1
|
Huang B, Wang M, Gregory-Lott E, Li BX, Win YY, Shen N, Chen J, Li S, Cao C, Xiao X, Daughdrill GW, Cai J. Recognition of the CREB-Binding Protein/Mixed Lineage Leukemia Interface by Sulfonyl-γ-AApeptides: Beyond Mimicry of Mixed Lineage Leukemia. J Med Chem 2025; 68:12272-12283. [PMID: 40454677 DOI: 10.1021/acs.jmedchem.5c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
The kinase-inducible (KIX) domain, a structured region within the transcriptional coactivators CREB-binding protein (CBP) and p300, serves as a docking site for multiple transcription factors, including the mixed lineage leukemia (MLL) protein. The MLL-KIX protein-protein interaction (PPI) has been implicated in various diseases, such as leukemia, cancer, and neurodegenerative disorders, including Alzheimer's disease. In this study, we developed a series of MLL-mimicking peptidomimetic foldamers based on a sulfonyl-γ-AApeptide backbone. These helical foldamers successfully mimic the folded transactivation domain (TAD) of MLL and bind the KIX domain with a high affinity. Consistent with the notion that MLL-KIX interaction can allosterically enhance CREB signaling, we found that the sulfonyl-γ-AApeptides strongly stimulate CREB-dependent gene expression. Moreover, they exhibit no significant cytotoxicity under the tested conditions, demonstrating both binding specificity and therapeutic potential for targeting CREB-related pathways in neurodegenerative disorders.
Collapse
Affiliation(s)
- Bo Huang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Emily Gregory-Lott
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida 33620, United States
| | - Bingbing X Li
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Yu Yu Win
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Ning Shen
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida 33612, United States
| | - Jianyu Chen
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Sihao Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida 33612, United States
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Gary W Daughdrill
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida 33620, United States
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
2
|
Datta RR, Akdogan D, Tezcan EB, Onal P. Versatile roles of disordered transcription factor effector domains in transcriptional regulation. FEBS J 2025; 292:3014-3033. [PMID: 39888268 DOI: 10.1111/febs.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transcription, a crucial step in the regulation of gene expression, is tightly controlled and involves several essential processes, such as chromatin organization, recognition of the specific genomic sequences, DNA binding, and ultimately recruiting the transcriptional machinery to facilitate transcript synthesis. At the center of this regulation are transcription factors (TFs), which comprise at least one DNA-binding domain (DBD) and an effector domain (ED). Although the structure and function of DBDs have been well studied, our knowledge of the structure and function of effector domains is limited. EDs are of particular importance in generating distinct transcriptional responses between protein members of the same TF family that have similar DBDs and specificities. The study of transcriptional activity conferred by effector domains has traditionally been conducted through examining protein-protein interactions. However, recent research has uncovered alternative mechanisms by which EDs regulate gene expression, such as the formation of condensates that increase the local concentration of transcription factors, cofactors, and coregulated genes, as well as DNA binding. Here, we provide a comprehensive overview of the known roles of transcription factor EDs, with a specific focus on disordered regions. Additionally, we emphasize the significance of intrinsically disordered regions (IDRs) during transcriptional regulation. We examine the mechanisms underlying the establishment and maintenance of transcriptional specificity through the structural properties of predominantly disordered EDs. We then provide a comprehensive overview of the current understanding of these domains, including their physical and chemical characteristics, as well as their functional roles.
