1
|
Cai Z, He X, Liu S, Bai Y, Pan B, Wu K. Linear ubiquitination modification of NR6A1 by LUBAC inhibits RIPK3 kinase activity and attenuates apoptosis of vascular smooth muscle cells. J Biochem Mol Toxicol 2022; 36:e23091. [PMID: 35543488 DOI: 10.1002/jbt.23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/30/2021] [Accepted: 04/19/2022] [Indexed: 11/12/2022]
Abstract
Nuclear receptor subfamily 6 group A member 1 (NR6A1) is involved in promoting the apoptotic process of vascular smooth muscle cells (VSMCs) which is a critical process involved in atherosclerosis, but the action mechanism remains to be determined. Therefore, we studied the underlying mechanisms by which NR6A1 accelerated VSMC apoptosis in atherosclerosis. An atherosclerosis model has been established in apolipoprotein E-deficient rats with a high-fat diet for 12 weeks, which was characterized by pathological aortic plaques, increased lipid deposition and collagen content in aortic tissues, and high cholesterol and triglycerides levels in the serum. NR6A1 was experimentally shown to increase at protein level rather than messenger RNA level in atherosclerotic rats. Immunofluorescence exhibited the main location of NR6A1 in the cell nucleus of rat aortic tissues. By performing ectopic expression experiments, NR6A1 was demonstrated to suppress the viability and expedite the apoptosis of VSMCs, corresponding to augmented caspase-3, caspase-8, and caspase-9 activities. It was further unraveled that NR6A1 could activate receptor-interacting serine/threonine-protein kinase 3 (RIPK3) by inducing its phosphorylation. Conversely, RIPK3 inhibitor GSK872 undermined the proapoptotic effect of NR6A1 on VSMCs. The co-immunoprecipitation assay identified that linear ubiquitin chain assembly complex (LUBAC) can be pulled down by NR6A1. Furthermore. LUBAC inhibited the expression of NR6A1 by promoting its linear ubiquitination, thereby dephosphorylating RIPK3 and consequently inhibiting the VSMC apoptosis. Overall, LUBAC-induced linear ubiquitination of NR6A1 can potentially arrest the apoptosis of VSMCs in atherosclerosis by downregulating RIPK3 and attenuating caspase activity. This finding suggests promising athero-protective targets by limiting VSMC apoptosis.
Collapse
Affiliation(s)
- Zhou Cai
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Xin He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Shuai Liu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yang Bai
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Baihong Pan
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Kemin Wu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, P. R. China
| |
Collapse
|
2
|
Wang L, Zhang Y, Zhang B, Zhong H, Lu Y, Zhang H. Candidate gene screening for lipid deposition using combined transcriptomic and proteomic data from Nanyang black pigs. BMC Genomics 2021; 22:441. [PMID: 34118873 PMCID: PMC8201413 DOI: 10.1186/s12864-021-07764-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
Background Lower selection intensities in indigenous breeds of Chinese pig have resulted in obvious genetic and phenotypic divergence. One such breed, the Nanyang black pig, is renowned for its high lipid deposition and high genetic divergence, making it an ideal model in which to investigate lipid position trait mechanisms in pigs. An understanding of lipid deposition in pigs might improve pig meat traits in future breeding and promote the selection progress of pigs through modern molecular breeding techniques. Here, transcriptome and tandem mass tag-based quantitative proteome (TMT)-based proteome analyses were carried out using longissimus dorsi (LD) tissues from individual Nanyang black pigs that showed high levels of genetic variation. Results A large population of Nanyang black pigs was phenotyped using multi-production trait indexes, and six pigs were selected and divided into relatively high and low lipid deposition groups. The combined transcriptomic and proteomic data identified 15 candidate genes that determine lipid deposition genetic divergence. Among them, FASN, CAT, and SLC25A20 were the main causal candidate genes. The other genes could be divided into lipid deposition-related genes (BDH2, FASN, CAT, DHCR24, ACACA, GK, SQLE, ACSL4, and SCD), PPARA-centered fat metabolism regulatory factors (PPARA, UCP3), transcription or translation regulators (SLC25A20, PDK4, CEBPA), as well as integrin, structural proteins, and signal transduction-related genes (EGFR). Conclusions This multi-omics data set has provided a valuable resource for future analysis of lipid deposition traits, which might improve pig meat traits in future breeding and promote the selection progress in pigs, especially in Nanyang black pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07764-2.
Collapse
Affiliation(s)
- Liyuan Wang
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China.,National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China.,Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Haian Zhong
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China
| | - Yunfeng Lu
- College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, China.
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding/Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Yoon K, Chen CC, Orr AA, Barreto PN, Tamamis P, Safe S. Activation of COUP-TFI by a Novel Diindolylmethane Derivative. Cells 2019; 8:220. [PMID: 30866413 PMCID: PMC6468570 DOI: 10.3390/cells8030220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022] Open
Abstract
Chicken ovalbumin upstream promoter-transcription factor I (COUP-TFI) is an orphan receptor and member of the nuclear receptor superfamily. Among a series of methylene substituted diindolylmethanes (C-DIMs) containing substituted phenyl and heteroaromatic groups, we identified 1,1-bis(3'-indolyl)-1-(4-pyridyl)-methane (DIM-C-Pyr-4) as an activator of COUP-TFI. Structure activity studies with structurally diverse heteroaromatic C-DIMs showed that the pyridyl substituted compound was active and the 4-pyridyl substituent was more potent than the 2- or 3-pyridyl analogs in transactivation assays in breast cancer cells. The DIM-C-Pyr-4 activated chimeric GAL4-COUP-TFI constructs containing full length, C- or N-terminal deletions, and transactivation was inhibited by phosphatidylinositol-3-kinase and protein kinase A inhibitors. However, DIM-C-Pyr-4 also induced transactivation and interactions of COUP-TFI and steroid receptor coactivators-1 and -2 in mammalian two-hybrid assays, and ligand-induced interactions of the C-terminal region of COUP-TFI were not affected by kinase inhibitors. We also showed that DIM-C-Pyr-4 activated COUP-TFI-dependent early growth response 1 (Egr-1) expression and this response primarily involved COUP-TFI interactions with Sp3 and to a lesser extent Sp1 bound to the proximal region of the Egr-1 promoter. Modeling studies showed interactions of DIM-C-Pyr-4 within the ligand binding domain of COUP-TFI. This report is the first to identify a COUP-TFI agonist and demonstrate activation of COUP-TFI-dependent Egr-1 expression.
