1
|
Retracted: PKC-delta and PKD activate MAPK signal pathway in mechano-transcription of colonic smooth muscle cells. Neurogastroenterol Motil 2024; 36:e14623. [PMID: 37278189 DOI: 10.1111/nmo.14623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Retraction: [PKC-delta and PKD activate MAPK signal pathway in mechano-transcription of colonic smooth muscle cells, Z. Yang, K. He, T. Wang, et al. Neurogastroenterology & Motility 2023; e14623 (https://onlinelibrary.wiley.com/doi/full/10.1111/nmo.14623)]. The above article, published online on June 6, 2023 in Wiley Online Library (wileyonlinelibrary.com), has been retracted by agreement between the authors, the Journal Editor in Chief, Maura Corsetti, and John Wiley & Sons Ltd. The retraction has been agreed due to unat[1]tributed overlap between this article and the abstract published in Gastroenterology: Li F, Sarna SK and Shi XP. Roles of PKCs and PKD in Mechanotranscription in Colonic Smooth Muscle Cells: Inhibition of Mechanotranscription as a Potential Treatment for Motility Dysfunction in Obstructive Disorders. In: 2012 Digestive Disease Week Abstract Supplement; May 19-22, San Diego, CA. Abstract 120 (https://www.gastrojournal.org/article/S0016-5085(12)60115-2/pdf).
Collapse
|
2
|
Gao C, Koko MYF, Ding M, Hong W, Li J, Dong N, Hui M. Intestinal alkaline phosphatase (IAP, IAP Enhancer) attenuates intestinal inflammation and alleviates insulin resistance. Front Immunol 2022; 13:927272. [PMID: 35958560 PMCID: PMC9359302 DOI: 10.3389/fimmu.2022.927272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the effects of intestinal alkaline phosphatase (IAP) in controlled intestinal inflammation and alleviated associated insulin resistance (IR). We also explored the possible underlying molecular mechanisms, showed the preventive effect of IAP on IR in vivo, and verified the dephosphorylation of IAP for the inhibition of intestinal inflammation in vitro. Furthermore, we examined the preventive role of IAP in IR induced by a high-fat diet in mice. We found that an IAP + IAP enhancer significantly ameliorated blood glucose, insulin, low-density lipoprotein, gut barrier function, inflammatory markers, and lipopolysaccharide (LPS) in serum. IAP could dephosphorylate LPS and nucleoside triphosphate in a pH-dependent manner in vitro. Firstly, LPS is inactivated by IAP and IAP reduces LPS-induced inflammation. Secondly, adenosine, a dephosphorylated product of adenosine triphosphate, elicited anti-inflammatory effects by binding to the A2A receptor, which inhibits NF-κB, TNF, and PI3K-Akt signalling pathways. Hence, IAP can be used as a natural anti-inflammatory agent to reduce intestinal inflammation-induced IR.
Collapse
Affiliation(s)
- Chenzhe Gao
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- College of Food, Northeast Agricultural University, Harbin, China
| | | | | | - Weichen Hong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- College of Food, Northeast Agricultural University, Harbin, China
| | - Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, China
- *Correspondence: Na Dong, ; Mizhou Hui,
| |
Collapse
|
3
|
Shi XZ. Mechano-Regulation of Gene Expression in the Gut: Implications in Pathophysiology and Therapeutic Approaches in Obstructive, Inflammatory, and Functional Bowel Disorders. COMPREHENSIVE PHARMACOLOGY 2022:164-185. [DOI: 10.1016/b978-0-12-820472-6.00168-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Geesala R, Lin YM, Zhang K, Shi XZ. Targeting Mechano-Transcription Process as Therapeutic Intervention in Gastrointestinal Disorders. Front Pharmacol 2021; 12:809350. [PMID: 34992543 PMCID: PMC8724579 DOI: 10.3389/fphar.2021.809350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022] Open
Abstract
Mechano-transcription is a process whereby mechanical stress alters gene expression. The gastrointestinal (GI) tract is composed of a series of hollow organs, often encountered by transient or persistent mechanical stress. Recent studies have revealed that persistent mechanical stress is present in obstructive, functional, and inflammatory disorders and alters gene transcription in these conditions. Mechano-transcription of inflammatory molecules, pain mediators, pro-fibrotic and growth factors has been shown to play a key role in the development of motility dysfunction, visceral hypersensitivity, inflammation, and fibrosis in the gut. In particular, mechanical stress-induced cyclooxygenase-2 (COX-2) and certain pro-inflammatory mediators in gut smooth muscle cells are responsible for motility dysfunction and inflammatory process. Mechano-transcription of pain mediators such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) may lead to visceral hypersensitivity. Emerging evidence suggests that mechanical stress in the gut also leads to up-regulation of certain proliferative and pro-fibrotic mediators such as connective tissue growth factor (CTGF) and osteopontin (OPN), which may contribute to fibrostenotic Crohn's disease. In this review, we will discuss the pathophysiological significance of mechanical stress-induced expression of pro-inflammatory molecules, pain mediators, pro-fibrotic and growth factors in obstructive, inflammatory, and functional bowel disorders. We will also evaluate potential therapeutic targets of mechano-transcription process for the management of these disorders.
Collapse
|
5
|
EP4 receptor as a novel promising therapeutic target in colon cancer. Pathol Res Pract 2020; 216:153247. [PMID: 33190014 DOI: 10.1016/j.prp.2020.153247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/17/2023]
Abstract
The most prevalent malignancy that can occur in the gastrointestinal tract is colon cancer. The current treatment options for colon cancer patients include chemotherapy, surgery, radiotherapy, immunotherapy, and targeted therapy. Although the chance of curing the disease in the early stages is high, there is no cure for almost all patients with advanced and metastatic disease. It has been found that over-activation of cyclooxygenase 2 (COX-2), followed by the production of prostaglandin E2 (PGE2) in patients with colon cancer are significantly increased. The tumorigenic function of COX-2 is mainly due to its role in the production of PGE2. PGE2, as a main generated prostanoid, has an essential role in growth and survival of colon cancer cell's. PGE2 exerts various effects in colon cancer cells including enhanced expansion, angiogenesis, survival, invasion, and migration. The signaling of PGE2 via the EP4 receptor has been shown to induce colon tumorigenesis. Moreover, the expression levels of the EP4 receptor significantly affect tumor growth and development. Overexpression of EP4 by various mechanisms increases survival and tumor vasculature in colon cancer cells. It seems that the pathway starting with COX2, continuing with PGE2, and ending with EP4 can promote the spread and growth of colon cancer. Therefore, targeting the COX-2/PGE2/EP4 axis can be considered as a worthy therapeutic approach to treat colon cancer. In this review, we have examined the role and different mechanisms that the EP4 receptor is involved in the development of colon cancer.
