1
|
Chakraborty S, Haider S, Mukherjee G, Chakrabarty A, Chowdhury G. O6-Alkylguanine-DNA Alkyltransferase Maintains Genome Integrity by Forming DNA-Protein Cross-Links during Inflammation-Associated Peroxynitrite-Mediated DNA Damage. Chem Res Toxicol 2024; 37:1952-1964. [PMID: 39431584 DOI: 10.1021/acs.chemrestox.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Inflammation is an early immune response against invading pathogens and damaged tissue. Although beneficial, uncontrolled inflammation leads to various diseases including cancer in a chronic setting. Peroxynitrite (PN) is a major reactive nitrogen species generated during inflammation. It produces various DNA lesions including 8-nitro-guanine which spontaneously converts into abasic sites, resulting in DNA strand breakage, and is suspected to be mutagenic. Here, we report the discovery of a previously unrecognized function of the human repair protein O6-alkylguanine-DNA alkyltransferase (hAGT or MGMT). We showed that hAGT through its active site nucleophilic Cys145 thiolate spontaneously reacts with 8-nitro-guanine in DNA to form a stable DNA-protein cross-link (DPC). Interestingly, the process of DPC formation provided protection from PN-mediated genome instability, growth arrest, and apoptosis. The Cys145 mutant of hAGT failed to form a DPC and was unable to protect cells from inflammation-associated PN-mediated cytotoxicity. Gel-shift, dot blot, and UV-vis assays showed formation of a covalent linkage between PN-damaged DNA and hAGT through its active site Cys145. Finally, expression of hAGT was found to be significantly increased by induced macrophages and PN. The data presented here clearly demonstrated hAGT as a dual-function protein that along with DNA repair is capable of maintaining genomic integrity and providing protection from the toxicity caused by PN-mediated DNA damage. Although DPCs are known to be detrimental to the cell, recently, multiple pathways have been identified in normal cells for their repair.
Collapse
Affiliation(s)
- Shayantani Chakraborty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence (DTU), Greater Noida, Uttar Pradesh 201314, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence (DTU), Greater Noida, Uttar Pradesh 201314, India
| | - Gargi Mukherjee
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence (DTU), Greater Noida, Uttar Pradesh 201314, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence (DTU), Greater Noida, Uttar Pradesh 201314, India
| | - Goutam Chowdhury
- Independent Researcher, Greater Noida, Uttar Pradesh 201308, India
| |
Collapse
|
2
|
Spallotta F, Illi B. The Role of HDAC6 in Glioblastoma Multiforme: A New Avenue to Therapeutic Interventions? Biomedicines 2024; 12:2631. [PMID: 39595195 PMCID: PMC11591585 DOI: 10.3390/biomedicines12112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Despite the great advances in basic research results, glioblastoma multiforme (GBM) still remains an incurable tumour. To date, a GBM diagnosis is a death sentence within 15-18 months, due to the high recurrence rate and resistance to conventional radio- and chemotherapy approaches. The effort the scientific community is lavishing on the never-ending battle against GBM is reflected by the huge number of clinical trials launched, about 2003 on 10 September 2024. However, we are still far from both an in-depth comprehension of the biological and molecular processes leading to GBM onset and progression and, importantly, a cure. GBM is provided with high intratumoral heterogeneity, immunosuppressive capacity, and infiltrative ability due to neoangiogenesis. These features impact both tumour aggressiveness and therapeutic vulnerability, which is further limited by the presence in the tumour core of niches of glioblastoma stem cells (GSCs) that are responsible for the relapse of this brain neoplasm. Epigenetic alterations may both drive and develop along GBM progression and also rely on changes in the expression of the genes encoding histone-modifying enzymes, including histone deacetylases (HDACs). Among them, HDAC6-a cytoplasmic HDAC-has recently gained attention because of its role in modulating several biological aspects of GBM, including DNA repair ability, massive growth, radio- and chemoresistance, and de-differentiation through primary cilia disruption. In this review article, the available information related to HDAC6 function in GBM will be presented, with the aim of proposing its inhibition as a valuable therapeutic route for this deadly brain tumour.
Collapse
Affiliation(s)
- Francesco Spallotta
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy;
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), 00185 Rome, Italy
| |
Collapse
|
3
|
Pol SA, Liljenberg S, Barr J, Simon G, Wong-Dilworth L, Paterson DL, Berishvili VP, Bottanelli F, Kaschani F, Kaiser M, Pettersson M, Hellerschmied D. Induced degradation of SNAP-fusion proteins. RSC Chem Biol 2024:d4cb00184b. [PMID: 39444693 PMCID: PMC11494418 DOI: 10.1039/d4cb00184b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Self-labeling protein tags are an efficient means to visualize, manipulate, and isolate engineered fusion proteins with suitable chemical probes. The SNAP-tag, which covalently conjugates to benzyl-guanine and -chloropyrimidine derivatives is used extensively in fluorescence microscopy, given the availability of suitable SNAP-ligand-based probes. Here, we extend the applicability of the SNAP-tag to targeted protein degradation. We developed a set of SNAP PROteolysis TArgeting Chimeras (SNAP-PROTACs), which recruit the VHL or CRBN-ubiquitin E3 ligases to induce the degradation of SNAP-fusion proteins. Endogenous tagging enabled the visualization and the selective depletion of a SNAP-clathrin light chain fusion protein using SNAP-PROTACs. The addition of PROTACs to the SNAP-tag reagent toolbox facilitates the comprehensive analysis of protein function with a single gene tagging event.
Collapse
Affiliation(s)
- Savina Abraham Pol
- Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany
| | - Sara Liljenberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Jack Barr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Gina Simon
- Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany
| | - Luis Wong-Dilworth
- Institut für Biochemie, Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Danielle L Paterson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Vladimir P Berishvili
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Francesca Bottanelli
- Institut für Biochemie, Freie Universität Berlin Thielallee 63 Berlin 14195 Germany
| | - Farnusch Kaschani
- Department of Chemical Biology, University of Duisburg-Essen, Center for Medical Biotechnology, Faculty of Biology Essen Germany
| | - Markus Kaiser
- Department of Chemical Biology, University of Duisburg-Essen, Center for Medical Biotechnology, Faculty of Biology Essen Germany
| | - Mariell Pettersson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca Gothenburg 431 83 Sweden
| | - Doris Hellerschmied
- Department of Mechanistic Cell Biology, University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology Essen Germany
| |
Collapse
|
4
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. A Tween-80 modified hypoxia/esterase dual stimulus-activated nanomicelle as a delivery platform for carmustine - Design, synthesis, and biological evaluation. Int J Biol Macromol 2024; 274:133404. [PMID: 38925197 DOI: 10.1016/j.ijbiomac.2024.133404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
As a clinical anti-glioma agent, the therapeutic effect of carmustine (BCNU) was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and the blood-brain barrier (BBB). To overcome these obstacles, we synthesized a BCNU-loaded hypoxia/esterase dual stimulus-activated nanomicelle, abbreviated as T80-HACB/BCNU NPs. In this nano-system, Tween 80 acts as the functional coating on the surface of the micelle to facilitate transport across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hypoxia-sensitive AGT inhibitors (O6-azobenzyloxycarbonyl group) via an esterase-activated ester bond. The obtained T80-HACB/BCNU NPs had an average particle size of 232.10 ± 10.66 nm, the zeta potential of -18.13 ± 0.91 mV, and it showed high drug loading capacity, eximious biocompatibility and dual activation of hypoxia/esterase drug release behavior. The obtained T80-HACB/BCNU NPs showed enhanced cytotoxicity against hypoxic T98G and SF763 cells with IC50 at 132.2 μM and 133.1 μM, respectively. T80 modification improved the transportation of the micelle across an in vitro BBB model. The transport rate of the T80-HACB/Cou6 NPs group was 12.37 %, which was 7.6-fold (p<0.001) higher than the micelle without T80 modification. T80-HACB/BCNU NPs will contribute to the development of novel CENUs chemotherapies with high efficacy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
6
|
Cao W, Zhang X, Feng Y, Li R, Lu A, Li Z, Yu F, Sun L, Wang J, Wang Z, He H. Lipid Nanoparticular Codelivery System for Enhanced Antitumor Effects by Ferroptosis-Apoptosis Synergistic with Programmed Cell Death-Ligand 1 Downregulation. ACS NANO 2024; 18:17267-17281. [PMID: 38871478 DOI: 10.1021/acsnano.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Intrinsic or acquired resistance to chemical drugs severely limits their therapeutic efficacy in cancer treatment. Various intracellular antioxidant molecules, particularly glutathione (GSH), play a crucial role in maintaining intracellular redox homeostasis by mitigating the overproduced reactive oxygen species (ROS) due to rapid cell proliferation. Notably, these antioxidants also eliminate chemical-drug-induced ROS, eventually diminishing their cytotoxicity and rendering them less effective. In this study, we combined erastin, a GSH biosynthesis inhibitor, with 2'-deoxy-5-fluorouridine 5'-monophosphate sodium salt (FdUMP), an ROS-based drug, to effectively disrupt intracellular redox homeostasis and reverse chemotherapy resistance. Therefore, efficient ferroptosis and apoptosis were simultaneously induced for enhanced antitumor effects. Additionally, we employed small interfering RNA targeting PD-L1 (siPD-L1) as a third agent to block immune-checkpoint recognition by CD8+ T cells. The highly immunogenic cell peroxidates or damage-associated molecular patterns (DAMPs) induced by erastin acted synergistically with downregulated PD-L1 to enhance the antitumor effects. To codeliver these three drugs simultaneously and efficiently, we designed GE11 peptide-modified lipid nanoparticles (LNPs) containing calcium phosphate cores to achieve high encapsulation efficiencies. In vitro studies verified its enhanced cytotoxicity, efficient intracellular ROS induction and GSH/GPX4 downregulation, substantial lipid peroxidation product accumulation, and mitochondrial depolarization. In vivo, this formulation effectively accumulated at tumor sites and achieved significant tumor inhibition in subcutaneous colon cancer (CRC) mouse models with a maximum tumor inhibition rate of 83.89% at a relatively low dose. Overall, a strategy to overcome clinical drug resistance was verified in this study by depleting GSH and activating adaptive immunity.
