1
|
Lagière M, Bosc M, Whitestone S, Benazzouz A, Chagraoui A, Millan MJ, De Deurwaerdère P. A Subset of Purposeless Oral Movements Triggered by Dopaminergic Agonists Is Modulated by 5-HT 2C Receptors in Rats: Implication of the Subthalamic Nucleus. Int J Mol Sci 2020; 21:ijms21228509. [PMID: 33198169 PMCID: PMC7698107 DOI: 10.3390/ijms21228509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic medication for Parkinson’s disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03–0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2–0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the “hyperdirect” (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.
Collapse
Affiliation(s)
- Mélanie Lagière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Marion Bosc
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Sara Whitestone
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
| | - Abdelhamid Benazzouz
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Mark J. Millan
- Institut de Recherche Servier, Center for Therapeutic Innovation in Neuropsychiatry, Croissy/Seine, 78290 Paris, France;
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Correspondence: ; Tel.: +33-(0)-557-57-12-90
| |
Collapse
|
2
|
Lagière M, Navailles S, Bosc M, Guthrie M, Deurwaerdère PD. Serotonin2C Receptors and the Motor Control of Oral Activity. Curr Neuropharmacol 2013; 11:160-70. [PMID: 23997751 PMCID: PMC3637670 DOI: 10.2174/1570159x11311020003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/11/2012] [Accepted: 11/17/2012] [Indexed: 11/22/2022] Open
Abstract
Data from many experiments has shown that serotonin2C (5-HT2C) receptor plays a role in the control of orofacial activity in rodents. Purposeless oral movements can be elicited either by agonists or inverse agonists implying a tight control exerted by the receptor upon oral activity. The effects of agonists has been related to an action of these drugs in the subthalamic nucleus and the striatum, the two input structures for cortical efferents to the basal ganglia, a group of subcortical structures involved in the control of motor behaviors. The oral effects of agonists are dramatically enhanced in case of chronic blockade of central dopaminergic transmission induced by neuroleptics or massive destruction of dopamine neurons. The mechanisms involved in the hypersensitized oral responses to 5-HT2C agonists are not clear and deserve additional studies. Indeed, while the oral behavior triggered by 5-HT2C drugs would barely correspond to the dyskinesia observed in humans, the clinical data have consistently postulated that 5-HT2C receptors could be involved in these aberrant motor manifestations.
Collapse
Affiliation(s)
- Mélanie Lagière
- Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | | | | | | | |
Collapse
|
3
|
Role of 5-HT2C receptors in the enhancement of c-Fos expression induced by a 5-HT2B/2C inverse agonist and 5-HT2 agonists in the rat basal ganglia. Exp Brain Res 2013; 230:525-35. [DOI: 10.1007/s00221-013-3562-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022]
|
4
|
Multiple controls exerted by 5-HT2C receptors upon basal ganglia function: from physiology to pathophysiology. Exp Brain Res 2013; 230:477-511. [PMID: 23615975 DOI: 10.1007/s00221-013-3508-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
Serotonin2C (5-HT2C) receptors are expressed in the basal ganglia, a group of subcortical structures involved in the control of motor behaviour, mood and cognition. These receptors are mediating the effects of 5-HT throughout different brain areas via projections originating from midbrain raphe nuclei. A growing interest has been focusing on the function of 5-HT2C receptors in the basal ganglia because they may be involved in various diseases of basal ganglia function notably those associated with chronic impairment of dopaminergic transmission. 5-HT2C receptors act on numerous types of neurons in the basal ganglia, including dopaminergic, GABAergic, glutamatergic or cholinergic cells. Perhaps inherent to their peculiar molecular properties, the modality of controls exerted by 5-HT2C receptors over these cell populations can be phasic, tonic (dependent on the 5-HT tone) or constitutive (a spontaneous activity without the presence of the ligand). These controls are functionally organized in the basal ganglia: they are mainly localized in the input structures and preferentially distributed in the limbic/associative territories of the basal ganglia. The nature of these controls is modified in neuropsychiatric conditions such as Parkinson's disease, tardive dyskinesia or addiction. Most of the available data indicate that the function of 5-HT2C receptor is enhanced in cases of chronic alterations of dopamine neurotransmission. The review illustrates that 5-HT2C receptors play a role in maintaining continuous controls over the basal ganglia via multiple diverse actions. We will discuss their interest for treatments aimed at ameliorating current pharmacotherapies in schizophrenia, Parkinson's disease or drugs abuse.