Collapse
Affiliation(s)
| | - Dilan Akdogan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Elif B Tezcan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Pinar Onal
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
3
|
Wang X, Xiong D, Zhang Y, Zhai J, Gu YC, He X. The evolution of the Amber additive protein force field: History, current status, and future. J Chem Phys 2025; 162:030901. [PMID: 39817575 DOI: 10.1063/5.0227517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025] Open
Abstract
Molecular dynamics simulations are pivotal in elucidating the intricate properties of biological molecules. Nonetheless, the reliability of their outcomes hinges on the precision of the molecular force field utilized. In this perspective, we present a comprehensive review of the developmental trajectory of the Amber additive protein force field, delving into researchers' persistent quest for higher precision force fields and the prevailing challenges. We detail the parameterization process of the Amber protein force fields, emphasizing the specific improvements and retained features in each version compared to their predecessors. Furthermore, we discuss the challenges that current force fields encounter in balancing the interactions of protein-protein, protein-water, and water-water in molecular dynamics simulations, as well as potential solutions to overcome these issues.
Collapse
Affiliation(s)
- Xianwei Wang
- School of Physics, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Danyang Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yueqing Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jihang Zhai
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
4
|
Zhang L, Wang JM, Wang L, Zheng S, Bai Y, Fu JL, Wang Y, Zhang JP, Xiao Y, Hou M, Nie Q, Gan YW, Liang XM, Hu XB, Li DWC. The transcription factor CREB regulates epithelial-mesenchymal transition of lens epithelial cells by phosphorylation-dependent and phosphorylation-independent mechanisms. J Biol Chem 2025; 301:108064. [PMID: 39662835 PMCID: PMC11773003 DOI: 10.1016/j.jbc.2024.108064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024] Open
Abstract
Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) is one of the most important pathogenic mechanisms in lens fibrotic disorders, and the regulatory mechanisms of EMT have not been fully understood. Here, we demonstrate that the cAMP-response element binding protein (CREB) can regulate lens EMT in a phosphorylation-dependent and phosphorylation-independent manners with dual mechanisms. First, CREB-S133 phosphorylation is implicated in TGFβ-induced EMT of mouse LECs and also in injury-induced mouse anterior subcapsular cataract model. The interaction between CREB and p300 is necessary for CREB regulation of TGFβ-induced EMT, since inhibition of CREB-p300 interaction and p300 knockdown led to attenuated expression of mesenchymal genes. Second, S133A-CREB, a mutant mimicking constant dephosphorylation at S133, exhibits notable occupancy in the enhancers of mesenchymal genes and confers robust transcription activity on EMT genes. Introduction of R314A mutation in S133A-CREB, which abolishes the interaction between S133A-CREB and its co-activator, cAMP-regulated transcriptional co-activators led to substantial suppression of mesenchymal gene expression in mouse LECs. Taken together, our results showed that CREB regulates lens EMT in dual mechanisms and that the S133A-CREB acts as a novel transcription factor. Mechanistically, CREB interacts with p300 in a S133 phosphorylation-dependent manner to positively regulate lens EMT genes. In contrast, S133A-CREB interacts with cAMP-regulated transcriptional co-activators to confer a robust activation of lens EMT genes.
Collapse
Affiliation(s)
- Lan Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Jing-Miao Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuyu Zheng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yueyue Bai
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Ping Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Min Hou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu-Wen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xing-Miao Liang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xue-Bin Hu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Jönsson M, Mushtaq AU, Nagy TM, von Witting E, Löfblom J, Nam K, Wolf-Watz M, Hober S. Cooperative folding as a molecular switch in an evolved antibody binder. J Biol Chem 2024; 300:107795. [PMID: 39305954 PMCID: PMC11532951 DOI: 10.1016/j.jbc.2024.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024] Open
Abstract
Designing proteins with tunable activities from easily accessible external cues remains a biotechnological challenge. Here, we set out to create a small antibody-binding domain equipped with a molecular switch inspired by the allosteric response to calcium seen in naturally derived proteins like calmodulin. We have focused on one of the three domains of Protein G that show inherent affinity to antibodies. By combining a semi-rational protein design with directed evolution, we engineered novel variants containing a calcium-binding loop rendering the inherent antibody affinity calcium-dependent. The evolved variants resulted from a designed selection strategy subjecting them to negative and positive selection pressures focused on conditional antibody binding. Hence, these variants contains molecular "on/off" switches, controlling the target affinity towards antibody fragments simply by the presence or absence of calcium. From NMR spectroscopy we found that the molecular mechanism underlying the evolved switching behavior was a coupled calcium-binding and folding event where the target binding surface was intact and functional only in the presence of bound calcium. Notably, it was observed that the response to the employed selection pressures gave rise to the evolution of a cooperative folding mechanism. This observation illustrates why the cooperative folding reaction is an effective solution seen repeatedly in the natural evolution of fine-tuned macromolecular recognition. Engineering binding moieties to confer conditional target interaction has great potential due to the exquisite interaction control that is tunable to application requirements. Improved understanding of the molecular mechanisms behind regulated interactions is crucial to unlock how to engineer switchable proteins useful in a variety of biotechnological applications.
