1
|
Liu X, Liu H, Yin F, Li Y, Jiang J, Xiao Y, Wu Y, Qin Z. Phytopathogenic Fungicidal Activity and Mechanism Approach of Three Kinds of Triphenylphosphonium Salts. J Fungi (Basel) 2024; 10:450. [PMID: 39057335 PMCID: PMC11278366 DOI: 10.3390/jof10070450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
The triphenylphosphonium (TPP) cation has been widely used as a carrier for mitochondria-targeting molecules. We synthesized two commonly employed targeting systems, namely, ω-triphenylphosphonium fatty acids (group 2) and ω-triphenylphosphonium fatty alcohols (group 3), to assess the impact of the TPP module on the biological efficacy of mitochondria-targeting molecules. We evaluated their fungicidal activities against nine plant pathogenic fungi in comparison to alkyl-1-triphenylphosphonium compounds (group 1). All three compound groups exhibited fungicidal activity and displayed a distinct "cut-off effect", which depended on the length of the carbon chain. Specifically, group 1 compounds showed a cut-off point at C10 (compound 1-7), while group 2 and 3 compounds exhibited cut-off points at C15 (compound 2-12) and C14 (compound 3-11), respectively. Notably, group 1 compounds displayed significantly higher fungicidal activity compared to groups 2 and 3. However, group 2 and 3 compounds showed similar activity to each other, although susceptibility may depend on the pathogen tested. Initial investigations into the mechanism of action of the most active compounds suggested that their fungicidal performance may be primarily attributed to their ability to damage the membrane, as well as uncoupling activity and inhibition of fungal respiration. Our findings suggest that the TPP module used in delivery systems as aliphatic acyl or alkoxyl derivatives with carbon chains length < 10 will contribute negligible fungicidal activity to the TPP-conjugate compared to the effect of high level of accumulation in mitochondria due to its mitochondria-targeting ability. These results provide a foundation for utilizing TPP as a promising carrier in the design and development of more effective mitochondria-targeting drugs or pesticides.
Collapse
Affiliation(s)
- Xuelian Liu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China
| | - Huihui Liu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Fahong Yin
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Jiazhen Jiang
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yumei Xiao
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Yanhua Wu
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| | - Zhaohai Qin
- College of Science, China Agricultural University, Beijing 100193, China; (X.L.); (H.L.); (F.Y.); (Y.L.); (J.J.); (Y.X.); (Y.W.)
| |
Collapse
|
2
|
Otunla AA, Shanmugarajah K, Davies AH, Shalhoub J. Lipotoxicity and immunometabolism in ischemic acute kidney injury: current perspectives and future directions. Front Pharmacol 2024; 15:1355674. [PMID: 38464721 PMCID: PMC10924325 DOI: 10.3389/fphar.2024.1355674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Dysregulated lipid metabolism is implicated in the pathophysiology of a range of kidney diseases. The specific mechanisms through which lipotoxicity contributes to acute kidney injury (AKI) remain poorly understood. Herein we review the cardinal features of lipotoxic injury in ischemic kidney injury; lipid accumulation and mitochondrial lipotoxicity. We then explore a new mechanism of lipotoxicity, what we define as "immunometabolic" lipotoxicity, and discuss the potential therapeutic implications of targeting this lipotoxicity using lipid lowering medications.
Collapse
Affiliation(s)
- Afolarin A. Otunla
- Department of Surgical Biotechnology, University College London, London, United Kingdom
| | | | - Alun H. Davies
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Joseph Shalhoub
- UK and Imperial Vascular Unit, Section of Vascular Surgery, Department of Surgery and Cancer, Imperial College London, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
3
|
Abstract
Recent studies have demonstrated that extracellular vesicles (EVs) serve powerful and complex functions in metabolic regulation and metabolic-associated disease, although this field of research is still in its infancy. EVs are released into the extracellular space from all cells and carry a wide range of cargo including miRNAs, mRNA, DNA, proteins, and metabolites that have robust signaling effects in receiving cells. EV production is stimulated by all major stress pathways and, as such, has a role in both restoring homeostasis during stress and perpetuating disease. In metabolic regulation, the dominant stress signal is a lack of energy due to either nutrient deficits or damaged mitochondria from nutrient excess. This stress signal is termed "energetic stress," which triggers a robust and evolutionarily conserved response that engages major cellular stress pathways, the ER unfolded protein response, the hypoxia response, the antioxidant response, and autophagy. This article proposes the model that energetic stress is the dominant stimulator of EV release with a focus on metabolically important cells such as hepatocytes, adipocytes, myocytes, and pancreatic β-cells. Furthermore, this article will discuss how the cargo in stress-stimulated EVs regulates metabolism in receiving cells in both beneficial and detrimental ways. © 2023 American Physiological Society. Compr Physiol 13:5051-5068, 2023.
Collapse
Affiliation(s)
- Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
Allegra A, Petrarca C, Di Gioacchino M, Casciaro M, Musolino C, Gangemi S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants (Basel) 2022; 11:antiox11030455. [PMID: 35326105 PMCID: PMC8944660 DOI: 10.3390/antiox11030455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
Raised oxidative stress and abnormal redox status are typical features of multiple myeloma cells, and the identification of the intimate mechanisms that regulate the relationships between neoplastic cells and redox homeostasis may reveal possible new anti-myeloma therapeutic targets to increase the effectiveness of anti-myeloma drugs synergistically or to eradicate drug-resistant clones while reducing toxicity toward normal cells. An alteration of the oxidative state is not only responsible for the onset of multiple myeloma and its progression, but it also appears essential for the therapeutic response and for developing any chemoresistance. Our review aimed to evaluate the literature’s current data on the effects of oxidative stress on the response to drugs generally employed in the therapy of multiple myeloma, such as proteasome inhibitors, immunomodulators, and autologous transplantation. In the second part of the review, we analyzed the possibility of using other substances, often of natural origin, to modulate the oxidative stress to interfere with the progression of myelomatous disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
- Correspondence: (A.A.); (M.D.G.)
| | - Claudia Petrarca
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
| | - Mario Di Gioacchino
- Center for Advanced Studies and Technology, G. D’Annunzio University, 66100 Chieti, Italy;
- Institute for Clinical Immunotherapy and Advanced Biological Treatments, 65100 Pescara, Italy
- Correspondence: (A.A.); (M.D.G.)
| | - Marco Casciaro
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Unit and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (M.C.); (S.G.)
| |
Collapse
|
5
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
6
|
Aisen Y, Gatt ME, Hertz R, Smeir E, Bar-Tana J. Suppression of multiple myeloma by mitochondrial targeting. Sci Rep 2021; 11:5862. [PMID: 33712631 PMCID: PMC7955047 DOI: 10.1038/s41598-021-83829-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Treatment of multiple myeloma (MM) aims at inducing cell apoptosis by surpassing the limited capacity of MM cells to cope with oxidative stress. MM cell survival may further be suppressed by limiting cellular cholesterol. Long-chain fatty acid analogs of the MEDICA series promote mitochondrial stress and inhibit cholesterol biosynthesis, thus prompting us to verify their efficacy and mode-of-action in suppressing MM cell survival, in comparison to bortezomib. MEDICA analog is shown here to effectively suppress survival of MM cells, and to inhibit growth of MM xenograft. Suppression of MM cell survival by MEDICA is accompanied by inhibition of the STAT3, MAPK and the mTORC1 transduction pathways due to mitochondrial oxidative stress. MEDICA-induced oxidative stress is abrogated by added exogenous cholesterol. Suppression of MM cell survival by bortezomib is similarly driven by bortezomib-induced oxidative stress, being abrogated by added cholesterol. In line with that, the time-to-best-response of MM patients to bortezomib-based treatment protocols is shown to be positively correlated with their plasma cholesterol level. MEDICA profile may indicate novel therapeutic potential in the management of MM.
