1
|
Jiang J, Ji L, Qin Y, Yi Y, Chang Y, Liu T, Liu J, Zhang X. Structural insights into interaction of maize lipoxygenase ZmLox3 with Ustilago maydis effector Rip1. Biochem Biophys Res Commun 2025; 760:151719. [PMID: 40158405 DOI: 10.1016/j.bbrc.2025.151719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Lipoxygenases (LOXs) are ubiquitous enzymes in plants and play pivotal roles in various plant physiological processes, including plant immunity. The biotrophic fungus Ustilago maydis secretes effector Rip1 to target Zea mays lipoxygenase 3 (ZmLox3), which acts as a negative modulator of extracellular ROS burst. This interaction suppresses ROS production in maize, but the molecular interaction mechanisms underlying effector-mediated lipoxygenase regulation remain elusive. In this study, we obtained the crystal structure of ZmLox3, revealing a conserved β-barrel domain in its amino-terminal domain and iron-binding site and substrate-binding pocket in carboxy-terminal domain. The AlphaFold3-generated complex model of Zmlox3 with Rip1 demonstrates that critical residue R43 of Rip1 stabilizes the interaction interface by forming the hydrogen bond network with the side chains of ZmLox3 residues S274, D333, and E772. Furthermore, Rip1 enhances ZmLox3 enzymatic activity, thereby reducing maize susceptibility to U. maydis infection. This study provides insights into the interaction between a pathogen effector and a host susceptibility protein, proposing a mechanistic basis for improving maize resistance breeding through rational modification of susceptibility genes.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lifeng Ji
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yiling Qin
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yaqi Yi
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongqi Chang
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Tian Liu
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junfeng Liu
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, China
| | - Xin Zhang
- State Key Laboratory of Maize Bio-breeding, Joint International Research Laboratory of Crop Molecular Breeding, Ministry of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control, College of Plant Protection, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Moore SM, Sun C, Steele JL, Laaker EM, Rheingold AL, Doerrer LH. HAA by the first {Mn(iii)OH} complex with all O-donor ligands. Chem Sci 2023; 14:8187-8195. [PMID: 37538819 PMCID: PMC10395311 DOI: 10.1039/d3sc01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
There is considerable interest in MnOHx moieties, particularly in the stepwise changes in those O-H bonds in tandem with Mn oxidation state changes. The reactivity of aquo-derived ligands, {MOHx}, is also heavily influenced by the electronic character of the other ligands. Despite the prevalence of oxygen coordination in biological systems, preparation of mononuclear Mn complexes of this type with all O-donors is rare. Herein, we report several Mn complexes with perfluoropinacolate (pinF)2- including the first example of a crystallographically characterized mononuclear {Mn(iii)OH} with all O-donors, K2[Mn(OH)(pinF)2], 3. Complex 3 is prepared via deprotonation of K[Mn(OH2)(pinF)2], 1, the pKa of which is estimated to be 18.3 ± 0.3. Cyclic voltammetry reveals quasi-reversible redox behavior for both 1 and 3 with an unusually large ΔEp, assigned to the Mn(iii/ii) couple. Using the Bordwell method, the bond dissociation free energy (BDFE) of the O-H bond in {Mn(ii)-OH2} is estimated to be 67-70 kcal mol-1. Complex 3 abstracts H-atoms from 1,2-diphenylhydrazine, 2,4,6-TTBP, and TEMPOH, the latter of which supports a PCET mechanism. Under basic conditions in air, the synthesis of 1 results in K2[Mn(OAc)(pinF)2], 2, proposed to result from the oxidation of Et2O to EtOAc by a reactive Mn species, followed by ester hydrolysis. Complex 3 alone does not react with Et2O, but addition of O2 at low temperature effects the formation of a new chromophore proposed to be a Mn(iv) species. The related complexes K(18C6)[Mn(iii)(pinF)2], 4, and (Me4N)2[Mn(ii)(pinF)2], 5, have also been prepared and their properties discussed in relation to complexes 1-3.
Collapse
Affiliation(s)
- Shawn M Moore
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Chen Sun
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Jennifer L Steele
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Ellen M Laaker
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| | - Arnold L Rheingold
- University of California, San Diego Department of Chemistry and Biochemistry 9500 Gilman Drive La Jolla California 92093 USA
| | - Linda H Doerrer
- Boston University, Chemistry Department 590 Commonwealth Avenue Boston Massachusetts 02215 USA
| |
Collapse
|
3
|
Smirnova EO, Egorova AM, Lantsova NV, Chechetkin IR, Toporkova YY, Grechkin AN. Recombinant Soybean Lipoxygenase 2 (GmLOX2) Acts Primarily as a ω6( S)-Lipoxygenase. Curr Issues Mol Biol 2023; 45:6283-6295. [PMID: 37623215 PMCID: PMC10452975 DOI: 10.3390/cimb45080396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The lipoxygenase (LOX) cascade is a source of bioactive oxylipins that play a regulatory role in plants, animals, and fungi. Soybean (Glycine max (L.) Merr.) LOXs are the classical models for LOX research. Progress in genomics has uncovered a large diversity of GmLOX isoenzymes. Most of them await biochemical investigations. The catalytic properties of recombinant soybean LOX2 (GmLOX2) are described in the present work. The GmLOX2 gene has been cloned before, but only for nucleotide sequencing, while the recombinant protein was not prepared and studied. In the present work, the recombinant GmLOX2 behavior towards linoleic, α-linolenic, eicosatetraenoic (20:4), eicosapentaenoic (20:5), and hexadecatrienoic (16:3) acids was examined. Linoleic acid was a preferred substrate. Oxidation of linoleic acid afforded 94% optically pure (13S)-hydroperoxide and 6% racemic 9-hydroperoxide. GmLOX2 was less active on other substrates but possessed an even higher degree of regio- and stereospecificity. For example, it converted α-linolenic acid into (13S)-hydroperoxide at about 98% yield. GmLOX2 showed similar specificity towards other substrates, producing (15S)-hydroperoxides (with 20:4 and 20:5) or (11S)-hydroperoxide (with 16:3). Thus, the obtained data demonstrate that soybean GmLOX2 is a specific (13S)-LOX. Overall, the catalytic properties of GmLOX2 are quite similar to those of GmLOX1, but pH is optimum.
Collapse
Affiliation(s)
- Elena O. Smirnova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia; (A.M.E.); (N.V.L.); (I.R.C.)
| | | | | | | | | | - Alexander N. Grechkin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, P.O. Box 261, 420111 Kazan, Russia; (A.M.E.); (N.V.L.); (I.R.C.)
| |
Collapse
|
4
|
Öztürk Kesebir A. Purification and Characterization of Lipoxygenase from Walnuts (Juglans Regia) and Investigation of the Effects of Some Phenolic Compounds on the Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202203961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Arzu Öztürk Kesebir
- Faculty of Science Department of Chemistry, Atatürk University 25240 Erzurum Turkey
| |
Collapse
|
5
|
Oliw EH. Iron and manganese lipoxygenases of plant pathogenic fungi and their role in biosynthesis of jasmonates. Arch Biochem Biophys 2022; 722:109169. [PMID: 35276213 DOI: 10.1016/j.abb.2022.109169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023]
Abstract
Lipoxygenases (LOX) contain catalytic iron (FeLOX), but fungi also produce LOX with catalytic manganese (MnLOX). In this review, the 3D structures and properties of fungal LOX are compared and contrasted along with their associations with pathogenicity. The 3D structures and properties of two MnLOX (Magnaporthe oryzae, Geaumannomyces graminis) and the catalysis of five additional MnLOX have provided information on the metal center, substrate binding, oxygenation, tentative O2 channels, and biosynthesis of exclusive hydroperoxides. In addition, the genomes of other plant pathogens also code for putative MnLOX. Crystals of the 13S-FeLOX of Fusarium graminearum revealed an unusual altered geometry of the Fe ligands between mono- and dimeric structures, influenced by a wrapping sequence extension near the C-terminal of the dimers. In plants, the enzymes involved in jasmonate synthesis are well documented whereas the fungal pathway is yet to be fully elucidated. Conversion of deuterium-labeled 18:3n-3, 18:2n-6, and their 13S-hydroperoxides to jasmonates established 13S-FeLOX of F. oxysporum in the biosynthesis, while subsequent enzymes lacked sequence homologues in plants. The Rice-blast (M. oryzae) and the Take-all (G. graminis) fungi secrete MnLOX to support infection, invasive hyphal growth, and cell membrane oxidation, contributing to their devastating impact on world production of rice and wheat.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
6
|
Kang Y, Liu W, Guan C, Guan M, He X. Evolution and functional diversity of lipoxygenase (LOX) genes in allotetraploid rapeseed (Brassica napus L.). Int J Biol Macromol 2021; 188:844-854. [PMID: 34416264 DOI: 10.1016/j.ijbiomac.2021.08.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023]
Abstract
Lipoxygenase (LOX, EC 1.13.11.12) is a non-haeme iron-containing dioxygenase family that catalyzes the oxygenation of polyunsaturated fatty acids into bio-functionally fatty acid diverse (oxylipins) and plays vital role in plant growth and development and responses to abiotic and biotic stresses. Though LOX genes have been studied in many plant species, their roles in Brassicaceae species are still unknown. Here, a set of 14, 18, and 33 putative LOX genes were identified in Brassica rapa, Brassica oleracea and Brassica napus (allotetraploid rapeseed), respectively, which could be divided into 9-LOX (LOX1/5), 13-LOX type I (LOX3/4/6), and type II (LOX2) subgroups. There was an expansion of LOX2 orthologous genes in Brassicaceae. Most of the LOX genes are intron rich and conserved in gene structure, and the LOX proteins all have the conserved lipoxygenase and PLAT/LH2 domain. Ka/Ks ratio revealed that the majority of LOXs underwent purifying selection in Brassicaceae. The light-, ABA-, MeJA-related cis-elements and MYB-binding sites in the promoters of BnaLOXs were the most abundant. BnaLOXs displayed different spatiotemporal expression patterns and various abiotic/biotic stress responsive expression patterns. BnaLOX1/5 were slightly or no response to phytohormones and abiotic stresses. BnaLOX3/4/6 predominantly express in roots and were strongly up-regulated by salinity and PEG treatments, and BnaLOX3/4 were the methyl jasmonate (MeJA) and salicylic acid (SA) early response genes and strongly induced by infection of Sclerotinia sclerotiorum; while the BnaLOX2 members predominantly express in stamens, were MeJA and SA continuous response genes and strongly repressed by cold, heat and waterlogging treatments in leaves. Our results are useful for understanding the biological functions of the BnaLOX genes in allotetraploid rapeseed.