Collapse
|
6
|
Shi XZ. Mechanical Regulation of Gene Expression in Gut Smooth Muscle Cells. Front Physiol 2017; 8:1000. [PMID: 29259559 PMCID: PMC5723328 DOI: 10.3389/fphys.2017.01000] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
Intraluminal contents and their movement along the gastrointestinal tract create shear stress and mechanical stretch on the gut wall. While the shear stress is important in the initiation of immediate physiological responses, the circumferential mechanical stretch, such as that in obstructive bowel disorders, exerts long-lasting impacts on bowel functions by mainly affecting the deeper muscularis externae. Recent studies demonstrate that mechanical stretch alters gene transcription in gut smooth muscle cells (SMC), and the stretch-altered gene expression (mechano-transcription) may play a critical role in pathogenesis of motility dysfunction and abdominal pain in obstruction. Specifically, stretch-induced cyclo-oxygenase-2 and other pro-inflammatory mediators in gut SMC account for impairments of muscle contractility. Mechano-transcription of pain mediators such as nerve growth factor may contribute to visceral hypersensitivity, by sensitizing primary sensory neurons. This review aims to highlight the novel findings of mechano-transcription in the gut, and to discuss the signaling mechanisms and pathophysiological significance of mechano-transcription.
Collapse
Affiliation(s)
- Xuan-Zheng Shi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Lian S, Xia Y, Ung TT, Khoi PN, Yoon HJ, Lee SG, Kim KK, Jung YD. Prostaglandin E 2 stimulates urokinase-type plasminogen activator receptor via EP2 receptor-dependent signaling pathways in human AGS gastric cancer cells. Mol Carcinog 2017; 56:664-680. [PMID: 27377703 DOI: 10.1002/mc.22524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 12/29/2022]
Abstract
Aberrant expression of urokinase-type plasminogen activator receptor (uPAR) has been observed in human gastric cancers. Prostaglandin E2 (PGE2 ), whose biosynthesis is catalyzed by cyclooxygenase-2 (COX-2), is implicated in cancer metastasis; however, the cellular and molecular mechanisms of PGE2 -driven uPAR expression are yet to be elucidated in human gastric cancer AGS cells. In this study, we showed that PGE2 induces uPAR expression in concentration- and time-dependent manners. Furthermore, using antagonists and siRNA, we found that among the four subtypes of PGE2 receptors, EP2 receptors are involved in PGE2 -induced uPAR expression. PGE2 induced the activation of Src, epidermal growth factor receptor (EGFR), c-Jun NH2 -terminal kinase (JNK), extracellular signal-regulated kinase (Erk), and p38 mitogen activated protein kinase (p38 MAPK). Specific inhibitor and mutagenesis studies showed that Src, EGFR, JNK1/2, and Erk1/2 are involved in PGE2 -induced uPAR expression. PGE2 induces EP2-dependent phosphorylation of Src, while the activation of Src-dependent EGFR leads to the phosphorylation of JNK1/2 and Erk1/2. Deletion and site-directed mutagenesis studies demonstrated the involvement of transcription factor activator protein (AP)-1 and nuclear factor-kappa B (NF-κB) in PGE2 -induced uPAR expression. EGFR-dependent MAPKs (JNK1/2 and Erk1/2) function as the upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. AGS cells pre-treated with PGE2 showed remarkably enhanced invasiveness, which was partially abrogated by uPAR-neutralizing antibodies. To the best of our knowledge, this is the first report that PGE2 -induced uPAR expression, which stimulates invasiveness of human gastric cancer AGS cells, is mediated by the EP2 receptor-dependent Src/EGFR/JNK1/2, Erk1/2/AP-1, and Src/EGFR/JNK1/2, Erk1/2/NF-κB cascades. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sen Lian
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong Xia
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Trong Thuan Ung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Pham Ngoc Khoi
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hyun Joong Yoon
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Sam Gyu Lee
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung Keun Kim
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Lejeune M, Moreau F, Chadee K. Loss of EP2 receptor subtype in colonic cells compromise epithelial barrier integrity by altering claudin-4. PLoS One 2014; 9:e113270. [PMID: 25396731 PMCID: PMC4232557 DOI: 10.1371/journal.pone.0113270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/26/2014] [Indexed: 01/30/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a bioactive lipid mediator that exerts its biological function through interaction with four different subtypes of E-Prostanoid receptor namely EP1, EP2, EP3 and EP4. It has been known that EP2 receptor is differentially over-expressed in the epithelia of inflamed human colonic mucosa. However, the significance of the differential expression in altering epithelial barrier function is not known. In this study, we used Caco-2 cells expressing EP2 receptor, either high (EP2S) or low (EP2A), as a model epithelia and determined the barrier function of these cell monolayers by measuring the trans epithelial resistance (TER). Basal TER of EP2A (but not EP2S) monolayer was significantly lower suggesting a loss of colonic epithelial barrier integrity. In comparison, the TER of wild type Caco-2 was decreased in response to an EP2 receptor specific antagonist (AH-6809) indicating an important role for EP2 receptor in the maintenance of epithelial barrier function. The decrease TER in EP2A monolayer corresponded with a significant loss of the tight junction (TJ) protein claudin-4 without affecting other major TJ proteins. Similarly, EP2 receptor antagonism/siRNA based silencing significantly decreased claudin-4 expression in EP2S cells. Surprisingly, alteration in claudin-4 was not transcriptionally regulated in EP2A cells but rather undergoes increased proteosomal degradation. Moreover, among the TER compromising cytokines examined (IL-8, IL-1β, TNF-α, IFN-γ) only IFN-γ was significantly up regulated in EP2A cells. However, IFN-γ did not significantly decreased claudin-4 expression in Caco-2 cells indicating no role for IFN-γ in degrading claudin-4. We conclude that differential down-regulation of EP2 receptor play a major role in compromising colonic epithelial barrier function by selectively increasing proteosomal degradation of claudin-4.
