension (OHT) in the innermost and outermost (outer-nuclear and outer segment)-retinal layers (ORL). OHT was induced in the left eye of adult rats. To investigate the ganglion cell layer (GCL) wholemounts were examined at 1, 3 or 6 months using Brn3a-immunodetection to identify retinal ganglion cells (RGCs) and DAPI-staining to detect all nuclei in this layer. To study the effects of LP on the ORL up to 6 months, retinas were: i) fresh extracted to quantify the levels of rod-, S- and L-opsin; ii) cut in cross-sections for morphometric analysis, or; iii) prepared as wholemounts to quantify and study retinal distributions of entire populations of RGCs (retrogradely labeled with fluorogold, FG), S- and L-cones (immunolabeled). OHT resulted in wedge-like sectors with their apex on the optic disc devoid of Brn3a(+)RGCs but with large numbers of DAPI(+)nuclei. The levels of all opsins diminished by 2 weeks and further decreased to 20% of basal-levels by 3 months. Cross-sections revealed focal areas of ORL degeneration. RGC survival at 15 days represented approximately 28% and did not change with time, whereas the S- and L-cone populations diminished to 65% and 80%, or to 20 and 35% at 1 or 6 months, respectively. In conclusion, LP induces in the GCL selective RGCs loss that does not progress after 1 month, and S- and L-cone loss that progresses for up to 6 months. Thus, OHT results in severe damage to both the innermost and the ORL.
Collapse
Affiliation(s)
- Arturo Ortín-Martínez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Salinas-Navarro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Francisco Manuel Nadal-Nicolás
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Jiménez-López
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Francisco Javier Valiente-Soriano
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Diego García-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - José Manuel Bernal-Garro
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Marcelino Avilés-Trigueros
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - María Paz Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, and Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), 30100 Murcia, Spain.
| |
Collapse
|
44
|
Choe TE, Abbott CJ, Piper C, Wang L, Fortune B. Comparison of longitudinal in vivo measurements of retinal nerve fiber layer thickness and retinal ganglion cell density after optic nerve transection in rat. PLoS One 2014; 9:e113011. [PMID: 25393294 PMCID: PMC4231142 DOI: 10.1371/journal.pone.0113011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/23/2014] [Indexed: 11/23/2022] Open
Abstract
Purpose To determine the relationship between longitudinal in vivo measurements of retinal nerve fiber layer thickness (RNFLT) and retinal ganglion cell (RGC) density after unilateral optic nerve transection (ONT). Methods Nineteen adult Brown-Norway rats were studied; N = 10 ONT plus RGC label, N = 3 ONT plus vehicle only (sans label), N = 6 sham ONT plus RGC label. RNFLT was measured by spectral domain optical coherence tomography (SD-OCT) at baseline then weekly for 1 month. RGCs were labeled by retrograde transport of fluorescently conjugated cholera toxin B (CTB) from the superior colliculus 48 hours prior to ONT or sham surgery. RGC density measurements were obtained by confocal scanning laser ophthalmoscopy (CSLO) at baseline and weekly for 1 month. RGC density and reactivity of microglia (anti-Iba1) and astrocytes (anti-GFAP) were determined from post mortem fluorescence microscopy of whole-mount retinae. Results RNFLT decreased after ONT by 17% (p<0.05), 30% (p<0.0001) and 36% (p<0.0001) at weeks 2, 3 and 4. RGC density decreased after ONT by 18%, 69%, 85% and 92% at weeks 1, 2, 3 and 4 (p<0.0001 each). RGC density measured in vivo at week 4 and post mortem by microscopy were strongly correlated (R = 0.91, p<0.0001). In vivo measures of RNFLT and RGC density were strongly correlated (R = 0.81, p<0.0001). In ONT- CTB labeled fellow eyes, RNFLT increased by 18%, 52% and 36% at weeks 2, 3 and 4 (p<0.0001), but did not change in fellow ONT-eyes sans CTB. Microgliosis was evident in the RNFL of the ONT-CTB fellow eyes, exceeding that observed in other fellow eyes. Conclusions In vivo measurements of RNFLT and RGC density are strongly correlated and can be used to monitor longitudinal changes after optic nerve injury. The strong fellow eye effect observed in eyes contralateral to ONT, only in the presence of CTB label, consisted of a dramatic increase in RNFLT associated with retinal microgliosis.
Collapse
Affiliation(s)
- Tiffany E. Choe
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Carla J. Abbott
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Chelsea Piper
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Lin Wang
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
45
|
A rat experimental model of glaucoma incorporating rapid-onset elevation of intraocular pressure. Sci Rep 2014; 4:5910. [PMID: 25081302 PMCID: PMC4118189 DOI: 10.1038/srep05910] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/01/2014] [Indexed: 11/08/2022] Open
Abstract
Glaucoma is a chronic disease that causes structural and functional damage to retinal ganglion cells (RGC). The currently employed therapeutic options are not sufficient to prevent vision loss in patients with glaucoma; therefore, there is a need to develop novel therapies, which requires the creation of functional, repeatable and easy-to-utilize animal models for use in pre-clinical studies. The currently available models ensure only low to moderate damage in optic nerves, with high variation in the outcomes and poor repeatability. We have developed an effective and reproducible rat glaucoma model based on a previous idea for a "Bead Model" in mice, which could be useful in future glaucoma research. Additionally, in an attempt to achieve rapid elevation of Intraocular Pressure (IOP), we included an initial "high-pressure injury" as part of this method, which serves as the equivalent of a severe glaucoma attack. These modifications made it possible to achieve longer lasting IOP elevation with chronic damage of retinal ganglion cells.