Collapse
Affiliation(s)
- Yu Kang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wei Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Chunyun Guan
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China
| | - Mei Guan
- Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China
| | - Xin He
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, Hunan 410128, China; Oil Crops Research, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Branch of National Oilseed Crops Improvement Center, Changsha, Hunan 410128, China.
| |
Collapse
|
7
|
Oliw EH. Fatty acid dioxygenase-cytochrome P450 fusion enzymes of filamentous fungal pathogens. Fungal Genet Biol 2021; 157:103623. [PMID: 34520871 DOI: 10.1016/j.fgb.2021.103623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Oxylipins designate oxygenated unsaturated C18 fatty acids. Many filamentous fungi pathogens contain dioxygenases (DOX) in oxylipin biosynthesis with homology to human cyclooxygenases. They contain a DOX domain, which is often fused to a functional cytochrome P450 at the C-terminal end. A Tyr radical in the DOX domain initiates dioxygenation of linoleic acid by hydrogen abstraction with formation of 8-, 9-, or 10-hydroperoxy metabolites. The P450 domains can catalyze heterolytic cleavage of 8- and 10-hydroperoxides with oxidation of the heme thiolate iron for hydroxylation at C-5, C-7, C-9, or C-11 and for epoxidation of the 12Z double bond; thus displaying linoleate diol synthase (LDS) and epoxy alcohol synthase (EAS) activities. LSD activities are present in the rice blast pathogen Magnaporthe oryzae, Botrytis cinerea causing grey mold and the black scurf pathogen Rhizoctonia solani. 10R-DOX-EAS has been found in M. oryzae and Fusarium oxysporum. The P450 domains may also catalyze homolytic cleavage of 8- and 9-hydroperoxy fatty acids and dehydration to produce epoxides with an adjacent double bond, i.e., allene oxides, thus displaying 8- and 9-DOX-allene oxide synthases (AOS). F. oxysporum, F. graminearum, and R. solani express 9S-DOX-AOS and Zymoseptoria tritici 8S-and 9R-DOX-AOS. Homologues are present in endemic human-pathogenic fungi with extensive studies in Aspergillus fumigatus, A. flavus (also a plant pathogen) as well as the genetic model A. nidulans. 8R-and 10R-DOX appear to bind fatty acids "headfirst" in the active site, whereas 9S-DOX binds them "tail first" in analogy with cyclooxygenases. The biological relevance of 8R-DOX-5,8-LDS (also designated PpoA) was first discovered in relation to sporulation of A. nidulans and recently for development and programmed hyphal branching of A. fumigatus. Gene deletion DOX-AOS homologues in F. verticillioides, A. flavus, and A. nidulans alters, inter alia, mycotoxin production, sporulation, and gene expression.
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
8
|
Structural investigation of the catalytic activity of Fe(III) and Mn(III) Schiff base complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Oliw EH. WITHDRAWN: Fatty acid dioxygenase-cytochrome P450 fusion enzymes of the top 10 fungal pathogens in molecular plant pathology and human-pathogenic fungi. Fungal Genet Biol 2021:103603. [PMID: 34214670 DOI: 10.1016/j.fgb.2021.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/21/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Ernst H Oliw
- Division of Biochemical Pharmacology, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
10
|
Speckbacher V, Ruzsanyi V, Martinez-Medina A, Hinterdobler W, Doppler M, Schreiner U, Böhmdorfer S, Beccaccioli M, Schuhmacher R, Reverberi M, Schmoll M, Zeilinger S. The Lipoxygenase Lox1 Is Involved in Light- and Injury-Response, Conidiation, and Volatile Organic Compound Biosynthesis in the Mycoparasitic Fungus Trichoderma atroviride. Front Microbiol 2020; 11:2004. [PMID: 32973724 PMCID: PMC7482316 DOI: 10.3389/fmicb.2020.02004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022] Open
Abstract
The necrotrophic mycoparasite Trichoderma atroviride is a biological pest control agent frequently applied in agriculture for the protection of plants against fungal phytopathogens. One of the main secondary metabolites produced by this fungus is 6-pentyl-α-pyrone (6-PP). 6-PP is an organic compound with antifungal and plant growth-promoting activities, whose biosynthesis was previously proposed to involve a lipoxygenase (Lox). In this study, we investigated the role of the single lipoxygenase-encoding gene lox1 encoded in the T. atroviride genome by targeted gene deletion. We found that light inhibits 6-PP biosynthesis but lox1 is dispensable for 6-PP production as well as for the ability of T. atroviride to parasitize and antagonize host fungi. However, we found Lox1 to be involved in T. atroviride conidiation in darkness, in injury-response, in the production of several metabolites, including oxylipins and volatile organic compounds, as well as in the induction of systemic resistance against the plant-pathogenic fungus Botrytis cinerea in Arabidopsis thaliana plants. Our findings give novel insights into the roles of a fungal Ile-group lipoxygenase and expand the understanding of a light-dependent role of these enzymes.
Collapse
Affiliation(s)
| | - Veronika Ruzsanyi
- Institute for Breath Research, University of Innsbruck, Innsbruck, Austria
| | - Ainhoa Martinez-Medina
- Plant-Microbe Interaction Unit, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA-CSIC), Salamanca, Spain
| | - Wolfgang Hinterdobler
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Maria Doppler
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Ulrike Schreiner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Stefan Böhmdorfer
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Tulln, Austria
| | | | - Rainer Schuhmacher
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University, Rome, Italy
| | - Monika Schmoll
- Center for Health and Bioresources, AIT Austrian Institute of Technology, Tulln, Austria
| | - Susanne Zeilinger
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020; 25:molecules25153374. [PMID: 32722330 PMCID: PMC7436259 DOI: 10.3390/molecules25153374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/18/2022] Open
Abstract
Lipoxygenases (LOXs) catalyze the (per) oxidation of fatty acids that serve as important mediators for cell signaling and inflammation. These reactions are initiated by a C-H activation step that is allosterically regulated in plant and animal enzymes. LOXs from higher eukaryotes are equipped with an N-terminal PLAT (Polycystin-1, Lipoxygenase, Alpha-Toxin) domain that has been implicated to bind to small molecule allosteric effectors, which in turn modulate substrate specificity and the rate-limiting steps of catalysis. Herein, the kinetic and structural evidence that describes the allosteric regulation of plant and animal lipoxygenase chemistry by fatty acids and their derivatives are summarized.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA;
| |
Collapse
|
12
|
Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum – Modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genet Biol 2020; 139:103383. [DOI: 10.1016/j.fgb.2020.103383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022]
|
13
|
Mohd Amin SN, Md Idris MH, Selvaraj M, Mohd Amin SN, Jamari H, Kek TL, Salleh MZ. Virtual screening, ADME study, and molecular dynamic simulation of chalcone and flavone derivatives as 5-Lipoxygenase (5-LO) inhibitor. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1732961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Siti Norhidayah Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Muhd Hanis Md Idris
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | | | - Siti Norhidayu Mohd Amin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Hisyam Jamari
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Teh Lay Kek
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Selangor, Bandar Puncak Alam, Malaysia
| |
Collapse
|
14
|
Stolterfoht H, Rinnofner C, Winkler M, Pichler H. Recombinant Lipoxygenases and Hydroperoxide Lyases for the Synthesis of Green Leaf Volatiles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:13367-13392. [PMID: 31591878 DOI: 10.1021/acs.jafc.9b02690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Green leaf volatiles (GLVs) are mainly C6- and in rare cases also C9-aldehydes, -alcohols, and -esters, which are released by plants in response to biotic or abiotic stresses. These compounds are named for their characteristic smell reminiscent of freshly mowed grass. This review focuses on GLVs and the two major pathway enzymes responsible for their formation: lipoxygenases (LOXs) and fatty acid hydroperoxide lyases (HPLs). LOXs catalyze the peroxidation of unsaturated fatty acids, such as linoleic and α-linolenic acids. Hydroperoxy fatty acids are further converted by HPLs into aldehydes and oxo-acids. In many industrial applications, plant extracts have been used as LOX and HPL sources. However, these processes are limited by low enzyme concentration, stability, and specificity. Alternatively, recombinant enzymes can be used as biocatalysts for GLV synthesis. The increasing number of well-characterized enzymes efficiently expressed by microbial hosts will foster the development of innovative biocatalytic processes for GLV production.