Collapse
Affiliation(s)
- Yana Aisen
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, 91120, Jerusalem, Israel
| | - Moshe E Gatt
- Department of Hematology, Hadassah Medical Center, 91120, Jerusalem, Israel
| | - Rachel Hertz
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, 91120, Jerusalem, Israel
| | - Elia Smeir
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, 91120, Jerusalem, Israel
| | - Jacob Bar-Tana
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, 91120, Jerusalem, Israel.
| |
Collapse
|
7
|
Hamilton J, Brustovetsky T, Brustovetsky N. The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca 2+-induced damage. J Biol Chem 2021; 296:100669. [PMID: 33864812 PMCID: PMC8131324 DOI: 10.1016/j.jbc.2021.100669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
The mitochondrial calcium uniporter (MCU) and cyclophilin D (CyD) are key players in induction of the permeability transition pore (PTP), which leads to mitochondrial depolarization and swelling, the major signs of Ca2+-induced mitochondrial damage. Mitochondrial depolarization inhibits ATP production, whereas swelling results in the release of mitochondrial pro-apoptotic proteins. The extent to which simultaneous deletion of MCU and CyD inhibits PTP induction and prevents damage of brain mitochondria is not clear. Here, we investigated the effects of MCU and CyD deletion on the propensity for PTP induction using mitochondria isolated from the brains of MCU-KO, CyD-KO, and newly created MCU/CyD-double knockout (DKO) mice. Neither deletion of MCU nor of CyD affected respiration or membrane potential in mitochondria isolated from the brains of these mice. Mitochondria from MCU-KO and MCU/CyD-DKO mice displayed reduced Ca2+ uptake and diminished extent of PTP induction. The Ca2+ uptake by mitochondria from CyD-KO mice was increased compared with mitochondria from WT mice. Deletion of CyD prevented mitochondrial swelling and resulted in transient depolarization in response to Ca2+, but it did not prevent Ca2+-induced delayed mitochondrial depolarization. Mitochondria from MCU/CyD-DKO mice did not swell in response to Ca2+, but they did exhibit mild sustained depolarization. Dibucaine, an inhibitor of the Ca2+-activated mitochondrial phospholipase A2, attenuated and bovine serum albumin completely eliminated the sustained depolarization. This suggests the involvement of phospholipase A2 and free fatty acids. Thus, in addition to induction of the classical PTP, alternative deleterious mechanisms may contribute to mitochondrial damage following exposure to elevated Ca2+.
Collapse
Affiliation(s)
- James Hamilton
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tatiana Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nickolay Brustovetsky
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|
8
|
Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca 2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse. Int J Mol Sci 2020; 21:ijms21207461. [PMID: 33050414 PMCID: PMC7589681 DOI: 10.3390/ijms21207461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023] Open
Abstract
Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.
Collapse
|
9
|
Janik-Hazuka M, Szafraniec-Szczęsny J, Kamiński K, Odrobińska J, Zapotoczny S. Uptake and in vitro anticancer activity of oleic acid delivered in nanocapsules stabilized by amphiphilic derivatives of hyaluronic acid and chitosan. Int J Biol Macromol 2020; 164:2000-2009. [PMID: 32781133 DOI: 10.1016/j.ijbiomac.2020.07.288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
The nanoemulsion-based delivery systems have gained particular attention due to effective encapsulation and protection of hydrophobic active compounds. However, several features like limited stability, cellular uptake or release of payloads still need to be addressed. We investigated the uptake of the nanocapsules based on the amphiphilic derivative of hyaluronate with oleic acid cores (oil-in-water nanoemulsion) and their anticancer activity in vitro. The core-shell nanocapsules exhibiting long term stability in dispersion showed an enhanced uptake by cancer cells and effectively killed them only if composed of hyaluronate-based shells and oleic acid cores - the anionic chitosan-based shells and/or corn oil cores were used for control experiments. We concluded that the nanocapsules stabilized by the amphiphilic derivative of hyaluronic acid may serve as very stable and efficient delivery systems for oil-soluble compounds without necessity of application of low molecular weight (co)surfactants. The in vitro studies indicated anticancer activity of such delivered oleic acid and crucial role of hyaluronate shell of the nanocapsules in its efficient delivery and enzyme-triggered disintegration inside cells. Corn oil was shown as a nutrient that can serve as an inert vehicle in the studied nanoemulsion that exhibit application potential in food, dietary supplement industry and medicine.
Collapse
Affiliation(s)
| | - Joanna Szafraniec-Szczęsny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Kamil Kamiński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Joanna Odrobińska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
10
|
Bicego R, Francisco A, Ruas JS, Siqueira-Santos ES, Castilho RF. Undesirable effects of chemical inhibitors of NAD(P) + transhydrogenase on mitochondrial respiratory function. Arch Biochem Biophys 2020; 692:108535. [PMID: 32781052 DOI: 10.1016/j.abb.2020.108535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
NAD(P)+ transhydrogenase (NNT) is located in the inner mitochondrial membrane and catalyzes a reversible hydride transfer between NAD(H) and NADP(H) that is coupled to proton translocation between the intermembrane space and mitochondrial matrix. NNT activity has an essential role in maintaining the NADPH supply for antioxidant defense and biosynthetic pathways. In the present report, we evaluated the effects of chemical compounds used as inhibitors of NNT over the last five decades, namely, 4-chloro-7-nitrobenzofurazan (NBD-Cl), N,N'-dicyclohexylcarbodiimide (DCC), palmitoyl-CoA, palmitoyl-l-carnitine, and rhein, on NNT activity and mitochondrial respiratory function. Concentrations of these compounds that partially inhibited the forward and reverse NNT reactions in detergent-solubilized mouse liver mitochondria significantly impaired mitochondrial respiratory function, as estimated by ADP-stimulated and nonphosphorylating respiration. Among the tested compounds, NBD-Cl showed the best relationship between NNT inhibition and low impact on respiratory function. Despite this, NBD-Cl concentrations that partially inhibited NNT activity impaired mitochondrial respiratory function and significantly decreased the viability of cultured Nnt-/- mouse astrocytes. We conclude that even though the tested compounds indeed presented inhibitory effects on NNT activity, at effective concentrations, they cause important undesirable effects on mitochondrial respiratory function and cell viability.
Collapse
Affiliation(s)
- Rafaela Bicego
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Annelise Francisco
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Juliana S Ruas
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edilene S Siqueira-Santos
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Roger F Castilho
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
11
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 286] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
12
|
Erpicum P, Rowart P, Defraigne JO, Krzesinski JM, Jouret F. What we need to know about lipid-associated injury in case of renal ischemia-reperfusion. Am J Physiol Renal Physiol 2018; 315:F1714-F1719. [PMID: 30332314 DOI: 10.1152/ajprenal.00322.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Renal segmental metabolism is reflected by the complex distribution of the main energy pathways along the nephron, with fatty acid oxidation preferentially used in the cortex area. Ischemia/reperfusion injury (IRI) is due to the restriction of renal blood flow, rapidly leading to a metabolic switch toward anaerobic conditions. Subsequent unbalance between energy demand and oxygen/nutrient delivery compromises kidney cell functions, resulting in a complex inflammatory cascade including the production of reactive oxygen species (ROS). Renal IRI especially involves lipid accumulation. Lipid peroxidation is one of the major events of ROS-associated tissue injury. Here, we briefly review the current knowledge of renal cell lipid metabolism in normal and ischemic conditions. Next, we focus on renal lipid-associated injury, with emphasis on its mechanisms and consequences during the course of IRI. Finally, we discuss preclinical observations aiming at preventing and/or attenuating lipid-associated IRI.
Collapse
Affiliation(s)
- Pauline Erpicum
- Division of Nephrology, University of Liège Academic Hospital , Liège , Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| | - Pascal Rowart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| | - Jean-Olivier Defraigne
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium.,Division of Cardio-Thoracic Surgery, University of Liège Academic Hospital , Liège , Belgium
| | | | - François Jouret
- Division of Nephrology, University of Liège Academic Hospital , Liège , Belgium.,Groupe Interdisciplinaire de Génoprotéomique Appliquée, Cardiovascular Sciences, University of Liège , Liège , Belgium
| |
Collapse
|
13
|
Debashree B, Kumar M, Keshava Prasad TS, Natarajan A, Christopher R, Nalini A, Bindu PS, Gayathri N, Srinivas Bharath MM. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder. J Neurochem 2018; 145:323-341. [PMID: 29424033 DOI: 10.1111/jnc.14318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. Cover Image for this Issue: doi: 10.1111/jnc.14177.