Collapse
Affiliation(s)
- Weiran Cao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Xue Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Yaxuan Feng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - An Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zijie Li
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Fei Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Jiancheng Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhiyu Wang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
7
|
Mironova E, Molinas S, Pozo VD, Bandyopadhyay AM, Lai Z, Kurmashev D, Schneider EL, Santi DV, Chen Y, Kurmasheva RT. Synergistic Antitumor Activity of Talazoparib and Temozolomide in Malignant Rhabdoid Tumors. Cancers (Basel) 2024; 16:2041. [PMID: 38893160 PMCID: PMC11171327 DOI: 10.3390/cancers16112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Malignant rhabdoid tumors (MRTs) are among the most aggressive and treatment-resistant malignancies affecting infants, originating in the kidney, brain, liver, and soft tissues. The 5-year event-free survival rate for these cancers is a mere 20%. In nearly all cases of MRT, the SMARCB1 gene (occasionally SMARCA4)-a pivotal component of the SWI/SNF chromatin remodeling complex-is homozygously deleted, although the precise etiology of these tumors remains unknown. While young patients with localized MRT generally show improved outcomes, especially those who are older and have early-stage disease, the overall prognosis remains poor despite optimal standard treatments. This highlights the urgent need for more effective treatment strategies. We investigated the antitumor activity of a PARP1 inhibitor (talazoparib, TLZ) combined with a DNA alkylating agent (temozolomide, TMZ) in MRT xenograft models. PARP1 is a widely targeted molecule in cancer treatment and, beyond its role in DNA repair, it participates in transcriptional regulation by recruiting chromatin remodeling complexes to modulate DNA accessibility for RNA polymerases. To widen the therapeutic window of the drug combination, we employed PEGylated TLZ (PEG~TLZ), which has been reported to reduce systemic toxicity through slow drug release. Remarkably, our findings indicate that five out of six MRT xenografts exhibited an objective response to PEG~TLZ+TMZ therapy. Significantly, the loss of SMARCB1 was found to confer a protective effect, correlating with higher expression levels of DNA damage and repair proteins in SMARCB1-deficient MRT cells. Additionally, we identified MGMT as a potential biomarker indicative of in vivo MRT response to PEG~TLZ+TMZ therapy. Moreover, our analysis revealed alterations in signaling pathways associated with the observed antitumor efficacy. This study presents a novel and efficacious therapeutic approach for MRT, along with a promising candidate biomarker for predicting tumor response.
Collapse
Affiliation(s)
- Elena Mironova
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sebastian Molinas
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Vanessa Del Pozo
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Abhik M. Bandyopadhyay
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Dias Kurmashev
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | | | | - Yidong Chen
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Raushan T. Kurmasheva
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Han Y, Li DL, Han Q, Ma F, Zhang CY. Integration of Demethylation-Activated DNAzyme with a Single Quantum Dot Nanosensor for Sensitive Detection of O 6-Methylguanine DNA Methyltransferase in Breast Tissues. Anal Chem 2024; 96:4487-4494. [PMID: 38451469 DOI: 10.1021/acs.analchem.3c05090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/μL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.
Collapse
Affiliation(s)
- Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
9
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
10
|
Bowden GD, Stotz S, Dunkel G, Haas S, Kimmerle E, Schaller M, Weigelin B, Herfert K, Pichler BJ, Maurer A. [ 18F] pFBC, a Covalent CLIP-Tag Radiotracer for Detection of Viral Reporter Gene Transfer in the Murine Brain. Bioconjug Chem 2024; 35:254-264. [PMID: 38308817 DOI: 10.1021/acs.bioconjchem.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Preclinical models of neurological diseases and gene therapy are essential for neurobiological research. However, the evaluation of such models lacks reliable reporter systems for use with noninvasive imaging methods. Here, we report the development of a reporter system based on the CLIP-tag enzyme and [18F]pFBC, an 18F-labeled covalent CLIP-tag-ligand synthesized via a DoE-optimized and fully automated process. We demonstrated its specificity using a subcutaneous xenograft model and a model of viral vector-mediated brain gene transfer by engineering HEK293 cells and striatal neurons to express membrane-tethered CLIP-tag protein. After in vitro characterization of the reporter, mice carrying either CLIP-tag expressing or control subcutaneous xenografts underwent dynamic [18F]pFBC PET imaging. The CLIP-tag expressing xenografts showed a significantly higher uptake than control xenografts (tumor-to-muscle ratio 5.0 vs 1.7, p = 0.0379). In vivo, metabolite analysis by radio-HPLC from plasma and brain homogenates showed only one radio-metabolite in plasma and none in the brain. In addition, [18F]pFBC showed fast uptake and rapid clearance from the brain in animals injected with adeno-associated virus (AAV)-CLIP in the right striatum but no right-to-left (R-L) uptake difference in the striata in the acquired PET data. In contrast, autoradiography showed a clear accumulation of radioactivity in the AAV-CLIP-injected right striatum compared to the sham-injected left striatum control. CLIP-tag expression and brain integrity were verified by immunofluorescence and light sheet microscopy. In conclusion, we established a novel reporter gene system for PET imaging of gene expression in the brain and periphery and demonstrated its potential for a wide range of applications, particularly for neurobiological research and gene therapy with viral vectors.
Collapse
Affiliation(s)
- Gregory D Bowden
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tuebingen, Germany
| | - Sophie Stotz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tuebingen, Germany
| | - Gina Dunkel
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tuebingen, Germany
| | - Sabrina Haas
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Elena Kimmerle
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Bettina Weigelin
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tuebingen, Germany
| | - Kristina Herfert
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tuebingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, 72076 Tuebingen, Germany
| |
Collapse
|
11
|
Fang Q. The Versatile Attributes of MGMT: Its Repair Mechanism, Crosstalk with Other DNA Repair Pathways, and Its Role in Cancer. Cancers (Basel) 2024; 16:331. [PMID: 38254819 PMCID: PMC10814553 DOI: 10.3390/cancers16020331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
O6-methylguanine-DNA methyltransferase (MGMT or AGT) is a DNA repair protein with the capability to remove alkyl groups from O6-AlkylG adducts. Moreover, MGMT plays a crucial role in repairing DNA damage induced by methylating agents like temozolomide and chloroethylating agents such as carmustine, and thereby contributes to chemotherapeutic resistance when these agents are used. This review delves into the structural roles and repair mechanisms of MGMT, with emphasis on the potential structural and functional roles of the N-terminal domain of MGMT. It also explores the development of cancer therapeutic strategies that target MGMT. Finally, it discusses the intriguing crosstalk between MGMT and other DNA repair pathways.
Collapse
Affiliation(s)
- Qingming Fang
- Department of Biochemistry and Structural Biology, Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Watanabe K, Seki N. Biology and Development of DNA-Targeted Drugs, Focusing on Synthetic Lethality, DNA Repair, and Epigenetic Modifications for Cancer: A Review. Int J Mol Sci 2024; 25:752. [PMID: 38255825 PMCID: PMC10815806 DOI: 10.3390/ijms25020752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
DNA-targeted drugs constitute a specialized category of pharmaceuticals developed for cancer treatment, directly influencing various cellular processes involving DNA. These drugs aim to enhance treatment efficacy and minimize side effects by specifically targeting molecules or pathways crucial to cancer growth. Unlike conventional chemotherapeutic drugs, recent discoveries have yielded DNA-targeted agents with improved effectiveness, and a new generation is anticipated to be even more specific and potent. The sequencing of the human genome in 2001 marked a transformative milestone, contributing significantly to the advancement of targeted therapy and precision medicine. Anticipated progress in precision medicine is closely tied to the continuous development in the exploration of synthetic lethality, DNA repair, and expression regulatory mechanisms, including epigenetic modifications. The integration of technologies like circulating tumor DNA (ctDNA) analysis further enhances our ability to elucidate crucial regulatory factors, promising a more effective era of precision medicine. The combination of genomic knowledge and technological progress has led to a surge in clinical trials focusing on precision medicine. These trials utilize biomarkers for identifying genetic alterations, molecular profiling for potential therapeutic targets, and tailored cancer treatments addressing multiple genetic changes. The evolving landscape of genomics has prompted a paradigm shift from tumor-centric to individualized, genome-directed treatments based on biomarker analysis for each patient. The current treatment strategy involves identifying target genes or pathways, exploring drugs affecting these targets, and predicting adverse events. This review highlights strategies incorporating DNA-targeted drugs, such as PARP inhibitors, SLFN11, methylguanine methyltransferase (MGMT), and ATR kinase.
Collapse
Affiliation(s)
- Kiyotaka Watanabe
- Department of Medicine, School of Medicine, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | | |
Collapse
|
13
|
Li D, Ren T, Wang X, Xiao Z, Sun G, Zhang N, Zhao L, Zhong R. Development and in vitro evaluation of carmustine delivery platform: A hypoxia-sensitive anti-drug resistant nanomicelle with BBB penetrating ability. Biomed Pharmacother 2023; 167:115631. [PMID: 37804814 DOI: 10.1016/j.biopha.2023.115631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
Glioma is extremely difficult to be completely excised by surgery due to its invasive nature. Thus, chemotherapy still is the mainstay in the treatment of glioma after surgery. However, the natural blood-brain barrier (BBB) greatly restricts the penetration of chemotherapeutic agents into the central nervous system. As a front-line anti-glioma agent in clinical, carmustine (BCNU) exerts antitumor effect by inducing DNA damage at the O6 position of guanine. However, the therapeutic effect of BCNU was largely decreased because of the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and insufficient local drug concentrations. To overcome these obstacles, we synthesized a BCNU-loaded hypoxia-responsive nano-micelle with BBB penetrating capacity and AGT inhibitory activity, named as T80-HA-AZO-BG/BCNU NPs. In this nano-system, Tween 80 (T80) serves as a functional coating on the surface of the micelle, promoting transportation across the BBB. Hyaluronic acid (HA) with active tumor-targeting capability was linked with the hydrophobic O6-benzylguanine (BG) analog via a hypoxia-sensitive azo bond. Under hypoxic tumor microenvironment, the azo bond selectively breaks to release O6-BG as AGT inhibitor and BCNU as DNA alkylating agent. The synthesized T80-HA-AZO-BG/BCNU NPs showed good stability, favorable biocompatibility and hypoxia-responsive drug-releasing ability. T80 modification improved the transportation of the micelle across an in vitro BBB model. Moreover, T80-HA-AZO-BG/BCNU NPs exhibited significantly enhanced cytotoxicity against glioma cell lines with high AGT expression compared with traditional combined medication of BCNU plus O6-BG. We expect that the tumor-targeting nano-micelle designed for chloroethylnitrosourea will provide new tools for the development of effective glioma therapy.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixuan Xiao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
14
|
Bruzos AL, Santamarina M, García-Souto D, Díaz S, Rocha S, Zamora J, Lee Y, Viña-Feás A, Quail MA, Otero I, Pequeño-Valtierra A, Temes J, Rodriguez-Castro J, Aramburu L, Vidal-Capón A, Villanueva A, Costas D, Rodríguez R, Prieto T, Tomás L, Alvariño P, Alonso J, Cao A, Iglesias D, Carballal MJ, Amaral AM, Balseiro P, Calado R, El Khalfi B, Izagirre U, de Montaudouin X, Pade NG, Probert I, Ricardo F, Ruiz P, Skazina M, Smolarz K, Pasantes JJ, Villalba A, Ning Z, Ju YS, Posada D, Demeulemeester J, Baez-Ortega A, Tubio JMC. Somatic evolution of marine transmissible leukemias in the common cockle, Cerastoderma edule. NATURE CANCER 2023; 4:1575-1591. [PMID: 37783803 DOI: 10.1038/s43018-023-00641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/23/2023] [Indexed: 10/04/2023]
Abstract
Transmissible cancers are malignant cell lineages that spread clonally between individuals. Several such cancers, termed bivalve transmissible neoplasia (BTN), induce leukemia-like disease in marine bivalves. This is the case of BTN lineages affecting the common cockle, Cerastoderma edule, which inhabits the Atlantic coasts of Europe and northwest Africa. To investigate the evolution of cockle BTN, we collected 6,854 cockles, diagnosed 390 BTN tumors, generated a reference genome and assessed genomic variation across 61 tumors. Our analyses confirmed the existence of two BTN lineages with hemocytic origins. Mitochondrial variation revealed mitochondrial capture and host co-infection events. Mutational analyses identified lineage-specific signatures, one of which likely reflects DNA alkylation. Cytogenetic and copy number analyses uncovered pervasive genomic instability, with whole-genome duplication, oncogene amplification and alkylation-repair suppression as likely drivers. Satellite DNA distributions suggested ancient clonal origins. Our study illuminates long-term cancer evolution under the sea and reveals tolerance of extreme instability in neoplastic genomes.