Collapse
Affiliation(s)
- Manigandan Lejeune
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
9
|
Lin YM, Sarna SK, Shi XZ. Prophylactic and therapeutic benefits of COX-2 inhibitor on motility dysfunction in bowel obstruction: roles of PGE₂ and EP receptors. Am J Physiol Gastrointest Liver Physiol 2012; 302:G267-75. [PMID: 22038825 PMCID: PMC3341114 DOI: 10.1152/ajpgi.00326.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We reported previously that mechanical stretch in rat colonic obstruction induces cyclooxygenase (COX)-2 expression in smooth muscle cells. The aims of the present study were to investigate whether in vivo treatment with COX-2 inhibitor has prophylactic and therapeutic effects on motility dysfunction in colon obstruction, and if so what are the underlying mechanisms. Partial colon obstruction was induced with a silicon band in the distal colon of 6-8-wk-old Sprague-Dawley rats; obstruction was maintained for 3 days or 7 days. Daily administration of COX-2 inhibitor NS-398 (5 mg/kg) or vehicle was started before or after the induction of obstruction to study its prophylactic and therapeutic effects, respectively. The smooth muscle contractility was significantly suppressed, and colonic transit rate was slower in colonic obstruction. Prophylactic treatment with NS-398 significantly prevented the impairments of colonic transit and smooth muscle contractility and attenuated fecal collection in the occluded colons. When NS-398 was administered therapeutically 3 days after the initiation of obstruction, the muscle contractility and colonic transit still improved on day 7. Obstruction led to marked increase of COX-2 expression and prostaglandin E(2) (PGE(2)) synthesis. Exogenous PGE(2) decreased colonic smooth muscle contractility. All four PGE(2) E-prostanoid receptor types (EP1 to EP4) were detected in rat colonic muscularis externa. Treatments with EP1 and EP3 antagonists suppressed muscle contractility in control tissue but did not improve contractility in obstruction tissue. On the contrary, the EP2 and EP4 antagonists did not affect control tissue but significantly restored muscle contractility in obstruction. We concluded that our study shows that COX-2 inhibitor has prophylactic and therapeutic benefits for motility dysfunction in bowel obstruction. PGE(2) and its receptors EP2 and EP4 are involved in the motility dysfunction in obstruction, whereas EP1 and EP3 mediate PGE(2) regulation of colonic smooth muscle contractile function in normal state.
Collapse
Affiliation(s)
- You-Min Lin
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Sushil K. Sarna
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Xuan-Zheng Shi
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
10
|
Shi XZ, Lin YM, Powell DW, Sarna SK. Pathophysiology of motility dysfunction in bowel obstruction: role of stretch-induced COX-2. Am J Physiol Gastrointest Liver Physiol 2011; 300:G99-G108. [PMID: 21051526 PMCID: PMC3025501 DOI: 10.1152/ajpgi.00379.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In gastrointestinal conditions such as bowel obstruction, pseudo-obstruction, and idiopathic megacolon, the lumen of affected bowel segments is distended and its motility function impaired. Our hypothesis is that mechanical stretch of the distended segments alters gene expression of cyclooxygenase-2 (COX-2), which impairs motility function. Partial obstruction was induced with a silicon band in the distal colon of rats for up to 7 days, and wild-type and COX-2 gene-deficient mice for 4 days. Mechanical stretch was mimicked in vitro in colonic circular muscle strips and in primary culture of colonic circular smooth muscle cells (SMC) with a Flexercell system. The rat colonic circular muscle contractility was significantly decreased in the distended segment oral to obstruction, but not in the aboral segment. This change started as early as day 1 and persisted for at least 7 days after obstruction. The expression of COX-2 mRNA and protein increased dramatically also in the oral, but not aboral, segment. The upregulation of COX-2 expression started at 12 h and the effect persisted for 7 days. At 24 h after obstruction, the COX-2 mRNA level in the oral segment increased 26-fold compared with controls. This was not accompanied by any significant increase of myeloperoxidase or inflammatory cytokines. Immunohistochemical studies showed that COX-2 was selectively induced in the colonic SMC. In vitro stretch of colonic muscle strips or cultured SMC drastically induced COX-2 expression. Incubation of circular muscle strips from obstructed segment with COX-2 inhibitor NS-398 restored the contractility. The impairment of muscle contractility in obstructed colon was attenuated in the COX-2 gene-deficient mice. In conclusion, mechanical stretch in obstruction induces marked expression of COX-2 in the colonic SMC, and stretch-induced COX-2 plays a critical role in the suppression of smooth muscle contractility in bowel obstruction.
Collapse
Affiliation(s)
- Xuan-Zheng Shi
- Division of Gastroenterology, Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas 77555-0655, USA.