Collapse
|
5
|
Serotonin2C ligands exhibiting full negative and positive intrinsic activity elicit purposeless oral movements in rats: distinct effects of agonists and inverse agonists in a rat model of Parkinson's disease. Int J Neuropsychopharmacol 2013; 16:593-606. [PMID: 22717119 DOI: 10.1017/s1461145712000417] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This study examined in naive or hemiparkinsonian rats the effect of various serotonin 2C (5-HT(2C)) receptor ligands differing in their intrinsic activity at 5-HT(2C) receptors on purposeless oral movements, a motor response integrated in the basal ganglia. Intraperitoneal administration of a non-selective [meta-chlorophenylpiperazine (m-CPP) 0.1-3 mg/kg], preferential [S-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine, Ro60-0175, 0.1-3 mg/kg] or selective [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole, WAY163909, 0.3-10 mg/kg] 5-HT(2C) agonists enhanced oral bouts in naive rats. The 5-HT(2C) inverse agonists SB206553 [1-20 mg/kg; 5-methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f]indole] and S32006 [1-20 mg/kg; N-pyridin-3-yl-1,2-dihydro-3H-benzo[e]indole-3-carboxamide], but not the 5-HT(2C) antagonist SB243213 [1-10 mg/kg; 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-6-trifluoromethylindoline], likewise dose-dependently enhanced oral movements. The effects induced by preferential 5-HT(2C) agonists and inverse agonists, but not by the cholinomimetic drug pilocarpine (5 mg/kg), were abolished by SB243213 underpinning its specificity. S32006-induced oral bouts was unaffected by the 5,7-dihydroxytryptamine lesions of 5-HT neurons. Nigrostriatal dopaminergic lesions potentiated oral effects induced by the agonists Ro60-0175 (3 mg/kg) and WAY163909 (1 mg/kg), but not by the inverse agonist SB206553 (10 mg/kg). The effect of Ro60-0175 in dopamine-lesioned rats was suppressed by SB243213. These data show that 5-HT(2C) agonists and full inverse agonists (but not neutral antagonists) perturb oral activity in rodents, paralleling studies of common antidepressant, anxiolytic and antipsychotic properties. The differential sensitivity of their actions to depletion of dopamine suggests recruitment of different contrasting neural mechanisms in the basal ganglia.
Collapse
|
6
|
The enhanced oral response to the 5-HT2 agonist Ro 60-0175 in parkinsonian rats involves the entopeduncular nucleus: electrophysiological correlates. Exp Brain Res 2013; 230:513-24. [PMID: 23535834 DOI: 10.1007/s00221-013-3478-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
Lesions of nigrostriatal dopaminergic neurons as seen in Parkinson's disease (PD) increase orofacial responses to serotonergic (5-HT) agonists in rodents. Although this response to 5-HT agonists has been related to aberrant signalling in the basal ganglia, a group a subcortical structures involved in the control of motor behaviours, it deserves additional studies with respect to the specific loci involved. Using measurements of orofacial activity, as well as single-cell recordings in vivo, we have studied the role of the entopeduncular nucleus (EPN; equivalent to the internal globus pallidus of primates), an output structure of basal ganglia, in the hypersensitized responses to a 5-HT agonist in sham- or unilaterally dopamine-depleted rats. Intra-EPN injections of Ro 60-0175 (0.3 and 1 μg/100 nl) promoted robust oral movements in 6-OHDA rats without affecting oral activity in sham-depleted rats. Peripheral administration of Ro 60-0175 (3 mg/kg ip) decreased EPN neuronal firing rate in 6-OHDA rats compared to sham-depleted rats. Such an effect was also observed when the agonist (0.2 μg/20 nl) was locally applied onto EPN neurons. These data demonstrate the contribution of EPN to hypersensitized responses to 5-HT agonists in a rat model of PD.