Collapse
Affiliation(s)
- Kyungsil Yoon
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Division of Translational Science, National Cancer Center, Goyang-si, Gyeonggi-do 10408, Korea.
| | - Chien-Cheng Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| | - Asuka A Orr
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Patricia N Barreto
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Phanourios Tamamis
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Stephen Safe
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
4
|
Retinal S-opsin dominance in Ansell's mole-rats (Fukomys anselli) is a consequence of naturally low serum thyroxine. Sci Rep 2018. [PMID: 29531249 PMCID: PMC5847620 DOI: 10.1038/s41598-018-22705-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mammals usually possess a majority of medium-wavelength sensitive (M-) and a minority of short-wavelength sensitive (S-) opsins in the retina, enabling dichromatic vision. Unexpectedly, subterranean rodents from the genus Fukomys exhibit an S-opsin majority, which is exceptional among mammals, albeit with no apparent adaptive value. Because thyroid hormones (THs) are pivotal for M-opsin expression and metabolic rate regulation, we have, for the first time, manipulated TH levels in the Ansell's mole-rat (Fukomys anselli) using osmotic pumps. In Ansell's mole-rats, the TH thyroxine (T4) is naturally low, likely as an adaptation to the harsh subterranean ecological conditions by keeping resting metabolic rate (RMR) low. We measured gene expression levels in the eye, RMR, and body mass (BM) in TH-treated animals. T4 treatment increased both, S- and M-opsin expression, albeit M-opsin expression at a higher degree. However, this plasticity was only given in animals up to approximately 2.5 years. Mass-specific RMR was not affected following T4 treatment, although BM decreased. Furthermore, the T4 inactivation rate is naturally higher in F. anselli compared to laboratory rodents. This is the first experimental evidence that the S-opsin majority in Ansell's mole-rats is a side effect of low T4, which is downregulated to keep RMR low.
Collapse
|
5
|
Asensio-Juan E, Fueyo R, Pappa S, Iacobucci S, Badosa C, Lois S, Balada M, Bosch-Presegué L, Vaquero A, Gutiérrez S, Caelles C, Gallego C, de la Cruz X, Martínez-Balbás MA. The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res 2017; 45:3800-3811. [PMID: 28100697 PMCID: PMC5397186 DOI: 10.1093/nar/gkw1346] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/12/2017] [Indexed: 11/14/2022] Open
Abstract
A precise immune response is essential for cellular homeostasis and animal survival. The paramount importance of its control is reflected by the fact that its non-specific activation leads to inflammatory events that ultimately contribute to the appearance of many chronic diseases. However, the molecular mechanisms preventing non-specific activation and allowing a quick response upon signal activation are not yet fully understood. In this paper we uncover a new function of PHF8 blocking signal independent activation of immune gene promoters. Affinity purifications coupled with mass spectrometry analysis identified SIN3A and HDAC1 corepressors as new PHF8 interacting partners. Further molecular analysis demonstrated that prior to interferon gamma (IFNγ) stimulation, PHF8 is bound to a subset of IFNγ-responsive promoters. Through the association with HDAC1 and SIN3A, PHF8 keeps the promoters in a silent state, maintaining low levels of H4K20me1. Upon IFNγ treatment, PHF8 is phosphorylated by ERK2 and evicted from the promoters, correlating with an increase in H4K20me1 and transcriptional activation. Our data strongly indicate that in addition to its well-characterized function as a coactivator, PHF8 safeguards transcription to allow an accurate immune response.
Collapse
Affiliation(s)
- Elena Asensio-Juan
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Raquel Fueyo
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Stella Pappa
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Simona Iacobucci
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Carmen Badosa
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Sergi Lois
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035 Barcelona, Spain
| | - Miriam Balada
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Laia Bosch-Presegué
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d?Investigació Biomèdica de Bellvitge (IDIBELL), 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alex Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Institut d?Investigació Biomèdica de Bellvitge (IDIBELL), 08907- L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Gutiérrez
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Carme Caelles
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona 08028, Spain
| | - Carme Gallego
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Institute of Research (VHIR), Passeig de la Vall d'Hebron, 119, E-08035 Barcelona, Spain.,Institut Català per la Recerca i Estudis Avançats (ICREA), Barcelona 08018, Spain
| | - Marian A Martínez-Balbás
- Department of Molecular Genomics, Instituto de Biología Molecular de Barcelona (IBMB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| |
Collapse
|
6
|
Murugananthkumar R, Akhila MV, Rajakumar A, Mamta SK, Sudhakumari CC, Senthilkumaran B. Molecular cloning, expression analysis and transcript localization of testicular orphan nuclear receptor 2 in the male catfish, Clarias batrachus. Gen Comp Endocrinol 2016; 239:71-79. [PMID: 26519761 DOI: 10.1016/j.ygcen.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 09/09/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
Testicular receptor 2 (TR2; also known as Nr2c1) is one of the first orphan nuclear receptors identified and known to regulate various physiological process with or without any ligand. In this study, we report the cloning of full length nr2c1 and its expression analysis during gonadal development, seasonal testicular cycle and after human chorionic gonadotropin (hCG) induction. In addition, in situ hybridization (ISH) was performed to localize nr2c1 transcripts in adult testis and whole catfish (1day post hatch). Tissue distribution and gonadal ontogeny studies revealed high expression of nr2c1 in developing and adult testis. Early embryonic stage-wise expression of nr2c1 seems to emphasize its importance in cellular differentiation and development. Substantial expression of nr2c1 during pre-spawning phase and localization of nr2c1 transcripts in sperm/spermatids were observed. Significant upregulation after hCG induction indicate that nr2c1 is under the regulation of gonadotropins. Whole mount ISH analysis displayed nr2c1 expression in notochord indicating its role in normal vertebrate development. Taken together, our findings suggest that nr2c1 may have a plausible role in the testicular and embryonic development of catfish.
Collapse
Affiliation(s)
- R Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - M V Akhila
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - A Rajakumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - S K Mamta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - C C Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
7
|
Zhi X, Zhou XE, Melcher K, Xu HE. Structures and regulation of non-X orphan nuclear receptors: A retinoid hypothesis. J Steroid Biochem Mol Biol 2016; 157:27-40. [PMID: 26159912 DOI: 10.1016/j.jsbmb.2015.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/28/2022]
Abstract
Nuclear receptors are defined as a family of ligand regulated transcription factors [1-6]. While this definition reflects that ligand binding is a key property of nuclear receptors, it is still a heated subject of debate if all the nuclear receptors (48 human members) can bind ligands (ligands referred here to both physiological and synthetic ligands). Recent studies in nuclear receptor structure biology and pharmacology have undoubtedly increased our knowledge of nuclear receptor functions and their regulation. As a result, they point to new avenues for the discovery and development of nuclear receptor regulators, including nuclear receptor ligands. Here we review the recent literature on orphan nuclear receptor structural analysis and ligand identification, particularly on the orphan nuclear receptors that do not heterodimerize with retinoid X receptors, which we term as non-X orphan receptors. We also propose a speculative "retinoid hypothesis" for a subset of non-X orphan nuclear receptors, which we hope to help shed light on orphan nuclear receptor biology and drug discovery. This article is part of a Special Issue entitled 'Orphan Nuclear Receptors'.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; Autophagy Research Center, University of Texas Southwestern Medical Center, 6000Harry Hines Blvd., Dallas, TX 75390, USA.
