1
|
Marreiros IM, Marques S, Parreira A, Mastrodomenico V, Mounce BC, Harris CT, Kafsack BF, Billker O, Zuzarte-Luís V, Mota MM. A non-canonical sensing pathway mediates Plasmodium adaptation to amino acid deficiency. Commun Biol 2023; 6:205. [PMID: 36810637 PMCID: PMC9942083 DOI: 10.1038/s42003-023-04566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023] Open
Abstract
Eukaryotes have canonical pathways for responding to amino acid (AA) availability. Under AA-limiting conditions, the TOR complex is repressed, whereas the sensor kinase GCN2 is activated. While these pathways have been highly conserved throughout evolution, malaria parasites are a rare exception. Despite auxotrophic for most AA, Plasmodium does not have either a TOR complex nor the GCN2-downstream transcription factors. While Ile starvation has been shown to trigger eIF2α phosphorylation and a hibernation-like response, the overall mechanisms mediating detection and response to AA fluctuation in the absence of such pathways has remained elusive. Here we show that Plasmodium parasites rely on an efficient sensing pathway to respond to AA fluctuations. A phenotypic screen of kinase knockout mutant parasites identified nek4, eIK1 and eIK2-the last two clustering with the eukaryotic eIF2α kinases-as critical for Plasmodium to sense and respond to distinct AA-limiting conditions. Such AA-sensing pathway is temporally regulated at distinct life cycle stages, allowing parasites to actively fine-tune replication and development in response to AA availability. Collectively, our data disclose a set of heterogeneous responses to AA depletion in malaria parasites, mediated by a complex mechanism that is critical for modulating parasite growth and survival.
Collapse
Affiliation(s)
- Inês M. Marreiros
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal ,grid.5808.50000 0001 1503 7226Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sofia Marques
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Parreira
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Vincent Mastrodomenico
- grid.164971.c0000 0001 1089 6558Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA
| | - Bryan C. Mounce
- grid.164971.c0000 0001 1089 6558Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA ,grid.164971.c0000 0001 1089 6558Infectious Disease and Immunology Research Institute, Stritch School of Medicine, Loyola University Chicago, Maywood, IL USA
| | - Chantal T. Harris
- grid.5386.8000000041936877XDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY USA ,grid.5386.8000000041936877XImmunology & Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Björn F. Kafsack
- grid.5386.8000000041936877XDepartment of Microbiology and Immunology, Weill Cornell Medical College, New York, NY USA
| | - Oliver Billker
- grid.12650.300000 0001 1034 3451Molecular Infection Medicine Sweden, Molecular Biology Department, Umeå University, Umeå, S-90187 Sweden
| | - Vanessa Zuzarte-Luís
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria M. Mota
- grid.9983.b0000 0001 2181 4263Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
2
|
Liu J, Shively CA, Mitra RD. Quantitative analysis of transcription factor binding and expression using calling cards reporter arrays. Nucleic Acids Res 2020; 48:e50. [PMID: 32133534 PMCID: PMC7229839 DOI: 10.1093/nar/gkaa141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
We report a tool, Calling Cards Reporter Arrays (CCRA), that measures transcription factor (TF) binding and the consequences on gene expression for hundreds of synthetic promoters in yeast. Using Cbf1p and MAX, we demonstrate that the CCRA method is able to detect small changes in binding free energy with a sensitivity comparable to in vitro methods, enabling the measurement of energy landscapes in vivo. We then demonstrate the quantitative analysis of cooperative interactions by measuring Cbf1p binding at synthetic promoters with multiple sites. We find that the cooperativity between Cbf1p dimers varies sinusoidally with a period of 10.65 bp and energetic cost of 1.37 KBT for sites that are positioned ‘out of phase’. Finally, we characterize the binding and expression of a group of TFs, Tye7p, Gcr1p and Gcr2p, that act together as a ‘TF collective’, an important but poorly characterized model of TF cooperativity. We demonstrate that Tye7p often binds promoters without its recognition site because it is recruited by other collective members, whereas these other members require their recognition sites, suggesting a hierarchy where these factors recruit Tye7p but not vice versa. Our experiments establish CCRA as a useful tool for quantitative investigations into TF binding and function.
Collapse
Affiliation(s)
- Jiayue Liu
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Christian A Shively
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA.,McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63108, USA
| |
Collapse
|
3
|
Lyu X, Yang Q, Li L, Dang Y, Zhou Z, Chen S, Liu Y. Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape. PLoS Genet 2020; 16:e1008836. [PMID: 32479508 PMCID: PMC7289440 DOI: 10.1371/journal.pgen.1008836] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/11/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023] Open
Abstract
Codon usage bias is a universal feature of all genomes and plays an important role in regulating protein expression levels. Modification of adenosine to inosine at the tRNA anticodon wobble position (I34) by adenosine deaminases (ADATs) is observed in all eukaryotes and has been proposed to explain the correlation between codon usage and tRNA pool. However, how the tRNA pool is affected by I34 modification to influence codon usage-dependent gene expression is unclear. Using Neurospora crassa as a model system, by combining molecular, biochemical and bioinformatics analyses, we show that silencing of adat2 expression severely impaired the I34 modification levels for the ADAT-related tRNAs, resulting in major ADAT-related tRNA profile changes and reprogramming of translation elongation kinetics on ADAT-related codons. adat2 silencing also caused genome-wide codon usage-biased ribosome pausing on mRNAs and proteome landscape changes, leading to selective translational repression or induction of different mRNAs. The induced expression of CPC-1, the Neurospora ortholog of yeast GCN4p, mediates the transcriptional response after adat2 silencing and amino acid starvation. Together, our results demonstrate that the tRNA I34 modification by ADAT plays a major role in driving codon usage-biased translation to shape proteome landscape. Modification of transfer RNA (tRNA) can have profound impacts on gene expression by shaping cellular tRNA pool. How codon usage bias and tRNA profiles synergistically regulate gene expression is unclear. By combining molecular, biochemical and bioinformatics analyses, we showed that the correlation between genome codon usage and tRNA I34 (inosine 34) modification modulates translation elongation kinetics and proteome landscape. Inhibition of tRNA I34 modification causes codon usage-dependent ribosome pausing on mRNAs during translation and changes cellular protein contents in a codon usage biased manner. Together, our results demonstrate that the tRNA I34 modification plays a major role in driving codon usage-dependent translation to determine proteome landscape in a eukaryotic organism.
Collapse
Affiliation(s)
- Xueliang Lyu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Qian Yang
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Lin Li
- National Institute of Biological Sciences, Changping District, Beijing, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhipeng Zhou
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - She Chen
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center,Harry Hines Blvd., Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Circadian clock control of eIF2α phosphorylation is necessary for rhythmic translation initiation. Proc Natl Acad Sci U S A 2020; 117:10935-10945. [PMID: 32355000 PMCID: PMC7245112 DOI: 10.1073/pnas.1918459117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Circadian clock control of mRNA translation, which contributes to the daily cycling of at least 50% of the proteins synthesized in eukaryotic cells, is understudied. We show that the circadian clock in the model fungus Neurospora crassa regulates rhythms in phosphorylation and activity of the conserved translation initiation factor eIF2α, with a peak in phosphorylated eIF2α levels during the daytime. This leads to reduced mRNA translation of select messages during the day and increased translation at night. We demonstrate that rhythmic accumulation of phosphorylated eIF2α requires increased uncharged tRNA levels during the day to activate the eIF2α kinase, coordinating rhythmic translation initiation and protein production with nutrient and energy metabolism. The circadian clock in eukaryotes controls transcriptional and posttranscriptional events, including regulation of the levels and phosphorylation state of translation factors. However, the mechanisms underlying clock control of translation initiation, and the impact of this potential regulation on rhythmic protein synthesis, were not known. We show that inhibitory phosphorylation of eIF2α (P-eIF2α), a conserved translation initiation factor, is clock controlled in Neurospora crassa, peaking during the subjective day. Cycling P-eIF2α levels required rhythmic activation of the eIF2α kinase CPC-3 (the homolog of yeast and mammalian GCN2), and rhythmic activation of CPC-3 was abolished under conditions in which the levels of charged tRNAs were altered. Clock-controlled accumulation of P-eIF2α led to reduced translation during the day in vitro and was necessary for the rhythmic synthesis of select proteins in vivo. Finally, loss of rhythmic P-eIF2α levels led to reduced linear growth rates, supporting the idea that partitioning translation to specific times of day provides a growth advantage to the organism. Together, these results reveal a fundamental mechanism by which the clock regulates rhythmic protein production, and provide key insights into how rhythmic translation, cellular energy, stress, and nutrient metabolism are linked through the levels of charged versus uncharged tRNAs.