Collapse
Affiliation(s)
- Bandopadhyay Debashree
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Manish Kumar
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Manipal University, Manipal, Karnataka, India
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, Bangalore, Karnataka, India.,Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, Karnataka, India
| | - Archana Natarajan
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | |
Collapse
|
14
|
Schönfeld P, Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: the cellular perspective. J Lipid Res 2016; 57:943-54. [PMID: 27080715 DOI: 10.1194/jlr.r067629] [Citation(s) in RCA: 627] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
Short- and medium-chain fatty acids (SCFAs and MCFAs), independently of their cellular signaling functions, are important substrates of the energy metabolism and anabolic processes in mammals. SCFAs are mostly generated by colonic bacteria and are predominantly metabolized by enterocytes and liver, whereas MCFAs arise mostly from dietary triglycerides, among them milk and dairy products. A common feature of SCFAs and MCFAs is their carnitine-independent uptake and intramitochondrial activation to acyl-CoA thioesters. Contrary to long-chain fatty acids, the cellular metabolism of SCFAs and MCFAs depends to a lesser extent on fatty acid-binding proteins. SCFAs and MCFAs modulate tissue metabolism of carbohydrates and lipids, as manifested by a mostly inhibitory effect on glycolysis and stimulation of lipogenesis or gluconeogenesis. SCFAs and MCFAs exert no or only weak protonophoric and lytic activities in mitochondria and do not significantly impair the electron transport in the respiratory chain. SCFAs and MCFAs modulate mitochondrial energy production by two mechanisms: they provide reducing equivalents to the respiratory chain and partly decrease efficacy of oxidative ATP synthesis.
Collapse
Affiliation(s)
- Peter Schönfeld
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University, Magdeburg, 39120 Magdeburg, Germany
| | - Lech Wojtczak
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| |
Collapse
|
15
|
Doliba NM, Liu Q, Li C, Chen J, Chen P, Liu C, Frederick DW, Baur JA, Bennett MJ, Naji A, Matschinsky FM. Accumulation of 3-hydroxytetradecenoic acid: Cause or corollary of glucolipotoxic impairment of pancreatic β-cell bioenergetics? Mol Metab 2015; 4:926-39. [PMID: 26909309 PMCID: PMC4731732 DOI: 10.1016/j.molmet.2015.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/16/2015] [Accepted: 09/25/2015] [Indexed: 12/20/2022] Open
Abstract
Objectives Hyperglycemia and elevated blood lipids are the presumed precipitating causes of β-cell damage in T2DM as the result of a process termed “glucolipotoxicity”. Here, we tested whether glucolipotoxic pathophysiology is caused by defective bioenergetics using islets in culture. Methods Insulin secretion, respiration, ATP generation, fatty acid (FA) metabolite profiles and gene expression were determined in isolated islets treated under glucolipotoxic culture conditions. Results Over time, chronic exposure of mouse islets to FAs with glucose leads to bioenergetic failure and reduced insulin secretion upon stimulation with glucose or amino acids. Islets exposed to glucolipotoxic conditions displayed biphasic changes of the oxygen consumption rate (OCR): an initial increase in baseline and Vmax of OCR after 3 days, followed by decreased baseline and glucose stimulated OCR after 5 days. These changes were associated with lower islet ATP levels, impaired glucose-induced ATP generation, a trend for reduced mitochondrial DNA content and reduced expression of mitochondrial transcription factor A (Tfam). We discovered the accumulation of carnitine esters of hydroxylated long chain FAs, in particular 3-hydroxytetradecenoyl-carnitine. Conclusions As long chain 3-hydroxylated FA metabolites are known to uncouple heart and brain mitochondria [53], [54], [55], we propose that under glucolipotoxic condition, unsaturated hydroxylated long-chain FAs accumulate, uncouple and ultimately inhibit β-cell respiration. This leads to the slow deterioration of mitochondrial function progressing to bioenergetics β-cell failure. We found low capacity of islets to generate ATP after glucolipotoxic treatment. Found biphasic (up/down) respiratory time course as expression of glucolipotoxicity. We found β-Hydroxylated long FA metabolites as new glucolipotoxicity mediators. β-Hydroxylated long FAs are known to uncouple Ox/Phos. We propose defective bioenergetics as main cause of glucolipotoxicity.
Collapse
Affiliation(s)
- Nicolai M. Doliba
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, United States
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
- Corresponding author. University of Pennsylvania, Biochemistry/Biophysics, 3400 Civic Center Blvd, Smilow Center for Translation Research, TRC12-131, Philadelphia, PA 19104, United States. Tel.: +1 215 898 4366; fax: +1 215 898 5408.
| | - Qing Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, United States
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
| | - Changhong Li
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Jie Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Pan Chen
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Chengyang Liu
- Department of Surgery, University of Pennsylvania School of Medicine, United States
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
| | - David W. Frederick
- Department of Physiology, University of Pennsylvania School of Medicine, United States
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
| | - Joseph A. Baur
- Department of Physiology, University of Pennsylvania School of Medicine, United States
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
| | - Michael J. Bennett
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Ali Naji
- Department of Surgery, University of Pennsylvania School of Medicine, United States
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
| | - Franz M. Matschinsky
- Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, United States
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania School of Medicine, United States
| |
Collapse
|
16
|
Belosludtsev KN, Belosludtseva NV, Agafonov AV, Penkov NV, Samartsev VN, Lemasters JJ, Mironova GD. Effect of surface-potential modulators on the opening of lipid pores in liposomal and mitochondrial inner membranes induced by palmitate and calcium ions. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1848:2200-2205. [PMID: 26014488 PMCID: PMC4882158 DOI: 10.1016/j.bbamem.2015.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 02/08/2023]
Abstract
The effect of surface-potential modulators on palmitate/Ca2+-induced formation of lipid pores was studied in liposomal and inner mitochondrial membranes. Pore formation was monitored by sulforhodamine B release from liposomes and swelling of mitochondria. ζ-potential in liposomes was determined from electrophoretic mobility. Replacement of sucrose as the osmotic agent with KCl decreased negative ζ-potential in liposomes and increased resistance of both mitochondria and liposomes to the pore inducers, palmitic acid, and Ca2+. Micromolar Mg2+ also inhibited palmitate/Ca2+-induced permeabilization of liposomes. The rate of palmitate/Ca2+-induced, cyclosporin A-insensitive swelling of mitochondria increased 22% upon increasing pH from 7.0 to 7.8. At below the critical micelle concentration, the cationic detergent cetyltrimethylammonium bromide (10 μM) and the anionic surfactant sodium dodecylsulfate (10-50 μM) made the ζ-potential less and more negative, respectively, and inhibited and stimulated opening of mitochondrial palmitate/Ca2+-induced lipid pores. Taken together, the findings indicate that surface potential regulates palmitate/Ca2+-induced lipid pore opening.
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya 3, Pushchino, Moscow region 142290, Russia.
| | - Natalia V Belosludtseva
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| | - Alexey V Agafonov
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics RAS, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| | - Victor N Samartsev
- Mari State University, pr. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - John J Lemasters
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya 3, Pushchino, Moscow region 142290, Russia; Center for Cell Death, Injury & Regeneration, Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology , Medical University of South Carolina, DD504 Drug Discovery Building, 70 President Street, MSC 140, Charleston, SC 29425, USA
| | - Galina D Mironova
- Institute of Theoretical and Experimental Biophysics RAS, Institutskaya 3, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
17
|
Murray M, Hraiki A, Bebawy M, Pazderka C, Rawling T. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther 2015; 150:109-28. [PMID: 25603423 DOI: 10.1016/j.pharmthera.2015.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/28/2022]
Abstract
Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| | - Adam Hraiki
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Curtis Pazderka
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Tristan Rawling
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| |
Collapse
|
18
|
Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 2015; 78:100-6. [PMID: 25268651 PMCID: PMC4294587 DOI: 10.1016/j.yjmcc.2014.09.023] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/18/2022]
Abstract
The mitochondrial permeability transition (PT) - an abrupt increase permeability of the inner membrane to solutes - is a causative event in ischemia-reperfusion injury of the heart, and the focus of intense research in cardioprotection. The PT is due to opening of the PT pore (PTP), a high conductance channel that is critically regulated by a variety of pathophysiological effectors. Very recent work indicates that the PTP forms from the F-ATP synthase, which would switch from an energy-conserving to an energy-dissipating device. This review provides an update on the current debate on how this transition is achieved, and on the PTP as a target for therapeutic intervention. This article is part of a Special Issue entitled "Mitochondria: from basic mitochondrial biology to cardiovascular disease".