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Ave., N.E., Grand Rapids, MI 49503, USA; VARI-SIMM Center, Key Laboratory of Receptor Research, Shanghai Institute of MateriaMedica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
8
|
Zhi X, Zhou XE, He Y, Searose-Xu K, Zhang CL, Tsai CC, Melcher K, Xu HE. Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Genes Dev 2015; 29:440-50. [PMID: 25691470 PMCID: PMC4335298 DOI: 10.1101/gad.254904.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Zhi et al. report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX. In addition, mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. The orphan nuclear receptor TLX regulates neural stem cell self-renewal in the adult brain and functions primarily as a transcription repressor through recruitment of Atrophin corepressors, which bind to TLX via a conserved peptide motif termed the Atro box. Here we report crystal structures of the human and insect TLX ligand-binding domain in complex with Atro box peptides. In these structures, TLX adopts an autorepressed conformation in which its helix H12 occupies the coactivator-binding groove. Unexpectedly, H12 in this autorepressed conformation forms a novel binding pocket with residues from helix H3 that accommodates a short helix formed by the conserved ALXXLXXY motif of the Atro box. Mutations that weaken the TLX–Atrophin interaction compromise the repressive activity of TLX, demonstrating that this interaction is required for Atrophin to confer repressor activity to TLX. Moreover, the autorepressed conformation is conserved in the repressor class of orphan nuclear receptors, and mutations of corresponding residues in other members of this class of receptors diminish their repressor activities. Together, our results establish the functional conservation of the autorepressed conformation and define a key sequence motif in the Atro box that is essential for TLX-mediated repression.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA; Autophagy Research Center,
| | - X Edward Zhou
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Yuanzheng He
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Kelvin Searose-Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Texas 75390, USA
| | - Chih-Cheng Tsai
- Department of Cell Biology and Neuroscience, University of California at Riverside, Riverside, California 92521, USA
| | - Karsten Melcher
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - H Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA; Van Andel Research Institute-Shanghai Institute of Materia Medica (VARI/SIMM) Center, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
9
|
Structural insights into gene repression by the orphan nuclear receptor SHP. Proc Natl Acad Sci U S A 2013; 111:839-44. [PMID: 24379397 DOI: 10.1073/pnas.1322827111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.
Collapse
|
10
|
Vaiman D, Calicchio R, Miralles F. Landscape of transcriptional deregulations in the preeclamptic placenta. PLoS One 2013; 8:e65498. [PMID: 23785430 PMCID: PMC3681798 DOI: 10.1371/journal.pone.0065498] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/26/2013] [Indexed: 02/06/2023] Open
Abstract
Preeclampsia is a pregnancy disease affecting 5 to 8% of pregnant women and a leading cause of both maternal and fetal mortality and morbidity. Because of a default in the process of implantation, the placenta of preeclamptic women undergoes insufficient vascularization. This results in placental ischemia, inflammation and subsequent release of placental debris and vasoactive factors in the maternal circulation causing a systemic endothelial activation. Several microarray studies have analyzed the transcriptome of the preeclamptic placentas to identify genes which could be involved in placental dysfunction. In this study, we compared the data from publicly available microarray analyses to obtain a consensus list of modified genes. This allowed to identify consistently modified genes in the preeclamptic placenta. Of these, 67 were up-regulated and 31 down-regulated. Assuming that changes in the transcription level of co-expressed genes may result from the coordinated action of a limited number of transcription factors, we looked for over-represented putative transcription factor binding sites in the promoters of these genes. Indeed, we found that the promoters of up-regulated genes are enriched in putative binding sites for NFkB, CREB, ANRT, REEB1, SP1, and AP-2. In the promoters of down-regulated genes, the most prevalent putative binding sites are those of MZF-1, NFYA, E2F1 and MEF2A. These transcriptions factors are known to regulate specific biological pathways such as cell responses to inflammation, hypoxia, DNA damage and proliferation. We discuss here the molecular mechanisms of action of these transcription factors and how they can be related to the placental dysfunction in the context of preeclampsia.
Collapse
Affiliation(s)
- Daniel Vaiman
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Rosamaria Calicchio
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
| | - Francisco Miralles
- INSERM U1016-CNRS UMR8104, Université Paris Descartes, Institut Cochin, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Li Z, Kruijt JK, van der Sluis RJ, Van Berkel TJC, Hoekstra M. Nuclear receptor atlas of female mouse liver parenchymal, endothelial, and Kupffer cells. Physiol Genomics 2013; 45:268-75. [PMID: 23362145 DOI: 10.1152/physiolgenomics.00151.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The liver consists of different cell types that together synchronize crucial roles in liver homeostasis. Since nuclear receptors constitute an important class of drug targets that are involved in a wide variety of physiological processes, we have composed the hepatic cell type-specific expression profile of nuclear receptors to uncover the pharmacological potential of liver-enriched nuclear receptors. Parenchymal liver cells (hepatocytes) and liver endothelial and Kupffer cells were isolated from virgin female C57BL/6 wild-type mice using collagenase perfusion and counterflow centrifugal elutriation. The hepatic expression pattern of 49 nuclear receptors was generated by real-time quantitative PCR using the NUclear Receptor Signaling Atlas (NURSA) program resources. Thirty-six nuclear receptors were expressed in total liver. FXR-α, EAR2, LXR-α, HNF4-α, and CAR were the most abundantly expressed nuclear receptors in liver parenchymal cells. In contrast, NUR77, COUP-TFII, LXR-α/β, FXR-α, and EAR2 were the most highly expressed nuclear receptors in endothelial and Kupffer cells. Interestingly, members of orphan receptor COUP-TF family showed a distinct expression pattern. EAR2 was highly and exclusively expressed in parenchymal cells, while COUP-TFII was moderately and exclusively expressed in endothelial and Kupffer cells. Of interest, the orphan receptor TR4 showed a similar expression pattern as the established lipid sensor PPAR-γ. In conclusion, our study provides the most complete quantitative assessment of the nuclear receptor distribution in liver reported to date. Our gene expression catalog suggests that orphan nuclear receptors such as COUP-TFII, EAR2, and TR4 may be of significant importance as novel targets for pharmaceutical interventions in liver.
Collapse
Affiliation(s)
- Zhaosha Li
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Wang RL, Bencic D, Lazorchak J, Villeneuve D, Ankley GT. Transcriptional regulatory dynamics of the hypothalamic-pituitary-gonadal axis and its peripheral pathways as impacted by the 3-beta HSD inhibitor trilostane in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1461-1470. [PMID: 21570121 DOI: 10.1016/j.ecoenv.2011.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/28/2011] [Accepted: 05/01/2011] [Indexed: 05/30/2023]
Abstract
To study mechanisms underlying generalized effects of 3β hydroxysteroid dehydrogenase (HSD3B) inhibition, reproductively mature zebrafish (Danio rerio) were exposed to trilostane at two dosages for 24, 48, or 96 h and their gonadal RNA samples profiled with Agilent zebrafish microarrays. Trilostane had substantial impact on the transcriptional dynamics of zebrafish, as reflected by a number of differentially expressed genes (DEGs) including transcription factors (TFs), altered TF networks, signaling pathways, and Gene Ontology (GO) biological processes. Changes in gene expression between a treatment and its control were mostly moderate, ranging from 1.3 to 2.0 fold. Expression of genes coding for HSD3B and many of its transcriptional regulators remained unchanged, suggesting transcriptional up-regulation is not a primary compensatory mechanism for HSD3B enzyme inhibition. While some trilostane-responsive TFs appear to share cellular functions linked to endocrine disruption, there are also many other DEGs not directly linked to steroidogenesis. Of the 65 significant TF networks, little similarity, and therefore little cross-talk, existed between them and the hypothalamic-pituitary-gonadal (HPG) axis. The most enriched GO biological processes are regulations of transcription, phosphorylation, and protein kinase activity. Most of the impacted TFs and TF networks are involved in cellular proliferation, differentiation, migration, and apoptosis. While these functions are fairly broad, their underlying TF networks may be useful to development of generalized toxicological screening methods. These findings suggest that trilostane-induced effects on fish endocrine functions are not confined to the HPG-axis alone. Its impact on corticosteroid synthesis could also have contributed to some system wide transcriptional changes in zebrafish observed in this study.