Collapse
|
7
|
Kadiri N, Lagière M, Le Moine C, Millan MJ, De Deurwaerdère P, Navailles S. Diverse effects of 5-HT2C receptor blocking agents on c-Fos expression in the rat basal ganglia. Eur J Pharmacol 2012; 689:8-16. [DOI: 10.1016/j.ejphar.2012.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/02/2012] [Accepted: 05/15/2012] [Indexed: 11/24/2022]
|
8
|
Adams W, van den Buuse M. Hippocampal serotonin depletion facilitates the enhancement of prepulse inhibition by risperidone: Possible role of 5-HT2C receptors in the dorsal hippocampus. Neuropharmacology 2011; 61:458-67. [DOI: 10.1016/j.neuropharm.2011.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
|
9
|
Huot P, Fox SH, Brotchie JM. The serotonergic system in Parkinson's disease. Prog Neurobiol 2011; 95:163-212. [PMID: 21878363 DOI: 10.1016/j.pneurobio.2011.08.004] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 01/23/2023]
Abstract
Although the cardinal manifestations of Parkinson's disease (PD) are attributed to a decline in dopamine levels in the striatum, a breadth of non-motor features and treatment-related complications in which the serotonergic system plays a pivotal role are increasingly recognised. Serotonin (5-HT)-mediated neurotransmission is altered in PD and the roles of the different 5-HT receptor subtypes in disease manifestations have been investigated. The aims of this article are to summarise and discuss all published preclinical and clinical studies that have investigated the serotonergic system in PD and related animal models, in order to recapitulate the state of the current knowledge and to identify areas that need further research and understanding.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, MCL 11-419, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | |
Collapse
|
10
|
De Deurwaerdère P, Mignon L, Chesselet MF. Physiological and Pathophysiological Aspects of 5-HT2c Receptors in Basal Ganglia. 5-HT2C RECEPTORS IN THE PATHOPHYSIOLOGY OF CNS DISEASE 2011. [DOI: 10.1007/978-1-60761-941-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
11
|
De Deurwaerdère P, Le Moine C, Chesselet MF. Selective blockade of serotonin2C receptor enhances Fos expression specifically in the striatum and the subthalamic nucleus within the basal ganglia. Neurosci Lett 2010; 469:251-5. [DOI: 10.1016/j.neulet.2009.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 11/25/2022]
|
12
|
Liu J, Chu YX, Zhang QJ, Wang S, Feng J, Li Q. 5,7-dihydroxytryptamine lesion of the dorsal raphe nucleus alters neuronal activity of the subthalamic nucleus in normal and 6-hydroxydopamine-lesioned rats. Brain Res 2007; 1149:216-22. [PMID: 17376410 DOI: 10.1016/j.brainres.2007.02.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/17/2007] [Accepted: 02/21/2007] [Indexed: 11/30/2022]
Abstract
The subthalamic nucleus receives serotonergic projections from the dorsal raphe nucleus. However, the role of serotonergic innervation in the activity of subthalamic neurons in vivo is unknown. The aim of the present work is to study the changes in the firing of subthalamic neurons in rats with 5,7-dihydroxytryptamine lesions of the dorsal raphe nucleus and rats with combined 5,7-dihydroxytryptamine lesions in the dorsal raphe nucleus and 6-hydroxydopamine lesions in the substantia nigra pars compacta by using single-unit extracellular recordings. In rats with 5,7-dihydroxytryptamine lesions of the dorsal raphe nucleus, the firing rate of subthalamic neurons increased significantly compared with normal rats and the firing pattern changed significantly towards a more bursting firing in the majority of the neurons observed. In rats with combined dorsal raphe nucleus and substantia nigra pars compacta lesions, the firing rate and firing pattern of subthalamic neurons did not show a significant difference compared to rats with lesions of the substantia nigra pars compacta. However, dorsal raphe nucleus and substantia nigra pars compacta lesions combined increased significantly the percentage of subthalamic neurons with burst-firing pattern compared to normal rats, while having no effect on their firing rate. These results show that the serotonergic efferent projections of the dorsal raphe nucleus significantly influence on the activity of subthalamic neurons and that the loss of dopaminergic projection by substantia nigra pars compacta lesion decreases the effect of the lesions of the dorsal raphe nucleus on subthalamic nucleus neuronal activity, suggesting that the role of the dorsal raphe nucleus may be exerted by the dorsal raphe nucleus-substantia nigra pars compacta-subthalamic nucleus pathway.
Collapse
Affiliation(s)
- Jian Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | | | | | | | | | | |
Collapse
|
13
|
Stanford IM, Kantaria MA, Chahal HS, Loucif KC, Wilson CL. 5-Hydroxytryptamine induced excitation and inhibition in the subthalamic nucleus: action at 5-HT(2C), 5-HT(4) and 5-HT(1A) receptors. Neuropharmacology 2005; 49:1228-34. [PMID: 16229866 DOI: 10.1016/j.neuropharm.2005.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/23/2005] [Accepted: 09/02/2005] [Indexed: 10/25/2022]
Abstract
Extracellular single-unit recordings in mouse brain slices were used to determine the effect of exogenously applied 5-HT on STN neurones. Recordings were made from 74 STN cells which fired action potentials at a regular rate of 7.19+/-0.5 Hz. In 61 cells (82%), 5-HT application increased STN neurone firing rate (10 microM, 180+/-16.8%, n=35) with an estimated EC(50) of 5.4 microM. The non-specific 5-HT(2) receptor agonist alpha-methyl 5-HT (1-10 microM) mimicked 5-HT induced excitations (15 cells). These excitations were significantly reduced by pre-perfusion with the specific 5-HT(2C) receptor antagonist RS102221 (500 nM, 9 cells) and the 5HT(4) antagonist GR113808 (500 nM, 7 cells). In 6 cells (8%) 5-HT induced biphasic responses where excitation was followed by inhibition, while in 7 cells (9%) inhibition of firing rate was observed alone. Inhibitory responses were reduced by the 5-HT(1A) antagonist WAY100135 (1 microM, 4 cells). No inhibitory responses were observed following alpha-methyl 5-HT applications. Both the excitations and inhibitions were unaffected by picrotoxin (50 microM, n=5) and CNQX (10 microM, n=5) indicative of direct postsynaptic effects. Thus, in STN neurones, 5-HT elicits two distinct effects, at times on the same neurone, the first being an excitation which is mediated by 5-HT(2C) and 5-HT(4) receptors and the second an inhibition which is mediated by 5-HT(1A) receptors.