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, 35121 Padova, Italy.
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, 35121 Padova, Italy.
| |
Collapse
|
19
|
Murray M, Dyari HRE, Allison SE, Rawling T. Lipid analogues as potential drugs for the regulation of mitochondrial cell death. Br J Pharmacol 2014; 171:2051-66. [PMID: 24111728 DOI: 10.1111/bph.12417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/21/2022] Open
Abstract
The mitochondrion plays an important role in the production of energy as ATP, the regulation of cell viability and apoptosis, and the biosynthesis of major structural and regulatory molecules, such as lipids. During ATP production, reactive oxygen species are generated that alter the intracellular redox state and activate apoptosis. Mitochondrial dysfunction is a well-recognized component of the pathogenesis of diseases such as cancer. Understanding mitochondrial function, and how this is dysregulated in disease, offers the opportunity for the development of drug molecules to specifically target such defects. Altered energy metabolism in cancer, in which ATP production occurs largely by glycolysis, rather than by oxidative phosphorylation, is attributable in part to the up-regulation of cell survival signalling cascades. These pathways also regulate the balance between pro- and anti-apoptotic factors that may determine the rate of cell death and proliferation. A number of anti-cancer drugs have been developed that target these factors and one of the most promising groups of agents in this regard are the lipid-based molecules that act directly or indirectly at the mitochondrion. These molecules have emerged in part from an understanding of the mitochondrial actions of naturally occurring fatty acids. Some of these agents have already entered clinical trials because they specifically target known mitochondrial defects in the cancer cell.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
20
|
Structural mechanisms of cyclophilin D-dependent control of the mitochondrial permeability transition pore. Biochim Biophys Acta Gen Subj 2014; 1850:2041-7. [PMID: 25445707 DOI: 10.1016/j.bbagen.2014.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Opening of the mitochondrial permeability transition pore is the underlying cause of cellular dysfunction during diverse pathological situations. Although this bioenergetic entity has been studied extensively, its molecular componentry is constantly debated. Cyclophilin D is the only universally accepted modulator of this channel and its selective ligands have been proposed as therapeutic agents with the potential to regulate pore opening during disease. SCOPE OF REVIEW This review aims to recapitulate known molecular determinants necessary for Cyclophilin D activity regulation and binding to proposed pore constituents thereby regulating the mitochondrial permeability transition pore. MAJOR CONCLUSIONS While the main target of Cyclophilin D is still a matter of further research, permeability transition is finely regulated by post-translational modifications of this isomerase and its catalytic activity facilitates pore opening. GENERAL SIGNIFICANCE Complete elucidation of the molecular determinants required for Cyclophilin D-mediated control of the mitochondrial permeability transition pore will allow the rational design of therapies aiming to control disease phenotypes associated with the occurrence of this unselective channel. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
|
21
|
Demine S, Reddy N, Renard P, Raes M, Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 2014; 4:831-78. [PMID: 25257998 PMCID: PMC4192695 DOI: 10.3390/metabo4030831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.
Collapse
Affiliation(s)
- Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Nagabushana Reddy
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|
22
|
Aon MA, Bhatt N, Cortassa SC. Mitochondrial and cellular mechanisms for managing lipid excess. Front Physiol 2014; 5:282. [PMID: 25132820 PMCID: PMC4116787 DOI: 10.3389/fphys.2014.00282] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/10/2014] [Indexed: 12/16/2022] Open
Abstract
Current scientific debates center on the impact of lipids and mitochondrial function on diverse aspects of human health, nutrition and disease, among them the association of lipotoxicity with the onset of insulin resistance in skeletal muscle, and with heart dysfunction in obesity and diabetes. Mitochondria play a fundamental role in aging and in prevalent acute or chronic diseases. Lipids are main mitochondrial fuels however these molecules can also behave as uncouplers and inhibitors of oxidative phosphorylation. Knowledge about the functional composition of these contradictory effects and their impact on mitochondrial-cellular energetics/redox status is incomplete. Cells store fatty acids (FAs) as triacylglycerol and package them into cytoplasmic lipid droplets (LDs). New emerging data shows the LD as a highly dynamic storage pool of FAs that can be used for energy reserve. Lipid excess packaging into LDs can be seen as an adaptive response to fulfilling energy supply without hindering mitochondrial or cellular redox status and keeping low concentration of lipotoxic intermediates. Herein we review the mechanisms of action and utilization of lipids by mitochondria reported in liver, heart and skeletal muscle under relevant physiological situations, e.g., exercise. We report on perilipins, a family of proteins that associate with LDs in response to loading of cells with lipids. Evidence showing that in addition to physical contact, mitochondria and LDs exhibit metabolic interactions is presented and discussed. A hypothetical model of channeled lipid utilization by mitochondria is proposed. Direct delivery and channeled processing of lipids in mitochondria could represent a reliable and efficient way to maintain reactive oxygen species (ROS) within levels compatible with signaling while ensuring robust and reliable energy supply.
Collapse
Affiliation(s)
- Miguel A Aon
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Niraj Bhatt
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Sonia C Cortassa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
23
|
Watanabe T, Saotome M, Nobuhara M, Sakamoto A, Urushida T, Katoh H, Satoh H, Funaki M, Hayashi H. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance. Exp Cell Res 2014; 323:314-25. [PMID: 24631294 DOI: 10.1016/j.yexcr.2014.02.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/23/2014] [Accepted: 02/27/2014] [Indexed: 11/18/2022]
Abstract
PURPOSE Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. METHODS AND RESULTS DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨm) depolarization, exhibited attenuated insulin signaling and 2-deoxy-d-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H2O2), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨm depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H2O2-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨm depolarization and impaired 2-DG uptake, however they improved insulin signaling. CONCLUSIONS A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance.
Collapse
Affiliation(s)
- Tomoyuki Watanabe
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Masao Saotome
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan.
| | - Mamoru Nobuhara
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Atsushi Sakamoto
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Tsuyoshi Urushida
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hideki Katoh
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Hiroshi Satoh
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| | - Makoto Funaki
- Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hideharu Hayashi
- Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Japan
| |
Collapse
|
24
|
Abstract
Thyroid hormone (TH) has long been recognized as a major modulator of metabolic efficiency, energy expenditure, and thermogenesis. TH effects in regulating metabolic efficiency are transduced by controlling the coupling of mitochondrial oxidative phosphorylation and the cycling of extramitochondrial substrate/futile cycles. However, despite our present understanding of the genomic and nongenomic modes of action of TH, its control of mitochondrial coupling still remains elusive. This review summarizes historical and up-to-date findings concerned with TH regulation of metabolic energetics, while integrating its genomic and mitochondrial activities. It underscores the role played by TH-induced gating of the mitochondrial permeability transition pore (PTP) in controlling metabolic efficiency. PTP gating may offer a unified target for some TH pleiotropic activities and may serve as a novel target for synthetic functional thyromimetics designed to modulate metabolic efficiency. PTP gating by long-chain fatty acid analogs may serve as a model for such strategy.