Collapse
|
5
|
Bhat A, Chakraborty R, Adlakha K, Agam G, Chakraborty K, Sengupta S. Ncl1-mediated metabolic rewiring critical during metabolic stress. Life Sci Alliance 2019; 2:2/4/e201900360. [PMID: 31416893 PMCID: PMC6696984 DOI: 10.26508/lsa.201900360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Accumulation of cysteine induces translational defects and metabolic rewiring that are abrogated by leucine in a transfer RNA (tRNA) methyltransferase NCL1-dependent manner in yeast. Nutritional limitation has been vastly studied; however, there is limited knowledge of how cells maintain homeostasis in excess nutrients. In this study, using yeast as a model system, we show that some amino acids are toxic at higher concentrations. With cysteine as a physiologically relevant example, we delineated the pathways/processes that are altered and those that are involved in survival in the presence of elevated levels of this amino acid. Using proteomics and metabolomics approach, we found that cysteine up-regulates proteins involved in amino acid metabolism, alters amino acid levels, and inhibits protein translation—events that are rescued by leucine supplementation. Through a comprehensive genetic screen, we show that leucine-mediated effect depends on a transfer RNA methyltransferase (NCL1), absence of which decouples transcription and translation in the cell, inhibits the conversion of leucine to ketoisocaproate, and leads to tricarboxylic acid cycle block. We therefore propose a role of NCL1 in regulating metabolic homeostasis through translational control.
Collapse
Affiliation(s)
- Ajay Bhat
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Rahul Chakraborty
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Khushboo Adlakha
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ganesh Agam
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Kausik Chakraborty
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India .,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shantanu Sengupta
- Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India .,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
6
|
Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis. mSphere 2018; 3:3/2/e00028-18. [PMID: 29564399 PMCID: PMC5853489 DOI: 10.1128/msphere.00028-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parapsilosis. We found that the functions of many regulators are conserved with respect to Saccharomyces cerevisiae and other fungi. For example, the core GATA activators GAT1 and GLN3 have a conserved role in nitrogen catabolite repression (NCR). There is one ortholog of GZF3 and DAL80, which represses expression of genes in preferred nitrogen sources. The regulators PUT3 and UGA3 are required for metabolism of proline and γ-aminobutyric acid (GABA), respectively. However, the role of the Dal81 transcription factor is distinctly different. In S. cerevisiae, Dal81 is a positive regulator of acquisition of nitrogen from GABA, allantoin, urea, and leucine, and it is required for maximal induction of expression of the relevant pathway genes. In C. parapsilosis, induction of GABA genes is independent of Dal81, and deleting DAL81 has no effect on acquisition of nitrogen from GABA or allantoin. Instead, Dal81 represses arginine synthesis during growth under preferred nitrogen conditions. IMPORTANCE Utilization of nitrogen by fungi is controlled by nitrogen catabolite repression (NCR). Expression of many genes is switched off during growth on nonpreferred nitrogen sources. Gene expression is regulated through a combination of activation and repression. Nitrogen regulation has been studied best in the model yeast Saccharomyces cerevisiae. We found that although many nitrogen regulators have a conserved function in Saccharomyces species, some do not. The Dal81 transcriptional regulator has distinctly different functions in S. cerevisiae and C. parapsilosis. In the former, it regulates utilization of nitrogen from GABA and allantoin, whereas in the latter, it regulates expression of arginine synthesis genes. Our findings make an important contribution to our understanding of nitrogen regulation in a human-pathogenic fungus.
Collapse
|
7
|
Bolotin-Fukuhara M. Thirty years of the HAP2/3/4/5 complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:543-559. [DOI: 10.1016/j.bbagrm.2016.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/24/2016] [Accepted: 10/25/2016] [Indexed: 01/22/2023]
|
8
|
Wang A, Xu S, Zhang X, He J, Yan D, Yang Z, Xiao S. Ribosomal protein RPL41 induces rapid degradation of ATF4, a transcription factor critical for tumour cell survival in stress. J Pathol 2011; 225:285-92. [DOI: 10.1002/path.2918] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 04/04/2011] [Accepted: 04/09/2011] [Indexed: 12/28/2022]
|
9
|
Stepansky A, Leustek T. Histidine biosynthesis in plants. Amino Acids 2006; 30:127-42. [PMID: 16547652 DOI: 10.1007/s00726-005-0247-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 07/18/2005] [Indexed: 11/29/2022]
Abstract
The study of histidine metabolism has never been at the forefront of interest in plant systems despite the significant role that the analysis of this pathway has played in development of the field of molecular genetics in microbes. With the advent of methods to analyze plant gene function by complementation of microbial auxotrophic mutants and the complete analysis of plant genome sequences, strides have been made in deciphering the histidine pathway in plants. The studies point to a complex evolutionary origin of genes for histidine biosynthesis. Gene regulation studies have indicated novel regulatory networks involving histidine. In addition, physiological studies have indicated novel functions for histidine in plants as chelators and transporters of metal ions. Recent investigations have revealed intriguing connections of histidine in plant reproduction. The exciting new information suggests that the study of plant histidine biosynthesis has finally begun to flower.
Collapse
Affiliation(s)
- A Stepansky
- Biotechnology Center for Agriculture and the Environment, Rutgers University, New Brunswick, New Jersey 08903, USA.
| | | |
Collapse
|
10
|
Irniger S, Braus GH. Controlling transcription by destruction: the regulation of yeast Gcn4p stability. Curr Genet 2003; 44:8-18. [PMID: 14508604 DOI: 10.1007/s00294-003-0422-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 06/17/2003] [Accepted: 06/18/2003] [Indexed: 11/30/2022]
Abstract
The Gcn4 protein, a member of the AP-1 family of transcription factors, is involved in the expression of more than 500 genes in the budding yeast Saccharomyces cerevisiae. A key role of Gcn4p is the increased expression of many amino acid biosynthesis genes in response to amino acid starvation. The accumulation of this transcription activator is mainly induced by efficient translation of the GCN4 ORF and by stabilisation of the Gcn4 protein. Under normal growth conditions, Gcn4p is a highly unstable protein, thereby resembling many eukaryotic transcription factors, including mammalian Jun and Myc proteins. Gcn4p is degraded by ubiquitin-dependent proteolysis mediated by the Skp1/cullin/F-box (SCF) ubiquitin ligase, which recognises specifically phosphorylated substrates. Two cyclin-dependent protein kinases, Pho85p and Srb10p, have crucial functions in regulating Gcn4p phosphorylation and degradation. The past few years have revealed many novel insights into these regulatory processes. Here, we summarise current knowledge about the factors and mechanisms regulating Gcn4p stability.
