1
|
Nkechika V, Zhang N, Belsham DD. The Involvement of the microRNAs miR-466c and miR-340 in the Palmitate-Mediated Dysregulation of Gonadotropin-Releasing Hormone Gene Expression. Genes (Basel) 2024; 15:397. [PMID: 38674332 PMCID: PMC11048885 DOI: 10.3390/genes15040397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Diets high in saturated fatty acids are associated with obesity and infertility. Palmitate, the most prevalent circulating saturated fatty acid, is sensed by hypothalamic neurons, contributing to homeostatic dysregulation. Notably, palmitate elevates the mRNA levels of gonadotropin-releasing hormone (Gnrh) mRNA and its activating transcription factor, GATA binding protein 4 (Gata4). GATA4 is essential for basal Gnrh expression by binding to its enhancer region, with Oct-1 (Oct1) and CEBP-β (Cebpb) playing regulatory roles. The pre- and post-transcriptional control of Gnrh by palmitate have not been investigated. Given the ability of palmitate to alter microRNAs (miRNAs), we hypothesized that palmitate-mediated dysregulation of Gnrh mRNA involves specific miRNAs. In the mHypoA-GnRH/GFP neurons, palmitate significantly downregulated six miRNAs (miR-125a, miR-181b, miR-340, miR-351, miR-466c and miR-503), and the repression was attenuated by co-treatment with 100 μM of oleate. Subsequent mimic transfections revealed that miR-466c significantly downregulates Gnrh, Gata4, and Chop mRNA and increases Per2, whereas miR-340 upregulates Gnrh, Gata4, Oct1, Cebpb, and Per2 mRNA. Our findings suggest that palmitate may indirectly regulate Gnrh at both the pre- and post-transcriptional levels by altering miR-466c and miR-340, which in turn regulate transcription factor expression levels. In summary, palmitate-mediated dysregulation of Gnrh and, consequently, reproductive function involves parallel transcriptional mechanisms.
Collapse
Affiliation(s)
- Vanessa Nkechika
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
| | - Ningtong Zhang
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada; (V.N.); (N.Z.)
- Department of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Pillerová M, Borbélyová V, Hodosy J, Riljak V, Renczés E, Frick KM, Tóthová Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front Neuroendocrinol 2021; 62:100926. [PMID: 34089761 PMCID: PMC8523217 DOI: 10.1016/j.yfrne.2021.100926] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/02/2022]
Abstract
The sex steroid hormones (SSHs) play several roles in regulation of various processes in the cardiovascular, immune, muscular and neural systems. SSHs affect prenatal and postnatal development of various brain structures, including regions associated with important physiological, behavioral, cognitive, and emotional functions. This action can be mediated by either intracellular or transmembrane receptors. While the classical mechanisms of SSHs action are relatively well examined, the physiological importance of non-classical mechanism of SSHs action through membrane-associated and transmembrane receptors in the brain remains unclear. The most recent summary describing the role of SSHs in different body systems is lacking. Therefore, the aim of this review is to discuss classical and non-classical signaling pathways of testosterone and estradiol action via their receptors at functional, cellular, tissue level and to describe the effects on various body systems and behavior. Particular emphasis will be on brain regions including the hippocampus, hypothalamus, frontal cortex and cerebellum.
Collapse
Affiliation(s)
- Miriam Pillerová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Vladimír Riljak
- Institute of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia.
| |
Collapse
|
3
|
Lovejoy DA, Michalec OM, Hogg DW, Wosnick DI. Role of elasmobranchs and holocephalans in understanding peptide evolution in the vertebrates: Lessons learned from gonadotropin releasing hormone (GnRH) and corticotropin releasing factor (CRF) phylogenies. Gen Comp Endocrinol 2018; 264:78-83. [PMID: 28935583 DOI: 10.1016/j.ygcen.2017.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
The cartilaginous fishes (Class Chondrichthyes) comprise two morphologically distinct subclasses; Elasmobranchii and Holocephali. Evidence indicates early divergence of these subclasses, suggesting monophyly of their lineage. However, such a phylogenetic understanding is not yet developed within two highly conserved peptide lineages, GnRH and CRF. Various GnRH forms exist across the Chondrichthyes. Although 4-7 immunoreactive forms have been described in Elasmobranchii, only one has been elucidated in Holocephali. In contrast, Chondrichthyan CRF phylogeny follows a pattern more consistent with vertebrate evolution. For example, three forms are expressed within the lamprey, with similar peptides present within the genome of the Callorhinchus milii, a holocephalan. Although these findings are consistent with recent evidence regarding the phylogenetic age of Chondrichthyan lineages, CRF evolution in vertebrates remains elusive. Assuming that the Elasmobranchii and Holocephali are part of a monocladistic clade within the Chondrichthyes, we interpret the findings of GnRH and CRF to be products of their respective lineages.