| | | | | | | |
Collapse
|
11
|
Lejeune M, Leung P, Beck PL, Chadee K. Role of EP4 receptor and prostaglandin transporter in prostaglandin E2-induced alteration in colonic epithelial barrier integrity. Am J Physiol Gastrointest Liver Physiol 2010; 299:G1097-105. [PMID: 20813914 DOI: 10.1152/ajpgi.00280.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Prostaglandin E(2) (PGE(2)) is a proinflammatory lipid mediator produced in excess in inflammatory bowel disease (IBD). PGE(2) couples to and signals via four different E-prostanoid (EP) receptors, namely EP1, EP2, EP3, and EP4. In this study, we determined a role for PGE(2) and EP4 receptors in altering colonic epithelial barrier integrity. In healthy colonic mucosa, EP4 receptors were localized on apical plasma membrane of epithelial cells at the tip of mucosal folds, whereas, in patients with IBD and in rats with dextran sodium sulfate (DSS)-induced colitis, they were diffusely overexpressed throughout the mucosa. Similarly, expression of EP4 receptor was polarized in T84 colonic epithelial monolayer and mimics the normal epithelium. Apical exposure of T84 monolayer with high levels of PGE(2) decreased barrier integrity, which was abrogated by an EP4 receptor antagonist. To reveal the mechanism of vectorial transport of basally produced PGE(2) toward apical EP4 receptors, we identified prostaglandin transporters (PGT) in human colonic epithelia. PGT were least expressed on epithelial cells at the colonic mucosal folds of control subjects but overexpressed in epithelial cells of patients with IBD or animals with DSS-induced colitis. T84 monolayer also expressed PGT, which increased twofold following stimulation with TNF-α. Importantly, in T84 monolayer stimulated with TNF-α, there was a corresponding increase in the uptake and vectorial transport of (3)H-PGE(2) to the apical surface. Knockdown or pharmacological inhibition of PGT significantly decreased vectorial transport of (3)H-PGE(2). These studies unravel a mechanism whereby EP4 receptor and PGT play a role in PGE(2)-induced alteration of epithelial barrier integrity in colitis.
Collapse
Affiliation(s)
- Manigandan Lejeune
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
12
|
Gao F, Liao C, Liu L, Tan A, Cao Y, Mo Z. The effect of aspirin in the recurrence of colorectal adenomas: a meta-analysis of randomized controlled trials. Colorectal Dis 2009; 11:893-901. [PMID: 19055515 DOI: 10.1111/j.1463-1318.2008.01746.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Colorectal adenomas are precursors of most colorectal cancers and are important targets for chemoprevention. Aspirin is thought to play an important role in chemoprevention. However, the role of aspirin in preventing recurrence of adenomas is controversial. We performed a systematic review and meta-analysis to evaluate the effect of aspirin in preventing the recurrence of colorectal adenoma. METHOD Trials were located through Medline, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL). From 14 articles screened, three were identified as randomized controlled trials and were included for data extraction. Main outcome measures were the recurrence of any new adenoma and advanced adenoma. The meta-analysis was performed with the fixed-effects model. RESULTS A total of 2338 participants were enrolled in the three studies and 2175 of them completed the follow-up colonoscopy. We found that the relative risks of any adenoma (when compared with the placebo group) were 0.859 in the high dose of aspirin groups (95% confidence interval (CI), 0.756-0.976, P = 0.019), 0.826 in the low dose of aspirin groups (95% CI 0.706-0.965, P = 0.016) and 0.836 in the both aspirin combined groups (95% CI 0.746-0.937, P = 0.002). For the recurrence of advanced adenoma, the relative risk (when compared with the placebo group) was 0.655 (95% CI 0.513-0.837, P = 0.001) in the aspirin groups without considering the dose. CONCLUSION This meta-analysis suggests that aspirin prevents recurrent colorectal adenomas among patients with a history of colorectal adenomas.
Collapse
Affiliation(s)
- F Gao
- Departments of Colorectal and Anal Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Habermann N, Christian B, Luckas B, Pool-Zobel BL, Lund EK, Glei M. Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state. Biofactors 2009; 35:460-7. [PMID: 19798733 DOI: 10.1002/biof.60] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiological studies suggest that high fish intake is associated with a decreased risk of colorectal cancer which has been linked to the high content of the n - 3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in some fish. In this study, two different cell lines are compared in relation to their response to EPA and DHA versus the plant derived PUFAs, linoleic acid (LA), gamma-linolenic acid (GLA), and alpha-linolenic acid (ALA) and to the ubiquitous arachidonic acid (ARA). The uptake of 100 microM of each fatty acid (FA) was determined using GC. The 4',6-diamidino-2-phenylindole assay for DNA quantification and the Cell-Titer-Blue assay were used to determine cell survival and metabolic activity at 2-72 h after treatment. All FAs were utilized more efficiently by the human colon adenoma cell line LT97 than by the adenocarcinoma cell line HT29. LT97 were more susceptible than HT29 cells to the growth inhibitory activities of all FAs except for DHA where both were equally sensitive. Inhibition of survival and metabolic activity by EPA and DHA increased with treatment time in both cell lines. ALA or GLA were less growth inhibitory than EPA or DHA and ARA had intermediary activity. The data show that the tested FAs are incorporated into colon cells. Furthermore, adenoma cells are more susceptible than the adenocarcinoma cells.
Collapse
Affiliation(s)
- Nina Habermann
- Department for Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, Dornburger Strasse 24, D-07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Tanaka MN, Diaz BL, de Souza W, Morgado-Diaz JA. Prostaglandin E2-EP1 and EP2 receptor signaling promotes apical junctional complex disassembly of Caco-2 human colorectal cancer cells. BMC Cell Biol 2008; 9:63. [PMID: 19055708 PMCID: PMC2648958 DOI: 10.1186/1471-2121-9-63] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 12/02/2008] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The apical junctional complex (AJC) is a dynamic structure responsible to maintain epithelial cell-cell adhesions and it plays important functions such as, polarity, mechanical integrity, and cell signaling. Alteration of this complex during pathological events leads to an impaired epithelial barrier by perturbation of the cell-cell adhesion system. Although clinical and experimental data indicate that prostaglandin E(2) (PGE2) plays a critical function in promoting cell motility and cancer progression, little is known concerning its role in AJC disassembly, an event that takes place at the beginning of colorectal tumorigenesis. Using Caco-2 cells, a cell line derived from human colorectal cancer, we investigated the effects of prostaglandin E(2) (PGE(2)) treatment on AJC assembly and function. RESULTS Exposition of Caco-2 cells to PGE(2) promoted differential alteration of AJC protein distribution, as evidenced by immunofluorescence and immunoblotting analysis and impairs the barrier function, as seen by a decrease in the transepithelial electric resistance and an increase in the permeability to ruthenium red marker. We demonstrated the involvement of EP1 and EP2 prostaglandin E(2) receptor subtypes in the modulation of the AJC disassembly caused by prostanoid. Furthermore, pharmacological inhibition of protein kinase-C, but not PKA and p38MAPK significantly prevented the PGE(2) effects on the AJC disassembly. CONCLUSION Our findings strongly suggest a central role of Prostaglandin E2-EP1 and EP2 receptor signaling to mediate AJC disassembly through a mechanism that involves PKC and claudin-1 as important target for the TJ-related effects in human colorectal cancer cells (Caco-2).
