1
|
Garbacz M, Araki H, Flis K, Bebenek A, Zawada AE, Jonczyk P, Makiela-Dzbenska K, Fijalkowska IJ. Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. DNA Repair (Amst) 2015; 29:23-35. [PMID: 25758782 DOI: 10.1016/j.dnarep.2015.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 01/08/2023]
Abstract
DNA polymerase epsilon interacts with the CMG (Cdc45-MCM-GINS) complex by Dpb2p, the non-catalytic subunit of DNA polymerase epsilon. It is postulated that CMG is responsible for targeting of Pol ɛ to the leading strand. We isolated a mutator dpb2-100 allele which encodes the mutant form of Dpb2p. We showed previously that Dpb2-100p has impaired interactions with Pol2p, the catalytic subunit of Pol ɛ. Here, we present that Dpb2-100p has strongly impaired interaction with the Psf1 and Psf3 subunits of the GINS complex. Our in vitro results suggest that while dpb2-100 does not alter Pol ɛ's biochemical properties including catalytic efficiency, processivity or proofreading activity - it moderately decreases the fidelity of DNA synthesis. As the in vitro results did not explain the strong in vivo mutator effect of the dpb2-100 allele we analyzed the mutation spectrum in vivo. The analysis of the mutation rates in the dpb2-100 mutant indicated an increased participation of the error-prone DNA polymerase zeta in replication. However, even in the absence of Pol ζ activity the presence of the dpb2-100 allele was mutagenic, indicating that a significant part of mutagenesis is Pol ζ-independent. A strong synergistic mutator effect observed for transversions in the triple mutant dpb2-100 pol2-4 rev3Δ as compared to pol2-4 rev3Δ and dpb2-100 rev3Δ suggests that in the presence of the dpb2-100 allele the number of replication errors is enhanced. We hypothesize that in the dpb2-100 strain, where the interaction between Pol ɛ and GINS is weakened, the access of Pol δ to the leading strand may be increased. The increased participation of Pol δ on the leading strand in the dpb2-100 mutant may explain the synergistic mutator effect observed in the dpb2-100 pol3-5DV double mutant.
Collapse
Affiliation(s)
- Marta Garbacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Hiroyuki Araki
- National Institute of Genetics, Division of Microbial Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Krzysztof Flis
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Anna Bebenek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Molecular Biology, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Anna E Zawada
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Piotr Jonczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland
| | - Karolina Makiela-Dzbenska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland.
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Laboratory of Mutagenesis and DNA Repair, Pawinskiego 5A, Warsaw 02-106, Poland.
| |
Collapse
|
2
|
Kennedy SR, Loeb LA, Herr AJ. Somatic mutations in aging, cancer and neurodegeneration. Mech Ageing Dev 2012; 133:118-26. [PMID: 22079405 PMCID: PMC3325357 DOI: 10.1016/j.mad.2011.10.009] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/05/2011] [Accepted: 10/22/2011] [Indexed: 10/15/2022]
Abstract
The somatic mutation theory of aging posits that the accumulation of mutations in the genetic material of somatic cells as a function of time results in a decrease in cellular function. In particular, the accumulation of random mutations may inactivate genes that are important for the functioning of the somatic cells of various organ systems of the adult, result in a decrease in organ function. When the organ function decreases below a critical level, death occurs. A significant amount of research has shown that somatic mutations play an important role in aging and a number of age related pathologies. In this review, we explore evidence for increases in somatic nuclear mutation burden with age and the consequences for aging, cancer, and neurodegeneration. We then review evidence for increases in mitochondrial mutation burden and the consequences for dysfunction in the disease processes.
Collapse
Affiliation(s)
- Scott R. Kennedy
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Lawrence A. Loeb
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
- Department of Biochemistry, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| | - Alan J. Herr
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, 98195-7705
| |
Collapse
|
3
|
Abstract
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these 'antimutagenic' changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient 'mutator' derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.