Collapse
Affiliation(s)
- Malin Jönsson
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Emma von Witting
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas, USA
| | | | - Sophia Hober
- Department of Protein Science, KTH-Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
6
|
Sako K, Furukawa A, Nozawa RS, Kurita JI, Nishimura Y, Hirota T. Bipartite binding interface recruiting HP1 to chromosomal passenger complex at inner centromeres. J Cell Biol 2024; 223:e202312021. [PMID: 38781028 PMCID: PMC11116813 DOI: 10.1083/jcb.202312021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Maintenance of ploidy depends on the mitotic kinase Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC) whose proficient activity is supported by HP1 enriched at inner centromeres. HP1 is known to associate with INCENP of the CPC in a manner that depends on the PVI motif conserved across HP1 interactors. Here, we found that the interaction of INCENP with HP1 requires not only the PVI motif but also its C-terminally juxtaposed domain. Remarkably, these domains conditionally fold the β-strand (PVI motif) and the α-helix from a disordered sequence upon HP1 binding and render INCENP with high affinity to HP1. This bipartite binding domain termed SSH domain (Structure composed of Strand and Helix) is necessary and sufficient to attain a predominant interaction of HP1 with INCENP. These results identify a unique HP1-binding module in INCENP that ensures enrichment of HP1 at inner centromeres, Aurora B activity, and thereby mitotic fidelity.
Collapse
Affiliation(s)
- Kosuke Sako
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ayako Furukawa
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Jun-ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
7
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Yang S, Zhan Q, Su D, Cui X, Zhao J, Wang Q, Hong B, Ju J, Cheng C, Yang E, Kang C. HIF1α/ATF3 partake in PGK1 K191/K192 succinylation by modulating P4HA1/succinate signaling in glioblastoma. Neuro Oncol 2024; 26:1405-1420. [PMID: 38441561 PMCID: PMC11300026 DOI: 10.1093/neuonc/noae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Hypoxia is a pathological hallmark in most cancers, including glioblastoma (GBM). Hypoxic signaling activation and post-translational modification (PTM) of oncogenic proteins are well-studied in cancers. Accumulating studies indicate glycolytic enzyme PGK1 plays a crucial role in tumorigenesis, yet the underlying mechanisms remain unknown. METHODS We first used ChIP assays to uncover the crosstalk between HIF1α and ATF3 and their roles in P4HA1 regulation. Protein degradation analysis, LC-MS/MS, and in vitro succinate production assays were performed to examine the effect of protein succinylation on GBM pathology. Seahorse assay measured the effects of PGK1 succinylation at K191/K192 or its mutants on glucose metabolism. We utilized an in vivo intracranial mouse model for biochemical studies to elucidate the impact of ATF3 and P4HA1 on aerobic glycolysis and the tumor immune microenvironment. RESULTS We demonstrated that HIF1α and ATF3 positively and negatively regulate the transcription of P4HA1, respectively, leading to an increased succinate production and increased activation of HIF1α signaling. P4HA1 expression elevated the succinate concentration, resulting in the enhanced succinylation of PGK1 at the K191 and K192 sites. Inhibition of proteasomal degradation of PGK1 by succinylation significantly increased aerobic glycolysis to generate lactate. Furthermore, ATF3 overexpression and P4HA1 knockdown reduced succinate and lactate levels in GBM cells, inhibiting immune responses and tumor growth. CONCLUSIONS Together, our study demonstrates that HIF1α/ATF3 participated in P4HA1/succinate signaling, which is the major regulator of succinate biosynthesis and PGK1 succinylation at K191 and K192 sites in GBM. The P4HA1/succinate pathway might be a novel and promising target for aerobic glycolysis in GBM.