Collapse
Affiliation(s)
- Marcelo N Tanaka
- Divisão de Biologia Celular, Coordenação de Pesquisa, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
15
|
Guo YS, Chen Z, Wen XD, Ko TC, Townsend CM, Hellmich MR. Synergistic regulation of COX-2 expression by bombesin and transforming growth factor-beta. Dig Dis Sci 2008; 53:2045-52. [PMID: 18095163 DOI: 10.1007/s10620-007-0122-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 11/09/2007] [Indexed: 12/09/2022]
Abstract
Overexpression of cyclooxygenase-2 (COX-2), an inducible enzyme regulating prostaglandin release, is mechanistically linked to the development, growth, and spread of gastrointestinal (GI) cancers. GI peptide bombesin (BBS) was reported to stimulate COX-2 gene expression. Here we show that TGF-beta1 dramatically enhances the BBS-induced expression of COX-2 mRNA and protein, and the release of PGE2 in the model rat intestinal epithelial cell (RIE-1) line. The synergistic increase in COX-2 levels results from a combination of enhanced COX-2 transcription and reduced mRNA degradation. BBS, but not TGF-beta1, stimulated COX-2 promoter activity, and TGF-beta1 enhanced COX-2 mRNA stability through a p38(MAPK)-dependent pathway. The synergistic regulation of COX-2 expression by TGF-beta1 and BBS may contribute to the upregulation of COX-2 in GI cancers.
Collapse
Affiliation(s)
- Yan-Shi Guo
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX 77555-0722, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Shao J, Yang VW, Sheng H. Prostaglandin E2 and Krüppel-like transcription factors synergistically induce the expression of decay-accelerating factor in intestinal epithelial cells. Immunology 2008; 125:397-407. [PMID: 18435741 DOI: 10.1111/j.1365-2567.2008.02847.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The decay-accelerating factor (DAF) prevents the intestinal mucosa from bystander killing by complement. Prostaglandin E(2) (PGE(2)) induces the expression of DAF that may protect the tumour environment from complement attack. In the present study, we demonstrate synergistic actions of PGE(2) and two Krüppel-like factors (KLFs), which are zinc finger-containing transcription factors, in DAF regulation. Overexpression of KLF4 and KLF5 robustly induced transcriptional activity of the DAF promoter. In combination, PGE(2) and either KLF4 or KLF5 increased the expression of DAF in a synergistic fashion. Moreover, cyclooxygenase (COX-1 and COX-2) enzymes, KLF4/5 and DAF protein were coordinately expressed in normal intestinal mucosa as well as in intestinal neoplasm. In radiation-injured mouse intestine, COX-1 was rapidly induced and remained at relatively high levels. While KLF5 was quickly elevated after irradiation, KLF4 exhibited a delayed increase. Interestingly, levels of DAF increased gradually following the induction of COX-1 and KLFs. Mimicking the circumstances in vivo, coexpression of both COX and KLFs resulted in a synergistic or additive induction of DAF transcription in intestinal epithelial cells. Our data suggest that COX-derived PGE(2) may collaborate with KLF4/5 to regulate the activation of the complement system and exert diverse effects on the intestinal epithelium.
Collapse
Affiliation(s)
- Jinyi Shao
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
17
|
Hawcroft G, Ko CWS, Hull MA. Prostaglandin E2-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene 2006; 26:3006-19. [PMID: 17130837 DOI: 10.1038/sj.onc.1210113] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The predominant product of cyclooxygenase (COX) activity in the colon, prostaglandin (PG) E2 promotes intestinal tumorigenesis. Expression of the PGE2 receptor EP4 is upregulated during colorectal carcinogenesis. Therefore, we investigated the role of elevated PGE2-EP4 receptor signalling in the protumorigenic activity of PGE2 by increasing EP4 receptor expression in HT-29 human colorectal cancer (CRC) cells (HT-29-EP4) by stable transfection. Elevated PGE2-induced EP4 receptor activity in HT-29 cells increased resistance to spontaneous apoptosis and promoted anchorage-independent growth, but had no effect on proliferation of HT-29-EP4 cells. EP4 receptor activation by PGE2 in HT-29-EP4 cells also led to development of fluid-filled cysts, which was associated with increased tight junction protein (occludin and zonula occludens-1) expression. Overexpression of the EP4 receptor in HT-29 cells led to basal EP4 receptor signalling in the absence of exogenous PGE2, which was explained by autocrine activity of endogenous, COX-2-derived PGE2 and constitutive, ligand-independent EP4 receptor activity. The predominant signalling pathway mediating antiapoptotic activity downstream of PGE2-EP4 receptor activation in HT-29-EP4 cells was elevation of cyclic adenosine monophosphate (cAMP) levels, which was associated with phosphorylation of cAMP-response element binding protein. EP4 receptor activation led to a small increase in phosphorylated extracellular signal-regulated kinase (ERK) 2 protein levels but inhibition of ERK phosphorylation did not abrogate the antiapoptotic activity of PGE2. However, PGE2-EP4 receptor signalling did not lead to trans-activation of the epidermal growth factor receptor in HT-29 cells. Inhibition of protumorigenic PGE2-EP4 receptor signalling represents a potential strategy for anti-CRC therapy that may avoid the toxicity associated with systemic COX inhibition.