Collapse
Affiliation(s)
- David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada.
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David W Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David I Wosnick
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Loutchanwoot P, Vortherms T. Effects of puerarin on estrogen-regulated gene expression in gonadotropin-releasing hormone pulse generator of ovariectomized rats. Steroids 2018; 135:54-62. [PMID: 29733861 DOI: 10.1016/j.steroids.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
Effects of puerarin on the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator function is investigated, for the first time, in ovariectomized rats at the level of mRNA expression of estrogen-responsive genes, e.g., estrogen receptor (ER), GnRH and its receptor (GnRHR). Rats were treated orally for 90 days either with a soy-free diet containing two different doses of puerarin (low dose of 600 mg/kg and high dose of 3000 mg/kg) or estradiol benzoate (E2B) at either low dose (4.3 mg/kg) or high dose (17.3 mg/kg). Levels of mRNA expression in the medial preoptic area/anterior hypothalamus (MPOA/AH), mediobasal hypothalamus/median eminence (MBH/ME) and adenohypophysis were measured by quantitative TaqMan® real-time RT-PCR. Plasma levels of luteinizing hormone (LH) and prolactin (PRL) were measured by radioimmunoassay. In the MPOA/AH, both puerarin and E2B decreased ERα mRNA levels without any significant changes in ERβ and GnRH mRNA levels. Both puerarin and E2B did not significantly alter the expression levels of ERα, ERβ and GnRHR in the MBH/ME. E2B exerted significant effects on the down-regulation of adenohypophyseal GnRHR mRNA transcripts and serum LH levels. Puerarin did not cause significant changes in pituitary GnRHR mRNA transcripts and serum LH and PRL levels. This is the first study to demonstrate that in ovariectomized rat models of ovarian hormone deprivation, puerarin acted as a weak estrogen-active compound in the hypothalamic GnRH pulse generator through the downregulation of MPOA/AH ERα mRNA expression.
Collapse
Affiliation(s)
- Panida Loutchanwoot
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang Sub-district, Kantarawichai District, Mahasarakham Province 44150, Thailand.
| | - Tina Vortherms
- Department of Endocrinology, Faculty of Medicine, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
5
|
Nakpheng T, Sawatdee S, Buaking K, Srichana T. Stabilization of luteinizing hormone-releasing hormone in a dry powder formulation and its bioactivity. ASIAN BIOMED 2017. [DOI: 10.5372/1905-7415.0502.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Background: Luteinizing hormone-releasing hormone (LHRH) is a naturally occurring hormone that controls sex hormones in both men and women. In general, LHRH is poorly absorbed through the gastrointestinal tract due to its large molecular size, high polarity, and loss from enzymatic degradation.
Objective: Prepare and develop LHRH in a dry power formulation with stability and biological activity.
Methods: Mannitol (M) and glycine (G) were chosen as ingredients to stabilize and protect LHRH during the freeze drying processes and during storage. The physicochemical properties of LHRH dry powders were examined by capillary electrophoresis, fluorescence spectrophotometry, scanning electron microscopy, and photon correlation spectroscopy. The release of LHRH from the dry powder was carried out in dissolution apparatus. In addition, a rat model was employed to study the bioactivity of LHRH in the dry powder form.
Results: The LHRH dry powder formulations using M and G in the ratios of 6:4 and 7:3 were more stable than other formulations. LHRH colloids containing M:G showed no aggregation after storage at 4°C for one month. The concentration of LHRH in the dry powder form was more stable than that of LHRH in solution form. All the LHRH dry powder formulations were instantly dissolved within 10 seconds in an aqueous medium. After the LHRH dry powder (13 mg) was reconstituted and administered intraperitoneally to male rats during a one-month period, the testosterone level in the plasma was significantly decreased compared with an untreated group (15.0±1.0 ng/mL, 15.0±1.0 ng/mL and 20.0±2.0 ng/mL for LHRH containing M:G; 6:4, 7:3, and 8:2, respectively, compared to the control of 35±2 ng/mL, p<0.05).
Conclusion: The LHRH dry powder formulations had good physicochemical properties and bioactivity.