Collapse
Affiliation(s)
- Rong-Lin Wang
- USEPA, Ecological Exposure Research Division, National Exposure Research Laboratory, 26 W Martin Luther King Dr. Cincinnati, OH 45268, USA.
| | | | | | | | | |
Collapse
|
13
|
Dufau ML, Liao M, Zhang Y. Participation of signaling pathways in the derepression of luteinizing hormone receptor transcription. Mol Cell Endocrinol 2010; 314:221-7. [PMID: 19464346 PMCID: PMC2815110 DOI: 10.1016/j.mce.2009.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/06/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
Abstract
The luteinizing hormone receptor (LHR) transcription is subject to an epigenetic regulatory mode whereby the proximal Sp1 site acts as an anchor to recruit histone deacetylases (HDAC)1/2 and the Sin3A co-repressor complex. This results in promoter-localized histone hypo-acetylation that contributes to the silencing of LHR transcriptional expression. Chromatin changes resulting from site-specific acetylation and methylation of histones regulate LHR gene expression. The HDAC inhibitor TSA-induced cell-specific phosphatase release from the promoter, which serves as an 'on' mechanism for Sp1 phosphorylation by phosphatidylinositol 3-kinase/protein kinase Czeta (PI3K/PKCzeta) at Ser641, leading to p107 repressor derecruitment and LHR transcriptional activation. The methylation status of the promoter provides another layer of modulation in a cell-specific manner. Maximal derepression of the LHR gene is dependent on complete DNA demethylation of the promoter in conjunction with histone hyperacetylation and release of repressors (p107 and HDAC/Sin3A). Independently, the PKC-alpha/Erk pathway, participates in LHR gene expression through induction of Sp1 phosphorylation at Ser site(s) other than Ser641. This causes dissociation of the HDAC1/mSin3A from the promoter, recruitment of TFIIB and Pol II, and transcriptional activation. Collectively, these findings demonstrate that LHR gene expression at the transcriptional level is regulated by complex and diverse networks, in which coordination and interactions between these regulatory effectors are crucial for silencing/activation of LHR expression.
Collapse
Affiliation(s)
- Maria L Dufau
- Section on Molecular Endocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | | | |
Collapse
|
14
|
Reitzel AM, Tarrant AM. Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns. BMC Evol Biol 2009; 9:230. [PMID: 19744329 PMCID: PMC2749838 DOI: 10.1186/1471-2148-9-230] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/10/2009] [Indexed: 11/15/2022] Open
Abstract
Background Nuclear receptors are a superfamily of metazoan transcription factors that regulate diverse developmental and physiological processes. Sequenced genomes from an increasing number of bilaterians have provided a more complete picture of duplication and loss of nuclear receptors in protostomes and deuterostomes but have left open the question of which nuclear receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor expression and function are largely uncharacterized within cnidarians, preventing determination of conserved and novel nuclear receptor functions in the context of animal evolution. Results Here we report the first complete set of nuclear receptors from a cnidarian, the starlet sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N. vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4) and one putative ortholog of GCNF (nuclear receptor family 6). Other N. vectensis genes grouped well with nuclear receptor family 2 but represented lineage-specific duplications somewhere within the cnidarian lineage and were not clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct developmental expression patterns, with expression of several nuclear receptors limited to a subset of developmental stages. Conclusion N. vectensis contains a diverse complement of nuclear receptors including orthologs of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors exhibited distinct developmental expression patterns, which are consistent with diverse regulatory roles for these genes. Understanding the evolutionary relationships and developmental expression of the N. vectensis nuclear receptor complement provides insight into the evolution of the nuclear receptor superfamily and a foundation for mechanistic characterization of cnidarian nuclear receptor function.
Collapse
Affiliation(s)
- Adam M Reitzel
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | |
Collapse
|
15
|
Kim TH, Kim H, Park JM, Im SS, Bae JS, Kim MY, Yoon HG, Cha JY, Kim KS, Ahn YH. Interrelationship between liver X receptor alpha, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and small heterodimer partner in the transcriptional regulation of glucokinase gene expression in liver. J Biol Chem 2009; 284:15071-15083. [PMID: 19366697 PMCID: PMC2685689 DOI: 10.1074/jbc.m109.006742] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/09/2009] [Indexed: 12/20/2022] Open
Abstract
Liver glucokinase (LGK) plays an essential role in controlling blood glucose levels and maintaining cellular metabolic functions. Expression of LGK is induced mainly regulated by insulin through sterol regulatory element-binding protein-1c (SREBP-1c) as a mediator. Since LGK expression is known to be decreased in the liver of liver X receptor (LXR) knockout mice, we have investigated whether LGK might be directly activated by LXRalpha. Furthermore, we have studied interrelationship between transcription factors that control gene expression of LGK. In the current studies, we demonstrated that LXRalpha increased LGK expression in primary hepatocytes and that there is a functional LXR response element in the LGK gene promoter as shown by electrophoretic mobility shift and chromatin precipitation assay. In addition, our studies demonstrate that LXRalpha and insulin activation of the LGK gene promoter occurs through a multifaceted indirect mechanism. LXRalpha increases SREBP-1c expression and then insulin stimulates the processing of the membrane-bound precursor SREBP-1c protein, and it activates LGK expression through SREBP sites in its promoter. LXRalpha also activates the LGK promoter by increasing the transcriptional activity and induction of peroxisome proliferator-activated receptor (PPAR)-gamma, which also stimulates LGK expression through a peroxisome proliferator-responsive element. This activation is tempered through a negative mechanism, where a small heterodimer partner (SHP) decreases LGK gene expression by inhibiting the transcriptional activity of LXRalpha and PPARgamma by directly interacting with their common heterodimer partner RXRalpha. From these data, we propose a mechanism for LXRalpha in controlling the gene expression of LGK that involves activation through SREBP-1c and PPARgamma and inhibition through SHP.