Collapse
Affiliation(s)
- G Hawcroft
- Section of Molecular Gastroenterology, Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK.
| | | | | |
Collapse
|
18
|
Shao J, Sheng GG, Mifflin RC, Powell DW, Sheng H. Roles of Myofibroblasts in Prostaglandin E2–Stimulated Intestinal Epithelial Proliferation and Angiogenesis. Cancer Res 2006; 66:846-55. [PMID: 16424017 DOI: 10.1158/0008-5472.can-05-2606] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostaglandins (PG) are produced throughout the gastrointestinal tract and are critical mediators for a complex array of physiologic and pathophysiologic processes in the intestine. Intestinal myofibroblasts, which express cyclooxygenase (COX) and generate PGE(2), play important roles in intestinal epithelial proliferation, differentiation, inflammation, and neoplasia through secreting growth factors and cytokines. Here, we show that PGE(2) activated human intestinal subepithelial myofibroblasts (18Co) through Gs protein-coupled E-prostanoid receptors and the cyclic AMP/protein kinase A pathway. 18Co cells and primary colonic myofibroblast isolates expressed a number of growth factors; several of them were dramatically regulated by PGE(2). An epidermal growth factor-like growth factor, amphiregulin (AR), which was not expressed by untreated cells, was strongly induced by PGE(2). Expression of vascular endothelial growth factor A (VEGFA) was rapidly increased by PGE(2) exposure. Hepatocyte growth factor (HGF) was elevated in PGE(2)-treated myofibroblasts at both mRNA and protein levels. Thus, PGE(2)-activated myofibroblasts promoted the proliferation and migration of intestinal epithelial cells, which were attenuated by neutralizing antibodies to AR and HGF, respectively. Moreover, in the presence of PGE(2), myofibroblasts strongly stimulated the migration and tubular formation of vascular endothelial cells. Neutralizing antibody to VEGFA inhibited the observed stimulation of migration. These results suggest that myofibroblast-generated growth factors are important mediators for PGE(2)-induced intestinal epithelial proliferation and angiogenesis, which play critical roles in intestinal homeostasis, inflammation, and neoplasia.
Collapse
Affiliation(s)
- Jinyi Shao
- Department of Surgery and Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
19
|
Goncharevskaya OA, Natochin YV. Micropuncture study of ion and water reabsorption regulation range in the distal tubule of triton nephron. Bull Exp Biol Med 2005; 139:43-5. [PMID: 16142272 DOI: 10.1007/s10517-005-0207-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Micropuncture of the distal tubule in triton nephron and ultramicroanalysis of samples showed that vasotocin stimulates transport of Ca2+, Na+, Mg2+, and Cl- from the nephron lumen and increases permeability of the tubular wall for water. Prostaglandin E2 suppresses these processes.
Collapse
Affiliation(s)
- O A Goncharevskaya
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
20
|
Jones R, Adel-Alvarez LA, Alvarez OR, Broaddus R, Das S. Arachidonic acid and colorectal carcinogenesis. Mol Cell Biochem 2004. [PMID: 14619964 DOI: 10.1023/a:10260604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Colorectal carcinoma is a leading cause of cancer related death worldwide. This deadly disease advances through a series of clinical and histopathological stages, initiated by single crypt lesions to small benign tumors and finally to malignancy. Although some progress has been made in elucidating the formation of colorectal tumors at molecular/genetic levels, the possible mechanisms of dietary lipids in inducing and promoting colorectal tumorigenesis are poorly understood. Recent epidemiological studies, however, indicate that lipid-rich diet containing omega-6 fatty acids (i.e. linoleic acid, arachidonic acid, etc.) may somehow be related with the disease process. Rapid metabolism of arachidonic acid, increased activities of phospholipases (i.e. phospholipase-A2s), and the elevated levels of cyclooxygenase (COX) and lipoxygenase (LOX) in colonic cells were reported in various stages of the malignancy, suggesting a possible link between dietary lipids and the incidence of colorectal cancer. The major focus of this review is to delineate the recent findings on enhanced arachidonic acid metabolism and its conversion into eicosanoids during the initiation and progression of colorectal carcinogenesis. In addition, the identification and participation of various phospholipases are also discussed. It is speculated that many of these phospholipases can be used as targets for developing new drugs against colorectal as well as other adenocarcinomas.
Collapse
Affiliation(s)
- Raymond Jones
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | | | | | | | | |
Collapse
|
21
|
Jones R, Adel-Alvarez LA, Alvarez OR, Broaddus R, Das S. Arachidonic acid and colorectal carcinogenesis. Mol Cell Biochem 2004; 253:141-9. [PMID: 14619964 DOI: 10.1023/a:1026060426569] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Colorectal carcinoma is a leading cause of cancer related death worldwide. This deadly disease advances through a series of clinical and histopathological stages, initiated by single crypt lesions to small benign tumors and finally to malignancy. Although some progress has been made in elucidating the formation of colorectal tumors at molecular/genetic levels, the possible mechanisms of dietary lipids in inducing and promoting colorectal tumorigenesis are poorly understood. Recent epidemiological studies, however, indicate that lipid-rich diet containing omega-6 fatty acids (i.e. linoleic acid, arachidonic acid, etc.) may somehow be related with the disease process. Rapid metabolism of arachidonic acid, increased activities of phospholipases (i.e. phospholipase-A2s), and the elevated levels of cyclooxygenase (COX) and lipoxygenase (LOX) in colonic cells were reported in various stages of the malignancy, suggesting a possible link between dietary lipids and the incidence of colorectal cancer. The major focus of this review is to delineate the recent findings on enhanced arachidonic acid metabolism and its conversion into eicosanoids during the initiation and progression of colorectal carcinogenesis. In addition, the identification and participation of various phospholipases are also discussed. It is speculated that many of these phospholipases can be used as targets for developing new drugs against colorectal as well as other adenocarcinomas.
Collapse
Affiliation(s)
- Raymond Jones
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | | | | | | | | |
Collapse
|
22
|
Hull MA, Ko SC, Hawcroft G. Prostaglandin EP receptors: Targets for treatment and prevention of colorectal cancer? Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.1031.3.8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
The importance of the prostaglandin (PG) synthesis pathway, particularly the rate-limiting enzymatic step catalyzed by cyclooxygenase, to colorectal carcinogenesis and development of novel anticolorectal cancer therapy is well established. The predominant PG species in benign and malignant colorectal tumors is PGE2. PGE2 acts via four EP receptors termed EP1 to EP4. Recently, EP receptors have been identified as potential targets for treatment and/or prevention of colorectal cancer. This review summarizes existing knowledge of the expression and function of the EP receptor subtypes in human and rodent intestine during tumorigenic progression and describes the current literature on targeting EP receptor signaling during intestinal tumorigenesis.