Collapse
Affiliation(s)
- Titpawan Nakpheng
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Somchai Sawatdee
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Khemmarat Buaking
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand Thailand
- Correspondence to: PhD, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
6
|
Lovejoy DA, Pavlović T. Role of the teneurins, teneurin C-terminal associated peptides (TCAP) in reproduction: clinical perspectives. Horm Mol Biol Clin Investig 2016; 24:83-90. [PMID: 26485751 DOI: 10.1515/hmbci-2015-0032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023]
Abstract
In humans, the teneurin gene family consists of four highly conserved paralogous genes that are the result of early vertebrate gene duplications arising from a gene introduced into multicellular organisms from a bacterial ancestor. In vertebrates and humans, the teneurins have become integrated into a number of critical physiological systems including several aspects of reproductive physiology. Structurally complex, these genes possess a sequence in their terminal exon that encodes for a bioactive peptide sequence termed the 'teneurin C-terminal associated peptide' (TCAP). The teneurin/TCAP protein forms an intercellular adhesive unit with its receptor, latrophilin, an Adhesion family G-protein coupled receptor. It is present in numerous cell types and has been implicated in gamete migration and gonadal morphology. Moreover, TCAP is highly effective at reducing the corticotropin-releasing factor (CRF) stress response. As a result, TCAP may also play a role in regulating the stress-associated inhibition of reproduction. In addition, the teneurins and TCAP have been implicated in tumorigenesis associated with reproductive tissues. Therefore, the teneurin/TCAP system may offer clinicians a novel biomarker system upon which to diagnose some reproductive pathologies.
Collapse
|
7
|
Gojska NM, Friedman Z, Belsham DD. Direct regulation of gonadotrophin-releasing hormone (GnRH) transcription by RF-amide-related peptide-3 and kisspeptin in a novel GnRH-secreting cell line, mHypoA-GnRH/GFP. J Neuroendocrinol 2014; 26:888-97. [PMID: 25283492 DOI: 10.1111/jne.12225] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 11/30/2022]
Abstract
RF-amide-related peptide-3 [RFRP-3; also often referred to as the mammalian orthologue of the avian gonadotrophin-inhibitory hormone (GnIH)] and kisspeptin have emerged as potent modulators of neuroendocrine function via direct regulation of the reproductive axis in the hypothalamus and pituitary. There are few studies focusing on the direct regulatory effects of RFRP-3 and kisspeptin on gonadotrophin-releasing hormones (GnRH) neurones. We report their effect on GnRH mRNA expression and release in a novel GnRH neuronal cell model, mHypoA-GnRH/GFP, generated from adult-derived GnRH-GFP neurones. The neurones express receptors for both RFRP-3 and kisspeptin, Gpr147 and Gpr54, respectively. Incubation with 100 nm RFRP-3 results in attenuation of GnRH mRNA expression by approximately 60%. Conversely, incubation with 10 nm of Kiss-10 induced GnRH mRNA expression, whereas the combined effect was an overall repression of GnRH mRNA levels. With transcription inhibitors, the repression of GnRH mRNA levels was linked to a transcriptional mechanism but not mRNA stability. No significant changes in GnRH secretion were observed upon RFRP-3 exposure in these neurones. Our findings suggest that the suppressive signalling of RFRP-3 on GnRH transcription may dominate over kisspeptin induction in the mHypoA-GnRH/GFP GnRH neuronal cell model.
Collapse
Affiliation(s)
- N M Gojska
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
8
|
Loutchanwoot P, Srivilai P, Jarry H. Lack of anti-androgenic effects of equol on reproductive neuroendocrine function in the adult male rat. Horm Behav 2014; 65:22-31. [PMID: 24211351 DOI: 10.1016/j.yhbeh.2013.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 10/29/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
Abstract
Equol (EQ), a metabolite of the soy isoflavone daidzein, has well known estrogenic properties. Data from animal studies suggested that EQ may act also as an anti-androgen. However, data regarding how EQ may affect brain functions like the regulation of neuroendocrine activity and reproductive outcomes in adult male rats are still lacking. We therefore investigated the effects of EQ on sex-steroid regulated gene expression in the brain [medial preoptic area/anterior hypothalamus (MPOA/AH) and medial basal hypothalamus/median eminence (MBH/ME)], pituitary, and prostate as a reference androgen-dependent organ. Furthermore reproductive outcomes were evaluated. The anti-androgen flutamide (FLUT) served as reference compound. Male rats (n=12 per group) were treated by gavage for 5 days with either EQ (100 or 250 mg/kgBW/day), or FLUT 100 mg/kgBW/day. All vehicle- and EQ-treated males showed successful reproductive outcomes, whereas FLUT-exposed males had severe reproductive impairments resulted in infertility. FLUT decreased relative weights of prostate, seminal vesicles and epididymides, and increased serum levels of luteinizing hormone, follicle-stimulating hormone, testosterone and 5α-dihydrotestosterone without altering prolactin levels, whereas EQ exerted opposite effects. Both EQ and FLUT decreased gonadotropin releasing hormone (GnRH) expression in the MPOA/AH. Only FLUT upregulated levels of GnRH receptor expression both in the MBH/ME and pituitary. While EQ downregulated the hypothalamic ERα and ERβ expressions, but FLUT did not. In the prostate, only FLUT upregulated both ERα and AR mRNA expression levels. Taken together, our findings are the first data that EQ did not induce anti-androgenic effects on brain, prostate and male reproductive parameters, however, estrogenic neuroendocrine and reproductive effects of EQ were observed.