Collapse
Affiliation(s)
- Einav Yehuda-Shnaidman
- Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel 91120
| | | | | |
Collapse
|
25
|
Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013; 4:95. [PMID: 23675351 PMCID: PMC3650560 DOI: 10.3389/fphys.2013.00095] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/19/2013] [Indexed: 01/04/2023] Open
Abstract
The permeability transition (PT) denotes an increase of the mitochondrial inner membrane permeability to solutes with molecular masses up to about 1500 Da. It is presumed to be mediated by opening of a channel, the permeability transition pore (PTP), whose molecular nature remains a mystery. Here I briefly review the history of the PTP, discuss existing models, and present our new results indicating that reconstituted dimers of the FOF1 ATP synthase form a channel with properties identical to those of the mitochondrial megachannel (MMC), the electrophysiological equivalent of the PTP. Open questions remain, but there is now promise that the PTP can be studied by genetic methods to solve the large number of outstanding problems.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova Padova, Italy
| |
Collapse
|
26
|
Oyanagi E, Yano H, Uchida M, Utsumi K, Sasaki J. Protective action of L-carnitine on cardiac mitochondrial function and structure against fatty acid stress. Biochem Biophys Res Commun 2011; 412:61-7. [PMID: 21791201 DOI: 10.1016/j.bbrc.2011.07.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/08/2011] [Indexed: 02/04/2023]
Abstract
Cardiovascular risks are frequently accompanied by high serum fatty acid levels. Although recent studies have shown that fatty acids affect mitochondrial function and induce cell apoptosis, L-carnitine is essential for the uptake of fatty acids by mitochondria, and may attenuate the mitochondrial dysfunction and apoptosis of cardiocytes. This study aimed to elucidate the activity of L-carnitine in the prevention on fatty acid-induced mitochondrial membrane permeability transition and cytochrome c release using isolated cardiac mitochondria from rats. Palmitoyl-CoA-induced mitochondrial respiration that was observed with L-carnitine was inhibited with oligomycin. The palmitoyl-CoA-induced mitochondrial membrane depolarization and swelling were greatly inhibited by the presence of L-carnitine. In ultrastructural observations, terminally swollen and ruptured mitochondria with little or no distinguishable cristae structures were induced by treatment with palmitoyl-CoA. However, the severe morphological damage in cardiac mitochondria was dramatically inhibited by pretreatment with L-carnitine. Treatment with L-carnitine also attenuated 4-hydroxy-L-phenylglycine- and rotenone-induced mitochondrial swelling even when the L-carnitine could not protect against the decrease in oxygen consumption associated with these inhibitors. Furthermore, L-carnitine completely inhibited palmitoyl-CoA-induced cytochrome c release. We concluded that L-carnitine is essential for cardiac mitochondria to attenuate the membrane permeability transition, and to maintain the ultrastructure and membrane stabilization, in the presence of high fatty acid β-oxidation. Consequently, the cells may be protected against apoptosis by L-carnitine through inhibition of the fatty acid-induced cytochrome c release.
Collapse
Affiliation(s)
- Eri Oyanagi
- Department of Cytology and Histology, Okayama University Graduate School, Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | |
Collapse
|
27
|
Blum JL, Kinsey GR, Monian P, Sun B, Cummings BS, McHowat J, Schnellmann RG. Profiling of fatty acids released during calcium-induced mitochondrial permeability transition in isolated rabbit kidney cortex mitochondria. Toxicol In Vitro 2011; 25:1001-6. [PMID: 21443943 DOI: 10.1016/j.tiv.2011.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 01/21/2023]
Abstract
Increases in intracellular Ca(2+) during cellular stress often lead to the mitochondrial permeability transition (MPT). We examined changes in fatty acids (FAs) released from isolated renal cortical mitochondria subjected to Ca(2+)-induced MPT. Exposing mitochondria to Ca(2+) stimulated mitochondrial swelling and release of FAs such as arachidonic (20:4) and docosahexenoic acids which increased 71% and 32%, respectively, and linoleic (18:2) which decreased 23% compared to controls. Stearic (18:0), oleic (18:1), and linoleic (18:3) acids were unchanged. To elucidate a mechanism for FA release, mitochondria were pre-treated with bromoenolactone (BEL) to inhibit Ca(2+)-independent phospholipase A(2) gamma activity (iPLA(2)γ). BEL blocked Ca(2+)-induced release of arachidonic and behenic (22:0) acids. Finally, four FAs were released in the absence of Ca(2+) in a BEL-sensitive manner, including arachidonic and docosatrienoic acids. Thus, extensive FA release occurs during Ca(2+)-induced MPT, and that mitochondrial iPLA(2)γ maintains mitochondrial arachidonic acid homeostasis under both basal and Ca(2+)-induced stress conditions.
Collapse
Affiliation(s)
- Jason L Blum
- Center for Cell Death, Injury, and Regeneration, Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Rial E, Rodríguez-Sánchez L, Gallardo-Vara E, Zaragoza P, Moyano E, González-Barroso MM. Lipotoxicity, fatty acid uncoupling and mitochondrial carrier function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:800-6. [DOI: 10.1016/j.bbabio.2010.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 01/22/2023]
|
29
|
Samovski D, Kalderon B, Yehuda-Shnaidman E, Bar-Tana J. Gating of the mitochondrial permeability transition pore by long chain fatty acyl analogs in vivo. J Biol Chem 2010; 285:6879-90. [PMID: 20037159 PMCID: PMC2844138 DOI: 10.1074/jbc.m109.080416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/22/2009] [Indexed: 11/06/2022] Open
Abstract
The role played by long chain fatty acids (LCFA) in promoting energy expenditure is confounded by their dual function as substrates for oxidation and as putative classic uncouplers of mitochondrial oxidative phosphorylation. LCFA analogs of the MEDICA (MEthyl-substituted DICarboxylic Acids) series are neither esterified into lipids nor beta-oxidized and may thus simulate the uncoupling activity of natural LCFA in vivo, independently of their substrate role. Treatment of rats or cell lines with MEDICA analogs results in low conductance gating of the mitochondrial permeability transition pore (PTP), with 10-40% decrease in the inner mitochondrial membrane potential. PTP gating by MEDICA analogs is accounted for by inhibition of Raf1 expression and kinase activity, resulting in suppression of the MAPK/RSK1 and the adenylate cyclase/PKA transduction pathways. Suppression of RSK1 and PKA results in a decrease in phosphorylation of their respective downstream targets, Bad(Ser-112) and Bad(Ser-155). Decrease in Bad(Ser-112, Ser-155) phosphorylation results in increased binding of Bad to mitochondrial Bcl2 with concomitant displacement of Bax, followed by PTP gating induced by free mitochondrial Bax. Low conductance PTP gating by LCFA/MEDICA may account for their thyromimetic calorigenic activity in vivo.
Collapse
Affiliation(s)
- Dmitri Samovski
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Bella Kalderon
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Einav Yehuda-Shnaidman
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| | - Jacob Bar-Tana
- From the Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem 91120, Israel
| |
Collapse
|
30
|
Feldkamp T, Park JS, Pasupulati R, Amora D, Roeser NF, Venkatachalam MA, Weinberg JM. Regulation of the mitochondrial permeability transition in kidney proximal tubules and its alteration during hypoxia-reoxygenation. Am J Physiol Renal Physiol 2009; 297:F1632-46. [PMID: 19741014 PMCID: PMC2801335 DOI: 10.1152/ajprenal.00422.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 09/03/2009] [Indexed: 12/30/2022] Open
Abstract
Development of the mitochondrial permeability transition (MPT) can importantly contribute to lethal cell injury from both necrosis and apoptosis, but its role varies considerably with both the type of cell and type of injury, and it can be strongly opposed by the normally abundant endogenous metabolites ADP and Mg(2+). To better characterize the MPT in kidney proximal tubule cells and assess its contribution to injury to them, we have refined and validated approaches to follow the process in whole kidney proximal tubules and studied its regulation in normoxic tubules and after hypoxia-reoxygenation (H/R). Physiological levels of ADP and Mg(2+) greatly decreased sensitivity to the MPT. Inhibition of cyclophilin D by cyclosporine A (CsA) effectively opposed the MPT only in the presence of ADP and/or Mg(2+). Nonesterified fatty acids (NEFA) had a large role in the decreased resistance to the MPT seen after H/R irrespective of the available substrate or the presence of ADP, Mg(2+), or CsA, but removal of NEFA was less effective at restoring normal resistance to the MPT in the presence of electron transport complex I-dependent substrates than with succinate. The data indicate that the NEFA accumulation that occurs during both hypoxia in vitro and ischemic acute kidney injury in vivo is a critical sensitizing factor for the MPT that overcomes the antagonistic effect of endogenous metabolites and cyclophilin D inhibition, particularly in the presence of complex I-dependent substrates, which predominate in vivo.