Collapse
Affiliation(s)
- Stefan Irniger
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, 37077 Göttingen, Germany
| | | |
Collapse
|
11
|
Giots F, Donaton MCV, Thevelein JM. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 2003; 47:1163-81. [PMID: 12581367 DOI: 10.1046/j.1365-2958.2003.03365.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Yeast cells starved for inorganic phosphate on a glucose-containing medium arrest growth and enter the resting phase G0. We show that re-addition of phosphate rapidly affects well known protein kinase A targets: trehalase activation, trehalose mobilization, loss of heat resistance, repression of STRE-controlled genes and induction of ribosomal protein genes. Phosphate-induced activation of trehalase is independent of protein synthesis and of an increase in ATP. It is dependent on the presence of glucose, which can be detected independently by the G-protein coupled receptor Gpr1 and by the glucose-phosphorylation dependent system. Addition of phosphate does not trigger a cAMP signal. Despite this, lowering of protein kinase A activity by mutations in the TPK genes strongly reduces trehalase activation. Inactivation of phosphate transport by deletion of PHO84 abolishes phosphate signalling at standard concentrations, arguing against the existence of a transport-independent receptor. The non-metabolizable phosphate analogue arsenate also triggered signalling. Constitutive expression of the Pho84, Pho87, Pho89, Pho90 and Pho91 phosphate carriers indicated pronounced differences in their transport and signalling capacities in phosphate-starved cells. Pho90 and Pho91 sustained highest phosphate transport but did not sustain trehalase activation. Pho84 sustained both transport and rapid signalling, whereas Pho87 was poor in transport but positive for signalling. Pho89 displayed very low phosphate transport and was negative for signalling. Although the results confirmed that rapid signalling is independent of growth recovery, long-term mobilization of trehalose was much better correlated with growth recovery than with trehalase activation. These results demonstrate that phosphate acts as a nutrient signal for activation of the protein kinase A pathway in yeast in a glucose-dependent way and they indicate that the Pho84 and Pho87 carriers act as specific phosphate sensors for rapid phosphate signalling.
Collapse
Affiliation(s)
- Frank Giots
- Laboratorium voor Moleculaire Celbiologie, Instituut voor Plantkunde en Microbiologie, Katholieke Universiteit Leuven, Belgium
| | | | | |
Collapse
|
12
|
Zhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, Wek SA, Vattem KM, Wek RC, Kimball SR, Jefferson LS, Cavener DR. The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 2002; 22:6681-8. [PMID: 12215525 PMCID: PMC134046 DOI: 10.1128/mcb.22.19.6681-6688.2002] [Citation(s) in RCA: 347] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The GCN2 eIF2alpha kinase is essential for activation of the general amino acid control pathway in yeast when one or more amino acids become limiting for growth. GCN2's function in mammals is unknown, but must differ, since mammals, unlike yeast, can synthesize only half of the standard 20 amino acids. To investigate the function of mammalian GCN2, we have generated a Gcn2(-/-) knockout strain of mice. Gcn2(-/-) mice are viable, fertile, and exhibit no phenotypic abnormalities under standard growth conditions. However, prenatal and neonatal mortalities are significantly increased in Gcn2(-/-) mice whose mothers were reared on leucine-, tryptophan-, or glycine-deficient diets during gestation. Leucine deprivation produced the most pronounced effect, with a 63% reduction in the expected number of viable neonatal mice. Cultured embryonic stem cells derived from Gcn2(-/-) mice failed to show the normal induction of eIF2alpha phosphorylation in cells deprived of leucine. To assess the biochemical effects of the loss of GCN2 in the whole animal, liver perfusion experiments were conducted. Histidine limitation in the presence of histidinol induced a twofold increase in the phosphorylation of eIF2alpha and a concomitant reduction in eIF2B activity in perfused livers from wild-type mice, but no changes in livers from Gcn2(-/-) mice.
Collapse
Affiliation(s)
- Peichuan Zhang
- Department of Biology, The Pennsylvania State University, University Park 16802, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bruhat A, Fafournoux P. Recent advances on molecular mechanisms involved in amino acid control of gene expression. Curr Opin Clin Nutr Metab Care 2001; 4:439-43. [PMID: 11568507 DOI: 10.1097/00075197-200109000-00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In mammals, the impact of nutrients on gene expression has become an important area of research. Because amino acids have multiple and important functions, their homeostasis has to be finely maintained. However, amino acidaemia can be affected by certain nutritional conditions or various forms of aggression. It follows that mammals have to adjust several of their physiological functions involved in the adaptation to amino acid availability by regulating the expression of numerous genes. It has been shown that amino acids by themselves can modify the expression of target genes. However, the current understanding of amino acid-dependent control of gene expression has just started to emerge. This review focuses on the recent advances on mechanisms involved in the amino acids control of gene expression. Several examples discussed in this paper demonstrate that amino acids regulate gene expression at the level of transcription, messenger RNA stability and translation.
Collapse
Affiliation(s)
- A Bruhat
- Unité de Nutrition Cellulaire et Moléculaire, INRA de Theix, 63122 Saint Genès Champanelle, France
| | | |
Collapse
|
14
|
Grundmann O, Mösch HU, Braus GH. Repression of GCN4 mRNA Translation by Nitrogen Starvation in Saccharomyces cerevisiae. J Biol Chem 2001; 276:25661-71. [PMID: 11356835 DOI: 10.1074/jbc.m101068200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae activates a regulatory network called "general control" that provides the cell with sufficient amounts of protein precursors during amino acid starvation. We investigated how starvation for nitrogen affects the general control regulatory system, because amino acid biosynthesis is part of nitrogen metabolism. Amino acid limitation results in the synthesis of the central transcription factor Gcn4p, which binds to specific DNA-binding motif sequences called Gcn4-protein-responsive elements (GCREs) that are present in the promoter regions of its target genes. Nitrogen starvation increases GCN4 transcription but efficiently represses expression of both a synthetic GCRE6::lacZ reporter gene and the natural amino acid biosynthetic gene ARO4. Repression of Gcn4p-regulated transcription by nitrogen starvation is independent of the ammonium sensing systems that include Mep2p and Gpa2p or Ure2p and Gln3p but depends on the four upstream open reading frames in the GCN4 mRNA leader sequence. Efficient translation of GCN4 mRNA is completely blocked by nitrogen starvation, even when cells are simultaneously starved for amino acids and eukaryotic initiation factor-2 alpha is fully phosphorylated by Gcn2p. Our data suggest that nitrogen starvation regulates translation of GCN4 by a novel mechanism that involves the four upstream open reading frames but that still acts independently of eukaryotic initiation factor-2 alpha phosphorylation by Gcn2p.
Collapse
Affiliation(s)
- O Grundmann
- Institute for Microbiology and Genetics, Georg-August-University, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
15
|
Natarajan K, Jackson BM, Rhee E, Hinnebusch AG. yTAFII61 has a general role in RNA polymerase II transcription and is required by Gcn4p to recruit the SAGA coactivator complex. Mol Cell 1998; 2:683-92. [PMID: 9844640 DOI: 10.1016/s1097-2765(00)80166-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We obtained a recessive insertion mutation in the gene encoding yeast TBP-associated factor yTAFII61/68 that impairs Gcn4p-independent and Gcn4p-activated HIS3 transcription. This mutation also reduces transcription of seven other class II genes, thus indicating a broad role for this yTAFII in RNA polymerase II transcription. The Gcn4p activation domain interacts with multiple components of the SAGA complex in cell extracts, including the yTAFII proteins associated with SAGA, but not with two yTAFIIs restricted to TFIID. The taf61-1 mutation impairs binding of Gcn4p to SAGA/yTAFII subunits but not to components of holoenzyme mediator. Our results provide strong evidence that recruitment of SAGA, in addition to holoenzyme, is crucial for activation by Gcn4p in vivo and that yTAFII61 plays a key role in this process.