Collapse
Affiliation(s)
- Panida Loutchanwoot
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang Sub-district, Kantarawichai District, Mahasarakham Province 44150, Thailand.
| | - Prayook Srivilai
- Department of Biology, Faculty of Science, Mahasarakham University, Khamriang Sub-district, Kantarawichai District, Mahasarakham Province 44150, Thailand.
| | - Hubertus Jarry
- Department of Endocrinology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| |
Collapse
|
9
|
Sharova VS, Izvol'skaya MS, Zakharova LA. Effect of prenatal infection of mice with bacterial endotoxin on the migration of neurons producing gonadotropin-releasing hormone. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2013; 452:273-6. [PMID: 24150645 DOI: 10.1134/s001249661305013x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Indexed: 11/22/2022]
Affiliation(s)
- V S Sharova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 117808, Russia
| | | | | |
Collapse
|
10
|
McFadden SA, Menchella JA, Chalmers JA, Centeno ML, Belsham DD. Glucose responsiveness in a novel adult-derived GnRH cell line, mHypoA-GnRH/GFP: involvement of AMP-activated protein kinase. Mol Cell Endocrinol 2013; 377:65-74. [PMID: 23835445 DOI: 10.1016/j.mce.2013.06.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 01/26/2023]
Abstract
Glucose regulates energy homeostasis and reproductive function within the hypothalamus. The underlying mechanisms responsible for glucose regulation of GnRH gene transcription were investigated using a novel murine immortalized, adult-derived hypothalamic cell line, mHypoA-GnRH/GFP. Analysis of GnRH mRNA synthesis and secretion following agonist treatment demonstrated that the mHypoA-GnRH/GFP cell line is a representative model of in vivo GnRH neurons. c-fos mRNA levels, following glucose exposure, indicated that these neurons were responsive to low (0.5mM) and high (5mM) glucose, and high glucose stimulated GnRH mRNA transcription in a metabolism-dependent manner. Glucose inhibited AMPK activity, and was linked to the downstream stimulation of GnRH mRNA levels. The effect was confirmed with an AMPK antagonist, Compound C. Collectively, these findings demonstrate that glucose can directly regulate GnRH transcription, while implicating the AMPK pathway as an essential mediator of nutritional signaling in a novel GnRH neuronal cell model.
Collapse
Affiliation(s)
- Sean A McFadden
- Department of Physiology, University of Toronto, University Health Network, Toronto, ON M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
11
|
Systems approaches to genomic and epigenetic inter-regulation of peptide hormones in stress and reproduction. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 113:375-86. [PMID: 23500148 DOI: 10.1016/j.pbiomolbio.2013.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 02/08/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022]
Abstract
The evolution of the organismal stress response and fertility are two of the most important aspects that drive the fitness of a species. However, the integrated regulation of the hypothalamic pituitary adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes has been traditionally thwarted by the complexity of these systems. Pepidergic signalling systems have emerged as critical integrating systems for stress and reproduction. Current high throughput systems approaches are now providing a detailed understanding of peptide signalling in stress and reproduction. These approaches were dependent upon a long history of discovery aimed at the structural characterization of the associated molecular components. The combination of comparative genomics, microarray and epigenetic studies has led not only to a much greater understanding of the integration of stress and reproduction but also to the discovery of novel physiological systems. Recent epigenomic approaches have similarly yielded a new level of complexity in the interaction of these physiological systems. Together, such studies have provided a greater understanding of the effects of stress and reproduction.
Collapse
|
12
|
Nock TG, Chand D, Lovejoy DA. Identification of members of the gonadotropin-releasing hormone (GnRH), corticotropin-releasing factor (CRF) families in the genome of the holocephalan, Callorhinchus milii (elephant shark). Gen Comp Endocrinol 2011; 171:237-44. [PMID: 21310155 DOI: 10.1016/j.ygcen.2011.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/25/2011] [Accepted: 02/02/2011] [Indexed: 11/27/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) and corticotropin-releasing family (CRF) are two neuropeptides families that are strongly conserved throughout evolution. Recently, the genome of the holocephalan, Callorhinchus milii (elephant shark) has been sequenced. The phylogenetic position of C. milii, along with the relatively slow evolution of the cartilaginous fish suggests that neuropeptides in this species may resemble the earliest gnathostome forms. The genome of the elephant shark was screened, in silico, using the various conserved motifs of both the vertebrate CRF paralogs and the insect diuretic hormone sequences to identify the structure of the C. milii CRF/DH-like peptides. A similar approach was taken to identify the GnRH peptides using conserved motifs in both vertebrate and invertebrate forms. Two CRF peptides, a urotensin-1 peptide and a urocortin 3 peptide were found in the genome. There was only about 50% sequence identity between the two CRF peptides suggesting an early divergence. In addition, the urocortin 2 peptide seems to have been lost and was identified as a pseudogene in C. milii. In contrast to the number of CRF family peptides, only a GnRH-II preprohormone with the conserved mature decapeptide was found. This confirms early studies about the identity of GnRH in the Holocephali, and suggests that the Holocephali and Elasmobranchii differ with respect to GnRH structure and function.