Collapse
Affiliation(s)
- Holly Stolterfoht
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
| | - Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- bisy e.U. , Wetzawinkel 20 , 8200 Hofstaetten , Austria
| | - Margit Winkler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology , Petersgasse 14 , 8010 Graz , Austria
- Institute of Molecular Biotechnology , TU Graz, NAWI Graz, BioTechMed Graz , Petersgasse 14 , 8010 Graz , Austria
| |
Collapse
|
15
|
Holková I, Rauová D, Mergová M, Bezáková L, Mikuš P. Purification and Product Characterization of Lipoxygenase from Opium Poppy Cultures ( Papaver somniferum L.). Molecules 2019; 24:molecules24234268. [PMID: 31771143 PMCID: PMC6930461 DOI: 10.3390/molecules24234268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/31/2023] Open
Abstract
Opium poppy (Papaver somniferum L.) is an ancient medicinal plant producing pharmaceutically important benzylisoquinoline alkaloids. In the present work we focused on the study of enzyme lipoxygenase (LOX, EC 1.13.11.12) from opium poppy cultures. LOX is involved in lipid peroxidation and lipoxygenase oxidation products of polyunsaturated fatty acids have a significant role in regulation of growth, development and plant defense responses to biotic or abiotic stress. The purpose of this study was to isolate and characterize LOX enzyme from opium poppy callus cultures. LOX was purified by ammonium sulfate precipitation and then followed by hydrophobic chromatography using Phenyl-Sepharose CL-4B and hydroxyapatite chromatography using HA Ultrogel sorbent. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and immunoblotting revealed that LOX from opium poppy cultures was a single monomeric protein showing the relative molecular weight of 83 kDa. To investigate the positional specificity of the LOX reaction, purified LOX was incubated with linoleic acid and the products were analyzed by high-performance liquid chromatography in two steps, firstly with reverse phase (120-5 Nucleosil C18 column) and secondly with normal phase (Zorbax Rx-SIL column). LOX converted linoleic acid primarily to 13-hydroperoxy-(9Z,11E)-octadecadienoic acids (78%) and to a lesser extent 9-hydroperoxy-(10E,12Z)-octadecadienoic acids (22%). Characterization of LOX from opium poppy cultures provided valuable information in understanding LOX involvement in regulation of signaling pathways leading to biosynthesis of secondary metabolites with significant biological activity.
Collapse
Affiliation(s)
- Ivana Holková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
- Correspondence: ; Tel.: +421-250-117-313
| | - Drahomíra Rauová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (D.R.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Michaela Mergová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
| | - Lýdia Bezáková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (D.R.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
16
|
Pittner E, Marek J, Bortuli D, Santos LA, Knob A, Faria CMDR. Defense responses of wheat plants (Triticum aestivum L.) against brown spot as a result of possible elicitors application. ARQUIVOS DO INSTITUTO BIOLÓGICO 2019. [DOI: 10.1590/1808-1657000312017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: The objective of this research was to evaluate the response of wheat plants to the application of possible elicitor compounds against Bipolaris sorokiniana pathogen. This response was measured through the quantification of antioxidant enzymes, malondialdehyde and flavonoids, evaluation of the severity of brown spot disease and productivity in wheat, greenhouse and field crops. The treatments consisted of suspensions of endophytic fungi Aspergillus japonicus and Trichoderma tomentosum, salicylic acid, acibenzolar-S-methyl and fungicide. In the field trials, in 2015 and 2016, the development of the disease was lower and productivity was higher in all treatments, with emphasis on the fungicide. However, endophytic fungi suspensions demonstrated potential as growth promoters, disease severity reducers and protective antioxidant response activators, as they promoted significant increase in superoxide dismutase, catalase, glutathione and flavonoid enzymes.
Collapse
|
17
|
Dar HH, Tyurina YY, Mikulska-Ruminska K, Shrivastava I, Ting HC, Tyurin VA, Krieger J, St Croix CM, Watkins S, Bayir E, Mao G, Armbruster CR, Kapralov A, Wang H, Parsek MR, Anthonymuthu TS, Ogunsola AF, Flitter BA, Freedman CJ, Gaston JR, Holman TR, Pilewski JM, Greenberger JS, Mallampalli RK, Doi Y, Lee JS, Bahar I, Bomberger JM, Bayır H, Kagan VE. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest 2018; 128:4639-4653. [PMID: 30198910 DOI: 10.1172/jci99490] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022] Open
Abstract
Ferroptosis is a death program executed via selective oxidation of arachidonic acid-phosphatidylethanolamines (AA-PE) by 15-lipoxygenases. In mammalian cells and tissues, ferroptosis has been pathogenically associated with brain, kidney, and liver injury/diseases. We discovered that a prokaryotic bacterium, Pseudomonas aeruginosa, that does not contain AA-PE can express lipoxygenase (pLoxA), oxidize host AA-PE to 15-hydroperoxy-AA-PE (15-HOO-AA-PE), and trigger ferroptosis in human bronchial epithelial cells. Induction of ferroptosis by clinical P. aeruginosa isolates from patients with persistent lower respiratory tract infections was dependent on the level and enzymatic activity of pLoxA. Redox phospholipidomics revealed elevated levels of oxidized AA-PE in airway tissues from patients with cystic fibrosis (CF) but not with emphysema or CF without P. aeruginosa. We believe that the evolutionarily conserved mechanism of pLoxA-driven ferroptosis may represent a potential therapeutic target against P. aeruginosa-associated diseases such as CF and persistent lower respiratory tract infections.
Collapse
Affiliation(s)
- Haider H Dar
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Karolina Mikulska-Ruminska
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| | - Indira Shrivastava
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hsiu-Chi Ting
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - James Krieger
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Erkan Bayir
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Gaowei Mao
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | | | - Alexandr Kapralov
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew R Parsek
- Department of Microbiology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Tamil S Anthonymuthu
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | | | | | - Cody J Freedman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Theodore R Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, USA
| | | | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Department of Medicine and.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | | | - Ivet Bahar
- Department of Computational and System Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Hülya Bayır
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Critical Care Medicine
| | - Valerian E Kagan
- Department of Environmental and Occupational Health and Center for Free Radical and Antioxidant Health and.,Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemistry and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Laboratory of Navigational Redox Lipidomics, Institute of Regenerative Medicine, IM Sechenov Moscow State Medical University, Moscow, Russia
| |
Collapse
|
18
|
Li P, Soudackov AV, Hammes-Schiffer S. Fundamental Insights into Proton-Coupled Electron Transfer in Soybean Lipoxygenase from Quantum Mechanical/Molecular Mechanical Free Energy Simulations. J Am Chem Soc 2018; 140:3068-3076. [PMID: 29392938 PMCID: PMC5849423 DOI: 10.1021/jacs.7b13642] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.
Collapse
Affiliation(s)
- Pengfei Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Ave, Urbana, Illinois 61801; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Alexander V. Soudackov
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Ave, Urbana, Illinois 61801; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana−Champaign, 600 South Mathews Ave, Urbana, Illinois 61801; Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520
| |
Collapse
|
19
|
Gessler NN, Filippovich SY, Bachurina GP, Kharchenko EA, Groza NV, Belozerskaya TA. Oxylipins and oxylipin synthesis pathways in fungi. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817060060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Ogorodnikova AV, Mukhitova FK, Grechkin AN. Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12-oxophytodienoic acid and related cyclopentenones. PHYTOCHEMISTRY 2015; 118:42-50. [PMID: 26277770 DOI: 10.1016/j.phytochem.2015.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 05/21/2023]
Abstract
Green tissues of spikemoss Selaginella martensii Spring possessed the complex oxylipins patterns. Major oxylipins were the products of linoleic and α-linolenic acids metabolism via the sequential action of 13-lipoxygenase and divinyl ether synthase (DES) or allene oxide synthase (AOS). AOS products were represented by 12-oxophytodienoic acid (12-oxo-PDA) isomers. Exceptionally, S. martensii possesses high level of 12-oxo-9(13),15-PDA, which is very uncommon in flowering plants. Separate divinyl ethers were purified after micro-preparative incubations of linoleic or α-linolenic acids with homogenate of S. martensii aerial parts. The NMR data allowed us to identify all geometric isomers of divinyl ethers. Linoleic acid was converted to divinyl ethers etheroleic acid, (11Z)-etheroleic acid and a minority of (ω5Z)-etheroleic acid. With α-linolenate precursor, the specificity of divinyl ether biosynthesis was distinct. Etherolenic and (ω5Z)-etherolenic acids were the prevailing products while (11Z)-etherolenic acid was a minor one. Divinyl ethers are detected first time in non-flowering land plant. These are the first observations of fatty acid metabolism through the lipoxygenase pathway in spikemosses (Lycopodiophyta).