Collapse
Affiliation(s)
- Tae-Hyun Kim
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Sciences, Center for Chronic Metabolic Disease Research, and Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bridgham JT, Brown JE, Rodríguez-Marí A, Catchen JM, Thornton JW. Evolution of a new function by degenerative mutation in cephalochordate steroid receptors. PLoS Genet 2008; 4:e1000191. [PMID: 18787702 PMCID: PMC2527136 DOI: 10.1371/journal.pgen.1000191] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022] Open
Abstract
Gene duplication is the predominant mechanism for the evolution of new genes. Major existing models of this process assume that duplicate genes are redundant; degenerative mutations in one copy can therefore accumulate close to neutrally, usually leading to loss from the genome. When gene products dimerize or interact with other molecules for their functions, however, degenerative mutations in one copy may produce repressor alleles that inhibit the function of the other and are therefore exposed to selection. Here, we describe the evolution of a duplicate repressor by simple degenerative mutations in the steroid hormone receptors (SRs), a biologically crucial vertebrate gene family. We isolated and characterized the SRs of the cephalochordate Branchiostoma floridae, which diverged from other chordates just after duplication of the ancestral SR. The B. floridae genome contains two SRs: BfER, an ortholog of the vertebrate estrogen receptors, and BfSR, an ortholog of the vertebrate receptors for androgens, progestins, and corticosteroids. BfSR is specifically activated by estrogens and recognizes estrogen response elements (EREs) in DNA; BfER does not activate transcription in response to steroid hormones but binds EREs, where it competitively represses BfSR. The two genes are partially coexpressed, particularly in ovary and testis, suggesting an ancient role in germ cell development. These results corroborate previous findings that the ancestral steroid receptor was estrogen-sensitive and indicate that, after duplication, BfSR retained the ancestral function, while BfER evolved the capacity to negatively regulate BfSR. Either of two historical mutations that occurred during BfER evolution is sufficient to generate a competitive repressor. Our findings suggest that after duplication of genes whose functions depend on specific molecular interactions, high-probability degenerative mutations can yield novel functions, which are then exposed to positive or negative selection; in either case, the probability of neofunctionalization relative to gene loss is increased compared to existing models.
Collapse
Affiliation(s)
- Jamie T. Bridgham
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Justine E. Brown
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| | - Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Julian M. Catchen
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
- Department of Computer and Information Science, University of Oregon, Eugene, Oregon, United States of America
| | - Joseph W. Thornton
- Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
17
|
Hermann-Kleiter N, Gruber T, Lutz-Nicoladoni C, Thuille N, Fresser F, Labi V, Schiefermeier N, Warnecke M, Huber L, Villunger A, Eichele G, Kaminski S, Baier G. The nuclear orphan receptor NR2F6 suppresses lymphocyte activation and T helper 17-dependent autoimmunity. Immunity 2008; 29:205-16. [PMID: 18701084 PMCID: PMC4941926 DOI: 10.1016/j.immuni.2008.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/06/2008] [Accepted: 06/02/2008] [Indexed: 12/16/2022]
Abstract
The protein kinase C (PKC) family of serine-threonine kinases plays a central role in T lymphocyte activation. Here, we identify NR2F6, a nuclear zinc-finger orphan receptor, as a critical PKC substrate and essential regulator of CD4(+) T cell activation responses. NR2F6 potently antagonized the ability of T helper 0 (Th0) and Th17 CD4(+) T cells to induce expression of key cytokine genes such as interleukin-2 (IL-2) and IL-17. Mechanistically, NR2F6 directly interfered with the DNA binding of nuclear factor of activated T cells (NF-AT):activator protein 1 (AP-1) but not nuclear factor kappaB (NF-kappa B) and, subsequently, transcriptional activity of the NF-AT-dependent IL-17A cytokine promoter. Consistent with our model, Nr2f6-deficient mice had hyperreactive lymphocytes, developed a late-onset immunopathology, and were hypersusceptible to Th17-dependent experimental autoimmune encephalomyelitis. Our study establishes NR2F6 as a transcriptional repressor of IL-17 expression in Th17-differentiated CD4(+) T cells in vitro and in vivo.
Collapse
Affiliation(s)
| | - Thomas Gruber
- Department for Medical Genetics, Molecular and Clinical Pharmacology
| | | | - Nikolaus Thuille
- Department for Medical Genetics, Molecular and Clinical Pharmacology
| | - Friedrich Fresser
- Department for Medical Genetics, Molecular and Clinical Pharmacology
| | - Verena Labi
- Biocenter Medical University Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Lukas Huber
- Biocenter Medical University Innsbruck, 6020 Innsbruck, Austria
| | | | | | - Sandra Kaminski
- Department for Medical Genetics, Molecular and Clinical Pharmacology
| | - Gottfried Baier
- Department for Medical Genetics, Molecular and Clinical Pharmacology
| |
Collapse
|
18
|
Scheideler M, Elabd C, Zaragosi LE, Chiellini C, Hackl H, Sanchez-Cabo F, Yadav S, Duszka K, Friedl G, Papak C, Prokesch A, Windhager R, Ailhaud G, Dani C, Amri EZ, Trajanoski Z. Comparative transcriptomics of human multipotent stem cells during adipogenesis and osteoblastogenesis. BMC Genomics 2008; 9:340. [PMID: 18637193 PMCID: PMC2492879 DOI: 10.1186/1471-2164-9-340] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 07/17/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND A reciprocal relationship between bone and fat development in osteoporosis is clinically well established. Some of the key molecular regulators involved in this tissue replacement process have been identified. The detailed mechanisms governing the differentiation of mesenchymal stem cells (MSC) - the key cells involved - are however only now beginning to emerge. In an attempt to address the regulation of the adipocyte/osteoblast balance at the level of gene transcription in a comprehensive and unbiased manner, we performed a large-scale gene expression profiling study using a unique cellular model, human multipotent adipose tissue-derived stem cells (hMADS). RESULTS The analysis of 1606 genes that were found to be differentially expressed between adipogenesis and osteoblastogenesis revealed gene repression to be most prevalent prior to commitment in both lineages. Computational analyses suggested that this gene repression is mediated by miRNAs. The transcriptional activation of lineage-specific molecular processes in both cases occurred predominantly after commitment. Analyses of the gene expression data and promoter sequences produced a set of 65 genes that are candidates for genes involved in the process of adipocyte/osteoblast commitment. Four of these genes were studied in more detail: LXRalpha and phospholipid transfer protein (PLTP) for adipogenesis, the nuclear receptor COUP-TF1 and one uncharacterized gene, TMEM135 for osteoblastogenesis. PLTP was secreted during both early and late time points of hMADS adipocyte differentiation. LXRalpha, COUP-TF1, and the transmembrane protein TMEM135 were studied in primary cultures of differentiating bone marrow stromal cells from healthy donors and were found to be transcriptionally activated in the corresponding lineages. CONCLUSION Our results reveal gene repression as a predominant early mechanism before final cell commitment. We were moreover able to identify 65 genes as candidates for genes controlling the adipocyte/osteoblast balance and to further evaluate four of these. Additional studies will explore the precise role of these candidate genes in regulating the adipogenesis/osteoblastogenesis switch.