Collapse
Affiliation(s)
- Tanya G Nock
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada M5G 3G5
| | | | | |
Collapse
|
13
|
Dalvi PS, Nazarians-Armavil A, Tung S, Belsham DD. Immortalized neurons for the study of hypothalamic function. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1030-52. [PMID: 21248304 DOI: 10.1152/ajpregu.00649.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hypothalamus is a vital part of the central nervous system: it harbors control systems implicated in regulation of a wide range of homeostatic processes, including energy balance and reproduction. Structurally, the hypothalamus is a complex neuroendocrine tissue composed of a multitude of unique neuronal cell types that express a number of neuromodulators, including hormones, classical neurotransmitters, and specific neuropeptides that play a critical role in mediating hypothalamic function. However, neuropeptide and receptor gene expression, second messenger activation, and electrophysiological and secretory properties of these hypothalamic neurons are not yet fully defined, primarily because the heterogeneity and complex neuronal architecture of the neuroendocrine hypothalamus make such studies challenging to perform in vivo. To circumvent this problem, our research group recently generated embryonic- and adult-derived hypothalamic neuronal cell models by utilizing the novel molecular techniques of ciliary neurotrophic factor-induced neurogenesis and SV40 T antigen transfer to primary hypothalamic neuronal cell cultures. Significant research with these cell lines has demonstrated their value as a potential tool for use in molecular genetic analysis of hypothalamic neuronal function. Insights gained from hypothalamic immortalized cells used in conjunction with in vivo models will enhance our understanding of hypothalamic functions such as neurogenesis, neuronal plasticity, glucose sensing, energy homeostasis, circadian rhythms, and reproduction. This review discusses the generation and use of hypothalamic cell models to study mechanisms underlying the function of individual hypothalamic neurons and to gain a more complete understanding of the overall physiology of the hypothalamus.
Collapse
Affiliation(s)
- Prasad S Dalvi
- Dept. of Physiology, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
14
|
The kiss-1-kisspeptin-gpr54 complex: a critical modulator of GnRH neurons during pubertal activation. J Appl Biomed 2010. [DOI: 10.2478/v10136-009-0001-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Herman AP, Misztal T, Herman A. Expression of Interleukin (IL)-1β and IL-1 Receptors Genes in the Hypothalamus of Anoestrous Ewes after Lipopolysaccharide Treatment. Reprod Domest Anim 2010; 45:e426-33. [DOI: 10.1111/j.1439-0531.2010.01595.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhao S, Kelm RJ, Fernald RD. Regulation of gonadotropin-releasing hormone-1 gene transcription by members of the purine-rich element-binding protein family. Am J Physiol Endocrinol Metab 2010; 298:E524-33. [PMID: 19996387 PMCID: PMC2838525 DOI: 10.1152/ajpendo.00597.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gonadotropin-releasing hormone-1 (GnRH1) controls reproduction by stimulating the release of gonadotropins from the pituitary. To characterize regulatory factors governing GnRH1 gene expression, we employed biochemical and bioinformatics techniques to identify novel GnRH1 promoter-binding proteins from the brain of the cichlid fish, Astatotilapia burtoni (A. burtoni). Using an in vitro DNA-binding assay followed by mass spectrometric peptide mapping, we identified two members of the purine-rich element-binding (Pur) protein family, Puralpha and Purbeta, as candidates for GnRH1 promoter binding and regulation. We found that transcripts for both Puralpha and Purbeta colocalize in GnRH1-expressing neurons in the preoptic area of the hypothalamus in A. burtoni brain. Furthermore, we confirmed in vivo binding of endogenous Puralpha and Purbeta to the upstream region of the GnRH1 gene in A. burtoni brain and mouse neuronal GT1-7 cells. Consistent with the relative promoter occupancy exhibited by endogenous Pur proteins, overexpression of Purbeta, but not Puralpha, significantly downregulated GnRH1 mRNA levels in transiently transfected GT1-7 cells, suggesting that Purbeta acts as a repressor of GnRH1 gene transcription.