Collapse
Affiliation(s)
- Thorsten Feldkamp
- Nephrology Division, Dept. of Internal Medicine, Univ. of Michigan Medical Center, Ann Arbor, MI 48109-0676, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Baron A, Mancini M, Caldwell E, Cabrelle A, Bernardi P, Pagano F. Serenoa repensextract targets mitochondria and activates the intrinsic apoptotic pathway in human prostate cancer cells. BJU Int 2009; 103:1275-83. [DOI: 10.1111/j.1464-410x.2008.08266.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Arcisio-Miranda M, Abdulkader F, Brunaldi K, Curi R, Procopio J. Proton flux induced by free fatty acids across phospholipid bilayers: New evidences based on short-circuit measurements in planar lipid membranes. Arch Biochem Biophys 2009; 484:63-9. [DOI: 10.1016/j.abb.2009.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/29/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
|
33
|
Petrangeli E, Lenti L, Buchetti B, Chinzari P, Sale P, Salvatori L, Ravenna L, Lococo E, Morgante E, Russo A, Frati L, Di Silverio F, Russo MA. Lipido-sterolic extract of Serenoa repens (LSESr, Permixon) treatment affects human prostate cancer cell membrane organization. J Cell Physiol 2009; 219:69-76. [PMID: 19067321 DOI: 10.1002/jcp.21648] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular mechanism by which the lipido-sterolic extract of Serenoa repens (LSESr, Permixon) affects prostate cells remains to be fully elucidated. In androgen-independent PC3 prostate cancer cells, the LSESr-induced effects on proliferation and apoptosis were evaluated by counting cells and using a FACScan cytofluorimeter. PC3 cells were stained with JC-1 dye to detect mitochondrial membrane potential. Cell membrane lipid composition was evaluated by thin layer chromatography and gas chromatographic analysis. Akt phosphorylation was analyzed by Western blotting and cellular ultrastructure through electron microscopy. LSESr (12.5 and 25 microg/ml) administration exerted a biphasic action by both inhibiting proliferation and stimulating apoptosis. After 1 h, it caused a marked reduction in the mitochondrial potential, decreased cholesterol content and modified phospholipid composition. A decrease in phosphatidylinositol-4,5-bisphosphate (PIP2) level was coupled with reduced Akt phosphorylation. After 24 h, all of these effects were restored to pre-treatment conditions; however, the saturated (SFA)/unsaturated fatty acid (UFA) ratio increased, mainly due to a significant decrease in omega 6 content. The reduction in cholesterol content could be responsible for both membrane raft disruption and redistribution of signaling complexes, allowing for a decrease of PIP2 levels, reduction of Akt phosphorylation and apoptosis induction. The decrease in omega 6 content appears to be responsible for the prolonged and more consistent increase in the apoptosis rate and inhibition of proliferation observed after 2-3 days of LSESr treatment. In conclusion, LSESr administration results in complex changes in cell membrane organization and fluidity of prostate cancer cells that have progressed to hormone-independent status.
Collapse
Affiliation(s)
- E Petrangeli
- Department Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsalouhidou S, Petridou A, Mougios V. Effect of chronic exercise on DNA fragmentation and on lipid profiles in rat skeletal muscle. Exp Physiol 2009; 94:362-70. [DOI: 10.1113/expphysiol.2008.045732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Abstract
PURPOSE OF REVIEW To summarize recent studies that shed more light on possible mechanisms by which ectopic lipid storage affects organ function. RECENT FINDINGS Although ectopic lipids have been considered as biomarkers of lipotoxicity, adaptation of metabolic fluxes and of mitochondrial function seem to be more important than actual cellular fat contents in liver and muscle. Diabetic and obese humans have elevated myocardial lipid contents, which are associated with mitochondrial and contractile dysfunction and could even precede the development of heart failure. Although pancreatic fat content is negatively associated with insulin secretion, [beta]-cell triglycerides are not easily accessible to measurement in humans rendering their role for [beta]-cell function unclear. New approaches to quantify energy metabolism in various organs could help to identify novel biomarkers of organ function in humans. SUMMARY Dietary intake of high-caloric high-fat diets and sedentary lifestyle lead to increased storage of triglycerides not only in adipose tissue but also ectopically in other tissues. Intracellular lipid contents in skeletal muscle and liver have been related to insulin resistance and inflammatory processes. Myocardial fat is increased in heart failure, whereas pancreatic fat could relate to insulin secretion.
Collapse
Affiliation(s)
- Julia Szendroedi
- Department of Medicine/Metabolic Diseases, Institute for Clinical Diabetology, German Diabetes Center, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
36
|
Berezhnov AV, Fedotova EI, Nenov MN, Kokoz YM, Zinchenko VP, Dynnik VV. Destabilization of the cytosolic calcium level and the death of cardiomyocytes in the presence of derivatives of long-chain fatty acids. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908060183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
37
|
Dymkowska D, Szczepanowska J, Wojtczak L. Fatty-Acid–Induced Apoptosis in Ehrlich Ascites Tumor Cells. Toxicol Mech Methods 2008; 14:73-7. [DOI: 10.1080/15376520490257518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Schönfeld P. Phytanic Acid Toxicity: Implications for the Permeability of the Inner Mitochondrial Membrane to Ions. Toxicol Mech Methods 2008; 14:47-52. [DOI: 10.1080/15376520490257446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Abdul-Ghani MA, Muller FL, Liu Y, Chavez AO, Balas B, Zuo P, Chang Z, Tripathy D, Jani R, Molina-Carrion M, Monroy A, Folli F, Van Remmen H, DeFronzo RA. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. Am J Physiol Endocrinol Metab 2008; 295:E678-85. [PMID: 18593850 DOI: 10.1152/ajpendo.90287.2008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin resistance is a characteristic feature of type 2 diabetes and obesity. Insulin-resistant individuals manifest multiple disturbances in free fatty acid (FFA) metabolism and have excessive lipid accumulation in insulin target tissues. Although much evidence supports a causal role for altered FFA metabolism in the development of insulin resistance, i.e., "lipotoxicity", the intracellular mechanisms by which elevated plasma FFA levels cause insulin resistance have yet to be completely elucidated. Recent studies have implicated a possible role for mitochondrial dysfunction in the pathogenesis of insulin resistance in skeletal muscle. We examined the effect of FFA metabolites [palmitoyl carnitine (PC), palmitoyl-coenzyme A (CoA), and oleoyl-CoA] on ATP synthesis in mitochondria isolated from mouse and human skeletal muscle. At concentrations ranging from 0.5 to 2 microM, these FFA metabolites stimulated ATP synthesis; however, above 5 microM, there was a dose-response inhibition of ATP synthesis. Furthermore, 10 microM PC inhibits ATP synthesis from pyruvate. Elevated PC concentrations (> or =10 microM) inhibit electron transport chain activity and decrease the mitochondrial inner membrane potential. These acquired mitochondrial defects, caused by a physiological increase in the concentration of FFA metabolites, provide a mechanistic link between lipotoxicity, mitochondrial dysfunction, and muscle insulin resistance.