Collapse
Affiliation(s)
- Alicia L Bruzos
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Martín Santamarina
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Wellcome Sanger Institute, Hinxton, UK
| | - Seila Díaz
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sara Rocha
- CINBIO, Universidade de Vigo, Vigo, Spain
| | - Jorge Zamora
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Yunah Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Alejandro Viña-Feás
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Iago Otero
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Pequeño-Valtierra
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Javier Temes
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Jorge Rodriguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Leyre Aramburu
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - André Vidal-Capón
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, Vigo, Spain
| | - Antonio Villanueva
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Damián Costas
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Rosana Rodríguez
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Tamara Prieto
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- New York Genome Center, New York, NY, USA
| | - Laura Tomás
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Pilar Alvariño
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Juana Alonso
- CINBIO, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - David Iglesias
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - María J Carballal
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
| | - Ana M Amaral
- Centro de Ciencias do Mar do Algarve (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Pablo Balseiro
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- NORCE AS, Bergen, Norway
| | - Ricardo Calado
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco
| | - Urtzi Izagirre
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plenzia-Bitzkaia, Spain
- Cell Biology in Environmental Toxicology Research Group, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Spain
| | | | - Nicolas G Pade
- European Marine Biology Resources Centre (EMBRC-ERIC), Paris, France
| | - Ian Probert
- FR2424 Station Biologique de Roscoff, Sorbonne University/CNRS, Roscoff, France
| | - Fernando Ricardo
- ECOMARE, Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Pamela Ruiz
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plenzia-Bitzkaia, Spain
- Cell Biology in Environmental Toxicology Research Group, University of the Basque Country (UPV/EHU), Leioa-Bizkaia, Spain
| | - Maria Skazina
- Department of Applied Ecology, St Petersburg State University, St Petersburg, Russia
| | - Katarzyna Smolarz
- Department of Marine Ecosystem Functioning, University of Gdańsk, Gdynia, Poland
| | - Juan J Pasantes
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, Vigo, Spain
- Centro de Investigación Mariña (CIM-ECIMAT), Universidade de Vigo, Vigo, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, Vilanova de Arousa, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Plenzia-Bitzkaia, Spain
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - David Posada
- CINBIO, Universidade de Vigo, Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Jonas Demeulemeester
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
| | - Adrian Baez-Ortega
- Wellcome Sanger Institute, Hinxton, UK.
- Magdalene College, University of Cambridge, Cambridge, UK.
| | - Jose M C Tubio
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
15
|
Mungra N, Biteghe FAN, Malindi Z, Huysamen AM, Karaan M, Hardcastle NS, Bunjun R, Chetty S, Naran K, Lang D, Richter W, Hunter R, Barth S. CSPG4 as a target for the specific killing of triple-negative breast cancer cells by a recombinant SNAP-tag-based antibody-auristatin F drug conjugate. J Cancer Res Clin Oncol 2023; 149:12203-12225. [PMID: 37432459 PMCID: PMC10465649 DOI: 10.1007/s00432-023-05031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Triple-negative breast cancer (TNBC) is phenotypic of breast tumors lacking expression of the estrogen receptor (ER), the progesterone receptor (PgR), and the human epidermal growth factor receptor 2 (HER2). The paucity of well-defined molecular targets in TNBC, coupled with the increasing burden of breast cancer-related mortality, emphasizes the need to develop targeted diagnostics and therapeutics. While antibody-drug conjugates (ADCs) have emerged as revolutionary tools in the selective delivery of drugs to malignant cells, their widespread clinical use has been hampered by traditional strategies which often give rise to heterogeneous mixtures of ADC products. METHODS Utilizing SNAP-tag technology as a cutting-edge site-specific conjugation method, a chondroitin sulfate proteoglycan 4 (CSPG4)-targeting ADC was engineered, encompassing a single-chain antibody fragment (scFv) conjugated to auristatin F (AURIF) via a click chemistry strategy. RESULTS After showcasing the self-labeling potential of the SNAP-tag component, surface binding and internalization of the fluorescently labeled product were demonstrated on CSPG4-positive TNBC cell lines through confocal microscopy and flow cytometry. The cell-killing ability of the novel AURIF-based recombinant ADC was illustrated by the induction of a 50% reduction in cell viability at nanomolar to micromolar concentrations on target cell lines. CONCLUSION This research underscores the applicability of SNAP-tag in the unambiguous generation of homogeneous and pharmaceutically relevant immunoconjugates that could potentially be instrumental in the management of a daunting disease like TNBC.
Collapse
Affiliation(s)
- Neelakshi Mungra
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Centre for Immunity and Immunotherapies, Seattle Children’s Research Institute, Washington, 98101 USA
| | - Fleury A. N. Biteghe
- Department of Radiation Oncology and Biomedical Sciences, Cedars-Sinai Medical, Los Angeles, USA
| | - Zaria Malindi
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Laser Research Centre, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| | - Allan M. Huysamen
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Maryam Karaan
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Natasha S. Hardcastle
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Rubina Bunjun
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, 7700 South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7700 South Africa
| | - Shivan Chetty
- Faculty of Health Sciences, School of Clinical Medicine, University of Witwatersrand, Braamfontein, Johannesburg, 2000 South Africa
| | - Krupa Naran
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
| | - Dirk Lang
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, 7700 South Africa
| | | | - Roger Hunter
- Department of Chemistry, PD Hahn Building, University of Cape Town, Cape Town, 7700 South Africa
| | - Stefan Barth
- Institute of Infectious Disease and Molecular Medicine, Medical Biotechnology and Immunotherapy Research Unit, University of Cape Town, Cape Town, 7700 South Africa
- Faculty of Health Sciences, Department of Integrative Biomedical Sciences, South African Research Chair in Cancer Biotechnology, University of Cape Town, Cape Town, 7700 South Africa
| |
Collapse
|
16
|
Leske H, Camenisch Gross U, Hofer S, Neidert MC, Leske S, Weller M, Lehnick D, Rushing EJ. MGMT methylation pattern of long-term and short-term survivors of glioblastoma reveals CpGs of the enhancer region to be of high prognostic value. Acta Neuropathol Commun 2023; 11:139. [PMID: 37641156 PMCID: PMC10463744 DOI: 10.1186/s40478-023-01622-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/31/2023] Open
Abstract
Treatment with the alkylating agent temozolomide is known to be prognostically beneficial in a subset of glioblastoma patients. Response to such chemotherapeutic treatment and the prognostic benefit have been linked to the methylation status of O6-methylguanine-DNA methyltransferase (MGMT). To date, it has not been entirely resolved which methylation pattern of MGMT is most relevant to predict response to temozolomide treatment and outcome. In this retrospective study, we compared the methylation patterns, analyzed by Sanger sequencing, of 27 isocitrate dehydrogenase (IDH)-wildtype glioblastoma patients that survived more than 3 years (long-term survivors) with those of 24 patients who survived less than a year after initial surgery (short-term survivors). Random Forest-, Correlation-, and ROC-curve analyses were performed. The data showed that MGMT is typically methylated in long-term survivors, whereas no prominent methylation is observed in short-term survivors. The methylation status of CpGs, especially in the promoter and exon1/enhancer region correlated highly with outcome. In addition, age and temozolomide treatment were strongly associated with overall survival. Some CpGs in the enhancer region, in particular CpG 86 (bp + 154), demonstrated high values associated with overall survival in the Random Forest analysis. Our data confirm previously published prognostic factors in IDH-wildtype glioblastoma patients, including age and temozolomide treatment as well as the global MGMT methylation status. The area frequently used for decision making to administer temozolomide at the end of exon1 of MGMT, was associated with outcome. However, our data also suggest that the enhancer region, especially CpG 86 (bp + 154) is of strong prognostic value. Therefore, we propose further investigation of the enhancer region in a large prospective study in order to confirm our findings, which might result in an optimized prediction of survival in glioblastoma patients, likely linked to response to temozolomide treatment.
Collapse
Affiliation(s)
- Henning Leske
- Department of Pathology, Oslo University Hospital, Oslo, Norway.
- University of Oslo (UiO), Oslo, Norway.
- Department of Neuropathology, University Hospital of Zurich, Zurich, Switzerland.
| | | | - Silvia Hofer
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Marian Christoph Neidert
- Department of Neurosurgery, University Hospital of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Dirk Lehnick
- Department of Health Sciences and Medicine, Head Biostatistics and Methodology, University of Lucerne, Lucerne, Switzerland
| | - Elisabeth Jane Rushing
- Department of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- Department of Pathology/ Neuropathology, Lucerne, Switzerland
| |
Collapse
|
17
|
Li D, Ren T, Ge Y, Wang X, Sun G, Zhang N, Zhao L, Zhong R. A multi-functional hypoxia/esterase dual stimulus responsive and hyaluronic acid-based nanomicelle for targeting delivery of chloroethylnitrosouea. J Nanobiotechnology 2023; 21:291. [PMID: 37612719 PMCID: PMC10464291 DOI: 10.1186/s12951-023-02062-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Carmustine (BCNU), a vital type of chloroethylnitrosourea (CENU), inhibits tumor cells growth by inducing DNA damage at O6 position of guanine and eventually forming dG-dC interstrand cross-links (ICLs). However, the clinical application of BCNU is hindered to some extent by the absence of tumor selectivity, poor stability and O6-alkylguanine-DNA alkyltransferase (AGT) mediated drug resistance. In recent years, tumor microenvironment has been widely utilized for advanced drug delivery. In the light of the features of tumor microenvironment, we constructed a multifunctional hypoxia/esterase-degradable nanomicelle with AGT inhibitory activity named HACB NPs for tumor-targeting BCNU delivery and tumor sensitization. HACB NPs was self-assembled from hyaluronic acid azobenzene AGT inhibitor conjugates, in which O6-BG analog acted as an AGT inhibitor, azobenzene acted as a hypoxia-responsive linker and carboxylate ester bond acted as both an esterase-sensitive switch and a connector with hyaluronic acid (HA). The obtained HACB NPs possessed good stability, favorable biosafety and hypoxia/esterase-responsive drug-releasing ability. BCNU-loaded HACB/BCNU NPs exhibited superior cytotoxicity and apoptosis-inducing ability toward the human uterine cervix carcinoma HeLa cells compared with traditional combined medication of BCNU plus O6-BG. In vivo studies further demonstrated that after a selective accumulation in the tumor site, the micelles could respond to hypoxic tumor tissue for rapid drug release to an effective therapeutic dosage. Thus, this multifunctional stimulus-responsive nanocarrier could be a new promising strategy to enhance the anticancer efficacy and reduce the side effects of BCNU and other CENUs.