Collapse
Affiliation(s)
- Anna V Ogorodnikova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Fakhima K Mukhitova
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia
| | - Alexander N Grechkin
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russia.
| |
Collapse
|
21
|
Heshof R, de Graaff LH, Villaverde JJ, Silvestre AJ, Haarmann T, Dalsgaard TK, Buchert J. Industrial potential of lipoxygenases. Crit Rev Biotechnol 2015; 36:665-74. [DOI: 10.3109/07388551.2015.1004520] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Leo H. de Graaff
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, The Netherlands,
| | - Juan J. Villaverde
- Department of Chemistry, CICECO, University of Aveiro, Aveiro, Portugal,
- On leave to INIA, DTEVPF, Plant Protection Products Unit, Ctra. de La Coruña, Madrid, Spain,
| | | | | | - Trine K. Dalsgaard
- Department of Food Sciences, Faculty of Science and Technology, Aarhus University, Tjele, Denmark, and
| | | |
Collapse
|
22
|
Synthesis, structure and magnetism of manganese and iron dipicolinates with N,N′-donor ligands. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2014.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Adel S, Kakularam KR, Horn T, Reddanna P, Kuhn H, Heydeck D. Leukotriene signaling in the extinct human subspecies Homo denisovan and Homo neanderthalensis. Structural and functional comparison with Homo sapiens. Arch Biochem Biophys 2014; 565:17-24. [PMID: 25447821 DOI: 10.1016/j.abb.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/12/2023]
Abstract
Mammalian lipoxygenases (LOXs) have been implicated in cell differentiation and in the biosynthesis of pro- and anti-inflammatory lipid mediators. The initial draft sequence of the Homo neanderthalensis genome (coverage of 1.3-fold) suggested defective leukotriene signaling in this archaic human subspecies since expression of essential proteins appeared to be corrupted. Meanwhile high quality genomic sequence data became available for two extinct human subspecies (H. neanderthalensis, Homo denisovan) and completion of the human 1000 genome project provided a comprehensive database characterizing the genetic variability of the human genome. For this study we extracted the nucleotide sequences of selected eicosanoid relevant genes (ALOX5, ALOX15, ALOX12, ALOX15B, ALOX12B, ALOXE3, COX1, COX2, LTA4H, LTC4S, ALOX5AP, CYSLTR1, CYSLTR2, BLTR1, BLTR2) from the corresponding databases. Comparison of the deduced amino acid sequences in connection with site-directed mutagenesis studies and structural modeling suggested that the major enzymes and receptors of leukotriene signaling as well as the two cyclooxygenase isoforms were fully functional in these two extinct human subspecies.
Collapse
Affiliation(s)
- Susan Adel
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kumar Reddy Kakularam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India
| | - Thomas Horn
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Andhra Pradesh, India; National Institute of Animal Biotechnology, Hyderabad 500046, Andhra Pradesh, India
| | - Hartmut Kuhn
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| | - Dagmar Heydeck
- Institute of Biochemistry, Charite - University Medicine Berlin, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
24
|
Mauracher SG, Molitor C, Al-Oweini R, Kortz U, Rompel A. Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2301-15. [PMID: 25195745 PMCID: PMC4157443 DOI: 10.1107/s1399004714013777] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 06/12/2014] [Indexed: 01/08/2023]
Abstract
Tyrosinases, bifunctional metalloenzymes, catalyze the oxidation of monophenols and o-diphenols to o-quinones, the precursor compounds of the brown-coloured pigment melanin. In eukaryotic organisms, tyrosinases are expressed as latent zymogens that have to be proteolytically cleaved in order to form highly active enzymes. This activation mechanism, known as the tyrosinase maturation process, has scientific and industrial significance with respect to biochemical and technical applications of the enzyme. Here, not only the first crystal structure of the mushroom tyrosinase abPPO4 is presented in its active form (Ser2-Ser383) and in its 21 kDa heavier latent form (Ser2-Thr545), but furthermore the simultaneous presence of both forms within one single-crystal structure is shown. This allows for a simple approach to investigate the transition between these two forms. Isoform abPPO4 was isolated and extensively purified from the natural source (Agaricus bisporus), which contains a total of six polyphenol oxidases (PPOs). The enzyme formed crystals (diffracting to a resolution of 2.76 Å) owing to the employment of the 6-tungstotellurate(VI) salt (Na6[TeW6O24]·22H2O) as a cocrystallization agent. Two of these disc-shaped Anderson-type polyoxoanions [TeW6O24](6-) separate two asymmetric units comprising one crystallographic heterodimer of abPPO4, thus resulting in very interesting crystal packing.
Collapse
Affiliation(s)
- Stephan Gerhard Mauracher
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| | - Christian Molitor
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| | - Rami Al-Oweini
- School of Engineering and Science, Jacobs University, PO Box 750 561, 28725 Bremen, Germany
| | - Ulrich Kortz
- School of Engineering and Science, Jacobs University, PO Box 750 561, 28725 Bremen, Germany
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| |
Collapse
|
25
|
Heshof R, van Schayck JP, Tamayo-Ramos JA, de Graaff LH. Heterologous expression of Gaeumannomyces graminis lipoxygenase in Aspergillus nidulans. AMB Express 2014; 4:65. [PMID: 25401068 PMCID: PMC4230170 DOI: 10.1186/s13568-014-0065-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/04/2014] [Indexed: 12/04/2022] Open
Abstract
Aspergillus sp. contain ppo genes coding for Ppo enzymes that produce oxylipins from polyunsaturated fatty acids. These oxylipins function as signal molecules in sporulation and influence the asexual to sexual ratio of Aspergillus sp. Fungi like Aspergillus nidulans and Aspergillus niger contain just ppo genes where the human pathogenic Aspergillus flavus and Aspergillus fumigatus contain ppo genes as well as lipoxygenases. Lipoxygenases catalyze the synthesis of oxylipins and are hypothesized to be involved in quorum-sensing abilities and invading plant tissue. In this study we used A. nidulans WG505 as an expression host to heterologously express Gaeumannomyces graminis lipoxygenase. The presence of the recombinant LOX induced phenotypic changes in A. nidulans transformants. Also, a proteomic analysis of an A. nidulans LOX producing strain indicated that the heterologous protein was degraded before its glycosylation in the secretory pathway. We observed that the presence of LOX induced the specific production of aminopeptidase Y that possibly degrades the G. graminis lipoxygenase intercellularly. Also the presence of the protein thioredoxin reductase suggests that the G. graminis lipoxygenase is actively repressed in A. nidulans.
Collapse
|
26
|
Huang J, Cai M, Long Q, Liu L, Lin Q, Jiang L, Chen S, Wan J. OsLOX2, a rice type I lipoxygenase, confers opposite effects on seed germination and longevity. Transgenic Res 2014; 23:643-55. [PMID: 24792034 DOI: 10.1007/s11248-014-9803-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 04/18/2014] [Indexed: 11/27/2022]
Abstract
Rice production and seed storage are confronted with grain deterioration and loss of seed viability. Some members of the lipoxygenase (LOX) family function in degradation of storage lipids during the seed germination, but little is known about their influence on seed longevity during storage. We characterized the role of rice OsLOX2 gene in seed germination and longevity via over-expression and knock-down approaches. Abundant expression of OsLOX2 was detected in panicles, roots, and stems, but not in leaves. Moreover, OsLOX2 was highly induced during germination. OsLOX2 protein, located in the cytoplasm, showed a wide range of temperature adaptation (20-50 °C) and a substrate preference to linoleic acid. Lines over-expressing OsLOX2 showed accelerated seed germination under normal condition and lower seed viability after accelerated aging. RNA interference (RNAi) of OsLOX2 caused delayed germination and enhanced seed longevity. RNAi lines with strongly repressed OsLOX2 activity completely lost the capability of germination after accelerated aging. More lipid hydroperoxide were found in OE15 than the control, but less in RNAi lines than in the WT Nipponbare. Therefore, OsLOX2 acts in opposite directions during seed germination and longevity during storage. Appropriate repression of the OsLOX2 gene may delay the aging process during the storage without compromising germination under normal conditions.