Collapse
Affiliation(s)
- Sheng Zhao
- Dept. of Biology, Stanford University, California, 94305-5020, USA
| | | | | |
Collapse
|
17
|
Mayer CM, Fick LJ, Gingerich S, Belsham DD. Hypothalamic cell lines to investigate neuroendocrine control mechanisms. Front Neuroendocrinol 2009; 30:405-23. [PMID: 19341762 DOI: 10.1016/j.yfrne.2009.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 03/10/2009] [Accepted: 03/17/2009] [Indexed: 12/22/2022]
Abstract
The hypothalamus is the control center for most physiological processes; yet has been difficult to study due to the inherent heterogeneity of this brain region. For this reason, researchers have turned towards cell models. Primary hypothalamic cultures are difficult to maintain, are heterogeneous neuronal and glial cell populations and often contain a minimal number of viable peptide-secreting neurons. In contrast, immortalized, clonal cell lines represent an unlimited, homogeneous population of neurons that can be manipulated using a number of elegant molecular techniques. Cell line studies and in vivo experimentation are complementary and together provide a powerful tool to drive scientific discovery. This review focuses on three key neuroendocrine systems: energy homeostasis, reproduction, and circadian rhythms; and the use of hypothalamic cell lines to dissect the complex pathways utilized by individual neurons in these systems.
Collapse
|
18
|
Dhillon SS, Gingerich S, Belsham DD. Neuropeptide Y induces gonadotropin-releasing hormone gene expression directly and through conditioned medium from mHypoE-38 NPY neurons. ACTA ACUST UNITED AC 2009; 156:96-103. [PMID: 19371763 DOI: 10.1016/j.regpep.2009.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/10/2009] [Accepted: 04/05/2009] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y (NPY) regulates reproductive function at the level of the hypothalamus through control of GnRH secretion. However, the direct control of GnRH gene expression by NPY has not yet been studied. GT1-7 neurons were treated with 100 nM of NPY over a 36 h time course. GnRH mRNA levels were significantly increased by NPY up to 12 h. We determined that GT1-7 neurons expressed Y1, Y2, and Y4 NPY receptors, but not Y5. Functional analysis of NPY receptor activation indicated that the Y1/Y4/Y5 receptor agonist [Leu31, Pro34] significantly induced cAMP accumulation in the GT1-7 neurons. Western blot studies demonstrated changes in the phosphorylation status of AKT, ERK1/2, CREB and ATF-1 after NPY exposure. Pharmacological inhibitors of the MAPK and PKA signal transduction pathways attenuated the NPY-mediated increase in GnRH transcription. This NPY-mediated increase in GnRH mRNA was also inhibited with the Y1-receptor specific antagonist BIBP-3226. The mHypoE-38 neurons secrete detectable levels of NPY and can be used as an endogenous source of NPY. Conditioned medium from mHypoE-38 neurons induced an increase in GnRH mRNA, which was inhibited by the Y1 receptor antagonist BIBP-3226. Together, these studies strengthen the evidence for the importance of NPY in the regulation of reproductive function.
Collapse
Affiliation(s)
- Sandeep S Dhillon
- Department of Physiology, University of Toronto, Medical Sciences Building 3247A, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
| | | | | |
Collapse
|
19
|
Abstract
Gonadotrophin-releasing hormone (GnRH) was first isolated in the mammal and shown to be the primary regulator of the reproductive system through its initiation of pituitary gonadotrophin release. Subsequent to its discovery, this form of GnRH has been shown to be one of many structural variants found in the brain and peripheral tissues. Accordingly, the original form first discovered and cloned in the mammal is commonly referred to as GnRH-I. In addition to the complex regulation of GnRH-I synthesis, release and function, further evidence suggests that the processing of GnRH-I produces yet another layer of complexity in its activity. GnRH-I is processed by a zinc metalloendopeptidase EC 3.4.24.15 (EP24.15), which cleaves the hormone at the covalent bond between the fifth and sixth residue of the decapeptide (Tyr(5)-Gly(6)) to form GnRH-(1-5). It was previously thought that the cleavage of GnRH-I by EP24.15 represents the initiation of its degradation. Here, we review the evidence for the involvement of GnRH-(1-5), the metabolite of GnRH-I, in the regulation of GnRH-I synthesis, secretion and facilitation of reproductive behaviour.
Collapse
Affiliation(s)
- T John Wu
- Program in Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | | | |
Collapse
|
20
|
Hormonal regulation of clonal, immortalized hypothalamic neurons expressing neuropeptides involved in reproduction and feeding. Mol Neurobiol 2008; 35:182-94. [PMID: 17917107 DOI: 10.1007/s12035-007-0010-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/03/2006] [Accepted: 11/09/2006] [Indexed: 12/27/2022]
Abstract
The hypothalamus has been particularly difficult to study at the molecular level because of the inherent cellular heterogeneity and complexity of neuronal circuits within. We have generated a large number of immortalized, clonal cell lines through retroviral gene transfer of the oncogene SV40 T-Ag into primary murine hypothalamic neuronal cell cultures. A number of these neuronal cell lines express neuropeptides linked to the control of feeding behavior and reproduction, including neuropeptide Y (NPY) and neurotensin (NT). We review recent studies on the direct regulation of NPY gene expression by estrogen, and the leptin-mediated control of signal transduction pathways and NT transcription. These studies provide new insights into the direct control of neuropeptide synthesis by hormones and nutrients at a mechanistic level in the individual neuron, not yet possible in the whole brain. Using these novel cell models, we expect to contribute substantially to the understanding of how individual neuronal cell types control overall endocrine function, especially with regard to two of the most well-known roles of distinct peptidergic neurons; these being the control of reproduction and energy homeostasis.