Collapse
Affiliation(s)
- K Natarajan
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
16
|
Hohmann S, Meacock PA. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1385:201-19. [PMID: 9655908 DOI: 10.1016/s0167-4838(98)00069-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The yeast Saccharomyces cerevisiae utilises external thiamin for the production of thiamin diphosphate (ThDP) or can synthesise the cofactor itself. Prior to uptake into the cell thiamin phosphates are first hydrolysed and thiamin is taken up as free vitamin which is then pyrophosphorylated by a pyrophosphokinase. Synthesis of ThDP starts with the production of hydroxyethylthiazole and hydroxymethylpyrimidine. Those are linked to yield thiamin phosphate which is hydrolysed to thiamin and subsequently pyrophosphorylated. The THI genes encoding the enzymes of these final steps of ThDP production and of thiamin utilisation have been identified. Their expression is controlled by the level of thiamin and a number of regulatory proteins involved in regulated expression of the THI genes are known. However, the molecular details of the regulatory circuits need to be deciphered. Since the nucleotide sequence of the entire yeast genome is known we can predict the number of ThDP-dependent enzymes in S. cerevisiae. Eleven such proteins have been found: pyruvate decarboxylase (Pdc, three isoforms), acetolactate synthase, a putative alpha-ketoisocaproate decarboxylase with a regulatory role in ThDP synthesis and two proteins of unknown function form the group of Pdc related enzymes. In addition there are two isoforms for transketolase as well as the E1 subunits of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase. Expression of most of these genes is either induced or repressed by glucose. Surprisingly, it has been found recently that expression of one of the genes for Pdc is repressed by thiamin. In addition, the regulatory protein Pdc2p was shown to be required for high level expression of both the THI and the PDC genes. Apparently, the production of ThDP and of the enzymes using this cofactor is coordinately regulated. Future research will focus on the elucidation of the molecular mechanisms of this novel type of regulation.
Collapse
Affiliation(s)
- S Hohmann
- Department of General and Marine Microbiology, Göteborg University, Medicinaregatan 9C, S-41390 Göteborg, Sweden.
| | | |
Collapse
|
17
|
Torres-Guzmán JC, Domínguez A. HOY1, a homeo gene required for hyphal formation in Yarrowia lipolytica. Mol Cell Biol 1997; 17:6283-93. [PMID: 9343389 PMCID: PMC232479 DOI: 10.1128/mcb.17.11.6283] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The dimorphic fungus Yarrowia lipolytica grows to form hyphae either in rich media or in media with GlcNAc as a carbon source. A visual screening, called FIL (filamentation minus), for Y. lipolytica yeast growth mutants has been developed. The FIL screen was used to identify three Y. lipolytica genes that abolish hypha formation in all media assayed. Y. lipolytica HOY1, a gene whose deletion prevents the yeast-hypha transition both in liquid and solid media, was characterized. HOY1 is predicted to encode a 509-amino-acid protein with a homeodomain homologous to that found in the chicken Hox4.8 gene. Analysis of the protein predicts a nuclear location. These observations suggest that Hoy1p may function as a transcriptional regulatory protein. In disrupted strains, reintroduction of HOY1 restored the capacity for hypha formation. Northern blot hybridization revealed the HOY1 transcript to be approximately 1.6 kb. Expression of this gene was detected when Y. lipolytica grew as a budding yeast, but an increase in its expression was observed by 1 h after cells had been induced to form hyphae. The possible functions of HOY1 in hyphal growth and the uses of the FIL screen to identify morphogenetic regulatory genes from heterologous organisms are discussed.
Collapse
Affiliation(s)
- J C Torres-Guzmán
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | |
Collapse
|
18
|
López-Lastra M, Gabus C, Darlix JL. Characterization of an internal ribosomal entry segment within the 5' leader of avian reticuloendotheliosis virus type A RNA and development of novel MLV-REV-based retroviral vectors. Hum Gene Ther 1997; 8:1855-65. [PMID: 9382952 DOI: 10.1089/hum.1997.8.16-1855] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The murine leukemia virus (MLV)-related type C viruses constitute a major class of retroviruses that includes numerous endogenous and exogenous mammalian viruses and the related avian spleen necrosis virus (SNV). The MLV-related viruses possess a long and multifunctional 5' untranslated leader involved in key steps of the viral life cycle--splicing, translation, RNA dimerization, encapsidation, and reverse transcription. Recent studies have shown that the 5' leader of Friend murine leukemia virus and Moloney murine leukemia virus can direct cap independent translation of gag precursor proteins (Berlioz et al., 1995; Vagner et al., 1995b). These data, together with structural homology studies (Koning et al., 1992), prompted us to undertake a search for new internal ribosome entry segment (IRES) of retroviral origin. Here we describe an IRES element within the 5' leader of avian reticuloendotheliosis virus type A (REV-A) genomic RNA. Data show that the REV-A 5' IRES element maps downstream of the packaging/dimerization (E/DLS) sequence (Watanabe and Temin, 1982; Darlix et al., 1992) and the minimal IRES sequence appears to be within a 129 nt fragment (nucleotides 452-580) of the 5' leader, immediately upstream of the gag AUG codon. The REV-A IRES has been successfully utilized in the construction of novel high titer MLV-based retroviral vectors, containing one or more IRES elements of retroviral origin. These retroviral constructs, which represent a starting point for the design of novel vectors suitable for gene therapy, are also of interest as a model system of internal translation initiation and its possible regulation during development, cancer, or virus infection.
Collapse
Affiliation(s)
- M López-Lastra
- LaboRétro, Unité de Virologie Humaine INSERM U412, Ecole Normale Supérieure de Lyon, France
| | | | | |
Collapse
|
19
|
Tavernarakis N, Alexandraki D, Liodis P, Tzamarias D, Thireos G. Gene overexpression reveals alternative mechanisms that induce GCN4 mRNA translation. Gene 1996; 179:271-7. [PMID: 8972911 DOI: 10.1016/s0378-1119(96)00379-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Saccharomyces cerevisiae GCN4 gene which encodes the transcription activator Gcn4, is under translational regulation. Derepression of GCN4 mRNA translation is mediated by the Gcn2 protein kinase which phosphorylates the alpha subunit of eIF-2, upon amino-acid starvation. Here, we report that overexpression of certain Saccharomyces cerevisiae genes generates intracellular conditions that alleviate the requirement for a functional Gcn2 kinase to induce GCN4 mRNA translation. Our findings, combined with the fact that Gcn2 kinase is dispensable during the initiation phase of the cellular response to amino-acid limitation, provide the grounds to further elucidate the mechanisms underlying the physiology of this homeostatic response.
Collapse
Affiliation(s)
- N Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece.
| | | | | | | | | |
Collapse
|
20
|
Perez-Campo FM, Nicaud JM, Gaillardin C, Dominguez A. Cloning and sequencing of the LYS1 gene encoding homocitrate synthase in the yeast Yarrowia lipolytica. Yeast 1996; 12:1459-69. [PMID: 8948100 DOI: 10.1002/(sici)1097-0061(199611)12:14%3c1459::aid-yea26%3e3.0.co;2-m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. The first step in the pathway is the condensation of acetyl-CoA and alpha-ketoglutarate into homocitrate, and this step is carried out by the enzyme homocitrate synthase (EC 4.1.3.21). In spite of extensive genetic analysis, no mutation affecting this step has been isolated until now in model organisms such as Saccharomyces cerevisiae or Neurospora crassa, although identification of mutations affecting the structural gene (LYS1) for homocitrate synthase was reported in the yeast Yarrowia lipolytica several years ago. Here we used these mutants for the cloning and sequencing of the Yarrowia LYS1 gene. The LYS1 gene encodes a predicted 446 amino acid polypeptide, with a molecular mass of 48442 Da. The Lys1p sequence displays two regions, one near the N-terminal section and the other in the central region, that contain conserved signatures found in prokaryotic homocitrate synthases (nifV genes of Azotobacter vinelandii and Klebsiella pneumoniae), as well as in all alpha-isopropyl malate synthases so far described. A putative mitochondrial targeting signal of 41-45 amino acids is predicted at the N-terminus. The Lys1p sequence shows 84% identity at the amino acid level with the putative product of open reading frame D1298 of S. cerevisiae. Northern blot hybridizations revealed a LYS1 transcript of approximately 1.7 kb in Y. lipolytica. Deletion of the LYS1 gene resulted in a Lys- phenotype. Our results indicate that we cloned the structural gene for homocitrate synthase in Y. lipolytica, and that the enzyme is encoded by a single gene in this yeast.