Collapse
Affiliation(s)
- Jiexue Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Provincial Center of Plant Gene Engineering, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wennman A, Oliw EH, Karkehabadi S. Crystallization and preliminary crystallographic analysis of manganese lipoxygenase. Acta Crystallogr F Struct Biol Commun 2014; 70:522-5. [PMID: 24699754 PMCID: PMC3976078 DOI: 10.1107/s2053230x14005548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/11/2014] [Indexed: 11/10/2022] Open
Abstract
Lipoxygenases constitute a family of nonhaem metal enzymes with catalytic iron or, occasionally, catalytic manganese. Lipoxygenases oxidize polyunsaturated fatty acids with position specificity and stereospecificity to hydroperoxides, which contribute to inflammation and the development of cancer. Little is known about the structural differences between lipoxygenases with Fe or Mn and the metal-selection mechanism. A Pichia pastoris expression system was used for the production of the manganese lipoxygenase of the take-all fungus of wheat, Gaeumannomyces graminis. The active enzyme was treated with α-mannosidase, purified to apparent homogeneity and subjected to crystal screening and X-ray diffraction. The crystals diffracted to 2.6 Å resolution and belonged to space group C2, with unit-cell parameters a = 226.6, b = 50.6, c = 177.92 Å, β = 91.70°.
Collapse
Affiliation(s)
- Anneli Wennman
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Ernst H. Oliw
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Saeid Karkehabadi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| |
Collapse
|
28
|
Leonhardt RH, Plagemann I, Linke D, Zelena K, Berger RG. Orthologous lipoxygenases of Pleurotus spp. – A comparison of substrate specificity and sequence homology. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Heshof R, Jylhä S, Haarmann T, Jørgensen ALW, Dalsgaard TK, de Graaff LH. A novel class of fungal lipoxygenases. Appl Microbiol Biotechnol 2013; 98:1261-70. [PMID: 24276623 DOI: 10.1007/s00253-013-5392-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
Lipoxygenases (LOXs) are well-studied enzymes in plants and mammals. However, fungal LOXs are less studied. In this study, we have compared fungal LOX protein sequences to all known characterized LOXs. For this, a script was written using Shell commands to extract sequences from the NCBI database and to align the sequences obtained using Multiple Sequence Comparison by Log-Expectation. We constructed a phylogenetic tree with the use of Quicktree to visualize the relation of fungal LOXs towards other LOXs. These sequences were analyzed with respect to the signal sequence, C-terminal amino acid, the stereochemistry of the formed oxylipin, and the metal ion cofactor usage. This study shows fungal LOXs are divided into two groups, the Ile- and the Val-groups. The Ile-group has a conserved WRYAK sequence that appears to be characteristic for fungal LOXs and has as a C-terminal amino acid Ile. The Val-group has a highly conserved WL-L/F-AK sequence that is also found in LOXs of plant and animal origin. We found that fungal LOXs with this conserved sequence have a Val at the C-terminus in contrast to other LOXs of fungal origin. Also, these LOXs have signal sequences implying these LOXs will be expressed extracellularly. Our results show that in this group, in addition to the Gaeumannomyces graminis and the Magnaporthe salvinii LOXs, the Aspergillus fumigatus LOX uses manganese as a cofactor.
Collapse
Affiliation(s)
- Ruud Heshof
- Laboratory of Systems and Synthetic Biology, Microbial Systems Biology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
30
|
Horn T, Ivanov I, Di Venere A, Kakularam KR, Reddanna P, Conrad ML, Richter C, Scheerer P, Kuhn H. Molecular basis for the catalytic inactivity of a naturally occurring near-null variant of human ALOX15. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1702-13. [PMID: 23958500 DOI: 10.1016/j.bbalip.2013.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 11/15/2022]
Abstract
Mammalian lipoxygenases belong to a family of lipid-peroxidizing enzymes, which have been implicated in cardiovascular, hyperproliferative and neurodegenerative diseases. Here we report that a naturally occurring mutation in the hALOX15 gene leads to expression of a catalytically near-null enzyme variant (hGly422Glu). The inactivity may be related to severe misfolding of the enzyme protein, which was concluded from CD-spectra as well as from thermal and chemical stability assays. In silico mutagenesis experiments suggest that most mutations at hGly422 have the potential to induce sterical clash, which might be considered a reason for protein misfolding. hGly422 is conserved among ALOX5, ALOX12 and ALOX15 isoforms and corresponding hALOX12 and hALOX5 mutants also exhibited a reduced catalytic activity. Interestingly, in the hALOX5 Gly429Glu mutants the reaction specificity of arachidonic acid oxygenation was shifted from 5S- to 8S- and 12R-H(p)ETE formation. Taken together, our data indicate that the conserved glycine is of functional importance for these enzyme variants and most mutants at this position lose catalytic activity.
Collapse
Key Words
- (5Z,8Z,10E,14Z)-12-hydroperoxyeicosa-5,8,10,14-tetraenoic acid
- (5Z,8Z,11Z,13E)-15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid
- (5Z,9E,11Z,14Z)-8-hydroperoxyicosa-5,9,11,14-tetraenoic acid
- (9Z,11E,13S)-13-hydroperoxyoctadeca-9,11-dienoic acid
- 12-H(p)ETE
- 13-H(p)ODE
- 15-H(p)ETE
- 8-H(p)ETE
- ALOX
- ALOX15
- ALOX15 gene variation
- HETE
- HpETE
- IPTG
- Isopropyl-β-d-thiogalactopyranoside
- LOXs
- Lipid peroxidation
- Lipoxygenase
- Misfolding
- UTR
- arachidonate lipoxygenase
- hydroperoxyeicosatetraenoic acid
- hydroxyeicosatetraenoic acid
- lipoxygenases
- untranslated region
Collapse
Affiliation(s)
- Thomas Horn
- Institute of Biochemistry, University Medicine Berlin-Charité, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Scala V, Camera E, Ludovici M, Dall'Asta C, Cirlini M, Giorni P, Battilani P, Bello C, Fabbri A, Fanelli C, Reverberi M. Fusarium verticillioides and maize interaction in vitro: relationship between oxylipin cross-talk and fumonisin synthesis. WORLD MYCOTOXIN J 2013. [DOI: 10.3920/wmj2012.1527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fusarium verticillioides is one of the most important fungal pathogens causing ear and stalk rot in maize. Even if frequently asymptomatic, it can produce a harmful series of compounds named fumonisins. Plant and fungal oxylipins play a crucial role in determining the outcome of the interaction between the pathogen and its host. Moreover, oxylipins are factors able to modulate the secondary metabolism in fungi. To uncover the existence of the relationship between oxylipin production and fumonisin synthesis in F. verticillioides, we analysed some molecular and physiological parameters, such as the expression of genes whose products are related to oxylipin synthesis (i.e. lipoxygenase, diol synthases and fatty acid oxidase), the oxylipin profile of both cracked maize and the pathogen by using a lipidomic approach (i.e. combining LC-TOF and LC-MS/MS approaches with a robust statistical analysis) and the synthesis of fumonisin B1. The results suggested a close relationship between the modification of the pathogen oxylipin profile with the fumonisin synthesis. Notably, a modification of the oxylipin profile of the pathogen during its growth on cracked maize can be demonstrated. The switch in oxylipin synthesis could indicate that the ‘presence’ of maize determinants (e.g. plant cell wall fragments and/or lipids) was able to promote the modification of the pathogen lifestyle, also by adapting the secondary metabolism, notably fumonisin synthesis.
Collapse
Affiliation(s)
- V. Scala
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - E. Camera
- Laboratorio di Fisiopatologia Cutanea e Centro Integrato di Metabolomica, Istituto Dermatologico San Gallicano IRCCS, Via Chianesi 53, 00144 Rome, Italy
| | - M. Ludovici
- Laboratorio di Fisiopatologia Cutanea e Centro Integrato di Metabolomica, Istituto Dermatologico San Gallicano IRCCS, Via Chianesi 53, 00144 Rome, Italy
| | - C. Dall'Asta
- Dipartimento di Chimica Organica e Industriale, ‘Università degli Studi di Parma’, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - M. Cirlini
- Dipartimento di Chimica Organica e Industriale, ‘Università degli Studi di Parma’, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - P. Giorni
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - P. Battilani
- Istituto di Entomologia e Patologia Vegetale, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - C. Bello
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - A.A. Fabbri
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - C. Fanelli
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| | - M. Reverberi
- Dipartimento di Biologia Ambientale, Università ‘Sapienza’, Largo Cristina di Svezia 24, 00165 Rome, Italy
| |
Collapse
|
32
|
Kim KR, Oh DK. Production of hydroxy fatty acids by microbial fatty acid-hydroxylation enzymes. Biotechnol Adv 2013; 31:1473-85. [PMID: 23860413 DOI: 10.1016/j.biotechadv.2013.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
Abstract
Hydroxy fatty acids are widely used in chemical, food, and cosmetic industries as starting materials for the synthesis of polymers and as additives for the manufacture of lubricants, emulsifiers, and stabilizers. They have antibiotic, anti-inflammatory, and anticancer activities and therefore can be applied for medicinal uses. Microbial fatty acid-hydroxylation enzymes, including P450, lipoxygenase, hydratase, 12-hydroxylase, and diol synthase, synthesize regio-specific hydroxy fatty acids. In this article, microbial fatty acid-hydroxylation enzymes, with a focus on region-specificity and diversity, are summarized and the production of mono-, di-, and tri-hydroxy fatty acids is introduced. Finally, the production methods of regio-specific and diverse hydroxy fatty acids, such as gene screening, protein engineering, metabolic engineering, and combinatory biosynthesis, are suggested.