Collapse
Affiliation(s)
- Alan J Herr
- Department of Pathology, University of Washington, Seattle, USA
| | | | | |
Collapse
|
4
|
Edwards S, Li CM, Levy DL, Brown J, Snow PM, Campbell JL. Saccharomyces cerevisiae DNA polymerase epsilon and polymerase sigma interact physically and functionally, suggesting a role for polymerase epsilon in sister chromatid cohesion. Mol Cell Biol 2003; 23:2733-48. [PMID: 12665575 PMCID: PMC152548 DOI: 10.1128/mcb.23.8.2733-2748.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The large subunit of Saccharomyces cerevisiae DNA polymerase epsilon, Pol2, comprises two essential functions. The N terminus has essential DNA polymerase activity. The C terminus is also essential, but its function is unknown. We report here that the C-terminal domain of Pol2 interacts with polymerase sigma (Pol sigma), a recently identified, essential nuclear nucleotidyl transferase encoded by two redundant genes, TRF4 and TRF5. This interaction is functional, since Pol sigma stimulates the polymerase activity of the Pol epsilon holoenzyme significantly. Since Trf4 is required for sister chromatid cohesion as well as for completion of S phase and repair, the interaction suggested that Pol epsilon, like Pol sigma, might form a link between the replication apparatus and sister chromatid cohesion and/or repair machinery. We present evidence that pol2 mutants are defective in sister chromatid cohesion. In addition, Pol2 interacts with SMC1, a subunit of the cohesin complex, and with ECO1/CTF7, required for establishing sister chromatid cohesion; and pol2 mutations act synergistically with smc1 and scc1. We also show that trf5 Delta mutants, like trf4 Delta mutants, are defective in DNA repair and sister chromatid cohesion.
Collapse
Affiliation(s)
- Shaune Edwards
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
5
|
Ohya T, Kawasaki Y, Hiraga SI, Kanbara S, Nakajo K, Nakashima N, Suzuki A, Sugino A. The DNA polymerase domain of pol(epsilon) is required for rapid, efficient, and highly accurate chromosomal DNA replication, telomere length maintenance, and normal cell senescence in Saccharomyces cerevisiae. J Biol Chem 2002; 277:28099-108. [PMID: 12015307 DOI: 10.1074/jbc.m111573200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae POL2 encodes the catalytic subunit of DNA polymerase epsilon. This study investigates the cellular functions performed by the polymerase domain of Pol2p and its role in DNA metabolism. The pol2-16 mutation has a deletion in the catalytic domain of DNA polymerase epsilon that eliminates its polymerase and exonuclease activities. It is a viable mutant, which displays temperature sensitivity for growth and a defect in elongation step of chromosomal DNA replication even at permissive temperatures. This mutation is synthetic lethal in combination with temperature-sensitive mutants or the 3'- to 5'-exonuclease-deficient mutant of DNA polymerase delta in a haploid cell. These results suggest that the catalytic activity of DNA polymerase epsilon participates in the same pathway as DNA polymerase delta, and this is consistent with the observation that DNA polymerases delta and epsilon colocalize in some punctate foci on yeast chromatids during S phase. The pol2-16 mutant senesces more rapidly than wild type strain and also has shorter telomeres. These results indicate that the DNA polymerase domain of Pol2p is required for rapid, efficient, and highly accurate chromosomal DNA replication in yeast.
Collapse
Affiliation(s)
- Tomoko Ohya
- Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Karthikeyan R, Vonarx EJ, Straffon AF, Simon M, Faye G, Kunz BA. Evidence from mutational specificity studies that yeast DNA polymerases delta and epsilon replicate different DNA strands at an intracellular replication fork. J Mol Biol 2000; 299:405-19. [PMID: 10860748 DOI: 10.1006/jmbi.2000.3744] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although polymerases delta and epsilon are required for DNA replication in eukaryotic cells, whether each polymerase functions on a separate template strand remains an open question. To begin examining the relative intracellular roles of the two polymerases, we used a plasmid-borne yeast tRNA gene and yeast strains that are mutators due to the elimination of proofreading by DNA polymerases delta or epsilon. Inversion of the tRNA gene to change the sequence of the leading and lagging strand templates altered the specificities of both mutator polymerases, but in opposite directions. That is, the specificity of the polymerase delta mutator with the tRNA gene in one orientation bore similarities to the specificity of the polymerase epsilon mutator with the tRNA gene in the other orientation, and vice versa. We also obtained results consistent with gene orientation having a minor influence on mismatch correction of replication errors occurring in a wild-type strain. However, the data suggest that neither this effect nor differential replication fidelity was responsible for the mutational specificity changes observed in the proofreading-deficient mutants upon gene inversion. Collectively, the data argue that polymerases delta and epsilon each encounter a different template sequence upon inversion of the tRNA gene, and so replicate opposite strands at the plasmid DNA replication fork.