Collapse
Affiliation(s)
- Marcel Scheideler
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Christian Elabd
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | | | - Chiara Chiellini
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Hubert Hackl
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Fatima Sanchez-Cabo
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Genomics Unit, Centro Nacional de Investiganciones Cardiovasculares, Madrid, Spain
| | - Sunaina Yadav
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Kalina Duszka
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Gerald Friedl
- Department of Orthopaedics, Medical University of Graz, Graz, Austria
| | - Christine Papak
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | - Andreas Prokesch
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | | | - Gerard Ailhaud
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Christian Dani
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Ez-Zoubir Amri
- ISBDC, Université de Nice Sophia-Antipolis, CNRS, 28 avenue de Valrose, 06100 Nice, France
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics and Christian Doppler Laboratory for Genomics and Bioinformatics, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
19
|
Cho SD, Lei P, Abdelrahim M, Yoon K, Liu S, Guo J, Papineni S, Chintharlapalli S, Safe S. 1,1-bis(3'-indolyl)-1-(p-methoxyphenyl)methane activates Nur77-independent proapoptotic responses in colon cancer cells. Mol Carcinog 2008; 47:252-263. [PMID: 17957723 DOI: 10.1002/mc.20378] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1,1-Bis(3'-indolyl)-1-(p-methoxyphenyl)methane (DIM-C-pPhOCH(3)) is a methylene-substituted diindolylmethane (C-DIM) analog that activates the orphan receptor nerve growth factor-induced-Balpha (NGFI-Balpha, Nur77). RNA interference studies with small inhibitory RNA for Nur77 demonstrate that DIM-C-pPhOCH(3) induces Nur77-dependent and -independent apoptosis, and this study has focused on delineating the Nur77-independent proapoptotic pathways induced by the C-DIM analog. DIM-C-pPhOCH(3) induced caspase-dependent apoptosis in RKO colon cancer cells through decreased mitochondrial membrane potential which is accompanied by increased mitochondrial bax/bcl-2 ratios and release of cytochrome c into the cytosol. DIM-C-pPhOCH(3) also induced phosphatidylinositol-3-kinase-dependent activation of early growth response gene-1 which, in turn, induced expression of the proapoptotic nonsteroidal anti-inflammatory drug-activated gene-1 (NAG1) in RKO and SW480 colon cancer cells. Moreover, DIM-C-pPhOCH(3) also induced NAG-1 expression in colon tumors in athymic nude mice bearing RKO cells as xenografts. DIM-C-pPhOCH(3) also activated the extrinsic apoptosis pathway through increased phosphorylation of c-jun N-terminal kinase which, in turn, activated C/EBP homologous transcription factor (CHOP) and death receptor 5 (DR5). Thus, the effectiveness of DIM-C-pPhOCH(3) as a tumor growth inhibitor is through activation of Nur77-dependent and -independent pathways.
Collapse
Affiliation(s)
- Sung Dae Cho
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kim HI, Koh YK, Kim TH, Kwon SK, Im SS, Choi HS, Kim KS, Ahn YH. Transcriptional activation of SHP by PPAR-gamma in liver. Biochem Biophys Res Commun 2007; 360:301-306. [PMID: 17601490 DOI: 10.1016/j.bbrc.2007.05.171] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
The mechanism of how PPARgamma decrease gluconeogenic gene expressions in liver is still unclear. Since PPARgamma is a transcriptional activator, it requires a mediator to decrease the transcription of gluconeogenic genes. Recently, SHP has been shown to mediate the bile acid-dependent down regulation of gluconeogenic gene expression in liver. This led us to explore the possibility that SHP may mediate the antigluconeogenic effect of PPARgamma. In the present study, we have identified and characterized the presence of functional PPRE in human SHP promoter. We show the binding of PPARgamma/RXRalpha heterodimer to the PPRE and increased SHP expression by rosiglitazone in primary rat hepatocytes. Taken together with the previous reports about the function of SHP on gluconeogenesis, our results indicate that SHP can mediate the acute antigluconeogenic effect of PPARgamma.
Collapse
Affiliation(s)
- Ha-il Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Acosta A, Zariñán T, Macías H, Pasapera AM, Pérez-Solis MA, Olivares A, Ulloa-Aguirre A, Gutiérrez-Sagal R. Regulation of Clara cell secretory protein gene expression by the CCAAT-binding factor NF-Y. Arch Biochem Biophys 2007; 459:33-9. [PMID: 17188642 DOI: 10.1016/j.abb.2006.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 11/16/2006] [Accepted: 11/16/2006] [Indexed: 11/19/2022]
Abstract
Analysis of the transcriptional regulation of the Clara cell secretory protein (CCSP) gene has resulted in the characterization of several trans-acting factors that regulate the activity of this gene. However, little is known about negative regulatory elements involved in CCSP gene transcription. Using transient transfections of luciferase reporter constructs driven by various fragments of the Neotomodon CCSP (nCCSP) promoter, we identified an inhibitory region that contains an inverted CCAAT box located -225 to -221 bp upstream of the transcriptional start site. Sequence analysis in a broad region of the nCCSP promoter (-744/+33) identified another potentially important CCAAT motif (-459/-455). Gel shift and supershift assays indicated that the transcription factor NF-Y binds to both CCAAT boxes. Mutation of the CCAAT motif prevented the in vitro binding of NF-Y and led to a significant increase of CCSP promoter activity in both pulmonary (H441) and non-pulmonary (HeLa and MCF-7) cells, suggesting that NF-Y is involved in a negative transcriptional regulation that may potentially contribute to the highly cell-specific expression of the anti-inflammatory CCSP gene.
Collapse
Affiliation(s)
- Adriana Acosta
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Mexico, D.F. 01090, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Schote AB, Turner JD, Schiltz J, Muller CP. Nuclear receptors in human immune cells: Expression and correlations. Mol Immunol 2007; 44:1436-45. [PMID: 16837048 DOI: 10.1016/j.molimm.2006.04.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Nuclear receptors (NR) are key modulators of gene transcription. Their activity is ligand induced and modulates a large variety of tissue-specific cellular functions. However, for many NR little is known about their role in cells of the immune system. In this study, expression patterns and distribution of 24 NR were investigated in human peripheral blood mononuclear cells. We provide the first evidence of the expression of the 12 receptors CAR, CoupTFalpha, CoupTFbeta, FXR, GCNF, HNF4alpha, PPARbeta/delta, PXR, RevErbbeta, TR2, TR4 and TLX in highly purified CD4, CD8, CD19, CD14 cells. The expression profile of RevErbalpha and LXRalpha previously observed in B cell and macrophages, respectively, has been extended to CD4, CD8 and CD14 cells. Except for RARbeta, which was absence in any of the cells tested, our results suggest an almost ubiquitous expression of the NR in the different cell lineages of the immune system. The expression of CAR, CoupTFalpha, FXR was also confirmed at a protein level and despite conspicuous mRNA levels of HNF4alpha, only low levels of this receptor were detectable in the nuclear fraction of PBMCs. Expression of the latter receptors was mostly only a fraction (4-20%) of their expression in the thyroid gland, the adrenal gland, the lung or subcutaneous adipose tissue. The Spearman rank order correlation test was performed to examine the correlation in expression between individual nuclear receptor pairs in the four cell types for several donors. Distinct correlation patterns were observed between receptor pairs in the individual cell types. In CD4 T cells four NR, GCNF, PPARgamma, PPARalpha7 and RevErbbeta are perfectly correlated with each other (P> or =0.0167). In the other cell types correlations between NR pairs were more diverse, but also statistically highly significant. Interestingly, the relative expression level of a number of receptor pairs ranked identical or similar in at least three (CoupTFalpha and PPARbeta/delta, CoupTFbeta and HNF4alpha as well as RORbeta and PXR) or four cell types (CoupTFalpha and CoupTFbeta, PPARgamma and RevErbbeta). Despite the variability of NR expression in immune cells, these results suggest that some of the NR may be co-regulated in human immune cells.