Collapse
|
21
|
Umathe S, Dixit P, Wanjari M, Ullewar M. Leuprolide -a GnRH agonist prevents restraint stress-induced immunosuppression via sex steroid-independent peripheral mechanism in mice. Int Immunopharmacol 2008; 8:71-9. [DOI: 10.1016/j.intimp.2007.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/01/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
|
22
|
Roberts JL, Mani SK, Woller MJ, Glucksman MJ, Wu TJ. LHRH-(1-5): a bioactive peptide regulating reproduction. Trends Endocrinol Metab 2007; 18:386-92. [PMID: 17997103 DOI: 10.1016/j.tem.2007.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 09/25/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022]
Abstract
Luteinizing hormone-releasing hormone-I (LHRH-I) was isolated from the mammalian hypothalamus and shown to be the primary regulator of reproduction through its initiation of pituitary gonadotropin release. Subsequently, it has also been shown to have non-pituitary actions. Although the regulation of LHRH-I synthesis and release has been extensively studied, there is additional evidence to suggest that processing of the peptide represents another layer of regulation. The focus of this review will be on evidence for the action of LHRH-(1-5), the pentapeptide metabolite of LHRH-I, in regulating LHRH-I synthesis, secretion and reproductive behavior. The involvement of LHRH-(1-5) in the control of aspects of reproduction might represent yet another level of regulatory complexity through neuropeptide processing.
Collapse
Affiliation(s)
- James L Roberts
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | | | |
Collapse
|
23
|
HARBOTT LENEK, BURMEISTER SABRINAS, WHITE RICHARDB, VAGELL MIKE, FERNALD RUSSELLD. Androgen receptors in a cichlid fish, Astatotilapia burtoni: structure, localization, and expression levels. J Comp Neurol 2007; 504:57-73. [PMID: 17614300 PMCID: PMC2743600 DOI: 10.1002/cne.21435] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Androgens are an important output of the hypothalamic-pituitary-gonadal (HPG) axis that controls reproduction in all vertebrates. In male teleosts two androgens, testosterone and 11-ketotestosterone, control sexual differentiation and development in juveniles and reproductive behavior in adults. Androgenic signals provide feedback at many levels of the HPG axis, including the hypothalamic neurons that synthesize and release gonadotropin-releasing hormone 1 (GnRH1), but the precise cellular site of androgen action in the brain is not known. Here we describe two androgen receptor subtypes, ARalpha and ARbeta, in the cichlid Astatotilapia burtoni and show that these subtypes are differentially located throughout the adult brain in nuclei known to function in the control of reproduction. ARalpha was expressed in the ventral part of the ventral telencephalon, the preoptic area (POA) of the hypothalamus and the ventral hypothalamus, whereas ARbeta was more widely expressed in the dorsal and ventral telencephalon, the POA, and the ventral and dorsal hypothalamus. We provide the first evidence in any vertebrate that the GnRH1-releasing neurons, which serve as the central control point of the HPG axis, express both subtypes of AR. Using quantitative real-time PCR, we show that A. burtoni AR subtypes have different expression levels in adult tissue, with ARalpha showing significantly higher expression than ARbeta in the pituitary, and ARbeta expressed at a higher level than ARalpha in the anterior and middle brain. These data provide important insight into the role of androgens in regulating the vertebrate reproductive axis.
Collapse
Affiliation(s)
| | | | | | | | - RUSSELL D. FERNALD
- Correspondence to: R.D. Fernald, Department of Biological Sciences, 371 Serra Mall, Stanford University, Stanford, CA 94305-5020.
| |
Collapse
|
24
|
Heterogeneous nuclear ribonucleoprotein A/B and G inhibits the transcription of gonadotropin-releasing-hormone 1. Mol Cell Neurosci 2007; 37:69-84. [PMID: 17920292 DOI: 10.1016/j.mcn.2007.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 08/14/2007] [Accepted: 08/21/2007] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) causes the release of gonadotropins from the pituitary to control reproduction. Here we report that two heterogeneous nuclear ribonucleoproteins (hnRNP-A/B and hnRNP-G) bind to the GnRH-I upstream promoter region in a cichlid fish Astatotilapia burtoni. We identified these binding proteins using a newly developed homology based method of mass spectrometric peptide mapping. We show that both hnRNP-A/B and hnRNP-G co-localize with GnRH1 in the pre-optic area of the hypothalamus in the brain. We also demonstrated that these ribonucleoproteins exhibit similar binding capacity in vivo, using immortalized mouse GT1-7 cells where overexpression of either hnRNP-A/B or hnRNP-G significantly down-regulates GnRH1 mRNA levels in GT1-7 cells, suggesting that both act as repressors in GnRH1 transcriptional regulation.