Collapse
Affiliation(s)
- R Karthikeyan
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, 3217, Australia
| | | | | | | | | | | |
Collapse
|
7
|
Maki S, Hashimoto K, Ohara T, Sugino A. DNA polymerase II (epsilon) of Saccharomyces cerevisiae dissociates from the DNA template by sensing single-stranded DNA. J Biol Chem 1998; 273:21332-41. [PMID: 9694894 DOI: 10.1074/jbc.273.33.21332] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two forms of DNA polymerase II (epsilon) of Saccharomyces cerevisiae, Pol II* and Pol II, were purified to near homogeneity from yeast cells. Pol II* is a four-subunit complex containing a 256-kDa catalytic polypeptide, whereas Pol II consists solely of a 145-kDa polypeptide derived from the N-terminal half of the 256-kDa polypeptide of Pol II*. We show that Pol II* and Pol II are indistinguishable with respect to the processivity and rate of DNA-chain elongation. The equilibrium dissociation constants of the complexes of Pol II* and Pol II with the DNA template showed that the stability of these complexes is almost the same. However, when the rates of dissociation of the Pol II* and Pol II from the DNA template were measured using single-stranded DNA as a trap for the dissociated polymerase, Pol II* dissociated 75-fold faster than Pol II. Furthermore, the rate of dissociation of Pol II* from the DNA template became faster as the concentration of the single-stranded DNA was increased. These results indicate that the rapid dissociation of Pol II* from the DNA template is actively promoted by single-stranded DNA. The dissociation of Pol II from the DNA template was also shown to be promoted by single-stranded DNA, although at a much slower rate. These results suggest that the site for sensing single-stranded DNA resides within the 145-kDa N-terminal portion of the catalytic subunit and that the efficiency for sensing single-stranded DNA by this site is positively modulated by either the C-terminal half of the catalytic subunit and/or the other subunits.
Collapse
Affiliation(s)
- S Maki
- Department of Biochemistry and Molecular Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
8
|
Kunz BA, Ramachandran K, Vonarx EJ. DNA sequence analysis of spontaneous mutagenesis in Saccharomyces cerevisiae. Genetics 1998; 148:1491-505. [PMID: 9560369 PMCID: PMC1460101 DOI: 10.1093/genetics/148.4.1491] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To help elucidate the mechanisms involved in spontaneous mutagenesis, DNA sequencing has been applied to characterize the types of mutation whose rates are increased or decreased in mutator or antimutator strains, respectively. Increased spontaneous mutation rates point to malfunctions in genes that normally act to reduce spontaneous mutation, whereas decreased rates are associated with defects in genes whose products are necessary for spontaneous mutagenesis. In this article, we survey and discuss the mutational specificities conferred by mutator and antimutator genes in the budding yeast Saccharomyces cerevisiae. The implications of selected aspects of the data are considered with respect to the mechanisms of spontaneous mutagenesis.
Collapse
Affiliation(s)
- B A Kunz
- School of Biological and Chemical Sciences, Deakin University, Geelong, Victoria, Australia.
| | | | | |
Collapse
|
9
|
Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA. Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 1997; 17:2859-65. [PMID: 9111358 PMCID: PMC232138 DOI: 10.1128/mcb.17.5.2859] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Homonucleotide runs in coding sequences are hot spots for frameshift mutations and potential sources of genetic changes leading to cancer in humans having a mismatch repair defect. We examined frameshift mutations in homonucleotide runs of deoxyadenosines ranging from 4 to 14 bases at the same position in the LYS2 gene of the yeast Saccharomyces cerevisiae. In the msh2 mismatch repair mutant, runs of 9 to 14 deoxyadenosines are 1,700-fold to 51,000-fold, respectively, more mutable for single-nucleotide deletions than are runs of 4 deoxyadenosines. These frameshift mutations can account for up to 99% of all forward mutations inactivating the 4-kb LYS2 gene. Based on results with single and double mutations of the POL2 and MSH2 genes, both DNA polymerase epsilon proofreading and mismatch repair are efficient for short runs while only the mismatch repair system prevents frameshift mutations in runs of > or = 8 nucleotides. Therefore, coding sequences containing long homonucleotide runs are likely to be at risk for mutational inactivation in cells lacking mismatch repair capability.