Collapse
|
40
|
Silveira LR, Fiamoncini J, Hirabara SM, Procópio J, Cambiaghi TD, Pinheiro CHJ, Lopes LR, Curi R. Updating the effects of fatty acids on skeletal muscle. J Cell Physiol 2008; 217:1-12. [PMID: 18543263 DOI: 10.1002/jcp.21514] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this review we updated the fatty acid (FA) effects on skeletal muscle metabolism. Abnormal FA availability induces insulin resistance and accounts for several of its symptoms and complications. Efforts to understand the pathogenesis of insulin resistance are focused on disordered lipid metabolism and consequently its effect on insulin signaling pathway. We reviewed herein the FA effects on metabolism, signaling, regulation of gene expression and oxidative stress in insulin resistance. The elevated IMTG content has been associated with increased intracellular content of diacylglycerol (DAG), ceramides and long-chain acyl-coenzyme A (LCA-CoA). This condition has been shown to promote insulin resistance by interfering with phosphorylation of proteins of the insulin pathway including insulin receptor substrate-1/2 (IRS), phosphatidylinositol-3-kinase, (PI3-kinase) and protein kinase C. Although the molecular mechanism is not completely understood, elevated reactive oxygen (ROS) and nitrogen species (RNS) are involved in this process. Elevated ROS/RNS activates nuclear factor-kappaB (NFkB), which promotes the transcription of proinflammatory tumoral necrosis factor alpha (TNFalpha), decreasing the insulin response. Therefore, oxidative stress induced by elevated FA availability may constitute one of the major causes of insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Leonardo R Silveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Schönfeld P, Wojtczak L. Fatty acids as modulators of the cellular production of reactive oxygen species. Free Radic Biol Med 2008; 45:231-41. [PMID: 18482593 DOI: 10.1016/j.freeradbiomed.2008.04.029] [Citation(s) in RCA: 319] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 04/16/2008] [Accepted: 04/22/2008] [Indexed: 12/17/2022]
Abstract
Long-chain nonesterified ("free") fatty acids (FFA) and some of their derivatives and metabolites can modify intracellular production of reactive oxygen species (ROS), in particular O(2)(-) and H(2)O(2). In mitochondria, FFA exert a dual effect on ROS production. Because of slowing down the rate of electron flow through Complexes I and III of the respiratory chain due to interaction within the complex subunit structure, and between Complexes III and IV due to release of cytochrome c from the inner membrane, FFA increase the rate of ROS generation in the forward mode of electron transport. On the other hand, due to their protonophoric action on the inner mitochondrial membrane ("mild uncoupling effect"), FFA strongly decrease ROS generation in the reverse mode of electron transport. In the plasma membrane of phagocytic neutrophils and a number of other types of cells, polyunsaturated FFA stimulate O(2)(-) generation by NADPH oxidase. These effects of FFA can modulate signaling functions of ROS and be, at least partly, responsible for their proapoptotic effects in several types of cells.
Collapse
Affiliation(s)
- Peter Schönfeld
- Institute of Biochemistry and Cell Biology, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | |
Collapse
|
42
|
Tominaga H, Katoh H, Odagiri K, Takeuchi Y, Kawashima H, Saotome M, Urushida T, Satoh H, Hayashi H. Different effects of palmitoyl-L-carnitine and palmitoyl-CoA on mitochondrial function in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H105-12. [PMID: 18469143 DOI: 10.1152/ajpheart.01307.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although mitochondrial oxidative catabolism of fatty acid (FA) is a major energy source for the adult mammalian heart, cardiac lipotoxity resulting from elevated serum FA and enhanced FA use has been implicated in the pathogenesis of heart failure. To investigate the effects of intermediates of FA metabolism [palmitoyl-l-carnitine (Pal-car) and palmitoyl-CoA (Pal-CoA)] on mitochondrial function, we measured membrane potential (DeltaPsi(m)), opening of the mitochondrial permeability transition pore (mPTP), and the production of ROS in saponin-treated rat ventricular myocytes with a laser scanning confocal microscope. Our results revealed that 1) lower concentrations of Pal-car (1 and 5 muM) caused a slight hyperpolarization of DeltaPsi(m) [tetramethylrhodamine ethyl ester (TMRE) intensity increased to 115.5 +/- 5.4% and 110.7 +/- 1.6% of baseline, respectively, P < 0.05] but did not open the mPTP, 2) a higher concentration of Pal-car (10 microM) depolarized DeltaPsi(m) (TMRE intensity decreased to 61.9 +/- 12.2% of baseline, P < 0.01) and opened the mPTP (calcein intensity decreased to 70.7 +/- 2.8% of baseline, P < 0.01), 3) Pal-CoA depolarized DeltaPsi(m) without opening the mPTP, and 4) only the higher concentration of Pal-car (10 muM) increased ROS generation (2',7'-dichlorofluorescein diacetate intensity increased to 3.4 +/- 0.3-fold of baseline). We concluded that excessive exogenous intermediates of long-chain saturated FA may disturb mitochondrial function in different ways between Pal-car and Pal-CoA. The distinct mechanisms of the deteriorating effects of long-chain FA on mitochondrial function are important for our understanding of the development of cardiac diseases in systemic metabolic disorders.
Collapse
Affiliation(s)
- Hiromutsu Tominaga
- Div. of Cardiology, Internal Medicine III, Hamamatsu Univ. School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Koshkin V, Dai FF, Robson-Doucette CA, Chan CB, Wheeler MB. Limited Mitochondrial Permeabilization Is an Early Manifestation of Palmitate-induced Lipotoxicity in Pancreatic β-Cells. J Biol Chem 2008; 283:7936-48. [DOI: 10.1074/jbc.m705652200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
44
|
Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA. Calcium in cell injury and death. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:405-34. [PMID: 18039121 DOI: 10.1146/annurev.pathol.1.110304.100218] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of Ca(2+) homeostasis, often in the form of cytoplasmic increases, leads to cell injury. Depending upon cell type and the intensity of Ca(2+) toxicity, the ensuing pathology can be reversible or irreversible. Although multiple destructive processes are activated by Ca(2+), lethal outcomes are determined largely by Ca(2+)-induced mitochondrial permeability transition. This form of damage is primarily dependent upon mitochondrial Ca(2+) accumulation, which is regulated by the mitochondrial membrane potential. Retention of the mitochondrial membrane potential during Ca(2+) increases favors mitochondrial Ca(2+) uptake and overload, resulting in mitochondrial permeability transition and cell death. In contrast, dissipation of mitochondrial membrane potential reduces mitochondrial Ca(2+) uptake, retards mitochondrial permeability transition, and delays death, even in cells with large Ca(2+) increases. The rates of mitochondrial membrane potential dissipation and mitochondrial Ca(2+) uptake may determine cellular sensitivity to Ca(2+) toxicity under pathological conditions, including ischemic injury.
Collapse
Affiliation(s)
- Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | | | |
Collapse
|
45
|
Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro. Toxicol Appl Pharmacol 2007; 227:184-95. [PMID: 18048072 DOI: 10.1016/j.taap.2007.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/21/2022]
Abstract
N-alkyl perfluorooctane sulfonamides have been widely used as surfactants on fabrics and papers, fire retardants, and anti-corrosion agents, among many other commercial applications. The global distribution and environmental persistence of these compounds has generated considerable interest regarding potential toxic effects. We have previously reported that perfluorooctanesulfonamidoacetate (FOSAA) and N-ethylperfluorooctanesulfonamidoacetate (N-EtFOSAA) induce the mitochondrial permeability transition (MPT) in vitro. In this study we tested the hypothesis that FOSAA and N-EtFOSAA interact with the adenine nucleotide translocator (ANT) resulting in a functional inhibition of the translocator and induction of the MPT. Respiration and membrane potential of freshly isolated liver mitochondria from Sprague-Dawley rats were measured using an oxygen electrode and a tetraphenylphosphonium-selective (TPP(+)) electrode, respectively. Mitochondrial swelling was measured spectrophotometrically. The ANT ligands bongkregkic acid (BKA) and carboxyatractyloside (cATR) inhibited uncoupling of mitochondrial respiration caused by 10 microM N-EtFOSAA, 40 microM FOSAA, and the positive control 8 microM oleic acid. ADP-stimulated respiration and depolarization of mitochondrial membrane potential were inhibited by cATR, FOSAA, N-EtFOSAA, and oleic acid, but not by FCCP. BKA inhibited calcium-dependent mitochondrial swelling induced by FOSAA, N-EtFOSAA, and oleic acid. Seventy-five micromolar ADP also inhibited swelling induced by the test compounds, but cATR induced swelling was not inhibited by ADP. Results of this investigation indicate that N-acetyl perfluorooctane sulfonamides interact directly with the ANT to inhibit ADP translocation and induce the MPT, one or both of which may account for the metabolic dysfunction observed in vivo.