Collapse
Affiliation(s)
- Andrea B Schote
- Institute of Immunology, Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
24
|
Farhana L, Dawson MI, Leid M, Wang L, Moore DD, Liu G, Xia Z, Fontana JA. Adamantyl-substituted retinoid-related molecules bind small heterodimer partner and modulate the Sin3A repressor. Cancer Res 2007; 67:318-25. [PMID: 17210713 PMCID: PMC2833172 DOI: 10.1158/0008-5472.can-06-2164] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (CD437/AHPN) and 4-[3-(1-adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC/MM002) are inducers of apoptosis of malignant cells both in vitro and in vivo. Numerous mechanisms have been proposed for how these compounds exert this effect. This report shows that AHPN/3-Cl-AHPC binds specifically to the orphan nuclear receptor small heterodimer partner (SHP; NR0B2), and this binding promotes interaction of the receptor with a corepressor complex that minimally contains Sin3A, N-CoR, histone deacetylase 4, and HSP90. Formation of the SHP-Sin3A complex is essential for the ability of AHPN and 3-Cl-AHPC to induce apoptosis, as both knockout SHP and knockdown of Sin3A compromise the proapoptotic activity of these compounds but not other apoptosis inducers. These results suggest that AHPN/3-Cl-AHPC and their analogues are SHP ligands and their induction of apoptosis is mediated by their binding to the SHP receptor.
Collapse
Affiliation(s)
- Lulu Farhana
- John D. Dingell Veterans Affairs Medical Center and Department of Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, Michigan
| | | | - Mark Leid
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Li Wang
- Department of Medicine and Pharmacology, The University of Kansas Medical Center, Kansas City, Kansas
| | - David D. Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Gang Liu
- Burnham Institute, La Jolla, California
| | - Zeben Xia
- Burnham Institute, La Jolla, California
| | - Joseph A. Fontana
- John D. Dingell Veterans Affairs Medical Center and Department of Medicine, Wayne State University and Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
25
|
Benoit G, Cooney A, Giguere V, Ingraham H, Lazar M, Muscat G, Perlmann T, Renaud JP, Schwabe J, Sladek F, Tsai MJ, Laudet V. International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol Rev 2006; 58:798-836. [PMID: 17132856 DOI: 10.1124/pr.58.4.10] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Half of the members of the nuclear receptors superfamily are so-called "orphan" receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.
Collapse
Affiliation(s)
- Gérard Benoit
- Unité Mixte de Recherche 5161 du Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique 1237, Institut Fédératif de Recherche 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Heyland A, Price DA, Bodnarova-Buganova M, Moroz LL. Thyroid hormone metabolism and peroxidase function in two non-chordate animals. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:551-66. [PMID: 16739141 DOI: 10.1002/jez.b.21113] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In mammals, thyroid hormone (TH) signaling is essential for metabolic control, differentiation and homeostasis. These hormones are also involved in the regulation of metamorphosis in amphibians and lampreys and a role in basal chordates has been suggested. Increasing evidence supports TH-related function not only in basal chordates such as urochordates and cephalochordates but also in other invertebrate groups. However, the regulatory mechanisms underlying TH function including the mechanisms of endogenous synthesis of hormones in these groups are essentially unknown. Our data provide evidence for endogenous TH synthesis in the sea hare Aplysia californica and the sea urchin Lytechinus variegatus based on thin layer chromatography. Pharmacological experiments show that these hormones accelerate development to metamorphosis and specifically affect the formation of juvenile skeletal structures in the sea urchin. Furthermore, we identified two new peroxidase genes (LvTPO from L. variegatus and AcaTPO from A. californica) showing high sequence similarity with peroxidasin and thyroid peroxidases (the critical TH synthesis enzymes found in all vertebrates). Spatial and temporal expression patterns of these transcripts suggest a role of LvTPO and AcaTPO in a variety of processes such as development to metamorphosis and the regulation of the animal's energetics. We discuss our new findings in the context of evolution of TH synthesis and TH signaling in non-chordate animals.
Collapse
Affiliation(s)
- Andreas Heyland
- The Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA.
| | | | | | | |
Collapse
|
27
|
Katayama S, Ashizawa K, Gohma H, Fukuhara T, Narumi K, Tsuzuki Y, Tatemoto H, Nakada T, Nagai K. The expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats. Toxicol Appl Pharmacol 2006; 217:375-83. [PMID: 17109907 DOI: 10.1016/j.taap.2006.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/29/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
The objective of this study was to investigate the effects of estrogen receptor (ER) agonists and an ER antagonist on the expression of Hedgehog genes (Indian hedgehog: Ihh; Desert hedgehog: Dhh) and Hedgehog target genes (Patched 1: Ptc1; glioma-associated oncogene homolog 1: Gli1; chicken ovalbumin upstream promoter transcription factor II: Coup-TfII) in the rat uterus. Immature female rats were administered once with 17alpha-ethynyl estradiol (EE, an ER agonist), propyl pyrazole triole (PPT, an ERalpha-selective agonist), diarylpropionitrile (DPN, an ERbeta-selective agonist), or ICI 182,780 (an ER antagonist). Expression of mRNA for Ihh, Dhh, and Ptc1 was dose-dependently downregulated by EE in the uterus of immature rats, mediated by ER as confirmed by coadministration of ICI 182,780. The mRNA expression levels of Ptc1, Gli1, and Coup-TfII were simultaneously downregulated during the period in which the mRNA expression levels of Ihh and Dhh were downregulated in the uterus after administration of EE. PPT downregulated the transcription of Ihh, Dhh, Ptc1, Gli1, and Coup-TfII, indicating that expression of these genes was regulated by the ERalpha-dependent pathway. DPN also downregulated the transcription of Ihh and Dhh, although the effect was weaker than that of PPT, indicating that the regulation of uterine Ihh and Dhh transcription was also affected by the ERbeta-dependent pathway. These results suggest that the expression of Hedgehog genes (Ihh, Dhh) and Hedgehog target genes (Ptc1, Gli1, Coup-TfII) is affected by estrogenic stimuli in the uterus of immature female rats.
Collapse
Affiliation(s)
- Seiichi Katayama
- Kashima Laboratory, Mitsubishi Chemical Safety Institute Ltd., 14 Sunayama, Kamisu, Ibaraki 314-0255, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cohen AJ, Lassová L, Golden EB, Niu Z, Adams SL. Retinoids directly activate the collagen X promoter in prehypertrophic chondrocytes through a distal retinoic acid response element. J Cell Biochem 2006; 99:269-78. [PMID: 16598786 DOI: 10.1002/jcb.20937] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoids are essential for the terminal differentiation of chondrocytes during endochondral bone formation. This maturation process is characterized by increased cell size, expression of a unique extracellular matrix protein, collagen X, and eventually by mineralization of the matrix. Retinoids stimulate chondrocyte maturation in cultured cells and experimental animals, as well as in clinical studies of synthetic retinoids; furthermore, retinoid antagonists prevent chondrocyte maturation in vivo. However, the mechanisms by which retinoids regulate this process are poorly understood. We and others showed previously that retinoic acid (RA) stimulates expression of genes encoding bone morphogenetic proteins (BMPs), suggesting that retinoid effects on chondrocyte maturation may be indirect. However, we now show that RA also directly stimulates transcription of the collagen X gene promoter. We have identified three RA response element (RARE) half-sites in the promoter, located 2,600 nucleotides upstream from the transcription start site. These three half-sites function as two overlapping RAREs that share the middle half-site. Ablation of the middle half-site destroys both elements, abolishing RA receptor (RAR) binding and drastically decreasing RA stimulation of transcription. Ablation of each of the other two half-sites destroys only one RARE, resulting in an intermediate level of RAR binding and transcriptional stimulation. These results, together with our previously published data, indicate that retinoids stimulate collagen X transcription both directly, through activation of RARs, and indirectly, through increased BMP production.