Collapse
Affiliation(s)
- F M Perez-Campo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
21
|
Perez-Campo FM, Nicaud JM, Gaillardin C, Dominguez A. Cloning and sequencing of the LYS1 gene encoding homocitrate synthase in the yeast Yarrowia lipolytica. Yeast 1996; 12:1459-1469. [PMID: 8948100 DOI: 10.1002/(sici)1097-0061(199611)12:14<1459::aid-yea26>3.0.co;2-m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-aminoadipate pathway for the biosynthesis of lysine is present only in fungi and euglena. The first step in the pathway is the condensation of acetyl-CoA and alpha-ketoglutarate into homocitrate, and this step is carried out by the enzyme homocitrate synthase (EC 4.1.3.21). In spite of extensive genetic analysis, no mutation affecting this step has been isolated until now in model organisms such as Saccharomyces cerevisiae or Neurospora crassa, although identification of mutations affecting the structural gene (LYS1) for homocitrate synthase was reported in the yeast Yarrowia lipolytica several years ago. Here we used these mutants for the cloning and sequencing of the Yarrowia LYS1 gene. The LYS1 gene encodes a predicted 446 amino acid polypeptide, with a molecular mass of 48442 Da. The Lys1p sequence displays two regions, one near the N-terminal section and the other in the central region, that contain conserved signatures found in prokaryotic homocitrate synthases (nifV genes of Azotobacter vinelandii and Klebsiella pneumoniae), as well as in all alpha-isopropyl malate synthases so far described. A putative mitochondrial targeting signal of 41-45 amino acids is predicted at the N-terminus. The Lys1p sequence shows 84% identity at the amino acid level with the putative product of open reading frame D1298 of S. cerevisiae. Northern blot hybridizations revealed a LYS1 transcript of approximately 1.7 kb in Y. lipolytica. Deletion of the LYS1 gene resulted in a Lys- phenotype. Our results indicate that we cloned the structural gene for homocitrate synthase in Y. lipolytica, and that the enzyme is encoded by a single gene in this yeast.
Collapse
Affiliation(s)
- F M Perez-Campo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
22
|
Arthington-Skaggs BA, Crowell DN, Yang H, Sturley SL, Bard M. Positive and negative regulation of a sterol biosynthetic gene (ERG3) in the post-squalene portion of the yeast ergosterol pathway. FEBS Lett 1996; 392:161-5. [PMID: 8772195 DOI: 10.1016/0014-5793(96)00807-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regulation of sterol biosynthesis in the terminal portion of the pathway represents an efficient mechanism by which the cell can control the production of sterol without disturbing the production of other essential mevalonate pathway products. We demonstrate that mutations affecting early and late steps in sterol homeostasis modulate the expression of the ERG3 gene: a late step in sterol biosynthesis in yeast. Expression of ERG3 is increased in response to a mutation in the major isoform of HMG CoA reductase which catalyzes the rate-limiting step of sterol biosynthesis. Likewise, mutations in non-auxotrophic ergosterol biosynthetic genes downstream of squalene production (erg2, erg3, erg4, erg5, and erg6) result in an up-regulation of ERG3 expression. Deletion analysis of the ERG3 promoter identified two upstream activation sequences: UAS1 which when deleted reduces ERG3 gene expression 3-4-fold but maintains sterol regulation and UAS2, which when deleted further reduces ERG3 expression and abolishes sterol regulation. The recent isolation of two yeast genes responsible for the esterification of intracellular sterol (ARE1 and ARE2) has enabled us to directly analyze the relationship between sterol esterification and de novo biosynthesis. Our results demonstrate that the absence of sterol esterification leads to a decrease in total intracellular sterol and ERG3 is a target of this negative regulation.
Collapse
Affiliation(s)
- B A Arthington-Skaggs
- Department of Biology, Indiana University-Purdue University at Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
23
|
Tavernarakis N, Thireos G. Genetic evidence for functional specificity of the yeast GCN2 kinase. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:613-8. [PMID: 8709969 DOI: 10.1007/bf02173652] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In yeast the GCN2 kinase mediates translational control of GCN4 by phosphorylating the alpha subunit of eIF-2 in response to extracellular amino acid limitation. Although phosphorylation of eIF-2 alpha has been shown to inhibit global protein synthesis, amino acid starvation results in a specific activation effect on GCN4 mRNA translation. Under the same conditions, translation of other mRNAs appears only slightly affected. The mechanism responsible for the observed selectivity of the GCN2 kinase is not clear. Here, we present genetic evidence that suggests that locally restricted action of the GCN2 kinase facilitates GCN4-specific translational regulation.
Collapse
Affiliation(s)
- N Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | | |
Collapse
|
24
|
Pereira SA, Livi GP. Aromatic amino-acid biosynthesis in Candida albicans: identification of the ARO4 gene encoding a second DAHP synthase. Curr Genet 1996; 29:441-5. [PMID: 8625423 DOI: 10.1007/bf02221512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The primary step in the aromatic amino-acid biosynthetic pathway in Saccharomyces cerevisiae is catalyzed by two redundant isozymes of 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthase, either of which alone is sufficient to permit growth on synthetic complete media lacking aromatic acids (SC-Aro). The activity of one isozyme (encoded by the ARO3 gene) is feedback-inhibited by phenylalanine, whereas the activity of the other isozyme (encoded by the ARO4 gene) is feedback-inhibited by tyrosine. Transcription of both genes is controlled by GCN4. We previously cloned the ARO3 gene from the opportunistic pathogen Candida albicans and found that: (1) it can complement an aro3 aro4 double mutation in S. cerevisiae, an effect inhibited by excess phenylalanine; and (2) its expression is induced in response to amino-acid deprivation, consistent with the presence of two putative GCN4-responsive promoter elements (Pereira and Livi 1993, 1995). To determine whether other DAHP synthases exist in C. albicans, we have constructed a homozygous aro3-deletion mutant strain. Such a mutant was found to be phenotypically Aro+, i. e., capable of normal growth on SC-Aro media, suggesting the presence of at least one additional isozyme. To confirm this result, a 222-bp DNA fragment was amplified by the polymerase chain reaction (PCR) from genomic DNA prepared from the homozygous aro3-deletion mutant, using a degenerate primer based on a conserved N-terminal region of Aro3p plus a degenerate comeback primer encoding a conserved region of the protein that lies within the deleted portion of the gene. The nucleotide sequence of this PCR fragment predicts a 74-amino acid DAHP synthase-related protein which shows strong homology to Aro3p from S. cerevisiae and C. albicans, but even greater homology (78% identity) to S. cerevisiae Aro4p. We conclude that cells of C. albicans contain a second Aro4p-related DAHP synthase.
Collapse
Affiliation(s)
- S A Pereira
- Department of Molecular Biology, Lehigh University, Bethlehem, PA 18105, USA
| | | |
Collapse
|
25
|
Maddaloni M, Donini G, Balconi C, Rizzi E, Gallusci P, Forlani F, Lohmer S, Thompson R, Salamini F, Motto M. The transcriptional activator Opaque-2 controls the expression of a cytosolic form of pyruvate orthophosphate dikinase-1 in maize endosperms. MOLECULAR & GENERAL GENETICS : MGG 1996; 250:647-54. [PMID: 8676867 DOI: 10.1007/bf02174452] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The maize Opaque-2 (O2) protein is a transcription factor of the basic/leucine-zipper class, involved in the regulation of endosperm proteins including the 22kDa alpha-zein storage proteins and b32 protein. In this study we have focussed our attention on the relationship between O2 and the cyPPDK1 gene, which encodes a cytoplasmic pyruvate orthophosphate dikinase (PPDK) isoform. The results of this study showed that PPDK activity is detectable in wild-type maize endosperms, while in o2 mutant endosperms, the levels of PPDK protein, mRNA and enzymatic activity are reduced, indicating that O2 is involved in the regulation of cyPPDK1 in this tissue. By employing transient expression experiments in tobacco mesophyll protoplasts, we have demonstrated that the O2 protein can activate expression of a chloramphenicol acetyl transferase reporter gene placed under the control of the cyPPDK1 promoter. An in vitro binding assay and DNaseI footprint analysis demonstrated that a specific sequence in the cyPPDK1 promoter can be recognized and protected by maize O2 protein. The regulation by the O2 locus of cyPPDK1 reported here, and control of alpha-zein synthesis by O2 suggest that the O2 protein may play a more general role in maize endosperm development than previously thought.