Collapse
Affiliation(s)
- I M Stanford
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | | | |
Collapse
|
14
|
Belforte JE, Pazo JH. Turning behaviour induced by stimulation of the 5-HT receptors in the subthalamic nucleus. Eur J Neurosci 2004; 19:346-55. [PMID: 14725629 DOI: 10.1111/j.0953-816x.2003.03125.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The basal ganglia, which receive a rich serotonergic innervation, have been implicated in hyperkinetic and hypokinetic disorders. Moreover, a decrease in subthalamic nucleus (STN) activity has been associated with motor hyperactivity. To address the role of subthalamic serotonergic innervation in its motor function, turning behaviour was studied in rats with stimulation of the subthalamic serotonin (5-HT) receptors by intracerebral microinjections. The intrasubthalamic administration of 5-HT induced dose-dependent contralateral turning behaviour, with a maximal effect at a dose of 2.5 microg in 0.2 microL. Similar results were observed with microinjections of other 5-HT receptor agonists: quipazine (a 5-HT2B/C/3 agonist), MK-212 (a 5-HT2B/C agonist) and m-chlorophenylbiguanidine (a 5-HT3 agonist), while microinjections of 5-HT into the zona incerta or in the previously lesioned STN were ineffective. The effect of 5-HT was blocked by coadministration of the antagonist mianserin. Stimulation of subthalamic 5-HT receptors in animals bearing a lesion of the nigrostriatal pathway did not modify the motor response, which indicates that the dopamine innervation of the nucleus is not involved in this effect. Kainic acid lesion of the substantia nigra pars reticulata (SNr) suppressed the contralateral rotations elicited by stimulation of 5-HT2B/C/3 subthalamic receptors. This suggests a role of the subthalamic-nigral pathway in the turning activity. Furthermore, the partial blockade of glutamatergic receptors in the SNr by the antagonist DNQX increased the contralateral circling elicited by stimulation of 5-HT receptors in the STN. We concluded that the activation of the 5-HT2B/C and 5-HT3 subthalamic receptors elicited contralateral turning behaviour, probably via the subthalamic-nigral pathway.
Collapse
Affiliation(s)
- J E Belforte
- Laboratorio de Neurofisiología, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires 1121, Argentina
| | | |
Collapse
|
15
|
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are subserved by as many as 13 distinct heptahelical, G-protein-coupled receptors (GPCRs) and one (presumably a family of) ligand-gated ion channel(s). These receptors are divided into seven distinct classes (5-HT(1) to 5-HT(7)) largely on the basis of their structural and operational characteristics. Whilst this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity continues to emerge. The challenge for modern 5-HT research has therefore been to define more precisely the properties of the systems that make this incredible diversity possible. Much progress in this regard has been made during the last decade with the realisation that serotonin is possibly the least conservative monoamine transmitter and the cloning of its many receptors. Coupled with the actions of an extremely avid and efficient reuptake system, this array of receptor subtypes provides almost limitless signalling capabilities to the extent that one might even question the need for other transmitter systems. However, the complexity of the system appears endless, since posttranslational modifications, such as alternate splicing and RNA editing, increase the number of proteins, oligomerisation and heteromerisation increase the number of complexes, and multiple G-protein suggest receptor trafficking, allowing phenotypic switching and crosstalk within and possibly between receptor families. Whether all these possibilities are used in vivo under physiological or pathological conditions remains to be firmly established, but in essence, such variety will keep the 5-HT community busy for quite some time. Those who may have predicted that molecular biology would largely simplify the life of pharmacologists have missed the point for 5-HT research in particular and, most probably, for many other transmitters. This chapter is an attempt to summarise very briefly 5-HT receptor diversity. The reward for unravelling this complex array of serotonin receptor--effector systems may be substantial, the ultimate prize being the development of important new drugs in a range of disease areas.
Collapse
Affiliation(s)
- Daniel Hoyer
- Nervous System Research, WSJ.386.745, Novartis Pharma AG., CH-4002, Basel, Switzerland. daniel1.hoyer@ pharma.novartis.com
| | | | | |
Collapse
|