Collapse
Affiliation(s)
- Duo Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Yunxuan Ge
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
18
|
Karaman EF, Abudayyak M, Ozden S. The role of chromatin-modifying enzymes and histone modifications in the modulation of p16 gene in fumonisin B 1-induced toxicity in human kidney cells. Mycotoxin Res 2023:10.1007/s12550-023-00494-2. [PMID: 37328702 DOI: 10.1007/s12550-023-00494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Fumonisin B1 (FB1) poses a risk to animal and human health. Although the effects of FB1 on sphingolipid metabolism are well documented, there are limited studies covering the epigenetic modifications and early molecular alterations associated with carcinogenesis pathways caused by FB1 nephrotoxicity. The present study investigates the effects of FB1 on global DNA methylation, chromatin-modifying enzymes, and histone modification levels of the p16 gene in human kidney cells (HK-2) after 24 h exposure. An increase (2.23-fold) in the levels of 5-methylcytosine (5-mC) at 100 µmol/L was observed, a change independent from the decrease in gene expression levels of DNA methyltransferase 1 (DNMT1) at 50 and 100 µmol/L; however, DNMT3a and DNMT3b were significantly upregulated at 100 µmol/L of FB1. Dose-dependent downregulation of chromatin-modifying genes was observed after FB1 exposure. In addition, chromatin immunoprecipitation results showed that 10 µmol/L of FB1 induced a significant decrease in H3K9ac, H3K9me3 and H3K27me3 modifications of p16, while 100 µmol/L of FB1 caused a significant increase in H3K27me3 levels of p16. Taken together, the results suggest that epigenetic mechanisms might play a role in FB1 carcinogenesis through DNA methylation, and histone and chromatin modifications.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, 34010, Topkapi, Istanbul, Turkey
| | - Mahmoud Abudayyak
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116, Beyazit, Istanbul, Turkey.
| |
Collapse
|
19
|
Yin Y, Zhang L. Archaeal DNA alkylation repair conducted by DNA glycosylase and methyltransferase. Appl Microbiol Biotechnol 2023; 107:3131-3142. [PMID: 37036526 DOI: 10.1007/s00253-023-12506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Alkylated bases in DNA created in the presence of endogenous and exogenous alkylating agents are either cytotoxic or mutagenic, or both to a cell. Currently, cells have evolved several strategies for repairing alkylated base. One strategy is a base excision repair process triggered by a specific DNA glycosylase that is used for the repair of the cytotoxic 3-methyladenine. Additionally, the cytotoxic and mutagenic O6-methylguanine (O6-meG) is corrected by O6-methylguanine methyltransferase (MGMT) via directly transferring the methyl group in the lesion to a specific cysteine in this protein. Furthermore, oxidative DNA demethylation catalyzed by DNA dioxygenase is utilized for repairing the cytotoxic 3-methylcytosine (3-meC) and 1-methyladenine (1-meA) in a direct reversal manner. As the third domain of life, Archaea possess 3-methyladenine DNA glycosylase II (AlkA) and MGMT, but no DNA dioxygenase homologue responsible for oxidative demethylation. Herein, we summarize recent progress in structural and biochemical properties of archaeal AlkA and MGMT to gain a better understanding of archaeal DNA alkylation repair, focusing on similarities and differences between the proteins from different archaeal species and between these archaeal proteins and their bacterial and eukaryotic relatives. To our knowledge, it is the first review on archaeal DNA alkylation repair conducted by DNA glycosylase and methyltransferase. KEY POINTS: • Archaeal MGMT plays an essential role in the repair of O 6 -meG • Archaeal AlkA can repair 3-meC and 1-meA.
Collapse
Affiliation(s)
- Youcheng Yin
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China
| | - Likui Zhang
- Marine Science & Technology Institute, College of Environmental Science and Engineering, Yangzhou University, Yangzhou City, China.
| |
Collapse
|
20
|
Brawanski KR, Sprung S, Freyschlag CF, Hoeftberger R, Ströbel T, Haybaeck J, Thomé C, Manzl C, Birkl-Toeglhofer AM. Influence of MMR, MGMT Promotor Methylation and Protein Expression on Overall and Progression-Free Survival in Primary Glioblastoma Patients Treated with Temozolomide. Int J Mol Sci 2023; 24:ijms24076184. [PMID: 37047153 PMCID: PMC10094528 DOI: 10.3390/ijms24076184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Glioblastoma is the most common malignant brain tumor in adults. Standard treatment includes tumor resection, radio-chemotherapy and adjuvant chemotherapy with temozolomide (TMZ). TMZ methylates DNA, whereas O6-methylguanine DNA methyltransferase (MGMT) counteracts TMZ effects by removing the intended proteasomal degradation signal. Non-functional MGMT mediates the mismatch repair (MMR) system, leading to apoptosis after futile repair attempts. This study investigated the associations between MGMT promoter methylation, MGMT and MMR protein expression, and their effect on overall survival (OS) and progression-free survival (PFS) in patients with glioblastoma. MGMT promoter methylation was assessed in 42 treatment-naïve patients with glioblastoma WHO grade IV by pyrosequencing. MGMT and MMR protein expression was analyzed using immunohistochemistry. MGMT promoter methylation was present in 52%, whereas patients <70 years of age revealed a significantly longer OS using a log-rank test and a significance threshold of p ≤ 0.05. MGMT protein expression and methylation status showed no correlation. MMR protein expression was present in all patients independent of MGMT status and did not influence OS and PFS. Overall, MGMT promoter methylation implicates an improved OS in patients with glioblastoma aged <70 years. In the elderly, the extent of surgery has an impact on OS rather than the MGMT promoter methylation or protein expression.
Collapse
Affiliation(s)
| | - Susanne Sprung
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | | | - Romana Hoeftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Ströbel
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Diagnostic and Research Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Claudia Manzl
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna M Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme. Int J Mol Sci 2023; 24:ijms24044217. [PMID: 36835628 PMCID: PMC9966483 DOI: 10.3390/ijms24044217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
Collapse
|
22
|
Caglar HO, Duzgun Z. Identification of upregulated genes in glioblastoma and glioblastoma cancer stem cells using bioinformatics analysis. Gene X 2023; 848:146895. [DOI: 10.1016/j.gene.2022.146895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/10/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
|
23
|
Ahmed M, Semreen AM, El-Huneidi W, Bustanji Y, Abu-Gharbieh E, Alqudah MAY, Alhusban A, Shara M, Abuhelwa AY, Soares NC, Semreen MH, Alzoubi KH. Preclinical and Clinical Applications of Metabolomics and Proteomics in Glioblastoma Research. Int J Mol Sci 2022; 24:ijms24010348. [PMID: 36613792 PMCID: PMC9820403 DOI: 10.3390/ijms24010348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GB) is a primary malignancy of the central nervous system that is classified by the WHO as a grade IV astrocytoma. Despite decades of research, several aspects about the biology of GB are still unclear. Its pathogenesis and resistance mechanisms are poorly understood, and methods to optimize patient diagnosis and prognosis remain a bottle neck owing to the heterogeneity of the malignancy. The field of omics has recently gained traction, as it can aid in understanding the dynamic spatiotemporal regulatory network of enzymes and metabolites that allows cancer cells to adjust to their surroundings to promote tumor development. In combination with other omics techniques, proteomic and metabolomic investigations, which are a potent means for examining a variety of metabolic enzymes as well as intermediate metabolites, might offer crucial information in this area. Therefore, this review intends to stress the major contribution these tools have made in GB clinical and preclinical research and highlights the crucial impacts made by the integrative "omics" approach in reducing some of the therapeutic challenges associated with GB research and treatment. Thus, our study can purvey the use of these powerful tools in research by serving as a hub that particularly summarizes studies employing metabolomics and proteomics in the realm of GB diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahlam M. Semreen
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yasser Bustanji
- Department of Basic and Clinical Pharmacology, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Eman Abu-Gharbieh
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad A. Y. Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Alhusban
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Ahmad Y. Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammad H. Semreen
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (M.H.S.); (K.H.A.)
| | - Karem H. Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (M.H.S.); (K.H.A.)
| |
Collapse
|
24
|
Rahman MA, Engelsen AST, Sarowar S, Bindesbøll C, Birkeland E, Goplen D, Lotsberg ML, Knappskog S, Simonsen A, Chekenya M. Bortezomib abrogates temozolomide-induced autophagic flux through an ATG5 dependent pathway. Front Cell Dev Biol 2022; 10:1022191. [PMID: 36619857 PMCID: PMC9814514 DOI: 10.3389/fcell.2022.1022191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Glioblastoma (GBM) is invariably resistant to temozolomide (TMZ) chemotherapy. Inhibiting the proteasomal pathway is an emerging strategy to accumulate damaged proteins and inhibit their lysosomal degradation. We hypothesized that pre-treatment of glioblastoma with bortezomib (BTZ) might sensitize glioblastoma to temozolomide by abolishing autophagy survival signals to augment DNA damage and apoptosis. Methods: P3 patient-derived glioblastoma cells, as well as the tumour cell lines U87, HF66, A172, and T98G were investigated for clonogenic survival after single or combined treatment with temozolomide and bortezomib in vitro. We investigated the requirement of functional autophagy machinery by utilizing pharmacological inhibitors or CRISPR-Cas9 knockout (KO) of autophagy-related genes -5 and -7 (ATG5 and ATG7) in glioblastoma cells and monitored changes in autophagic flux after temozolomide and/or bortezomib treatments. P3 wild-type and P3 ATG5-/- (ATG5 KO) cells were implanted orthotopically into NOD-SCID mice to assess the efficacy of bortezomib and temozolomide combination therapy with and without functional autophagy machinery. Results: The chemo-resistant glioblastoma cells increased autophagic flux during temozolomide treatment as indicated by increased degradation of long-lived proteins, diminished expression of autophagy markers LC3A/B-II and p62 (SQSTM1), increased co-localisation of LC3A/B-II with STX17, augmented and no induction of apoptosis. In contrast, bortezomib treatment abrogated autophagic flux indicated by the accumulation of LC3A/B-II and p62 (SQSTM1) positive autophagosomes that did not fuse with lysosomes and thus reduced the degradation of long-lived proteins. Bortezomib synergistically enhanced temozolomide efficacy by attenuating cell proliferation, increased DNA double-strand breaks, and apoptosis in an autophagy-dependent manner. Abolishing autophagy in ATG5 KOs reversed the bortezomib-induced toxicity, rescued glioblastoma cell death and reduced animal survival. Discussion: We conclude that bortezomib abrogates temozolomide induced autophagy flux through an ATG5 dependent pathway.