Collapse
Affiliation(s)
- M Maddaloni
- Istituto Sperimentale per la Cerealicoltura, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 1996; 60:44-69. [PMID: 8852895 PMCID: PMC239417 DOI: 10.1128/mr.60.1.44-69.1996] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Melcher K, Rose M, Künzler M, Braus GH, Entian KD. Molecular analysis of the yeast SER1 gene encoding 3-phosphoserine aminotransferase: regulation by general control and serine repression. Curr Genet 1995; 27:501-8. [PMID: 7553933 DOI: 10.1007/bf00314439] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although serine and glycine are ubiquitous amino acids the genetic and biochemical regulation of their synthesis has not been studied in detail. The SER1 gene encodes 3-phosphoserine aminotransferase which catalyzes the formation of phosphoserine from 3-phosphohydroxy-pyruvate, which is obtained by oxidation of 3-phosphoglycerate, an intermediate of glycolysis. Saccharomyces cerevisiae cells provided with fermentable carbon sources mainly use this pathway (glycolytic pathway) to synthesize serine and glycine. We report the isolation of the SER1 gene by complementation and the disruption of the chromosomal locus. Sequence analysis revealed an open reading frame encoding a protein with a predicted molecular weight of 43,401 Da. A previously described mammalian progesterone-induced protein shares 47% similarity with SER1 over the entire protein, indicating a common function for both proteins. We demonstrate that SER1 transcription is regulated by the general control of amino-acid biosynthesis mediated by GCN4. Additionally, DNaseI protection experiments proved the binding of GCN4 protein to the SER1 promoter in vitro and three GCN4 recognition elements (GCREs) were identified. Furthermore, there is evidence for an additional regulation by serine end product repression.
Collapse
Affiliation(s)
- K Melcher
- Institute for Microbiology, University of Frankfurt, Germany
| | | | | | | | | |
Collapse
|
28
|
Parry L, Balaña Fouce R, Pegg AE. Post-transcriptional regulation of the content of spermidine/spermine N1-acetyltransferase by N1N12-bis(ethyl)spermine. Biochem J 1995; 305 ( Pt 2):451-8. [PMID: 7832759 PMCID: PMC1136383 DOI: 10.1042/bj3050451] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spermidine/spermine N1-acetyltransferase (SSAT) is the rate-limiting enzyme for the degradation and excretion of polyamines in mammalian cells, and its activity is known to be increased enormously on exposure to polyamines and polyamine analogues. The mechanism by which such an analogue, BESM [N1N12-bis(ethyl)spermine], increases the content of SSAT was investigated by transfecting COS-7 cells with plasmids containing SSAT cDNA in the pEUK expression vector. Despite a large increase in mRNA production, there was only a very small increase in SSAT activity in the transfected cells. When BESM was added at 36 h after transfection, there was a large and very rapid increase in SSAT protein amounting to 380-fold in 12 h without any increase in the mRNA. SSAT protein turned over very rapidly, with a half-life of about 20 min. In the presence of BESM, this turnover was greatly reduced, and the half-life increased to more than 13 h. However, this increase was not sufficient to account for all of the increase in SSAT protein, suggesting that there is also regulation of the translation of the mRNA by BESM. Further evidence for such translation regulation was obtained by studying the polysomal distribution of the SSAT mRNA. In the absence of BESM, most of the mRNA was present in fractions which sedimented more slowly than the monoribosome peak. In BESM-treated cells, a significant proportion of the SSAT mRNA was moved into the small-polysome region of the gradient. The expression of SSAT and the effects of BESM on the polysomal distribution of SSAT mRNA were not affected by the 5'- or 3'-untranslated regions of the mRNA, since constructs which lacked all of these regions gave similar results to constructs containing the entire mRNA sequence. These results show that the increased transcription of the SSAT gene that occurs in the presence of polyamine analogues such as BESM is not sufficient for SSAT expression and that post-transcriptional regulation is critical for the control of SSAT content.
Collapse
Affiliation(s)
- L Parry
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | |
Collapse
|
29
|
Iizuka N, Chen C, Yang Q, Johannes G, Sarnow P. Cap-independent translation and internal initiation of translation in eukaryotic cellular mRNA molecules. Curr Top Microbiol Immunol 1995; 203:155-77. [PMID: 7555089 DOI: 10.1007/978-3-642-79663-0_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- N Iizuka
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
30
|
Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 7935446 DOI: 10.1128/mcb.14.11.7322] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation extracts were prepared from various strains of Saccharomyces cerevisiae. The translation of mRNA molecules in these extracts were cooperatively enhanced by the presence of 5'-terminal cap structures and 3'-terminal poly(A) sequences. These cooperative effects could not be observed in other translation systems such as those prepared from rabbit reticulocytes, wheat germ, and human HeLa cells. Because the yeast translation system mimicked the effects of the cap structure and poly(A) tail on translational efficiency seen in vivo, this system was used to study cap-dependent and cap-independent translation of viral and cellular mRNA molecules. Both the 5' noncoding regions of hepatitis C virus and those of coxsackievirus B1 conferred cap-independent translation to a reporter coding region during translation in the yeast extracts; thus, the yeast translational apparatus is capable of initiating cap-independent translation. Although the translation of most yeast mRNAs was cap dependent, the unusually long 5' noncoding regions of mRNAs encoding cellular transcription factors TFIID and HAP4 were shown to mediate cap-independent translation in these extracts. Furthermore, both TFIID and HAP4 5' noncoding regions mediated translation of a second cistron when placed into the intercistronic spacer region of a dicistronic mRNA, indicating that these leader sequences can initiate translation by an internal ribosome binding mechanism in this in vitro translation system. This finding raises the possibility that an internal translation initiation mechanism exists in yeast cells for regulated translation of endogenous mRNAs.
Collapse
|
31
|
Iizuka N, Najita L, Franzusoff A, Sarnow P. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:7322-30. [PMID: 7935446 PMCID: PMC359267 DOI: 10.1128/mcb.14.11.7322-7330.1994] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Translation extracts were prepared from various strains of Saccharomyces cerevisiae. The translation of mRNA molecules in these extracts were cooperatively enhanced by the presence of 5'-terminal cap structures and 3'-terminal poly(A) sequences. These cooperative effects could not be observed in other translation systems such as those prepared from rabbit reticulocytes, wheat germ, and human HeLa cells. Because the yeast translation system mimicked the effects of the cap structure and poly(A) tail on translational efficiency seen in vivo, this system was used to study cap-dependent and cap-independent translation of viral and cellular mRNA molecules. Both the 5' noncoding regions of hepatitis C virus and those of coxsackievirus B1 conferred cap-independent translation to a reporter coding region during translation in the yeast extracts; thus, the yeast translational apparatus is capable of initiating cap-independent translation. Although the translation of most yeast mRNAs was cap dependent, the unusually long 5' noncoding regions of mRNAs encoding cellular transcription factors TFIID and HAP4 were shown to mediate cap-independent translation in these extracts. Furthermore, both TFIID and HAP4 5' noncoding regions mediated translation of a second cistron when placed into the intercistronic spacer region of a dicistronic mRNA, indicating that these leader sequences can initiate translation by an internal ribosome binding mechanism in this in vitro translation system. This finding raises the possibility that an internal translation initiation mechanism exists in yeast cells for regulated translation of endogenous mRNAs.