Collapse
Affiliation(s)
- H T Tran
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
Our study reveals the presence of DNA polymerases delta and epsilon, participating in DNA replication and repair, along with already known polymerases alpha and beta, in the developing and aging rat brain. This was achieved through a protocol that takes advantage of the reported differential sensitivities of different DNA polymerases towards certain inhibitors such as butylphenyl and butylanilino nucleotide analogs. 2',3'-dideoxythymidine triphosphate, the monoclonal antibody of human polymerase alpha and the use of preferred template primers and proliferating cell nuclear antigen. The results indicate that while polymerase beta seems to be the predominant one, significant levels of polymerases alpha, delta and epsilon are also present at all the postnatal ages studies and that the relative proportion of polymerase epsilon increases with age. The data suggest that the rat brain is equipped with a sustained DNA repair capacity throughout the life span.
Collapse
Affiliation(s)
- D R Prapurna
- Neurobiochemistry Laboratory, School of Life Sciences, University of Hyderabad Hyderabad, India.
| | | |
Collapse
|
11
|
Araki H, Leem SH, Phongdara A, Sugino A. Dpb11, which interacts with DNA polymerase II(epsilon) in Saccharomyces cerevisiae, has a dual role in S-phase progression and at a cell cycle checkpoint. Proc Natl Acad Sci U S A 1995; 92:11791-5. [PMID: 8524850 PMCID: PMC40488 DOI: 10.1073/pnas.92.25.11791] [Citation(s) in RCA: 215] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DPB11, a gene that suppresses mutations in two essential subunits of Saccharomyces cerevisiae DNA polymerase II(epsilon) encoded by POL2 and DPB2, was isolated on a multicopy plasmid. The nucleotide sequence of the DPB11 gene revealed an open reading frame predicting an 87-kDa protein. This protein is homologous to the Schizosaccharomyces pombe rad4+/cut5+ gene product that has a cell cycle checkpoint function. Disruption of DPB11 is lethal, indicating that DPB11 is essential for cell proliferation. In thermosensitive dpb11-1 mutant cells, S-phase progression is defective at the nonpermissive temperature, followed by cell division with unequal chromosomal segregation accompanied by loss of viability.dpb11-1 is synthetic lethal with any one of the dpb2-1, pol2-11, and pol2-18 mutations at all temperatures. Moreover, dpb11 cells are sensitive to hydroxyurea, methyl methanesulfonate, and UV irradiation. These results strongly suggest that Dpb11 is a part of the DNA polymerase II complex during chromosomal DNA replication and also acts in a checkpoint pathway during the S phase of the cell cycle to sense stalled DNA replication.
Collapse
Affiliation(s)
- H Araki
- Research Institute for Microbial Diseases, Osaka University, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
The DNA polymerases of the yeast Saccharomyces cerevisiae serve as a model system for the study of the replication fork during DNA replication. To date, six S. cerevisiae DNA polymerases have been at least partially characterized (compared with four in mammals so far), with further candidates being identified as open reading frames in the yeast genome sequencing project. Here, we review the current state of knowledge of the yeast polymerases, and discuss, where possible, their biological role during DNA replication.
Collapse
Affiliation(s)
- A Sugino
- Department of Biochemistry and Molecular Biology, Osaka University, Japan
| |
Collapse
|
13
|
Johnson RE, Kovvali GK, Prakash L, Prakash S. Requirement of the yeast RTH1 5' to 3' exonuclease for the stability of simple repetitive DNA. Science 1995; 269:238-40. [PMID: 7618086 DOI: 10.1126/science.7618086] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Simple repetitive DNA sequences are unstable in human colorectal cancers and a variety of other cancers. Mutations in the DNA mismatch repair genes MSH2, MLH1, and PMS1 result in elevated rates of spontaneous mutation and cause a marked increase in the instability of simple repeats. Compared with the wild type, a null mutation in the yeast RTH1 gene, which encodes a 5' to 3' exonuclease, was shown to increase the rate of instability of simple repetitive DNA by as much as 280 times and to increase the spontaneous mutation rate by 30 times. Epistasis analyses were consistent with the hypothesis that this RTH1-encoded nuclease has a role in the MSH2-MLH-1-PMS1 mismatch repair pathway.