Collapse
|
46
|
Rho S, Park I, Seong GJ, Lee N, Lee CK, Hong S, Kim CY. Chronic Ocular Hypertensive Rat Model using Microbead Injection: Comparison of Polyurethane, Polymethylmethacrylate, Silica and Polystyene Microbeads. Curr Eye Res 2014; 39:917-27. [DOI: 10.3109/02713683.2014.884597] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B. Evaluation of retinal nerve fiber layer thickness and axonal transport 1 and 2 weeks after 8 hours of acute intraocular pressure elevation in rats. Invest Ophthalmol Vis Sci 2014; 55:674-87. [PMID: 24398096 DOI: 10.1167/iovs.13-12811] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To compare in vivo retinal nerve fiber layer thickness (RNFLT) and axonal transport at 1 and 2 weeks after an 8-hour acute IOP elevation in rats. METHODS Forty-seven adult male Brown Norway rats were used. Procedures were performed under anesthesia. The IOP was manometrically elevated to 50 mm Hg or held at 15 mm Hg (sham) for 8 hours unilaterally. The RNFLT was measured by spectral-domain optical coherence tomography. Anterograde and retrograde axonal transport was assessed from confocal scanning laser ophthalmoscopy imaging 24 hours after bilateral injections of 2 μL 1% cholera toxin B-subunit conjugated to AlexaFluor 488 into the vitreous or superior colliculi, respectively. Retinal ganglion cell (RGC) and microglial densities were determined using antibodies against Brn3a and Iba-1. RESULTS The RNFLT in experimental eyes increased from baseline by 11% at 1 day (P < 0.001), peaked at 19% at 1 week (P < 0.0001), remained 11% thicker at 2 weeks (P < 0.001), recovered at 3 weeks (P > 0.05), and showed no sign of thinning at 6 weeks (P > 0.05). There was no disruption of anterograde transport at 1 week (superior colliculi fluorescence intensity, 75.3 ± 7.9 arbitrary units [AU] for the experimental eyes and 77.1 ± 6.7 AU for the control eyes) (P = 0.438) or 2 weeks (P = 0.188). There was no obstruction of retrograde transport at 1 week (RCG density, 1651 ± 153 per mm(2) for the experimental eyes and 1615 ± 135 per mm(2) for the control eyes) (P = 0.63) or 2 weeks (P = 0.25). There was no loss of Brn3a-positive RGC density at 6 weeks (P = 0.74) and no increase in microglial density (P = 0.92). CONCLUSIONS Acute IOP elevation to 50 mm Hg for 8 hours does not cause a persisting axonal transport deficit at 1 or 2 weeks or a detectable RNFLT or RGC loss by 6 weeks but does lead to transient RNFL thickening that resolves by 3 weeks.
Collapse
Affiliation(s)
- Carla J Abbott
- Discoveries in Sight Research Laboratories, Legacy Good Samaritan Devers Eye Institute, and Legacy Research Institute, Legacy Health, Portland, Oregon
| | | | | | | | | | | |
Collapse
|
48
|
Bui BV, Batcha AH, Fletcher E, Wong VHY, Fortune B. Relationship between the magnitude of intraocular pressure during an episode of acute elevation and retinal damage four weeks later in rats. PLoS One 2013; 8:e70513. [PMID: 23922999 PMCID: PMC3726657 DOI: 10.1371/journal.pone.0070513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/24/2013] [Indexed: 01/20/2023] Open
Abstract
Purpose To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats. Methods Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10–100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (−6.04 to 2.72 log cd.s.m−2). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m−2) after 15 min of light adaptation (150 cd/m2). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology. Results All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density. Conclusions Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a ‘threshold’ for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more.
Collapse
Affiliation(s)
- Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia.
| | | | | | | | | |
Collapse
|
49
|
Agudo-Barriuso M, Villegas-Pérez MP, de Imperial JM, Vidal-Sanz M. Anatomical and functional damage in experimental glaucoma. Curr Opin Pharmacol 2013; 13:5-11. [DOI: 10.1016/j.coph.2012.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/12/2012] [Accepted: 09/16/2012] [Indexed: 02/08/2023]
|
50
|
Ergorul C, Levin LA. Solving the lost in translation problem: improving the effectiveness of translational research. Curr Opin Pharmacol 2012; 13:108-14. [PMID: 22980732 DOI: 10.1016/j.coph.2012.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Translational research frequently fails to replicate in the clinic what has been demonstrated in the laboratory. This has been true for neuroprotection in the central nervous system, neuroprotection in glaucoma, as well as many other areas of medicine. Two fundamental reasons for this 'Lost in Translation' problem are the 'Butterfly Effect' (chaotic behavior of many animal models) and the 'Two Cultures' problem (differences between the methodologies for preclinical and clinical research). We propose several strategies to deal with these issues, including the use of ensembles of animal models, adding intraocular pressure lowering to preclinical neuroprotection studies, changing the way in which preclinical research is done, and increasing interactions between the preclinical and clinical teams.
Collapse
Affiliation(s)
- Ceren Ergorul
- Department of Ocular Research, Toxikon Corporation, Bedford, MA 01730, USA
| | | |
Collapse
|