Collapse
Affiliation(s)
- Mohummad Aminur Rahman
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway,Department of Oncology, Haukeland University Hospital, Bergen, Norway,*Correspondence: Mohummad Aminur Rahman,
| | - Agnete S. T. Engelsen
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway,Department of Clinical Medicine and Centre for Cancer Biomarkers, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Shahin Sarowar
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Christian Bindesbøll
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Even Birkeland
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Dorota Goplen
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Maria L. Lotsberg
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway,Department of Clinical Medicine and Centre for Cancer Biomarkers, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Stian Knappskog
- Department of Oncology, Haukeland University Hospital, Bergen, Norway,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway,Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Martha Chekenya
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
25
|
BET protein inhibition sensitizes glioblastoma cells to temozolomide treatment by attenuating MGMT expression. Cell Death Dis 2022; 13:1037. [PMID: 36513631 PMCID: PMC9747918 DOI: 10.1038/s41419-022-05497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Bromodomain and extra-terminal tail (BET) proteins have been identified as potential epigenetic targets in cancer, including glioblastoma. These epigenetic modifiers link the histone code to gene transcription that can be disrupted with small molecule BET inhibitors (BETi). With the aim of developing rational combination treatments for glioblastoma, we analyzed BETi-induced differential gene expression in glioblastoma derived-spheres, and identified 6 distinct response patterns. To uncover emerging actionable vulnerabilities that can be targeted with a second drug, we extracted the 169 significantly disturbed DNA Damage Response genes and inspected their response pattern. The most prominent candidate with consistent downregulation, was the O-6-methylguanine-DNA methyltransferase (MGMT) gene, a known resistance factor for alkylating agent therapy in glioblastoma. BETi not only reduced MGMT expression in GBM cells, but also inhibited its induction, typically observed upon temozolomide treatment. To determine the potential clinical relevance, we evaluated the specificity of the effect on MGMT expression and MGMT mediated treatment resistance to temozolomide. BETi-mediated attenuation of MGMT expression was associated with reduction of BRD4- and Pol II-binding at the MGMT promoter. On the functional level, we demonstrated that ectopic expression of MGMT under an unrelated promoter was not affected by BETi, while under the same conditions, pharmacologic inhibition of MGMT restored the sensitivity to temozolomide, reflected in an increased level of γ-H2AX, a proxy for DNA double-strand breaks. Importantly, expression of MSH6 and MSH2, which are required for sensitivity to unrepaired O6-methylguanine-lesions, was only briefly affected by BETi. Taken together, the addition of BET-inhibitors to the current standard of care, comprising temozolomide treatment, may sensitize the 50% of patients whose glioblastoma exert an unmethylated MGMT promoter.
Collapse
|
26
|
NMDA receptor signaling induces the chemoresistance of temozolomide via upregulation of MGMT expression in glioblastoma cells. J Neurooncol 2022; 160:375-388. [DOI: 10.1007/s11060-022-04154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022]
|
27
|
Ascorbate content of clinical glioma tissues is related to tumour grade and to global levels of 5-hydroxymethyl cytosine. Sci Rep 2022; 12:14845. [PMID: 36050369 PMCID: PMC9436949 DOI: 10.1038/s41598-022-19032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Gliomas are incurable brain cancers with poor prognosis, with epigenetic dysregulation being a distinctive feature. 5-hydroxymethylcytosine (5-hmC), an intermediate generated in the demethylation of 5-methylcytosine, is present at reduced levels in glioma tissue compared with normal brain, and that higher levels of 5-hmC are associated with improved patient survival. DNA demethylation is enzymatically driven by the ten–eleven translocation (TET) dioxygenases that require ascorbate as an essential cofactor. There is limited data on ascorbate in gliomas and the relationship between ascorbate and 5-hmC in gliomas has never been reported. Clinical glioma samples (11 low-grade, 26 high-grade) were analysed for ascorbate, global DNA methylation and hydroxymethylation, and methylation status of the O-6-methylguanine-DNA methyltransferase (MGMT) promoter. Low-grade gliomas contained significantly higher levels of ascorbate than high-grade gliomas (p = 0.026). Levels of 5-hmC were significantly higher in low-grade than high-grade glioma (p = 0.0013). There was a strong association between higher ascorbate and higher 5-hmC (p = 0.004). Gliomas with unmethylated and methylated MGMT promoters had similar ascorbate levels (p = 0.96). One mechanism by which epigenetic modifications could occur is through ascorbate-mediated optimisation of TET activity in gliomas. These findings open the door to clinical intervention trials in patients with glioma to provide both mechanistic information and potential avenues for adjuvant ascorbate therapy.
Collapse
|
28
|
Malindi Z, Barth S, Abrahamse H. The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma. Biomedicines 2022; 10:2158. [PMID: 36140259 PMCID: PMC9495799 DOI: 10.3390/biomedicines10092158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Melanoma is highly aggressive and is known to be efficient at resisting drug-induced apoptotic signals. Resection is currently the gold standard for melanoma management, but it only offers local control of the early stage of the disease. Metastatic melanoma is prone to recurrence, and has a poor prognosis and treatment response. Thus, the need for advanced theranostic alternatives is evident. Photodynamic therapy has been increasingly studied for melanoma treatment; however, it relies on passive drug accumulation, leading to off-target effects. Nanoparticles enhance drug biodistribution, uptake and intra-tumoural concentration and can be functionalised with monoclonal antibodies that offer selective biorecognition. Antibody-drug conjugates reduce passive drug accumulation and off-target effects. Nonetheless, one limitation of monoclonal antibodies and antibody-drug conjugates is their lack of versatility, given cancer's heterogeneity. Monoclonal antibodies suffer several additional limitations that make recombinant antibody fragments more desirable. SNAP-tag is a modified version of the human DNA-repair enzyme, O6-alkylguanine-DNA alkyltransferase. It reacts in an autocatalytic and covalent manner with benzylguanine-modified substrates, providing a simple protein labelling system. SNAP-tag can be genetically fused with antibody fragments, creating fusion proteins that can be easily labelled with benzylguanine-modified payloads for site-directed delivery. This review aims to highlight the benefits and limitations of the abovementioned approaches and to outline how their combination could enhance photodynamic therapy for melanoma.
Collapse
Affiliation(s)
- Zaria Malindi
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa
| |
Collapse
|
29
|
Senhaji N, Squalli Houssaini A, Lamrabet S, Louati S, Bennis S. Molecular and Circulating Biomarkers in Patients with Glioblastoma. Int J Mol Sci 2022; 23:7474. [PMID: 35806478 PMCID: PMC9267689 DOI: 10.3390/ijms23137474] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most aggressive malignant tumor of the central nervous system with a low survival rate. The difficulty of obtaining this tumor material represents a major limitation, making the real-time monitoring of tumor progression difficult, especially in the events of recurrence or resistance to treatment. The identification of characteristic biomarkers is indispensable for an accurate diagnosis, the rigorous follow-up of patients, and the development of new personalized treatments. Liquid biopsy, as a minimally invasive procedure, holds promise in this regard. The purpose of this paper is to summarize the current literature regarding the identification of molecular and circulating glioblastoma biomarkers and the importance of their integration as a valuable tool to improve patient care.
Collapse
Affiliation(s)
- Nadia Senhaji
- Department of Biology, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Asmae Squalli Houssaini
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Salma Lamrabet
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| | - Sara Louati
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy of Rabat, Mohammed Vth University, Rabat 10000, Morocco;
| | - Sanae Bennis
- Laboratory of Biomedical and Translational Research, Faculty of Medicine, Pharmacy and Dental Medicine of Fez, Sidi Mohamed Ben Abdellah University, Fez 30070, Morocco; (A.S.H.); (S.L.); (S.B.)
| |
Collapse
|
30
|
Ganesa S, Sule A, Sundaram RK, Bindra RS. Mismatch repair proteins play a role in ATR activation upon temozolomide treatment in MGMT-methylated glioblastoma. Sci Rep 2022; 12:5827. [PMID: 35388070 PMCID: PMC8987098 DOI: 10.1038/s41598-022-09614-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation status of the O6-methylguanine methyltransferase (MGMT) gene promoter has been widely accepted as a prognostic biomarker for treatment with the alkylator, temozolomide (TMZ). In the absence of promoter methylation, the MGMT enzyme removes O6-methylguanine (O6-meG) lesions. In the setting of MGMT-promoter methylation (MGMT-), the O6-meG lesion activates the mismatch repair (MMR) pathway which functions to remove the damage. Our group reported that loss of MGMT expression via MGMT promoter silencing modulates activation of ataxia telangiectasia and RAD3 related protein (ATR) in response to TMZ treatment, which is associated with synergistic tumor-cell killing. Whether or not MMR proteins are involved in ATR activation in MGMT-cells upon alkylation damage remains poorly understood. To investigate the function of MMR in ATR activation, we created isogenic cell lines with knockdowns of the individual human MMR proteins MutS homolog 2 (MSH2), MutS homolog 6 (MSH6), MutS homolog 3 (MSH3), MutL homolog 1 (MLH1), and PMS1 homolog 2 (PMS2). Here, we demonstrate that MSH2, MSH6, MLH1 and PMS2, specifically, are involved in the activation of the ATR axis after TMZ exposure, whereas MSH3 is likely not. This study elucidates a potential mechanistic understanding of how the MMR system is involved in ATR activation by TMZ in glioblastoma cells, which is important for targeting MMR-mutated cancers.