Collapse
Affiliation(s)
- R E Johnson
- Center for Molecular Science, University of Texas Medical Branch, Galveston 77555-1061, USA
| | | | | | | |
Collapse
|
14
|
Uemori T, Ishino Y, Doi H, Kato I. The hyperthermophilic archaeon Pyrodictium occultum has two alpha-like DNA polymerases. J Bacteriol 1995; 177:2164-77. [PMID: 7721707 PMCID: PMC176862 DOI: 10.1128/jb.177.8.2164-2177.1995] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We cloned two genes encoding DNA polymerases from the hyperthermophilic archaeon Pyrodictium occultum. The deduced primary structures of the two gene products have several amino acid sequences which are conserved in the alpha-like (family B) DNA polymerases. Both genes were expressed in Escherichia coli, and highly purified gene products, DNA polymerases I and II (pol I and pol II), were biochemically characterized. Both DNA polymerase activities were heat stable, but only pol II was sensitive to aphidicolin. Both pol I and pol II have associated 5'-->3' and 3'-->5' exonuclease activities. In addition, these DNA polymerases have higher affinity to single-primed single-stranded DNA than to activated DNA; even their primer extension abilities by themselves were very weak. A comparison of the complete amino acid sequences of pol I and pol II with two alpha-like DNA polymerases from yeast cells showed that both pol I and pol II were more similar to yeast DNA polymerase III (ypol III) than to yeast DNA polymerase II (ypol II), in particular in the regions from exo II to exo III and from motif A to motif C. However, comparisons region by region of each polymerase showed that pol I was similar to ypol II and pol II was similar to ypol III from motif C to the C terminus. In contrast, pol I and pol II were similar to ypol III and ypol II, respectively, in the region from exo III to motif A. These findings suggest that both enzymes from P. occultum play a role in the replication of the genomic DNA of this organism and, furthermore, that the study of DNA replication in this thermophilic archaeon may lead to an understanding of the prototypical mechanism of eukaryotic DNA replication.
Collapse
Affiliation(s)
- T Uemori
- Biotechnology Research Laboratories, Takara Shuzo Co., Ltd, Shiga, Japan
| | | | | | | |
Collapse
|
15
|
Uitto L, Halleen J, Hentunen T, Höyhtyä M, Syväoja JE. Structural relationship between DNA polymerases epsilon and epsilon* and their occurrence in eukaryotic cells. Nucleic Acids Res 1995; 23:244-7. [PMID: 7862528 PMCID: PMC306661 DOI: 10.1093/nar/23.2.244] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Monoclonal antibodies raised against the N-terminal half of human DNA polymerase epsilon bind both to a large > 200 kDa form of DNA polymerase epsilon from HeLa cells and to a small 140 kDa form (DNA polymerase epsilon*) from calf thymus, while antibody against the C-terminal half binds to DNA polymerase epsilon but does not bind to DNA polymerase epsilon*. These results indicate that the two enzymes have common structural motifs in their N-terminal halves, and that DNA polymerase epsilon* is very likely derived from DNA polymerase epsilon by removal of its C-terminal half. DNA polymerase epsilon as well as DNA polymerase epsilon* was detected in extracts from cells of numerous eukaryotic species from yeast to human. The results indicate that DNA polymerase epsilon and its tendency to occur in a smaller form, DNA polymerase epsilon*, are evolutionarily highly conserved and that DNA polymerase epsilon may occur universally in proliferating eukaryotic cells.
Collapse
Affiliation(s)
- L Uitto
- Biocenter Oulu, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
16
|
Giot L, Simon M, Dubois C, Faye G. Suppressors of thermosensitive mutations in the DNA polymerase delta gene of Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:212-22. [PMID: 7862092 DOI: 10.1007/bf00294684] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA polymerases (Pol) alpha, delta and epsilon are necessary for replication of nuclear DNA. Pol delta interacts permanently or transiently with numerous accessory proteins whose identification may shed light on the function(s) of Pol delta. In vitro mutagenesis was used to induce thermosensitive (ts) mutations in the DNA polymerase delta gene (POL3). We have attempted to clone two recessive extragenic suppressors of such ts mutants (sdp1 for mutation pol3-14 and sdp5-1 for mutation pol3-11) by transforming thermoresistant haploid strains pol3-14 sdp1 and pol3-11 sdp5-1 with wild-type genomic libraries in singlecopy or multicopy vectors. None of the thermosensitive transformants so obtained was identified as being sdp1 or sdp5-1. Instead, three genes were cloned whose products interfere with the activity of suppressors. One of them is the type 1 protein phosphatase gene, DIS2. Another is a novel gene, ASM4, whose gene product is rich in asparagine and glutamine residues.