Collapse
|
25
|
Kriegsfeld LJ, Mei DF, Bentley GE, Ubuka T, Mason AO, Inoue K, Ukena K, Tsutsui K, Silver R. Identification and characterization of a gonadotropin-inhibitory system in the brains of mammals. Proc Natl Acad Sci U S A 2006; 103:2410-5. [PMID: 16467147 PMCID: PMC1413747 DOI: 10.1073/pnas.0511003103] [Citation(s) in RCA: 441] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Successful reproduction requires maintenance of the reproductive axis within fine operating limits through negative feedback actions of sex steroids. Despite the importance of this homeostatic process, our understanding of the neural loci, pathways, and neurochemicals responsible remain incomplete. Here, we reveal a neuropeptidergic pathway that directly links gonadal steroid actions to regulation of the reproductive system. An RFamide (Arg-Phe-NH2) peptide that inhibits gonadotropin release from quail pituitary was recently identified and named gonadotropin-inhibitory hormone (GnIH). Birds are known to have specialized adaptations associated with gonadotropin-releasing hormone (GnRH) regulation to optimize reproduction (e.g., encephalic photoreceptors), and the existence of a hypothalamic peptide inhibiting gonadotropins may or may not be another such specialization. To determine whether GnIH serves as a signaling pathway for sex steroid regulation of the reproductive axis, we used immunohistochemistry and in situ hybridization to characterize the distribution and functional role of this peptide in hamsters, rats, and mice. GnIH-immunoreactive (GnIH-ir) cell bodies are clustered in the mediobasal hypothalamus with pronounced projections and terminals throughout the CNS. In vivo GnIH administration rapidly inhibits luteinizing hormone secretion. Additionally, GnIH-ir neurons form close appositions with GnRH cells, suggesting a direct means of GnRH modulation. Finally, GnIH-ir cells express estrogen receptor-alpha and exhibit robust immediate early gene expression after gonadal hormone stimulation. Taken together, the distribution of GnIH efferents to neural sites regulating reproductive behavior and neuroendocrine secretions, expression of steroid receptors in GnIH-ir nuclei, and GnIH inhibition of luteinizing hormone secretion indicate the discovery of a system regulating the mammalian reproductive axis.
Collapse
Affiliation(s)
- Lance J Kriegsfeld
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nishida Y, Yoshioka M, St-Amand J. Regulation of hypothalamic gene expression by glucocorticoid: implications for energy homeostasis. Physiol Genomics 2005; 25:96-104. [PMID: 16368873 DOI: 10.1152/physiolgenomics.00232.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study investigated the hypothalamic gene expressions regulated by glucocorticoids (GC), key hormones in energy homeostasis. Using the serial analysis of gene expression (SAGE) method, we studied the effects of adrenalectomy (ADX) and GC on the transcriptomes of mouse hypothalamus. Approximately 180,000 SAGE tags, which correspond to 50,000 tag species, were isolated from each group of intact or adrenalectomized mice as well as 1, 3, and 24 h after GC injection. ADX upregulated diazepam binding inhibitor gene expression while downregulating vomeronasal 1 receptor D4, genes involved in mitochondrial phosphorylation (cytochrome-c oxidase 1 and NADH dehydrogenase 3), 3beta-hydroxysteroid dehydrogenase-1, and prostaglandin D2 synthase. GC increased the gene expression levels of dehydrogenase/reductase member 3, prostaglandin D2 synthase, solute carrier family 4 member 4, and five cytoskeletal proteins including myosin light chain phosphorylatable fast and troponin C2 fast. On the other hand, GC reduced the mRNA levels of calmodulin 1 and expressed sequence tag similar to calmodulin 2, ATP synthase F0 subunit 6, and solute carrier family 4 member 3. Moreover, 7 uncharacterized and 43 novel transcripts were modulated by ADX and GC. The present study has identified genes that may regulate hypothalamic systems governing energy balance in response to ADX and GC.
Collapse
Affiliation(s)
- Yuichiro Nishida
- Functional Genomics Laboratory, Molecular Endocrinology and Oncology Research Center, Laval University Medical Center (CHUL), Quebec City, Quebec, Canada
| | | | | |
Collapse
|