Collapse
Affiliation(s)
- Sachita Ganesa
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Amrita Sule
- Department of Therapeutic Radiology, Yale University, 333 Cedar Street, New Haven, CT, 06511, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University, 333 Cedar Street, New Haven, CT, 06511, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University, 333 Cedar Street, New Haven, CT, 06511, USA.
| |
Collapse
|
31
|
Aloisi CMN, Escher NA, Kim HS, Geisen SM, Fontana GA, Yeo JE, Schärer OD, Sturla SJ. A combination of direct reversion and nucleotide excision repair counters the mutagenic effects of DNA carboxymethylation. DNA Repair (Amst) 2022; 110:103262. [PMID: 35030424 PMCID: PMC9232693 DOI: 10.1016/j.dnarep.2021.103262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
Distinct cellular DNA damage repair pathways maintain the structural integrity of DNA and protect it from the mutagenic effects of genotoxic exposures and processes. The occurrence of O6-carboxymethylguanine (O6-CMG) has been linked to meat consumption and hypothesized to contribute to the development of colorectal cancer. However, the cellular fate of O6-CMG is poorly characterized and there is contradictory data in the literature as to how repair pathways may protect cells from O6-CMG mutagenicity. To better address how cells detect and remove O6-CMG, we evaluated the role of two DNA repair pathways in counteracting the accumulation and toxic effects of O6-CMG. We found that cells deficient in either the direct repair protein O6-methylguanine-DNA methyltransferase (MGMT), or key components of the nucleotide excision repair (NER) pathway, accumulate higher levels O6-CMG DNA adducts than wild type cells. Furthermore, repair-deficient cells were more sensitive to carboxymethylating agents and displayed an increased mutation rate. These findings suggest that a combination of direct repair and NER circumvent the effects O6-CMG DNA damage.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nora A Escher
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Susanne M Geisen
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
32
|
Liu D, Yang T, Ma W, Wang Y. Clinical strategies to manage adult glioblastoma patients without MGMT hypermethylation. J Cancer 2022; 13:354-363. [PMID: 34976195 PMCID: PMC8692679 DOI: 10.7150/jca.63595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/21/2021] [Indexed: 01/11/2023] Open
Abstract
Glioblastoma (GBM) is a highly malignant brain tumor with a dismal prognosis. Standard therapy for GBM comprises surgical resection, followed by radiotherapy plus concomitant and adjuvant temozolomide (TMZ) therapy. The methylation status of the O6-methylguanine DNA methyltransferase (MGMT) promoter is one of the most essential predictive biomarkers for patients with GBM treated with TMZ. Patients with an unmethylated MGMT promoter (umMGMT), who comprise 60% of patients with GBM, present an even worse prognosis because of TMZ resistance. Radiotherapy with various fractionation, chemotherapy compensating for TMZ, targeted therapy against diverse oncogenic pathways, immunotherapy of vaccine or immune checkpoint inhibitor, and tumor treating fields have been studied in umMGMT GBM patients. However, most efforts have yielded negative results or merely minimal improvements. Therefore, effective patient subgroup selection concerning precision medicine has become the focus. By assigning different treatments to the corresponding patient subgroups, a better curative effect and subsequently prolonged survival can be achieved. In this review, we re-evaluate the value of standard TMZ therapy and summarize the new clinical strategies and attempts to treat patients with umMGMT, which yielded positive and negative results, to provide alternative treatment options and discuss future directions of umMGMT GBM treatment.
Collapse
Affiliation(s)
- Delin Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Tianrui Yang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
33
|
Wang X, Hu A, Du K, Feng F. Biomimetic Polymer-Templated Copper Nanoparticles Stabilize a Temozolomide Intermediate for Chemotherapy against Glioblastoma Multiforme. ACS APPLIED BIO MATERIALS 2021; 4:8004-8012. [DOI: 10.1021/acsabm.1c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xia Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Andi Hu
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ke Du
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fude Feng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
34
|
Papanicolau-Sengos A, Aldape K. DNA Methylation Profiling: An Emerging Paradigm for Cancer Diagnosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:295-321. [PMID: 34736341 DOI: 10.1146/annurev-pathol-042220-022304] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Histomorphology has been a mainstay of cancer diagnosis in anatomic pathology for many years. DNA methylation profiling is an additional emerging tool that will serve as an adjunct to increase accuracy of pathological diagnosis. Genome-wide interrogation of DNA methylation signatures, in conjunction with machine learning methods, has allowed for the creation of clinical-grade classifiers, most prominently in central nervous system and soft tissue tumors. Tumor DNA methylation profiling has led to the identification of new entities and the consolidation of morphologically disparate cancers into biologically coherent entities, and it will progressively become mainstream in the future. In addition, DNA methylation patterns in circulating tumor DNA hold great promise for minimally invasive cancer detection and classification. Despite practical challenges that accompany any new technology, methylation profiling is here to stay and will become increasingly utilized as a cancer diagnostic tool across a range of tumor types. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland 20892, USA; ,
| |
Collapse
|
35
|
Stratenwerth B, Geisen SM, He Y, Beltzig L, Sturla SJ, Kaina B. Molecular Dosimetry of Temozolomide: Quantification of Critical Lesions, Correlation to Cell Death Responses, and Threshold Doses. Mol Cancer Ther 2021; 20:1789-1799. [PMID: 34253592 PMCID: PMC9398175 DOI: 10.1158/1535-7163.mct-21-0228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 01/07/2023]
Abstract
Temozolomide (TMZ) is a DNA-methylating agent used in cancer chemotherapy, notably for glioblastoma multiforme (GBM), where it is applied as a front-line drug. One of the DNA alkylation products of TMZ is the minor lesion O6 -methylguanine (O6 MeG), which is responsible for nearly all genotoxic, cytotoxic, and cytostatic effects induced in the low-dose range relevant for cancer therapy. Here, we addressed the question of how many O6 MeG adducts are required to elicit cytotoxic responses. Adduct quantification revealed that O6 MeG increases linearly with dose. The same was observed for DNA double-strand breaks (DSB) and p53ser15. Regarding apoptosis, hockeystick modeling indicated a possible threshold for A172 cells at 2.5 μmol/L TMZ, whereas for LN229 cells no threshold was detected. Cellular senescence, which is the main cellular response, also increased linearly, without a threshold. Using a dose of 20 μmol/L, which is achievable in a therapeutic setting, we determined that 14,000 adducts give rise to 32 DSBs (γH2AX foci) in A172 cells. This leads to 12% cell death and 35% of cells entering senescence. In LN229 cells, 20 μmol/L TMZ induced 20,600 O6 MeG adducts, 66 DSBs (γH2AX foci), 24% apoptosis, and 52% senescence. The linear dose response and the genotoxic and cytotoxic effects observed at therapeutically relevant dose levels make it very likely that the TMZ target concentration triggers a significant cytotoxic and cytostatic effect in vivo Despite a linear increase in the O6 MeG adduct level, DSBs, and p53 activation, the low curative effect of TMZ results presumably from the low rate of apoptosis compared to senescence.
Collapse
Affiliation(s)
- Björn Stratenwerth
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Susanne M. Geisen
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Yang He
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Lea Beltzig
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, University Mainz, Mainz, Germany.,Corresponding Author: Bernd Kaina, Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, Mainz D-55131, Germany. E-mail:
| |
Collapse
|
36
|
Śledzińska P, Bebyn MG, Furtak J, Kowalewski J, Lewandowska MA. Prognostic and Predictive Biomarkers in Gliomas. Int J Mol Sci 2021; 22:ijms221910373. [PMID: 34638714 PMCID: PMC8508830 DOI: 10.3390/ijms221910373] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Gliomas are the most common central nervous system tumors. New technologies, including genetic research and advanced statistical methods, revolutionize the therapeutic approach to the patient and reveal new points of treatment options. Moreover, the 2021 World Health Organization Classification of Tumors of the Central Nervous System has fundamentally changed the classification of gliomas and incorporated many molecular biomarkers. Given the rapid progress in neuro-oncology, here we compile the latest research on prognostic and predictive biomarkers in gliomas. In adult patients, IDH mutations are positive prognostic markers and have the greatest prognostic significance. However, CDKN2A deletion, in IDH-mutant astrocytomas, is a marker of the highest malignancy grade. Moreover, the presence of TERT promoter mutations, EGFR alterations, or a combination of chromosome 7 gain and 10 loss upgrade IDH-wildtype astrocytoma to glioblastoma. In pediatric patients, H3F3A alterations are the most important markers which predict the worse outcome. MGMT promoter methylation has the greatest clinical significance in predicting responses to temozolomide (TMZ). Conversely, mismatch repair defects cause hypermutation phenotype predicting poor response to TMZ. Finally, we discussed liquid biopsies, which are promising diagnostic, prognostic, and predictive techniques, but further work is needed to implement these novel technologies in clinical practice.
Collapse
Affiliation(s)
- Paulina Śledzińska
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
| | - Marek G Bebyn
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
- Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Jacek Furtak
- Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
- Franciszek Lukaszczyk Oncology Center, Department of Neurooncology and Radiosurgery, 85-796 Bydgoszcz, Poland
| | - Janusz Kowalewski
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
| | - Marzena A Lewandowska
- Department of Thoracic Surgery and Tumors, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-067 Torun, Poland
- The F. Lukaszczyk Oncology Center, Molecular Oncology and Genetics Department, Innovative Medical Forum, 85-796 Bydgoszcz, Poland
| |
Collapse
|
37
|
Wilhelm J, Kühn S, Tarnawski M, Gotthard G, Tünnermann J, Tänzer T, Karpenko J, Mertes N, Xue L, Uhrig U, Reinstein J, Hiblot J, Johnsson K. Kinetic and Structural Characterization of the Self-Labeling Protein Tags HaloTag7, SNAP-tag, and CLIP-tag. Biochemistry 2021; 60:2560-2575. [PMID: 34339177 PMCID: PMC8388125 DOI: 10.1021/acs.biochem.1c00258] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Indexed: 01/16/2023]
Abstract
The self-labeling protein tags (SLPs) HaloTag7, SNAP-tag, and CLIP-tag allow the covalent labeling of fusion proteins with synthetic molecules for applications in bioimaging and biotechnology. To guide the selection of an SLP-substrate pair and provide guidelines for the design of substrates, we report a systematic and comparative study of the labeling kinetics and substrate specificities of HaloTag7, SNAP-tag, and CLIP-tag. HaloTag7 reaches almost diffusion-limited labeling rate constants with certain rhodamine substrates, which are more than 2 orders of magnitude higher than those of SNAP-tag for the corresponding substrates. SNAP-tag labeling rate constants, however, are less affected by the structure of the label than those of HaloTag7, which vary over 6 orders of magnitude for commonly employed substrates. Determining the crystal structures of HaloTag7 and SNAP-tag labeled with fluorescent substrates allowed us to rationalize their substrate preferences. We also demonstrate how these insights can be exploited to design substrates with improved labeling kinetics.