Collapse
Affiliation(s)
- Kyoung-Rok Kim
- Department of Bioscience and Biotechnology, Konkuk University, 1 Hwayang-Dong Gwangjin-Gu, Seoul 143-701, Republic of Korea
| | | |
Collapse
|
33
|
Uhrecký R, Padělková Z, Moncol J, Koman M, Dlháň L, Titiš J, Boča R. Synthesis, crystal structure, spectra and magnetic properties of new manganese(III) and iron(III) dipicolinate complexes. Polyhedron 2013. [DOI: 10.1016/j.poly.2013.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Brodhun F, Cristobal-Sarramian A, Zabel S, Newie J, Hamberg M, Feussner I. An iron 13S-lipoxygenase with an α-linolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 2013; 8:e64919. [PMID: 23741422 PMCID: PMC3669278 DOI: 10.1371/journal.pone.0064919] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/21/2013] [Indexed: 12/03/2022] Open
Abstract
Jasmonates constitute a family of lipid-derived signaling molecules that are abundant in higher plants. The biosynthetic pathway leading to plant jasmonates is initiated by 13-lipoxygenase-catalyzed oxygenation of α-linolenic acid into its 13-hydroperoxide derivative. A number of plant pathogenic fungi (e.g. Fusarium oxysporum) are also capable of producing jasmonates, however, by a yet unknown biosynthetic pathway. In a search for lipoxygenase in F. oxysporum, a reverse genetic approach was used and one of two from the genome predicted lipoxygenases (FoxLOX) was cloned. The enzyme was heterologously expressed in E. coli, purified via affinity chromatography, and its reaction mechanism characterized. FoxLOX was found to be a non-heme iron lipoxygenase, which oxidizes C18-polyunsaturated fatty acids to 13S-hydroperoxy derivatives by an antarafacial reaction mechanism where the bis-allylic hydrogen abstraction is the rate-limiting step. With α-linolenic acid as substrate FoxLOX was found to exhibit a multifunctional activity, because the hydroperoxy derivatives formed are further converted to dihydroxy-, keto-, and epoxy alcohol derivatives.
Collapse
Affiliation(s)
- Florian Brodhun
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, Department of Plant Biochemistry, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Hansen J, Garreta A, Benincasa M, Fusté MC, Busquets M, Manresa A. Bacterial lipoxygenases, a new subfamily of enzymes? A phylogenetic approach. Appl Microbiol Biotechnol 2013; 97:4737-47. [PMID: 23624657 DOI: 10.1007/s00253-013-4887-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 11/30/2022]
Abstract
Lipoxygenases (EC. 1.13.11.12) are a non-heme iron enzymes consisting of one polypeptide chain folded into two domains, the N-terminal domain and the catalytic moiety β-barrel domain. They catalyze the dioxygenation of 1Z,4Z-pentadiene moieties of polyunsaturated fatty acids obtaining hydroperoxy fatty acids. For years, the presence of lipoxygenases was considered a eukaryotic feature, present in mammals, plants, small marine invertebrates, and fungi, but now, some lipoxygenase sequences have been detected on prokaryotic organisms, changing the idea that lipoxygenases are exclusively a eukaryotic affair. Lipoxygenases are involved in different types of reactions on eukaryote organisms where the biological role and the structural characteristics of these enzymes are well studied. However, these aspects of the bacterial lipoxygenases have not yet been elucidated and are unknown. This revision discusses biochemical aspects, biological applications, and some characteristics of these enzymes and tries to determine the existence of a subfamily of bacterial lipoxygenases in the context of the phylogeny of prokaryotic lipoxygenases, supporting the results of phylogenetic analyzes with the comparison and discussion of structural information of the first prokaryotic lipoxygenase crystallized and other eukaryotic lipoxygenases structures.
Collapse
Affiliation(s)
- Jhoanne Hansen
- Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Plagemann I, Zelena K, Arendt P, Ringel PD, Krings U, Berger RG. LOXPsa1, the first recombinant lipoxygenase from a basidiomycete fungus. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2012.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Vrontaki E, Leonis G, Papadopoulos MG, Simcic M, Grdadolnik SG, Afantitis A, Melagraki G, Hadjikakou SK, Mavromoustakos T. Comparative Binding Effects of Aspirin and Anti-Inflammatory Cu Complex in the Active Site of LOX-1. J Chem Inf Model 2012; 52:3293-301. [DOI: 10.1021/ci3002759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- E. Vrontaki
- Organic Chemistry Laboratory,
Department of Chemistry, University of Athens, Panepistimiopolis-Zografou,
15771 Athens, Greece
| | - G. Leonis
- Institute
of Biology, Medicinal
Chemistry and Biotechnology, National Hellenic Research Foundation,
Vas. Constantinou 48, Athens 11635, Greece
| | - M. G. Papadopoulos
- Institute
of Biology, Medicinal
Chemistry and Biotechnology, National Hellenic Research Foundation,
Vas. Constantinou 48, Athens 11635, Greece
| | - M. Simcic
- EN-FIST Centre of Excellence,
Dunajska 156, SI-1000 Ljubljana, Slovenia
| | - S. Golic Grdadolnik
- EN-FIST Centre of Excellence,
Dunajska 156, SI-1000 Ljubljana, Slovenia
- Laboratory of Biomolecular Structure,
National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana,
Slovenia
| | - A. Afantitis
- Department of
Chemoinformatics,
NovaMechanics Ltd, Nicosia, Cyprus
| | - G. Melagraki
- Department of
Chemoinformatics,
NovaMechanics Ltd, Nicosia, Cyprus
| | - S. K. Hadjikakou
- Section of Inorganic and Analytical
Chemistry, Department of Chemistry, University of Ioannina, 45110
Ioannina, Greece
| | - T. Mavromoustakos
- Organic Chemistry Laboratory,
Department of Chemistry, University of Athens, Panepistimiopolis-Zografou,
15771 Athens, Greece
| |
Collapse
|
38
|
Lu X, Zhang J, Liu S, Zhang D, Xu Z, Wu J, Li J, Du G, Chen J. Overproduction, purification, and characterization of extracellular lipoxygenase of Pseudomonas aeruginosa in Escherichia coli. Appl Microbiol Biotechnol 2012; 97:5793-800. [PMID: 23064455 DOI: 10.1007/s00253-012-4457-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 09/16/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
Lipoxygenase (LOX; EC 1.13.11.12,) is an enzyme that is widely used in food industry to improve aroma, rheological, or baking properties of foods. In this study, we described the expression and characterization of Pseudomonas aeruginosa LOX in Escherichia coli. The recombinant LOX was successfully expressed and secreted by E. coli using its endogenous signal peptide. When induced with 1 mM isopropyl β-D-1-thiogalactopyranoside (final concentration) at 20 °C for 47 h, the titer of the recombinant enzyme reached 3.89 U/mL. In order to characterize the catalytic properties, the recombinant LOX was purified to homogeneity on Q High Performance and Mono Q5/50GL sequentially. The molecular weight of the LOX was estimated as 70 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The Km and Vmax of the recombinant enzyme were 48.9 μM and 0.226 μmol/min, respectively. The purified enzyme exhibited a maximum activity at 25 °C and pH 7.5. High-performance liquid chromatography analysis of the linoleic acid hydroperoxides produced by recombinant LOX revealed that the LOX from P. aeruginosa falls into linoleic acid 13(S)-LOX. To the best of our knowledge, this is the first report on the overexpression of extracellular LOX in microorganisms, and the achieved LOX yield is the highest ever reported.
Collapse
Affiliation(s)
- Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jernerén F, Oliw EH. The fatty acid 8,11-diol synthase of Aspergillus fumigatus is inhibited by imidazole derivatives and unrelated to PpoB. Lipids 2012; 47:707-17. [PMID: 22544380 DOI: 10.1007/s11745-012-3673-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/06/2012] [Indexed: 12/13/2022]
Abstract
(8R)-Hydroperoxy-(9Z,12Z)-octadecadienoic acid (8-HPODE) is formed by aspergilli as an intermediate in biosynthesis of oxylipins with effects on sporulation. 8-HPODE is transformed by separate diol synthases to (5S,8R)-dihydroxy- and (8R,11S)-dihydroxy-(9Z,12Z)-octadecadienoic acids (5,8- and 8,11-DiHODE). The former is formed by the cytochrome P450 (P450) domain of 5,8-linoleate diol synthase (5,8-LDS or PpoA). Our aim was to characterize the 8,11-diol synthase of Aspergillus fumigatus, which is prominent in many strains. The 8,11-diol synthase was soluble and had a larger molecular size (>100 kDa) than most P450. Miconazole, ketoconazole, and 1-benzylimidazole, classical inhibitors of P450, reduced the biosynthesis of 8,11-DiHODE from 8-HPODE (apparent IC(50) values ~0.8, ~5, and ~0.6 μM, respectively), but did not inhibit the biosynthesis of 5,8-DiHODE. Analysis of hydroperoxides of regioisomeric C(18) and C(20) fatty acids showed that the 8,11-diol synthase was specific for certain hydroperoxides with R configuration. The suprafacial hydrogen abstraction and oxygen insertion at C-11 of 8-HPODE was associated with a small deuterium kinetic isotope effect ((H) k (cat)/(D) k (cat) ~1.5), consistent with P450-catalyzed oxidation. The genome of A. fumigatus contains over 70 P450 sequences. The reaction mechanism, size, and solubility of 8,11-diol synthase pointed to PpoB, a homologue of 5,8-LDS, as a possible candidate of this activity. Gene deletion of ppoB of A. fumigatus strains AF:∆ku80 and J272 did not inhibit biosynthesis of 8,11-DiHODE and recombinant PpoB appeared to lack diol synthase activity. We conclude that 8,11-DiHODE is formed from 8-HPODE by a soluble and substrate-specific 8,11-diol synthase with catalytic characteristics of class III P450.