Collapse
Affiliation(s)
- Mark A. Hull
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | - Stanley C.W. Ko
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | - Gillian Hawcroft
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
23
|
Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, Snover DC, Church TR, Allen JI, Beach M, Beck GJ, Bond JH, Byers T, Greenberg ER, Mandel JS, Marcon N, Mott LA, Pearson L, Saibil F, van Stolk RU. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 2003; 348:891-9. [PMID: 12621133 DOI: 10.1056/nejmoa021735] [Citation(s) in RCA: 1019] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Laboratory and epidemiologic data suggest that aspirin has an antineoplastic effect in the large bowel. METHODS We performed a randomized, double-blind trial of aspirin as a chemopreventive agent against colorectal adenomas. We randomly assigned 1121 patients with a recent history of histologically documented adenomas to receive placebo (372 patients), 81 mg of aspirin (377 patients), or 325 mg of aspirin (372 patients) daily. According to the protocol, follow-up colonoscopy was to be performed approximately three years after the qualifying endoscopy. We compared the groups with respect to the risk of one or more neoplasms (adenomas or colorectal cancer) at least one year after randomization using generalized linear models to compute risk ratios and 95 percent confidence intervals. RESULTS Reported adherence to study medications and avoidance of nonsteroidal antiinflammatory drugs were excellent. Follow-up colonoscopy was performed at least one year after randomization in 1084 patients (97 percent). The incidence of one or more adenomas was 47 percent in the placebo group, 38 percent in the group given 81 mg of aspirin per day, and 45 percent in the group given 325 mg of aspirin per day (global P=0.04). Unadjusted relative risks of any adenoma (as compared with the placebo group) were 0.81 in the 81-mg group (95 percent confidence interval, 0.69 to 0.96) and 0.96 in the 325-mg group (95 percent confidence interval, 0.81 to 1.13). For advanced neoplasms (adenomas measuring at least 1 cm in diameter or with tubulovillous or villous features, severe dysplasia, or invasive cancer), the respective relative risks were 0.59 (95 percent confidence interval, 0.38 to 0.92) and 0.83 (95 percent confidence interval, 0.55 to 1.23). CONCLUSIONS Low-dose aspirin has a moderate chemopreventive effect on adenomas in the large bowel.
Collapse
Affiliation(s)
- John A Baron
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Turini ME, DuBois RN. Primary prevention: phytoprevention and chemoprevention of colorectal cancer. Hematol Oncol Clin North Am 2002; 16:811-40. [PMID: 12418050 DOI: 10.1016/s0889-8588(02)00030-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Considering the various stages of carcinogenesis and the numerous tumor types and available chemoprevention agents, knowledge of the etiology and the type of cancer to be treated, or possibly prevented, and understanding of the mechanisms by which agents exert their chemoprevention benefits may provide for improved strategy in designing therapeutic regimens. Because cancer usually develops over a 10- to 20-year period, it may be necessary for some agents to be provided before or early in the initiation steps of carcinogenesis to have beneficial effects. On the other hand, some agents may be more suitable for CRC prevention if provided at a later stage of carcinogenesis. Gene array, genomics, and proteomics are useful tools in advancing our understanding of the molecular events involved in carcinogenesis and in identifying markers of risk and surrogate end-points for colorectal cancer progression. These techniques may also serve for screening, identifying, and providing treatment targets for high-risk patients populations. Treatment could be developed depending on a patient's individual needs and genomic tumor profile. Clinical markers and surrogate end-points should be considered, together with molecular measurements, to more accurately assess risk. NSAIDs and COXIBs are clinically recognized as chemoprevention agents, and clinical trials evaluating their efficacy are ongoing. Treatment protocols, including dose and timing, remain to be determined, however. DFMO may best be used in combination with other chemoprevention agents. Dietary fiber and calcium supplements, as part of an overall low-fat diet, may decrease CRC risk. Long-term compliance with this regimen may be necessary to effect a beneficial outcome. Folate holds promise but needs further investigation, especially because its beneficial effects may depend on cancer type. Phytochemicals have been identified as strong candidates for use as agents to prevent colorectal cancer in cell culture and in rodent models of carcinogenesis. Their potential as chemoprevention agents must be demonstrated in clinical trials. In vitro and animal studies indicated that combination therapy may be a promising strategy over the monotherapy approach; clinical trials addressing the safety and efficacy of some combinations (DFMO/sulindac, fiber/calcium) are underway. The gastrointestinal tract and other organs are constantly exposed to a mixture of potentially toxic compounds and molecules considered favorable to health. Homeostasis between stress-mediated by toxic compounds and defensive mechanisms, is key for the maintenance of health and the prevention of disease. Whereas aggressive pharmacologic treatment may be necessary for patients at high risk for cancer, dietary supplements may be useful for populations at normal risk. The message for cancer prevention in the general population may well remain: keep a balanced healthy diet, eating a variety from all food groups, as part of a healthy lifestyle that includes moderate exercise.
Collapse
Affiliation(s)
- Marco E Turini
- Department of Nutrition, Nestlé Research Center, Post Offic Box 44, CH-1000 Lausanne 26, Switzerland
| | | |
Collapse
|
25
|
Dommels YEM, Alink GM, van Bladeren PJ, van Ommen B. Dietary n-6 and n-3 polyunsaturated fatty acids and colorectal carcinogenesis: results from cultured colon cells, animal models and human studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2002; 11:297-308. [PMID: 21782613 DOI: 10.1016/s1382-6689(02)00006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2001] [Revised: 12/18/2001] [Accepted: 01/11/2002] [Indexed: 05/31/2023]
Abstract
During the past few decades, many studies have been conducted to evaluate the effects of n-6 and n-3 polyunsaturated fatty acids (PUFAs) on colorectal carcinogenesis. This report provides a brief overview of the recent studies that have been performed in cultured colon cells, animal models as well as of the population-based and short-term biomarker studies with humans. No differential effect between n-6 and n-3 PUFAs has been observed in vitro. Results from animal models indicate that n-6 PUFAs have a tumor enhancing effect, predominantly during the post-initiation phase. n-3 PUFAs may protect against colorectal carcinogenesis during both the initiation and post-initiation phase. Population-based human studies show little or no associations between n-6 or n-3 PUFA intake and colorectal cancer. Short-term biomarker studies in humans suggest though that fish oil (FO) supplementation with high amounts of n-3 PUFAs may protect against colorectal carcinogenesis and that n-6 PUFA supplementation may increase the risk.