Collapse
Affiliation(s)
- Jonas Wilhelm
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Stefanie Kühn
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein
Expression and Characterization Facility, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Guillaume Gotthard
- Structural
Biology Group, European Synchrotron Radiation
Facility (ESRF), 38043 Grenoble, France
| | - Jana Tünnermann
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Timo Tänzer
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Julie Karpenko
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicole Mertes
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Lin Xue
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Ulrike Uhrig
- Chemical
Biology Core Facility, European Molecular
Biology Laboratory, 69117 Heidelberg, Germany
| | - Jochen Reinstein
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
| | - Julien Hiblot
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Institute
of Chemical Sciences and Engineering, École
Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Zheng X, Tang Q, Ren L, Liu J, Li W, Fu W, Wang J, Du G. A narrative review of research progress on drug therapies for glioblastoma multiforme. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:943. [PMID: 34350258 PMCID: PMC8263870 DOI: 10.21037/atm-20-8017] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/07/2021] [Indexed: 01/12/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive, common, and lethal subtype of malignant gliomas originating from the central nervous system. Currently, the standard therapy for GBM is surgical resection combined with radiation and temozolomide (TMZ). However, the treatment only improves the 2-year survival rate from 10% to 26%, accompanied by more than 90% recurrence of GBM tumors at the original site. Low survival rate, serious side effects, and poor prognosis force people to find new therapies. Recent years, the combination of clinical drugs improves the survival rate of GBM patients, but new therapeutic drugs with high-efficiency and low-toxicity are still needed to be discovered. The successful use of immunotherapy in tumor brings hope for people to explore new methods in treating GBM. While the inability to cross the blood-brain barrier (BBB), loss of lymphatic tissue drainage, and antigen-presenting cells in the central nervous system are major reasons for the failure of immunotherapy in the treatment of GBM. Glioma stem cells (GSCs) is a subtype of tumorigenic stem cells which has more specific tumorigenic potential indicating targeting GSCs may be expected to improve therapeutic efficacy. In this review, we discuss clinical drugs that have benefited patients with GBM, cancer immunotherapy for GBM, summarize new drug targets of GBM, and review strategies for increasing the passage of drugs through the BBB.
Collapse
Affiliation(s)
- Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qin Tang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China.,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Toward Homogenous Antibody Drug Conjugates Using Enzyme-Based Conjugation Approaches. Pharmaceuticals (Basel) 2021; 14:ph14040343. [PMID: 33917962 PMCID: PMC8068374 DOI: 10.3390/ph14040343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/17/2023] Open
Abstract
In the last few decades, antibody-based diagnostic and therapeutic applications have been well established in medicine and have revolutionized cancer managements by improving tumor detection and treatment. Antibodies are unique medical elements due to their powerful properties of being able to recognize specific antigens and their therapeutic mechanisms such as blocking specific pathways, antibody-dependent cellular cytotoxicity, and complement-dependent cytotoxicity. Furthermore, modification techniques have paved the way for improving antibody properties and to develop new classes of antibody-conjugate-based diagnostic and therapeutic agents. These techniques allow arming antibodies with various effector molecules. However, these techniques are utilizing the most frequently used amino acid residues for bioconjugation, such as cysteine and lysine. These bioconjugation approaches generate heterogeneous products with different functional and safety profiles. This is mainly due to the abundance of lysine and cysteine side chains. To overcome these limitations, different site-direct conjugation methods have been applied to arm the antibodies with therapeutic or diagnostics molecules to generate unified antibody conjugates with tailored properties. This review summarizes some of the enzyme-based site-specific conjugation approaches.
Collapse
|
40
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
41
|
The Effects of O 6-methyl Guanine DNA-methyl Transferase Promotor Methylation and CpG1, CpG2, CpG3 and CpG4 Methylation on Treatment Response and their Prognostic Significance in Patients with Glioblastoma. Balkan J Med Genet 2020; 23:33-41. [PMID: 32953407 PMCID: PMC7474218 DOI: 10.2478/bjmg-2020-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This retrospective study examined the prognostic significance and treatment effect of promoter methylation of O6- methyl guanine methyl transferase (MGMT) and meth-ylation of CpG 1, CpG2, CpG3 and CpG4 in glioblastoma (GB) patients received postoperative radiotherapy (PORT), with or without adjuvant temozolomide (TMZ). One hundred patients with GB who received PORT with concomitant TMZ plus adjuvant TMZ or PORT alone, were included. The MGMT promoter methylation of CpG1, CpG2, CpG3 and CpG4 islands were examined. Overall, MGMT-methylation emerged as a significant prognostic factor for better overall survival (OS) and progression-free survival (PFS) [odds ratio (OR): 0.609, 95% confidence interval (95% CI): 0.395-0.939, p = 0.02; OR: 0.662,95% CI: 0.430-1019, p = 0.5, respectively]. The methylation of each CpG1, CpG2, CpG3 and CpG4 islands was found to have no significant effects on OS and the methylation of each CpGl, CpG2 and CpG4 islands had no significant effect on PFS (p <0.05 for all). On the other hand, the methylation of CpG3 had a positive prognostic effect on PFS (OR: 2.1, 95% CI: 0.99-4.67, p = 0.04). In the group that only received radiotherapy (RT), CpG1 and CpC3 methylations were found to have a positive prognostic significance in terms of PFS (OR: 266, 95% CI: 1.05-6.75, p -0.03 for CpG1; OR: 2.4, 95% CI: 1.01-5.92, p = 0.04 for CpG3). The MGMT promoter methylation represents an important biomarker for predicting response to therapy. Individual islands, particularly CpG3, deserves further investigation as a prognostic marker. Further studies need to be done with larger sample sizes to clarify the results.
Collapse
|
42
|
July J, Patricia D, Gunawan PY, Setiajaya H, Ginting TE, Putra TP, Wuisan Z, Budhiarko D, Masykura N, Prayogi G, Utomo AR, Tandean S, Loe ML. Clinicopathological associations and prognostic values of IDH1 gene mutation, MGMT gene promoter methylation, and PD-L1 expressions in high-grade glioma treated with standard treatment. Pan Afr Med J 2020; 36:309. [PMID: 33282092 PMCID: PMC7687483 DOI: 10.11604/pamj.2020.36.309.24831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION the objective was to evaluate the impact of IDH1 R132H mutation, MGMT methylation and PD-L1 expression in high grade glioma that received standard therapy (surgery, radiation and chemotherapy) to overall survival (OS). METHODS this is a retrospective study of 35 high grade glioma cases. Genotyping of IDH1 gene alteration on the mutation hotspot R132 (Sanger sequencing method with Applied Biosystems 3500 Genetic Analyzer), EZ DNA Methylation-Gold kit (Zymo Research) is used to study the methylation, Cell line BT549 (ATCC HTB-122) and HCT-116 (ATCC CCL-247) were used as unmethylated control and partially methylated control respectively. Anti-human PD-L1 antibody clone E1L3N®from Cell Signalling Technology (USA) and Rabbit XP®were used to see PDL-1 expression. RESULTS anaplastic astrocytoma cases had more MGMT promoter methylation (50%) than glioblastoma multiforme (GBM) (20%), more IDH1 R132H mutation (42%) than GBM (4.3%). Immunohistochemistry tumor proportion score method (TPS) identified 17% and 8.7% were PD-L1 positive in AA and GBM groups, respectively. Cases with IDH1 R132H mutation and MGMT methylation still showed better OS although with high PD-L1 expression. CONCLUSION IDH1 R132H mutation and MGMT methylation were good prognostic markers. High expression of PD-L1 apparently might not indicate poor overall survival in the presence of IDH1 R132 mutation and MGMT methylation.
Collapse
Affiliation(s)
- Julius July
- Department of Neurosurgery, Medical Faculty of Universitas Pelita Harapan, Neuroscience Centre of Siloam Hospital Lippo Village, Tangerang, Indonesia
- Mochtar Riady Institute for Nanotechnology and Medical Science group, Universitas Pelita Harapan, Lippo Village, Tangerang, Indonesia
| | - Diana Patricia
- Department of Pathology, Medical Faculty of Universitas Pelita Harapan, Neuroscience Centre of Siloam Hospital Lippo Village, Tangerang, Indonesia
| | - Pricilla Yani Gunawan
- Department of Neurology, Medical Faculty of Universitas Pelita Harapan, Neuroscience Centre of Siloam Hospital Lippo Village, Tangerang, Indonesia
| | - Handrianto Setiajaya
- Division of Neurosurgery, Department of Surgery, Rumah Sakit Pusat Angkatan Darat Gatot Subroto, Jakarta, Indonesia
| | - Teridah Ernala Ginting
- Mochtar Riady Institute for Nanotechnology and Medical Science group, Universitas Pelita Harapan, Lippo Village, Tangerang, Indonesia
| | | | - Zerlina Wuisan
- Stemcell and Cancer Institute, PT Kalbe Farma Tbk, Jakarta, Indonesia
| | - Dini Budhiarko
- Stemcell and Cancer Institute, PT Kalbe Farma Tbk, Jakarta, Indonesia
| | | | - Gintang Prayogi
- Stemcell and Cancer Institute, PT Kalbe Farma Tbk, Jakarta, Indonesia
| | | | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik General Hospital, Medan 20155, Medan, Indonesia
| | - Michael Lumintang Loe
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Haji Adam Malik General Hospital, Medan 20155, Medan, Indonesia
| |
Collapse
|
43
|
Reina C, Cavalieri V. Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures. Int J Mol Sci 2020; 21:E4172. [PMID: 32545267 PMCID: PMC7312119 DOI: 10.3390/ijms21114172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the complex regulation, either positive or negative, of biological activities in different contexts. In this framework, we summarize and discuss the proposed mechanisms underlying the functions of G-quadruplexes and their interacting factors. Furthermore, we give special emphasis to the interplay between G-quadruplex formation/disruption and other epigenetic marks, including biochemical modifications of DNA bases and histones, nucleosome positioning, and three-dimensional organization of chromatin. Finally, epigenetic roles of RNA G-quadruplexes in post-transcriptional regulation of gene expression are also discussed. Undoubtedly, the issues addressed in this review take on particular importance in the field of comparative epigenetics, as well as in translational research.