Collapse
Affiliation(s)
- Fredrik Jernerén
- Department of Pharmaceutical Biosciences, Uppsala Biomedical Center, Uppsala University, 75124, Uppsala, Sweden
| | | |
Collapse
|
40
|
Oliw EH, Wennman A, Hoffmann I, Garscha U, Hamberg M, Jernerén F. Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases. J Lipid Res 2011; 52:1995-2004. [PMID: 21852690 DOI: 10.1194/jlr.m018259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven Z-octadecenoic acids having the double bond located in positions 6Z to 13Z were photooxidized. The resulting hydroperoxy-E-octadecenoic acids [HpOME(E)] were resolved by chiral phase-HPLC-MS, and the absolute configurations of the enantiomers were determined by gas chromatographic analysis of diastereoisomeric derivatives. The MS/MS/MS spectra showed characteristic fragments, which were influenced by the distance between the hydroperoxide and carboxyl groups. These fatty acids were then investigated as substrates of cyclooxygenase-1 (COX-1), manganese lipoxygenase (MnLOX), and the (8R)-dioxygenase (8R-DOX) activities of two linoleate diol synthases (LDS) and 10R-DOX. COX-1 and MnLOX abstracted hydrogen at C-11 of (12Z)-18:1 and C-12 of (13Z)-18:1. (11Z)-18:1 was subject to hydrogen abstraction at C-10 by MnLOX and at both allylic positions by COX-1. Both allylic hydrogens of (8Z)-18:1 were also abstracted by 8R-DOX activities of LDS and 10R-DOX, but only the allylic hydrogens close to the carboxyl groups of (11Z)-18:1 and (12Z)-18:1. 8R-DOX also oxidized monoenoic C(14)-C(20) fatty acids with double bonds at the (9Z) position, suggesting that the length of the omega end has little influence on positioning for oxygenation. We conclude that COX-1 and MnLOX can readily abstract allylic hydrogens of octadecenoic fatty acids from C-10 to C-12 and 8R-DOX from C-7 and C-12.
Collapse
Affiliation(s)
- Ernst H Oliw
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala Biomedical Center, SE-75124, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
41
|
Moin ST, Hofer TS, Sattar R, Ul-Haq Z. Molecular dynamics simulation of mammalian 15S-lipoxygenase with AMBER force field. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:715-26. [PMID: 21360129 DOI: 10.1007/s00249-011-0684-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 11/28/2010] [Accepted: 02/04/2011] [Indexed: 01/09/2023]
Abstract
A molecular dynamics simulation study of mononuclear iron 15S-lipoxygenase (15S-LOX) from rabbit reticulocytes was performed to investigate its structure and dynamics; newly developed AMBER force field parameters were employed for the first coordination sphere of the catalytic iron (II). The results obtained from this study demonstrate that the structural features of the catalytic iron coordination site are in good agreement with available data obtained from experiments. The motional flexibility of the N-terminal β-barrel domain is greater than the C-terminal catalytic domain; flexibility was assessed in terms of B-factors and secondary structure calculations. The significant features obtained for the relative motional flexibility of these two domains of 15S-LOX in solution as well as the isolated C-terminal domain were analyzed in terms of radius of gyration and maximum diameter, which correlated well with the structural flexibility of 15-lipoxygenase-1 in solution as probed by small-angle X-ray scattering. The motional flexibility indicates interdomain motion between the N-terminal β-barrel and the C-terminal catalytic domain; this was further verified by the evaluation of central bending in the solvated LOX molecule, which identified an unstructured stretch of amino acids as the interdomain linker. The average bending angle confirmed significant central bending between these two domains, which was linked to the high degree of motional freedom of the N-terminal β-barrel domain in aqueous solutions. This can be considered to have biological relevance for membrane binding as well as for regulating the catalytic domain.
Collapse
Affiliation(s)
- Syed Tarique Moin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | | | | |
Collapse
|
42
|
Abstract
In nearly every living organism, metabolites derived from lipid peroxidation, the so-called oxylipins, are involved in regulating developmental processes as well as environmental responses. Among these bioactive lipids, the mammalian and plant oxylipins are the best characterized, and much information about their physiological role and biosynthetic pathways has accumulated during recent years. Although the occurrence of oxylipins and enzymes involved in their biosynthesis has been studied for nearly three decades, knowledge about fungal oxylipins is still scarce as compared with the situation in plants and mammals. However, the research performed so far has shown that the structural diversity of oxylipins produced by fungi is high and, furthermore, that the enzymes involved in oxylipin metabolism are diverse and often exhibit unusual catalytic activities. The aim of this review is to present a synopsis of the oxylipins identified so far in fungi and the enzymes involved in their biosynthesis.
Collapse
Affiliation(s)
- Florian Brodhun
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
43
|
Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O'Donnell VB, Kuhn H, Walther M. Molecular enzymology of lipoxygenases. Arch Biochem Biophys 2010; 503:161-74. [PMID: 20801095 DOI: 10.1016/j.abb.2010.08.016] [Citation(s) in RCA: 410] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Lipoxygenases (LOXs) are lipid peroxidizing enzymes, implicated in the pathogenesis of inflammatory and hyperproliferative diseases, which represent potential targets for pharmacological intervention. Although soybean LOX1 was discovered more than 60years ago, the structural biology of these enzymes was not studied until the mid 1990s. In 1993 the first crystal structure for a plant LOX was solved and following this protein biochemistry and molecular enzymology became major fields in LOX research. This review focuses on recent developments in molecular enzymology of LOXs and summarizes our current understanding of the structural basis of LOX catalysis. Various hypotheses explaining the reaction specificity of different isoforms are critically reviewed and their pros and cons briefly discussed. Moreover, we summarize the current knowledge of LOX evolution by profiling the existence of LOX-related genomic sequences in the three kingdoms of life. Such sequences are found in eukaryotes and bacteria but not in archaea. Although the biological role of LOXs in lower organisms is far from clear, sequence data suggests that this enzyme family might have evolved shortly after the appearance of atmospheric oxygen on earth.
Collapse
Affiliation(s)
- Igor Ivanov
- Institute of Biochemistry, University Medicine Berlin - Charité, Germany
| | | | | | | | | | | | | |
Collapse
|
44
|
Andreou A, Göbel C, Hamberg M, Feussner I. A bisallylic mini-lipoxygenase from cyanobacterium Cyanothece sp. that has an iron as cofactor. J Biol Chem 2010; 285:14178-86. [PMID: 20223828 DOI: 10.1074/jbc.m109.094771] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoxygenases are enzymes that are found ubiquitously in higher animals and plants, but have only recently been identified in a number of bacteria. The genome of the diazotrophic unicellular cyanobacterium Cyanothece sp. harbors two genes with homology to lipoxygenases. Here we describe the isolation of one gene, formerly named csplox2. It was cloned, and the protein was expressed in Escherichia coli and purified. The purified enzyme belongs to the group of prokaryotic mini lipoxygenases, because it had a molecular mass of 65 kDa. Interestingly, it catalyzed the conversion of linoleic acid, the only endogenously found polyunsaturated fatty acid, primarily to the bisallylic hydroperoxide 11R-hydroperoxyoctadecadienoic acid. This product had previously only been described for the manganese lipoxygenase from the take all fungus, Gaeumannomyces graminis. By contrast, CspLOX2 was shown to be an iron lipoxygenase. In addition, CspLOX2 formed a mixture of typical conjugated lipoxygenase products, e.g. 9R- and 13S-hydroperoxide. The conversion of linoleic acid took place with a maximum reaction rate of 31 s(-1). Incubation of the enzyme with [(11S)-(2)H]linoleic acid led to the formation of hydroperoxides that had lost the deuterium label, thus suggesting that CspLOX2 catalyzes antarafacial oxygenation as opposed to the mechanism of manganese lipoxygenase. CspLOX2 could also oxidize diarachidonylglycerophosphatidylcholine with similar specificity as the free fatty acid, indicating that binding of the substrate takes place with a "tail-first" orientation. We conclude that CspLOX2 is a novel iron mini-lipoxygenase that catalyzes the formation of bisallylic hydroperoxide as the major product.