Collapse
Affiliation(s)
- N Iizuka
- Department of Biochemistry, Biophysics and Genetics, University of Colorado Health Sciences Center, Denver 80262
| | | | | | | |
Collapse
|
32
|
Shantz LM, Viswanath R, Pegg AE. Role of the 5'-untranslated region of mRNA in the synthesis of S-adenosylmethionine decarboxylase and its regulation by spermine. Biochem J 1994; 302 ( Pt 3):765-72. [PMID: 7945201 PMCID: PMC1137297 DOI: 10.1042/bj3020765] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
S-Adenosylmethionine decarboxylase (AdoMetDC), a rate-limiting enzyme in polyamine biosynthesis, is regulated by polyamines at the levels of both transcription and translation. Two unusual features of AdoMetDC mRNA are a long (320 nt) 5'-untranslated region (5'UTR), which is thought to contain extensive secondary structure, and a short (15 nt) open reading frame (ORF) within the 5'UTR. We have studied the effects of altering these elements on both the expression of AdoMetDC and its regulation by n-butyl-1,3-diaminopropane (BDAP), a spermine synthase inhibitor. Human AdoMetDC cDNAs containing alterations in the 5'UTR, as well as chimaeric constructs in which the AdoMetDC 5'UTR was inserted ahead of the luciferase-coding region, were transfected into COS-7 cells. Construct pSAM320, which contains all of the 5'UTR, the AdoMetDC protein-coding region and the 3'UTR, was expressed poorly (2-fold over the endogenous activity). Deletion of virtually the entire 5'UTR, leaving nt -12 to -1, increased expression 59-fold, suggesting that 5'UTR acts as a negative regulator. The same effect was seen when the 27 nt at the extreme 5' end were removed (pSAM293, 47-fold increase), or when the internal ORF which is present in this region was destroyed by changing the ATG to CGA (pSAM320-ATG, 38-fold increase). The expression and regulation of pSAM44 (made by deleting nt -288 to -12), which has very little predicted secondary strucutre, was very similar to that of pSAM320 indicating that the terminal 27 nt including the internal ORF rather than extensive secondary structure may be responsible for the low basal levels of AdoMetDC expression. These results, confirmed using luciferase constructs, suggest that the negative effect on expression is predominantly due to the internal ORF. Depletion of spermine by BDAP increased the expression from pSAM320 more than 5-fold without affecting AdoMetDC mRNA levels. Expression from pSAM293 was unchanged by spermine depletion, whereas that from pSAM320-ATG was increased 2.5-fold. These results indicate the presence of a spermine response element in the first 27 nt of the 5'UTR that may include but is not entirely due to the internal ORF.
Collapse
Affiliation(s)
- L M Shantz
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033
| | | | | |
Collapse
|
33
|
Høvring I, Bostad A, Ording E, Myrset A, Gabrielsen O. DNA-binding domain and recognition sequence of the yeast BAS1 protein, a divergent member of the Myb family of transcription factors. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32492-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Gedvilaite A, Sasnauskas K. Control of the expression of the ADE2 gene of the yeast Saccharomyces cerevisiae. Curr Genet 1994; 25:475-9. [PMID: 8082196 DOI: 10.1007/bf00351665] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ADE2 gene encodes AIR-carboxylase which catalyzes the sixth step of the purine biosynthetic pathway in Saccharomyces cerevisiae. We have analyzed the effect of deletions in the promoter region of this gene on the expression of the enzyme using a fusion of the ADE2 gene promoter to the bacterial lacZ gene. Adenine added to the growth medium repressed the expression of the fusion at the level of mRNA. The ADE2-lacZ fusion expression can be slightly activated in response to amino-acid starvation, but only in Gcn4+ strains and in an adenine-supplemented medium. In the absence of adenine in the medium ADE2 gene expression is derepressed, and neither starvation for histidine nor a gcd1 general control regulatory mutation leads to additional derepression. Our experiments indicate that the ADE2 gene of the purine biosynthetic pathway is under both specific adenine control and the general amino-acid control system. The cis-acting promoter elements mediating both modes of regulation overlap each other and are located around the proximal TGACTC sequence.
Collapse
Affiliation(s)
- A Gedvilaite
- Institute of Biotechnology Fermentas, Vilnius, Lithuanian Republic
| | | |
Collapse
|
35
|
Pereira SA, Livi GP. Cloning and expression of the ARO3 gene encoding DAHP synthase from Candida albicans. Gene X 1993; 132:159-65. [PMID: 7901125 DOI: 10.1016/0378-1119(93)90191-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In Saccharomyces cerevisiae, the primary step in the aromatic (ARO) amino acid (aa) biosynthetic pathway is catalyzed by two isozymes of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (DAHPS). The activity of one DAHPS isozyme (encoded by the ARO3 gene) is feedback inhibited by phenylalanine, whereas the other (encoded by the ARO4 gene) is inhibited by tyrosine. The expression of these genes is also regulated at the transcriptional level by the general control activator GCN4. We took advantage of the high degree of aa sequence homology between DAHPSs from several species to isolate ARO3 homologues from the pathogenic yeast Candida albicans. An ARO3/ARO4-specific sequence was generated from C. albicans genomic DNA by polymerase chain reaction amplification and used as a probe to screen a C. albicans cDNA library. A 1.3-kb cDNA clone was isolated and sequenced. The cDNA contains a long open reading frame predicting a 368-aa protein with significant homology to known DAHPSs, including both the S. cerevisiae ARO3 and ARO4 products (68.5% and 58.5% identity, respectively). Northern analysis of yeast and mycelial poly(A)+ RNA revealed equivalent expression of a 1.3-kb transcript in both cell types. A genomic clone was isolated by cross-hybridization, and analysis of the 5' untranslated region revealed the presence of a putative GCN4-binding site. This clone complemented an aro3 mutation in S. cerevisiae; functional complementation was inhibited by the presence of excess phenylalanine (but not tyrosine) in the growth medium, confirming that the cloned gene is the C. albicans homologue of ARO3.
Collapse
Affiliation(s)
- S A Pereira
- Department of Molecular Biology, Lehigh University, Bethlehem, PA 18015
| | | |
Collapse
|
36
|
Hinnebusch AG. Gene-specific translational control of the yeast GCN4 gene by phosphorylation of eukaryotic initiation factor 2. Mol Microbiol 1993; 10:215-23. [PMID: 7934812 DOI: 10.1111/j.1365-2958.1993.tb01947.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) is one of the best-characterized mechanisms for down-regulating total protein synthesis in mammalian cells in response to various stress conditions. Recent work indicates that regulation of the GCN4 gene of Saccharomyces cerevisiae by amino acid availability represents a gene-specific case of translational control by phosphorylation of eIF-2 alpha. Four short open reading frames in the leader of GCN4 mRNA (uORFs) restrict the flow of scanning ribosomes from the cap site to the GCN4 initiation codon. When amino acids are abundant, ribosomes translate the first uORF and reinitiate at one of the remaining uORFs in the leader, after which they dissociate from the mRNA. Under conditions of amino acid starvation, many ribosomes which have translated uORF1 fail to reinitiate at uORFs 2-4 and utilize the GCN4 start codon instead. Failure to reinitiate at uORFs 2-4 in starved cells results from a reduction in the GTP-bound form of eIF-2 that delivers charged initiator tRNA(iMet) to the ribosome. When the levels of eIF-2.GTP.Met-tRNA(iMet) ternary complexes are low, many ribosomes will not rebind this critical initiation factor following translation of uORF1 until after scanning past uORF4, but before reaching GCN4. Phosphorylation of eIF-2 by the protein kinase GCN2 decreases the concentration of eIF-2.GTP.Met-tRNA(iMet) complexes by inhibiting the guanine nucleotide exchange factor for eIF-2, which is the same mechanism utilized in mammalian cells to inhibit total protein synthesis by phosphorylation of eIF-2.