Collapse
|
46
|
Srivastava S, Chan C. Hydrogen peroxide and hydroxyl radicals mediate palmitate-induced cytotoxicity to hepatoma cells: relation to mitochondrial permeability transition. Free Radic Res 2007; 41:38-49. [PMID: 17164177 DOI: 10.1080/10715760600943900] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We studied the toxicological responses of a human hepatoblastoma cell line (HepG2/C3A) to various free fatty acids (FFA) in order to identify the relation between reactive oxygen species (ROS) production and mitochondrial permeability transition (MPT). Exposure to the saturated FFA, palmitate, led to a time-dependent ROS production and hydrogen peroxide release as well as a loss of mitochondrial potential. The cytotoxicity of palmitate was significantly reduced by treating with scavengers of hydrogen peroxide, hydroxyl radical and the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN). Superoxide dismutase (SOD) mimics, nitric oxide scavenger, and inhibitor of de novo ceramide synthesis had no effect on the toxicity. MPT-inhibitor, cyclosporine, prevented the loss of mitochondrial potential but did not reduce the cytotoxicity. In contrast, inhibiting mitochondrial complexes I and III reduced the early potential loss and the cytotoxicity. These results suggest that palmitate-cytotoxicity to hepatoma cells is mediated through the production of H2O2 and *OH and independent of MPT.
Collapse
Affiliation(s)
- Shireesh Srivastava
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|
47
|
Agafonov AV, Gritsenko EN, Shlyapnikova EA, Kharakoz DP, Belosludtseva NV, Lezhnev EI, Saris NEL, Mironova GD. Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization. J Membr Biol 2007; 215:57-68. [PMID: 17443385 DOI: 10.1007/s00232-007-9005-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 01/17/2007] [Indexed: 11/30/2022]
Abstract
A Ca(2+)-induced phase separation of palmitic acid (PA) in the membrane of azolectin unilamellar liposomes has been demonstrated with the fluorescent membrane probe nonyl acridine orange (NAO). It has been shown that NAO, whose fluorescence in liposomal membranes is quenched in a concentration-dependent way, can be used to monitor changes in the volume of lipid phase. The incorporation of PA into NAO-labeled liposomes increased fluorescence corresponding to the expansion of membrane. After subsequent addition of Ca(2+), fluorescence decreased, which indicated separation of PA/Ca(2+) complexes into distinct membrane domains. The Ca(2+)-induced phase separation of PA was further studied in relation to membrane permeabilization caused by Ca(2+) in the PA-containing liposomes. A supposition was made that the mechanism of PA/Ca(2+)-induced membrane permeabilization relates to the initial stage of Ca(2+)-induced phase separation of PA and can be considered as formation of fast-tightening lipid pores due to chemotropic phase transition in the lipid bilayer.
Collapse
Affiliation(s)
- Alexey V Agafonov
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics RAS, Institutskaya str. 3, Pushchino, Moscow Region 142290, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Oz M. Receptor-independent actions of cannabinoids on cell membranes: Focus on endocannabinoids. Pharmacol Ther 2006; 111:114-44. [PMID: 16584786 DOI: 10.1016/j.pharmthera.2005.09.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 09/30/2005] [Indexed: 01/08/2023]
Abstract
Cannabinoids are a structurally diverse group of mostly lipophilic molecules that bind to cannabinoid receptors. In fact, endogenous cannabinoids (endocannabinoids) are a class of signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. They are synthesized from lipid precursors in plasma membranes via Ca(2+) or G-protein-dependent processes and exhibit cannabinoid-like actions by binding to cannabinoid receptors. However, endocannabinoids can produce effects that are not mediated by these receptors. In pharmacologically relevant concentrations, endocannabinoids modulate the functional properties of voltage-gated ion channels including Ca(2+) channels, Na(+) channels, various types of K(+) channels, and ligand-gated ion channels such as serotonin type 3, nicotinic acetylcholine, and glycine receptors. In addition, modulatory effects of endocannabinoids on other ion-transporting membrane proteins such as transient potential receptor-class channels, gap junctions and transporters for neurotransmitters have also been demonstrated. Furthermore, functional properties of G-protein-coupled receptors for different types of neurotransmitters and neuropeptides are altered by direct actions of endocannabinoids. Although the mechanisms of these effects are currently not clear, it is likely that these direct actions of endocannabinoids are due to their lipophilic structures. These findings indicate that additional molecular targets for endocannabinoids exist and that these targets may represent novel sites for cannabinoids to alter either the excitability of the neurons or the response of the neuronal systems. This review focuses on the results of recent studies indicating that beyond their receptor-mediated effects, endocannabinoids alter the functions of ion channels and other integral membrane proteins directly.
Collapse
Affiliation(s)
- Murat Oz
- National Institute on Drug Abuse, NIH/DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore MD, 21224, USA.
| |
Collapse
|
49
|
Jiménez-Jiménez J, Ledesma A, Zaragoza P, González-Barroso MM, Rial E. Fatty acid activation of the uncoupling proteins requires the presence of the central matrix loop from UCP1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1292-6. [PMID: 16814247 DOI: 10.1016/j.bbabio.2006.05.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 04/07/2006] [Accepted: 05/19/2006] [Indexed: 11/28/2022]
Abstract
Noradrenaline signals the initiation of brown fat thermogenesis and the fatty acids liberated by the hormone-stimulated lipolysis act as second messengers to activate the uncoupling protein UCP1. UCP1 is a mitochondrial transporter that catalyses the re-entry of protons to the mitochondrial matrix thus allowing a regulated discharge of the proton gradient. The high affinity of UCP1 for fatty acids is a distinct feature of this uncoupling protein. The uncoupling proteins belong to a protein superfamily formed by the mitochondrial metabolite carriers. Members of this family present a tripartite structure where a domain containing two transmembrane helices, linked by a long hydrophilic loop, is repeated three times. Using protein chimeras, where the repeats had been swapped between UCP1 and UCP3, it has been shown that the central third of UCP1 is necessary and sufficient for the response of the protein to fatty acids. We have extended those studies and in the present report we have generated protein chimeras where different regions of the second repeat of UCP1 have been sequentially replaced with their UCP2 counterparts. The resulting chimeras present a progressive degradation of the characteristic bioenergetic properties of UCP1. We demonstrate that the presence of the second matrix loop is necessary for the high affinity activation of UCP1 by fatty acids.
Collapse
|
50
|
Di Paola M, Lorusso M. Interaction of free fatty acids with mitochondria: coupling, uncoupling and permeability transition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1330-7. [PMID: 16697347 DOI: 10.1016/j.bbabio.2006.03.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/18/2022]
Abstract
Long chain free fatty acids (FFA) exert, according to their actual concentration, different effects on the energy conserving system of mitochondria. Sub-micromolar concentrations of arachidonic acid (AA) rescue DeltapH-dependent depression of the proton pumping activity of the bc1 complex. This effect appears to be due to a direct interaction of AA with the proton-input mouth of the pump. At micromolar concentrations FFA increase the proton conductance of the inner membrane acting as protonophores. FFA can act as natural uncouplers, causing a mild uncoupling, which prevents reactive oxygen species production in the respiratory resting state. When Ca(2+)-loaded mitochondria are exposed to micromolar concentrations of FFA, the permeability of the inner membrane increases, resulting in matrix swelling, rupture of the outer membrane and release of intermembrane pro-apoptotic proteins. The characteristics of AA-induced swelling appear markedly different in mitochondria isolated from heart or liver. While in the latter it presents the canonical features of the classical permeability transition (PT), in heart mitochondria substantial differences are observed concerning CsA sensitivity, DeltaPsi dependence, reversibility by BSA and specificity for the activating divalent cation. In heart mitochondria, the AA-dependent increase of the inner membrane permeability is affected by ANT ligands such as adenine nucleotides and atractyloside. AA apparently causes a Ca2+-mediated conversion of ANT from a translocator to a channel system. Upon diamide treatment of heart mitochondria, the Ca2+/AA-induced CsA insensitive channel is converted into the classical PT pore. The relevance of these observations in terms of tissue-specific components of the putative PTP and heart ischemic and post-ischemic process is discussed.
Collapse
Affiliation(s)
- Marco Di Paola
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche, Bari, Italy.
| | | |
Collapse
|