Collapse
Affiliation(s)
- Chiara Reina
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy;
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
44
|
Hartwig A, Arand M, Epe B, Guth S, Jahnke G, Lampen A, Martus HJ, Monien B, Rietjens IMCM, Schmitz-Spanke S, Schriever-Schwemmer G, Steinberg P, Eisenbrand G. Mode of action-based risk assessment of genotoxic carcinogens. Arch Toxicol 2020; 94:1787-1877. [PMID: 32542409 PMCID: PMC7303094 DOI: 10.1007/s00204-020-02733-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
The risk assessment of chemical carcinogens is one major task in toxicology. Even though exposure has been mitigated effectively during the last decades, low levels of carcinogenic substances in food and at the workplace are still present and often not completely avoidable. The distinction between genotoxic and non-genotoxic carcinogens has traditionally been regarded as particularly relevant for risk assessment, with the assumption of the existence of no-effect concentrations (threshold levels) in case of the latter group. In contrast, genotoxic carcinogens, their metabolic precursors and DNA reactive metabolites are considered to represent risk factors at all concentrations since even one or a few DNA lesions may in principle result in mutations and, thus, increase tumour risk. Within the current document, an updated risk evaluation for genotoxic carcinogens is proposed, based on mechanistic knowledge regarding the substance (group) under investigation, and taking into account recent improvements in analytical techniques used to quantify DNA lesions and mutations as well as "omics" approaches. Furthermore, wherever possible and appropriate, special attention is given to the integration of background levels of the same or comparable DNA lesions. Within part A, fundamental considerations highlight the terms hazard and risk with respect to DNA reactivity of genotoxic agents, as compared to non-genotoxic agents. Also, current methodologies used in genetic toxicology as well as in dosimetry of exposure are described. Special focus is given on the elucidation of modes of action (MOA) and on the relation between DNA damage and cancer risk. Part B addresses specific examples of genotoxic carcinogens, including those humans are exposed to exogenously and endogenously, such as formaldehyde, acetaldehyde and the corresponding alcohols as well as some alkylating agents, ethylene oxide, and acrylamide, but also examples resulting from exogenous sources like aflatoxin B1, allylalkoxybenzenes, 2-amino-3,8-dimethylimidazo[4,5-f] quinoxaline (MeIQx), benzo[a]pyrene and pyrrolizidine alkaloids. Additionally, special attention is given to some carcinogenic metal compounds, which are considered indirect genotoxins, by accelerating mutagenicity via interactions with the cellular response to DNA damage even at low exposure conditions. Part C finally encompasses conclusions and perspectives, suggesting a refined strategy for the assessment of the carcinogenic risk associated with an exposure to genotoxic compounds and addressing research needs.
Collapse
Affiliation(s)
- Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, 55099, Mainz, Germany
| | - Sabine Guth
- Department of Toxicology, IfADo-Leibniz Research Centre for Working Environment and Human Factors, TU Dortmund, Ardeystr. 67, 44139, Dortmund, Germany
| | - Gunnar Jahnke
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Alfonso Lampen
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Hans-Jörg Martus
- Novartis Institutes for BioMedical Research, 4002, Basel, Switzerland
| | - Bernhard Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), 10589, Berlin, Germany
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Simone Schmitz-Spanke
- Institute and Outpatient Clinic of Occupational, Social and Environmental Medicine, University of Erlangen-Nuremberg, Henkestr. 9-11, 91054, Erlangen, Germany
| | - Gerlinde Schriever-Schwemmer
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Str. 9, 76131, Karlsruhe, Germany
| | - Gerhard Eisenbrand
- Retired Senior Professor for Food Chemistry and Toxicology, Kühler Grund 48/1, 69126, Heidelberg, Germany.
| |
Collapse
|
45
|
Le DV, Jiang JH. Fluorescence determination of the activity of O 6-methylguanine-DNA methyltransferase based on the activation of restriction endonuclease and the use of graphene oxide. Mikrochim Acta 2020; 187:300. [PMID: 32347374 DOI: 10.1007/s00604-020-04280-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/13/2020] [Indexed: 12/27/2022]
Abstract
A fluorescence method is described for the determination of the activity of O6-methylguanine-DNA methyltransferase (MGMT). It is based on the activation of restriction endonuclease PvuII and the adsorbing a fluorophore-labelled DNA onto the surface of graphene oxide (GO). MGMT activity removes the methyl group from O6-methylguanine (O6MeG) in the fluorophore-labelled DNA to unblock the specific recognition site for further hydrolysis reaction of restriction endonuclease PvuII. The endonuclease catalytic reaction releases fluorophores (5-carboxyfluorescein) from fluorophore-labelled DNA, which can avoid fluorescence quenching by GO, creating an abundance of the fluorescence signal. The fluorescence increase in the assay is thus directly dependent on the MGMT activity. Under the optimal conditions with the emission wavelength of 519 nm (exitation at 494 nm), the activity of the MGMT can be determined in the range 0.5 to 35 ng mL-1 with a detection limit of 0.15 ng mL-1. This is extremely sensitive for the determination of MGMT. The short time of analysis (2 h) is superior to many reported strategies. The method can also be extended for the rapid and sensitive activity assay of other DNA repair enzymes by designing a proper substrate DNA. Conceivably, the technique represents a powerful tool for diagnosis and drug exploitation. Graphical abstract Schematic representation of the fluorescence method for MGMT activity assay.
Collapse
Affiliation(s)
- Dinh-Vu Le
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao St. Go Vap, Ho Chi Minh, 70000, Viet Nam.
| | - Jian-Hui Jiang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
46
|
Listik E, Toma L. Glypican-1 in human glioblastoma: implications in tumorigenesis and chemotherapy. Oncotarget 2020; 11:828-845. [PMID: 32180897 PMCID: PMC7061737 DOI: 10.18632/oncotarget.27492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is one of the most common malignant brain tumors, with which patients have a mean survival of 24 months. Glypican-1 has been previously shown to be overexpressed in human glioblastoma and to be negatively correlated with patient’s survival. This study aimed to investigate how glypican-1 influences the tumoral profile of human glioblastoma using in vitro cell line models. By downregulating the expression of glypican-1 in U-251 MG cells, we observed that the cellular growth and proliferation were highly reduced, in which cells were significantly shifted towards G0 as opposed to G1 phases. Cellular migration was severely affected, and glypican-1 majorly impacted the affinity towards laminin-binding of glioblastoma U-251 MG cells. This proteoglycan was highly prevalent in glioblastoma cells, being primarily localized in the cellular membrane and extracellular vesicles, occasionally with glypican-3. Glypican-1 could also be found in cell-cell junctions with syndecan-4 but was not identified in lipid rafts in this study. Glypican-1-silenced cells were much more susceptible to temozolomide than in U-251 MG itself. Therefore, we present evidence not only to support facts that glypican-1 is an elementary macromolecule in glioblastoma tumoral microenvironment but also to introduce this proteoglycan as a promising therapeutic target for this lethal tumor.
Collapse
Affiliation(s)
- Eduardo Listik
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Leny Toma
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Nölting S, Ullrich M, Pietzsch J, Ziegler CG, Eisenhofer G, Grossman A, Pacak K. Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine. Cancers (Basel) 2019; 11:cancers11101505. [PMID: 31597347 PMCID: PMC6827093 DOI: 10.3390/cancers11101505] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/18/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Pheochromocytomas and paragangliomas (PCC/PGLs) are rare, mostly catecholamine-producing neuroendocrine tumors of the adrenal gland (PCCs) or the extra-adrenal paraganglia (PGL). They can be separated into three different molecular clusters depending on their underlying gene mutations in any of the at least 20 known susceptibility genes: The pseudohypoxia-associated cluster 1, the kinase signaling-associated cluster 2, and the Wnt signaling-associated cluster 3. In addition to tumor size, location (adrenal vs. extra-adrenal), multiplicity, age of first diagnosis, and presence of metastatic disease (including tumor burden), other decisive factors for best clinical management of PCC/PGL include the underlying germline mutation. The above factors can impact the choice of different biomarkers and imaging modalities for PCC/PGL diagnosis, as well as screening for other neoplasms, staging, follow-up, and therapy options. This review provides a guide for practicing clinicians summarizing current management of PCC/PGL according to tumor size, location, age of first diagnosis, presence of metastases, and especially underlying mutations in the era of precision medicine.
Collapse
Affiliation(s)
- Svenja Nölting
- Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 München, Germany.
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany.
- Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 9, 01062 Dresden, Germany.
| | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Graeme Eisenhofer
- Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ashley Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford Ox3 7LJ, UK.
- Department of Gastroenterology, Royal Free Hospital ENETS Centre of Excellence, London NW3 2QG, UK.
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
48
|
Weidema ME, van de Geer E, Koelsche C, Desar IM, Kemmeren P, Hillebrandt-Roeffen MH, Ho VK, van der Graaf WT, Versleijen-Jonkers YM, von Deimling A, Flucke UE. DNA Methylation Profiling Identifies Distinct Clusters in Angiosarcomas. Clin Cancer Res 2019; 26:93-100. [DOI: 10.1158/1078-0432.ccr-19-2180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 09/23/2019] [Indexed: 11/16/2022]
|
49
|
Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194378. [PMID: 31048026 DOI: 10.1016/j.bbagrm.2019.04.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Paradigm shifting studies especially involving non-coding RNAs (ncRNAs) during last few decades have significantly changed the scientific perspectives regarding the complexity of cellular signalling pathways. Several studies have shown that the non-coding RNAs, initially ignored as transcriptional noise or products of erroneous transcription; actually regulate plethora of biological phenomena ranging from developmental processes to various diseases including cancer. Current strategies that are employed for the management of various cancers including that of breast fall short when their undesired side effects like Cancer Stem Cells (CSC) enrichment, low recurrence-free survival and development of drug resistance are taken into consideration. This review aims at exploring the potential role of ncRNAs as therapeutics in breast cancer, by providing a comprehensive understanding of their mechanism of action and function and their crucial contribution in regulating various aspects of breast cancer progression such as cell proliferation, angiogenesis, EMT, CSCs, drug resistance and metastasis. In addition, we also provide information about various strategies that can be employed or are under development to explore them as potential moieties that may be used for therapeutic intervention in breast cancer.
Collapse
Affiliation(s)
- Deepti Tomar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Amit S Yadav
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| | - Garima Bhadauriya
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, India.
| |
Collapse
|
50
|
Karaman EF, Ozden S. Alterations in global DNA methylation and metabolism-related genes caused by zearalenone in MCF7 and MCF10F cells. Mycotoxin Res 2019; 35:309-320. [PMID: 30953299 DOI: 10.1007/s12550-019-00358-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022]
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by Fusarium fungi. ZEN has endocrine disruptor effects and could impair the hormonal balance. Here, we aimed at investigating possible effects of ZEN on metabolism-related pathways and its relation to epigenetic mechanisms in breast adenocarcinoma (MCF7) and breast epithelial (MCF10F) cells. Using the MTT and neutral red uptake (NRU) cell viability tests, IC50 values of ZEN after 24 h were found to be 191 μmol/L and 92.6 μmol/L in MCF7 cells and 67.4 μmol/L and 79.5 μmol/L in MCF10F cells. A significant increase on global levels of 5-methylcytosine (5-mC%) was observed for MCF7 cells, correlating with the increased expression of DNA methyltransferases. No alterations were observed on levels of 5-mC% and expression of DNA methyltransferases for MCF10F cells. Further, at least threefold upregulation compared to control was observed for several genes related to nuclear receptors and metabolism in MCF7 cells, while some of these genes were downregulated in MCF10F cells. The most notably altered genes were IGF1, HK2, PXR, and PPARγ. We suggested that ZEN could alter levels of global DNA methylation and impair metabolism-related pathways.
Collapse
Affiliation(s)
- Ecem Fatma Karaman
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey
| | - Sibel Ozden
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, 34116-Beyazit, Istanbul, Turkey.
| |
Collapse
|