Collapse
Affiliation(s)
- L Giot
- Institut Curie-Biologie, Centre Universitaire, Orsay, France
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- P M Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University Schol of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
18
|
Blank A, Kim B, Loeb LA. DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1994; 91:9047-51. [PMID: 8090767 PMCID: PMC44744 DOI: 10.1073/pnas.91.19.9047] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We present evidence that DNA polymerase delta of Saccharomyces cerevisiae, an enzyme that is essential for viability and chromosomal replication, is also required for base excision repair of exogenous DNA methylation damage. The large catalytic subunit of DNA polymerase delta is encoded by the CDC2(POL3) gene. We find that the mutant allele cdc2-2 confers sensitivity to killing by methyl methanesulfonate (MMS) but allows wild-type levels of UV survival. MMS survival of haploid cdc2-2 strains is lower than wild type at the permissive growth temperature of 20 degrees C. Survival is further decreased relative to wild type by treatment with MMS at 36 degrees C, a nonpermissive temperature for growth of mutant cells. A second DNA polymerase delta allele, cdc2-1, also confers a temperature-sensitive defect in MMS survival while allowing nearly wild-type levels of UV survival. These observations provide an in vivo genetic demonstration that a specific eukaryotic DNA polymerase is required for survival of exogenous methylation damage. MMS sensitivity of a cdc2-2 mutant at 20 degrees C is complemented by expression of mammalian DNA polymerase beta, an enzyme that fills single-strand gaps in duplex DNA in vitro and whose only known catalytic activity is polymerization of deoxyribonucleotides. We conclude, therefore, that the MMS survival deficit in cdc2-2 cells is caused by failure of mutant DNA polymerase delta to fill single-strand gaps arising in base excision repair of methylation damage. We discuss our results in light of current concepts of the physiologic roles of DNA polymerases delta and epsilon in DNA replication and repair.
Collapse
Affiliation(s)
- A Blank
- Joseph Gottstein Memorial Cancer Research Laboratory, Department of Pathology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
19
|
Morrison A, Sugino A. The 3'-->5' exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1994; 242:289-96. [PMID: 8107676 DOI: 10.1007/bf00280418] [Citation(s) in RCA: 174] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
DNA polymerases II (epsilon) and III (delta) are the only nuclear DNA polymerases known to possess an intrinsic 3'-->5' exonuclease in Saccharomyces cerevisiae. We have investigated the spontaneous mutator phenotypes of DNA polymerase delta and epsilon 3'-->5' exonuclease-deficient mutants, pol3-01 and pol2-4, respectively. pol3-01 and pol2-4 increased spontaneous mutation rates by factors of the order of 10(2) and 10(1), respectively, measured as URA3 forward mutation and his7-2 reversion. Surprisingly, a double mutant pol2-4 pol3-01 haploid was inviable. This was probably due to accumulation of unedited errors, since a pol2-4/pol2-4 pol3-01/pol3-01 diploid was viable, with the spontaneous his7-2 reversion rate increased by about 2 x 10(3)-fold. Analysis of mutation rates of double mutants indicated that the 3'-->5' exonucleases of DNA polymerases delta and epsilon can act competitively and that, like the 3'-->5' exonuclease of DNA polymerase delta, the 3'-->5' exonuclease of DNA polymerase epsilon acts in series with the PMS1 mismatch correction system. Mutational spectra at a URA3 gene placed in both orientations near to a defined replication origin provided evidence that the 3'-->5' exonucleases of DNA polymerases delta and epsilon act on opposite DNA strands, but were in sufficient to distinguish conclusively between different models of DNA replication.
Collapse
Affiliation(s)
- A Morrison
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | |
Collapse
|