Collapse
Affiliation(s)
- Arthur J Cohen
- Department of Biochemistry, University of Pennsylvania, School of Dental Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
29
|
Balla T. Found in the crystal: phospholipid ligands for nuclear orphan receptors. Trends Endocrinol Metab 2005; 16:289-90. [PMID: 16054837 DOI: 10.1016/j.tem.2005.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/06/2005] [Accepted: 07/19/2005] [Indexed: 11/15/2022]
Abstract
Phospholipids are important components of cellular membranes, contributing to their structural integrity and regulatory functions. Because of these functional properties, phospholipids are often the subject of cell biology and signal transduction studies. Proteins that bind and transport phospholipids between membranes have been described and investigated but few scientists would have entertained the thought of phospholipids acting as ligands for transcription factors. However, the surprising results of recent crystallization studies revealed phospholipid ligands in the binding pockets of members of the nuclear orphan receptor family 5. Their ability to alter transcriptional activity by acting as bona fide ligands has been inspirational not only for the transcription factor community, but also for phospholipid researchers.
Collapse
Affiliation(s)
- Tamas Balla
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| |
Collapse
|
30
|
Seely J, Amigh KS, Suzuki T, Mayhew B, Sasano H, Giguere V, Laganière J, Carr BR, Rainey WE. Transcriptional regulation of dehydroepiandrosterone sulfotransferase (SULT2A1) by estrogen-related receptor alpha. Endocrinology 2005; 146:3605-13. [PMID: 15878968 DOI: 10.1210/en.2004-1619] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The estrogen-related receptors (ERRalpha, -beta, and -gamma) are a subfamily of orphan nuclear receptors (designated NR3B1, NR3B2, and NR3B3) that are structurally and functionally related to estrogen receptors alpha and beta. Herein we test the hypothesis that ERRalpha regulates transcription of the genes encoding the enzymes involved in adrenal steroid production. Real-time RT-PCR was first used to determine the levels of ERRalpha mRNA in various human tissues. Adult adrenal levels of ERRalpha transcript were similar to that seen in heart, which is known to highly express ERRalpha. Expression of ERRalpha in the adult adrenal was then confirmed using Western blotting and immunohistochemistry. To examine the effects of ERRalpha on steroidogenic capacity we used reporter constructs with the 5'-flanking regions of steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage (CYP11A), 3beta-hydroxysteroid dehydrogenase type II (HSD3B2), 17alpha-hydroxylase/17,20-lyase (CYP17), and dehydroepiandrosterone sulfotransferase (SULT2A1). Cotransfection of these reporter constructs with wild-type ERRalpha or VP16-ERRalpha expression vectors demonstrated ERRalpha enhanced reporter activity driven by flanking DNA from CYP17 and SULT2A1. SULT2A1 promoter activity was most responsive to the ERRalpha and VP16-ERRalpha, increasing activity 2.6- and 79.5-fold, respectively. ERRalpha effects on SULT2A1 were greater than the stimulation seen in response to steroidogenic factor 1 (SF1). Transfection of serial deletions of the 5'-flanking DNA of the SULT2A1 gene and EMSA experiments indicated the presence of three functional regulatory cis-elements which shared sequence similarity to binding sites for SF1. Taken together, the expression of ERRalpha in the adrenal and its regulation of SULT2A1 suggest an important role for this orphan receptor in the regulation of adrenal steroid production.
Collapse
Affiliation(s)
- Jeremiah Seely
- Division of Reproductive Endocrinology and Infertility, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Nuclear receptors are ancient ligand-regulated transcription factors that control key metabolic and developmental pathways. The fruitfly Drosophila melanogaster has only 18 nuclear-receptor genes - far fewer than any other genetic model organism and representing all 6 subfamilies of vertebrate receptors. These unique attributes establish the fly as an ideal system for studying the regulation and function of nuclear receptors during development. Here, we review recent breakthroughs in our understanding of D. melanogaster nuclear receptors, and interpret these results in light of findings from their evolutionarily conserved vertebrate homologues.
Collapse
Affiliation(s)
- Kirst King-Jones
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 North 2030 East, Room 5100, Salt Lake City, Utah 84112-5331, USA.
| | | |
Collapse
|
32
|
|
33
|
Abstract
Mammalian spermatogenesis is a complex hormone-dependent developmental program in which a myriad of events must take place to ensure that germ cells reach their proper stage of development at the proper time. Many of these events are controlled by cell type- and stage-specific transcription factors. The regulatory mechanisms involved provide an intriguing paradigm for the field of developmental biology and may lead to the development of new contraceptives an and innovative routs to treat male infertility. In this review, we address three aspects of the genetic regulatory mechanism that drive spermatogenesis. First, we detail what is known about how steroid hormones (both androgens and estrogens) and their cognate receptors initiate and maintain mammalian spermatogenesis. Steroids act through three mechanistic routes: (i) direct activation of genes through hormone-dependent promoter elements, (ii) secondary transcriptional responses through activation of hormone-dependent transcription factors, and (iii) rapid, transcription-independent (nonclassical) events induced by steroid hormones. Second, we provide a survey of transcription factors that function in mammalian spermatogenesis, including homeobox, zinc-finger, heat-shock, and cAMP-response family members. Our survey is not intended to cover all examples but to give a flavor for the gamut of biological roles conferred by transcription factors in the testis, particularly those defined in knockout mice. Third, we address how testis-specific transcription is achieved. In particular, we cover the evidence for and against the idea that some testis-specific genes are transcriptionally silent in somatic tissues as a result of DNA methylation.
Collapse
Affiliation(s)
- James A Maclean
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
34
|
Shalom-Barak T, Nicholas JM, Wang Y, Zhang X, Ong ES, Young TH, Gendler SJ, Evans RM, Barak Y. Peroxisome proliferator-activated receptor gamma controls Muc1 transcription in trophoblasts. Mol Cell Biol 2004; 24:10661-9. [PMID: 15572671 PMCID: PMC533980 DOI: 10.1128/mcb.24.24.10661-10669.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is essential for placental development. Here, we show that the mucin gene Muc1 is a PPARgamma target, whose expression is lost in PPARgamma null placentas. During differentiation of trophoblast stem cells, PPARgamma is strongly induced, and Muc1 expression is upregulated by the PPARgamma agonist rosiglitazone. Muc1 promoter is activated strongly and specifically by liganded PPARgamma but not PPARalpha or PPARdelta. A PPAR binding site (DR1) in the proximal Muc1 promoter acts as a basal silencer in the absence of PPARgamma, and its cooperation with a composite upstream enhancer element is both necessary and sufficient for PPARgamma-dependent induction of Muc1. In the placenta, MUC1 protein is localized exclusively to the apical surface of the labyrinthine trophoblast around maternal blood sinuses, resembling its luminal localization on secretory epithelia. Last, variably penetrant maternal blood sinus dilation in Muc1-deficient placentas suggests that Muc1 regulation by PPARgamma contributes to normal placental development but also that the essential functions of PPARgamma in the organ are mediated by other targets.
Collapse
|