Collapse
Affiliation(s)
- Alexandra Andreou
- Department of Plant Biochemistry, Albrecht von Haller Institute for Plant Sciences, Georg August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
45
|
Johannesson M, Backman L, Claesson HE, Forsell PKA. Cloning, purification and characterization of non-human primate 12/15-lipoxygenases. Prostaglandins Leukot Essent Fatty Acids 2010; 82:121-9. [PMID: 20106647 DOI: 10.1016/j.plefa.2009.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/07/2009] [Accepted: 11/29/2009] [Indexed: 11/18/2022]
Abstract
The enzyme 15-lipoxygenase-1 (15-LO-1) possesses mainly 15-LO activity and has so far only been described in human cells and rabbit reticulocytes. The animal ortholog, except rabbit reticulocytes, is an enzyme with predominantly a 12-lipoxygenase activity, commonly referred to as 12/15-LO. We describe herein the characterization of the 12/15-LOs in Macaca mulatta (rhesus monkey) and in Pongo pygmaeus (orang-utan). The rhesus and the orang-utan enzymes have mainly 12-lipoxygenase and 15-lipoxygenase activity, respectively, and they display 94% and 98% identity to the human 15-LO-1 protein. The rhesus enzyme was functionally different from the human enzyme with respect to substrate utilization in that anandamide was used differently and that the rhesus enzymes positional specificity could be affected by the substrate concentration. Furthermore, genomic data indicate that chimpanzees express an enzyme with mainly 15-lipoxygenase activity whereas marmosets express an enzyme with mainly 12-LO activity. Taken together, the switch during evolution from a 12-lipoxygenating enzyme in lower primates to a 15-lipoxygenating enzyme in higher primates and man might be of importance for the biological function of this enzyme.
Collapse
Affiliation(s)
- M Johannesson
- Orexo AB, P.O. Box 303, 751 05 Uppsala, Stockholm, Sweden
| | | | | | | |
Collapse
|
46
|
Reverberi M, Punelli F, Scarpari M, Camera E, Zjalic S, Ricelli A, Fanelli C, Fabbri AA. Lipoperoxidation affects ochratoxin A biosynthesis in Aspergillus ochraceus and its interaction with wheat seeds. Appl Microbiol Biotechnol 2009; 85:1935-46. [PMID: 20101489 DOI: 10.1007/s00253-009-2220-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 08/25/2009] [Accepted: 08/25/2009] [Indexed: 11/24/2022]
Abstract
In Aspergillus nidulans, Aspergillus flavus, and Aspergillus parasiticus, lipoperoxidative signalling is crucial for the regulation of mycotoxin biosynthesis, conidiogenesis, and sclerotia formation. Resveratrol, which is a lipoxygenase (LOX) and cyclooxygenase inhibitor, downmodulates the biosynthesis of ochratoxin A (OTA) in Aspergillus ochraceus. In the genome of A. ochraceus, a lox-like sequence (AoloxA; National Center for Biotechnology Information (NCBI) accession number: DQ087531) for a lipoxygenase-like enzyme has been found, which presents high homology (100 identities, 100 positives %, score 555) with a lox gene of Aspergillus fumigatus (NCBI accession number: XM741370). To study how inhibition of oxylipins formation may affect the A. ochraceus metabolism, we have used a DeltaAoloxA strain. This mutant displays a different colony morphology, a delayed conidia formation, and a high sclerotia production. When compared to the wild type, the DeltaAoloxA strain showed a lower basal activity of LOX and diminished levels of 13-hydroperoxylinoleic acid (HPODE) and other oxylipins derived from linoleic acid. The limited oxylipins formation corresponded to a remarkable inhibition of OTA biosynthesis in the DeltaAoloxA strain. Also, wheat seeds (Triticum durum cv Ciccio) inoculated with the DeltaAoloxA mutant did not accumulate 9-HPODE, which is a crucial element in the host defence system. Similarly, the expression of the pathogenesis-related protein 1 (PR1) gene in wheat seeds was not enhanced. The results obtained contribute to the current knowledge on the role of lipid peroxidation governed by the AoloxA gene in the morphogenesis, OTA biosynthesis, and in host-pathogen interaction between wheat seeds and A. ochraceus.
Collapse
Affiliation(s)
- Massimo Reverberi
- Dipartimento di Biologia Vegetale, Università "Sapienza", L.go Cristina di Svezia 24, 00165 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wecksler AT, Garcia NK, Holman TR. Substrate specificity effects of lipoxygenase products and inhibitors on soybean lipoxygenase-1. Bioorg Med Chem 2009; 17:6534-9. [PMID: 19716306 PMCID: PMC2737062 DOI: 10.1016/j.bmc.2009.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/29/2009] [Accepted: 08/04/2009] [Indexed: 11/30/2022]
Abstract
Recently, it has been shown that lipoxygenase (LO) products affect the substrate specificity of human 15-LO. In the current paper, we demonstrate that soybean LO-1 (sLO-1) is not affected by its own products, however, inhibitors which bind the allosteric site, oleyl sulfate (OS) and palmitoleyl sulfate (PS), not only lower catalytic activity, but also change the substrate specificity, by increasing the arachidonic acid (AA)/linoleic acid (LA) ratio to 4.8 and 4.0, respectively. The fact that LO inhibitors can lower activity and also change the LO product ratio is a new concept in lipoxygenase inhibition, where the goal is to not only reduce the catalytic activity but also alter substrate selectivity towards a physiologically beneficial product.
Collapse
Affiliation(s)
- Aaron T. Wecksler
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA 95064 Phone 831-459-5884, FAX 831-459-2935
| | - Natalie K. Garcia
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA 95064 Phone 831-459-5884, FAX 831-459-2935
| | - Theodore R. Holman
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA 95064 Phone 831-459-5884, FAX 831-459-2935
| |
Collapse
|
48
|
Andreou A, Feussner I. Lipoxygenases - Structure and reaction mechanism. PHYTOCHEMISTRY 2009; 70:1504-10. [PMID: 19767040 DOI: 10.1016/j.phytochem.2009.05.008] [Citation(s) in RCA: 248] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 05/20/2023]
Abstract
Lipid oxidation is a common metabolic reaction in all biological systems, appearing in developmentally regulated processes and as response to abiotic and biotic stresses. Products derived from lipid oxidation processes are collectively named oxylipins. Initial lipid oxidation may either occur by chemical reactions or is derived from the action of enzymes. In plants this reaction is mainly catalyzed by lipoxygenase (LOXs) enzymes and during recent years analysis of different plant LOXs revealed insights into their enzyme mechanism. This review aims at giving an overview of concepts explaining the catalytic mechanism of LOXs as well as the different regio- and stereo-specificities of these enzymes.
Collapse
Affiliation(s)
- Alexandra Andreou
- Georg-August-University, Albrecht-von-Haller-Institute for Plant Science, Department of Plant Biochemistry, D-37077 Göttingen, Germany
| | | |
Collapse
|
49
|
Nguyen D, Zhang X, Paice MG, Tsang A, Renaud S. Microplate enzyme assay for screening lipoxygenases to degrade wood extractives. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420701379783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Gao B, Boeglin WE, Zheng Y, Schneider C, Brash AR. Evidence for an ionic intermediate in the transformation of fatty acid hydroperoxide by a catalase-related allene oxide synthase from the Cyanobacterium Acaryochloris marina. J Biol Chem 2009; 284:22087-22098. [PMID: 19531485 DOI: 10.1074/jbc.m109.013151] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Allene oxides are reactive epoxides biosynthesized from fatty acid hydroperoxides by specialized cytochrome P450s or by catalase-related hemoproteins. Here we cloned, expressed, and characterized a gene encoding a lipoxygenase-catalase/peroxidase fusion protein from Acaryochloris marina. We identified novel allene oxide synthase (AOS) activity and a by-product that provides evidence of the reaction mechanism. The fatty acids 18.4omega3 and 18.3omega3 are oxygenated to the 12R-hydroperoxide by the lipoxygenase domain and converted to the corresponding 12R,13-epoxy allene oxide by the catalase-related domain. Linoleic acid is oxygenated to its 9R-hydroperoxide and then, surprisingly, converted approximately 70% to an epoxyalcohol identified spectroscopically and by chemical synthesis as 9R,10S-epoxy-13S-hydroxyoctadeca-11E-enoic acid and only approximately 30% to the 9R,10-epoxy allene oxide. Experiments using oxygen-18-labeled 9R-hydroperoxide substrate and enzyme incubations conducted in H2(18)O indicated that approximately 72% of the oxygen in the epoxyalcohol 13S-hydroxyl arises from water, a finding that points to an ionic intermediate (epoxy allylic carbocation) during catalysis. AOS and epoxyalcohol synthase activities are mechanistically related, with a reacting intermediate undergoing a net hydrogen abstraction or hydroxylation, respectively. The existence of epoxy allylic carbocations in fatty acid transformations is widely implicated although for AOS reactions, without direct experimental support. Our findings place together in strong association the reactions of allene oxide synthesis and an ionic reaction intermediate in the AOS-catalyzed transformation.
Collapse
Affiliation(s)
- Benlian Gao
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - William E Boeglin
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Yuxiang Zheng
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Claus Schneider
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Alan R Brash
- Department of Pharmacology and the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|