Collapse
Affiliation(s)
- Yvonne E M Dommels
- WUR/TNO Centre for Food Toxicology, The Netherlands; Toxicology Group, Division of Toxicology, Wageningen University, Tuinlaan 5, PO Box 8000, 6700 EA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
26
|
|
27
|
Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, Tsuboi K, Sugimoto Y, Kobayashi T, Miyachi Y, Ichikawa A, Narumiya S. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest 2002. [PMID: 11927615 DOI: 10.1172/jci0214459] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We used mice deficient in each of the eight types and subtypes of prostanoid receptors and examined the roles of prostanoids in dextran sodium sulfate-induced (DSS-induced) colitis. Among the prostanoid receptor-deficient mice, only EP4-deficient mice and not mice deficient in either DP, EP1, EP2, EP3, FP, IP, or TP developed severe colitis with 3% DSS treatment, which induced only marginal colitis in wild-type mice. This phenotype was mimicked in wild-type mice by administration of an EP4-selective antagonist (AE3-208). The EP4 deficiency impaired mucosal barrier function and induced epithelial loss, crypt damage, and aggregation of neutrophils and lymphocytes in the colon. Conversely, administration of an EP4-selective agonist (AE1-734) to wild-type mice ameliorated severe colitis normally induced with 7% DSS, while that of AE3-208 suppressed recovery from colitis and induced significant proliferation of CD4+ T cells. In vitro AE3-208 enhanced and AE1-734 suppressed the proliferation and Th1 cytokine production of lamina propria mononuclear cells from the colon. DNA microarray analysis revealed elevated expression of genes associated with immune response and reduced expression of genes with mucosal repair and remodeling in the colon of EP4-deficient mice. We conclude that EP4 maintains intestinal homeostasis by keeping mucosal integrity and downregulating immune response.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cell Division
- Colon/drug effects
- Colon/immunology
- Colon/pathology
- Dextran Sulfate/adverse effects
- Dinoprostone/immunology
- Dinoprostone/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Down-Regulation
- Indomethacin/adverse effects
- Inflammatory Bowel Diseases/chemically induced
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/physiopathology
- Interferon-gamma/biosynthesis
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/immunology
- Receptors, Prostaglandin E, EP4 Subtype
- Signal Transduction/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, Tsuboi K, Sugimoto Y, Kobayashi T, Miyachi Y, Ichikawa A, Narumiya S. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest 2002; 109:883-93. [PMID: 11927615 PMCID: PMC150928 DOI: 10.1172/jci14459] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We used mice deficient in each of the eight types and subtypes of prostanoid receptors and examined the roles of prostanoids in dextran sodium sulfate-induced (DSS-induced) colitis. Among the prostanoid receptor-deficient mice, only EP4-deficient mice and not mice deficient in either DP, EP1, EP2, EP3, FP, IP, or TP developed severe colitis with 3% DSS treatment, which induced only marginal colitis in wild-type mice. This phenotype was mimicked in wild-type mice by administration of an EP4-selective antagonist (AE3-208). The EP4 deficiency impaired mucosal barrier function and induced epithelial loss, crypt damage, and aggregation of neutrophils and lymphocytes in the colon. Conversely, administration of an EP4-selective agonist (AE1-734) to wild-type mice ameliorated severe colitis normally induced with 7% DSS, while that of AE3-208 suppressed recovery from colitis and induced significant proliferation of CD4+ T cells. In vitro AE3-208 enhanced and AE1-734 suppressed the proliferation and Th1 cytokine production of lamina propria mononuclear cells from the colon. DNA microarray analysis revealed elevated expression of genes associated with immune response and reduced expression of genes with mucosal repair and remodeling in the colon of EP4-deficient mice. We conclude that EP4 maintains intestinal homeostasis by keeping mucosal integrity and downregulating immune response.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/adverse effects
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cell Division
- Colon/drug effects
- Colon/immunology
- Colon/pathology
- Dextran Sulfate/adverse effects
- Dinoprostone/immunology
- Dinoprostone/pharmacology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Down-Regulation
- Indomethacin/adverse effects
- Inflammatory Bowel Diseases/chemically induced
- Inflammatory Bowel Diseases/immunology
- Inflammatory Bowel Diseases/physiopathology
- Interferon-gamma/biosynthesis
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/antagonists & inhibitors
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E/immunology
- Receptors, Prostaglandin E, EP4 Subtype
- Signal Transduction/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Kenji Kabashima
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Over the past three decades studies have been conducted to determine the role of prostaglandins in normal physiology and in certain diseases. Cyclo-oxygenase (COX) or prostaglandin endoperoxide synthase (Pghs) is required for the conversion of arachidonic acid to prostaglandins. Two isoforms of this enzyme have been identified which are referred to as COX-1 and COX-2. Under most circumstances, COX-1 is produced constitutively, whereas COX-2 can be induced by several physiological stimuli and is expressed at sites of inflammation. Although these isozymes catalyze identical reactions, they are often regulated by different signalling systems. The goal of this chapter is to provide a review of the role of cyclo-oxygenase in biology and disease, and to summarize the current understanding of mechanisms for the regulation of COX-2 expression.
Collapse
Affiliation(s)
- E Stack
- Department of Medicine/GI, Vanderbilt University Medical Center, Nashville, TN 27232-2279, USA
| | | |
Collapse
|
30
|
Foreword. Prostaglandins Other Lipid Mediat 2000; 61:89-90. [PMID: 10867122 DOI: 10.1016/s0090-6980(00)00065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|