Collapse
Affiliation(s)
- A G Hinnebusch
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
37
|
Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol 1993. [PMID: 8336737 DOI: 10.1128/mcb.13.8.5099] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional activator protein GCN4 is responsible for increased transcription of more than 30 different amino acid biosynthetic genes in response to starvation for a single amino acid. This induction depends on increased expression of GCN4 at the translational level. We show that starvation for purines also stimulates GCN4 translation by the same mechanism that operates in amino acid-starved cells, being dependent on short upstream open reading frames in the GCN4 mRNA leader, the phosphorylation site in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha), the protein kinase GCN2, and translational activators of GCN4 encoded by GCN1 and GCN3. Biochemical experiments show that eIF-2 alpha is phosphorylated in response to purine starvation and that this reaction is completely dependent on GCN2. As expected, derepression of GCN4 in purine-starved cells leads to a substantial increase in HIS4 expression, one of the targets of GCN4 transcriptional activation. gcn mutants that are defective for derepression of amino acid biosynthetic enzymes also exhibit sensitivity to inhibitors of purine biosynthesis, suggesting that derepression of GCN4 is required for maximal expression of one or more purine biosynthetic genes under conditions of purine limitation. Analysis of mRNAs produced from the ADE4, ADE5,7, ADE8, and ADE1 genes indicates that GCN4 stimulates the expression of these genes under conditions of histidine starvation, and it appeared that ADE8 mRNA was also derepressed by GCN4 in purine-starved cells. Our results indicate that the general control response is more global than was previously imagined in terms of the type of nutrient starvation that elicits derepression of GCN4 as well as the range of target genes that depend on GCN4 for transcriptional activation.
Collapse
|
38
|
Rolfes RJ, Hinnebusch AG. Translation of the yeast transcriptional activator GCN4 is stimulated by purine limitation: implications for activation of the protein kinase GCN2. Mol Cell Biol 1993; 13:5099-111. [PMID: 8336737 PMCID: PMC360163 DOI: 10.1128/mcb.13.8.5099-5111.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transcriptional activator protein GCN4 is responsible for increased transcription of more than 30 different amino acid biosynthetic genes in response to starvation for a single amino acid. This induction depends on increased expression of GCN4 at the translational level. We show that starvation for purines also stimulates GCN4 translation by the same mechanism that operates in amino acid-starved cells, being dependent on short upstream open reading frames in the GCN4 mRNA leader, the phosphorylation site in the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha), the protein kinase GCN2, and translational activators of GCN4 encoded by GCN1 and GCN3. Biochemical experiments show that eIF-2 alpha is phosphorylated in response to purine starvation and that this reaction is completely dependent on GCN2. As expected, derepression of GCN4 in purine-starved cells leads to a substantial increase in HIS4 expression, one of the targets of GCN4 transcriptional activation. gcn mutants that are defective for derepression of amino acid biosynthetic enzymes also exhibit sensitivity to inhibitors of purine biosynthesis, suggesting that derepression of GCN4 is required for maximal expression of one or more purine biosynthetic genes under conditions of purine limitation. Analysis of mRNAs produced from the ADE4, ADE5,7, ADE8, and ADE1 genes indicates that GCN4 stimulates the expression of these genes under conditions of histidine starvation, and it appeared that ADE8 mRNA was also derepressed by GCN4 in purine-starved cells. Our results indicate that the general control response is more global than was previously imagined in terms of the type of nutrient starvation that elicits derepression of GCN4 as well as the range of target genes that depend on GCN4 for transcriptional activation.
Collapse
Affiliation(s)
- R J Rolfes
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
39
|
Chirala SS. Coordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1992; 89:10232-6. [PMID: 1359536 PMCID: PMC50312 DOI: 10.1073/pnas.89.21.10232] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Saccharomyces cerevisiae, FAS1, FAS2, and FAS3 are the genes involved in saturated fatty acid biosynthesis. The enzymatic activities of both fatty acid synthase (FAS) and acetyl-CoA carboxylase are reduced 2- to 3-fold when yeast cells are grown in the presence of exogenous fatty acids. The mRNA levels of the FAS genes are correspondingly lower under repressive conditions. Expression of the FAS-lacZ reporter gene is also regulated by fatty acids. When a FAS2 multicopy plasmid is present in the cells, expression of both FAS1 and FAS3 increases. Thus, the FAS genes are coordinately regulated. Deletion analyses of the regulatory regions of FAS1 and FAS2 revealed common regulatory sequences. These include the GGCCAAAAAC and AGCCAAGCA sequences that have a common GCCAA core sequence and the UASINO (upstream activation sequence). Derepression of the FAS genes in the absence of exogenous inositol is not observed when UASINO is mutated, indicating that this cis element is a positive regulator of these genes. The GCCAA elements and UASINO act synergistically for optimal expression of the FAS genes.
Collapse
Affiliation(s)
- S S Chirala
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
40
|
Schüller HJ, Schorr R, Hoffmann B, Schweizer E. Regulatory gene INO4 of yeast phospholipid biosynthesis is positively autoregulated and functions as a transactivator of fatty acid synthase genes FAS1 and FAS2 from Saccharomyces cerevisiae. Nucleic Acids Res 1992; 20:5955-61. [PMID: 1461729 PMCID: PMC334460 DOI: 10.1093/nar/20.22.5955] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sequence motif 5' TYTTCACATGY 3' functions as an upstream activation site common to both yeast fatty acid synthase genes, FAS1 and FAS2. In addition, this UASFAS element is shared by all so far characterized genes of yeast phospholipid biosynthesis. We have investigated the influence of a functional INO4 gene previously described as a regulator of inositol biosynthesis on the expression of FAS1 and FAS2. In a delta ino4 null allele strain, both genes are expressed at only 50% of wild type level. Using individual UASFAS sequence motifs inserted into a heterologous test system, a drastic decrease of reporter gene expression to 2-10% of the wild type reference was observed in the delta ino4 mutant. In gel retardation assays, the protein-DNA complex involving the previously described FAS binding factor 1, Fbf1, was absent when using a protein extract from the delta ino4 mutant. On the other hand, this signal was enhanced with an extract from cells grown under conditions of inositol/choline derepression. Subsequent experiments demonstrated that INO4 expression is itself affected by phospholipid precursors, mediated by an UASFAS element in the INO4 upstream region. Thus, in addition of being an activator of phospholipid biosynthetic genes, INO4 is also subject to a positive autoregulatory loop in its own biosynthesis.
Collapse
Affiliation(s)
- H J Schüller
- Institut für Mikrobiologie und Biochemie, Lehrstuhl Biochemie, Erlangen, Germany
| | | | | | | |
Collapse
|
41
|
STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs. Mol Cell Biol 1992. [PMID: 1588961 DOI: 10.1128/mcb.12.6.2633] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing.
Collapse
|
42
|
Wang SS, Stanford DR, Silvers CD, Hopper AK. STP1, a gene involved in pre-tRNA processing, encodes a nuclear protein containing zinc finger motifs. Mol Cell Biol 1992; 12:2633-43. [PMID: 1588961 PMCID: PMC364457 DOI: 10.1128/mcb.12.6.2633-2643.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
STP1 is an unessential yeast gene involved in the removal of intervening sequences from some, but not all, families of intervening sequence-containing pre-tRNAs. Previously, we proposed that STP1 might encode a product that generates pre-tRNA conformations efficiently recognized by tRNA-splicing endonuclease. To test the predictions of this model, we have undertaken a molecular analysis of the STP1 gene and its products. The STP1 locus is located on chromosome IV close to at least two other genes involved in RNA splicing: PRP3 and SPP41. The STP1 open reading frame (ORF) could encode a peptide of 64,827 Da; however, inspection of putative transcriptional and translational regulatory signals and mapping of the 5' ends of mRNA provide evidence that translation of the STP1 ORF usually initiates at a second AUG to generate a protein of 58,081 Da. The STP1 ORF contains three putative zinc fingers. The first of these closely resembles both the DNA transcription factor consensus and the Xenopus laevis p43 RNA-binding protein consensus. The third motif more closely resembles the fingers found in spliceosomal proteins. Employing antisera to the endogenous STP1 protein and to STP1-LacZ fusion proteins, we show that the STP1 protein is localized to nuclei. The presence of zinc finger motifs and the nuclear location of the STP1 protein support the model that this gene product is involved directly in pre-tRNA splicing.
Collapse
Affiliation(s)
- S S Wang
- Department of Biological Chemistry, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey 17033
| | | | | | | |
Collapse
|
43
|
Vanoni M, Goldenthal MJ. Isolation and characterization of maltose non utilizing ( mnu) mutants mapping outside the MAL1locus in Saccharomyces cerevisiae. FEMS Microbiol Lett 1991. [DOI: 10.1111/j.1574-6968.1991.tb04354.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|