Collapse
Affiliation(s)
- Shixue Yang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qi Zhan
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Dongyuan Su
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jixing Zhao
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Biao Hong
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Jiasheng Ju
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Chunchao Cheng
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Eryan Yang
- Department of Gynecology and Obstetrics, Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
9
|
Luo J, Chen Z, Qiao Y, Tien JCY, Young E, Mannan R, Mahapatra S, He T, Eyunni S, Zhang Y, Zheng Y, Su F, Cao X, Wang R, Cheng Y, Seri R, George J, Shahine M, Miner SJ, Vaishampayan U, Wang M, Wang S, Parolia A, Chinnaiyan AM. p300/CBP degradation is required to disable the active AR enhanceosome in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587346. [PMID: 38586029 PMCID: PMC10996709 DOI: 10.1101/2024.03.29.587346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Prostate cancer is an exemplar of an enhancer-binding transcription factor-driven disease. The androgen receptor (AR) enhanceosome complex comprised of chromatin and epigenetic coregulators assembles at enhancer elements to drive disease progression. The paralog lysine acetyltransferases p300 and CBP deposit histone marks that are associated with enhancer activation. Here, we demonstrate that p300/CBP are determinant cofactors of the active AR enhanceosome in prostate cancer. Histone H2B N-terminus multisite lysine acetylation (H2BNTac), which is exclusively reliant on p300/CBP catalytic function, marked active enhancers and was notably elevated in prostate cancer lesions relative to the adjacent benign epithelia. Degradation of p300/CBP rapidly depleted acetylation marks associated with the active AR enhanceosome, which was only partially phenocopied by inhibition of their reader bromodomains. Notably, H2BNTac was effectively abrogated only upon p300/CBP degradation, which led to a stronger suppression of p300/CBP-dependent oncogenic gene programs relative to bromodomain inhibition or the inhibition of its catalytic domain. In vivo experiments using an orally active p300/CBP proteolysis targeting chimera (PROTAC) degrader (CBPD-409) showed that p300/CBP degradation potently inhibited tumor growth in preclinical models of castration-resistant prostate cancer and synergized with AR antagonists. While mouse p300/CBP orthologs were effectively degraded in host tissues, prolonged treatment with the PROTAC degrader was well tolerated with no significant signs of toxicity. Taken together, our study highlights the pivotal role of p300/CBP in maintaining the active AR enhanceosome and demonstrates how target degradation may have functionally distinct effects relative to target inhibition, thus supporting the development of p300/CBP degraders for the treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- Jie Luo
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Zhixiang Chen
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Interdisciplinary Research Center on Biology and Chemistry, Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- These authors contributed equally
| | - Jean Ching-Yi Tien
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eleanor Young
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rahul Mannan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Somnath Mahapatra
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Tongchen He
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sanjana Eyunni
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yang Zheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yunhui Cheng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rithvik Seri
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - James George
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Miriam Shahine
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Stephanie J. Miner
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Ulka Vaishampayan
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Monté D, Lens Z, Dewitte F, Villeret V, Verger A. Assessment of machine-learning predictions for the Mediator complex subunit MED25 ACID domain interactions with transactivation domains. FEBS Lett 2024; 598:758-773. [PMID: 38436147 DOI: 10.1002/1873-3468.14837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 02/10/2024] [Indexed: 03/05/2024]
Abstract
The human Mediator complex subunit MED25 binds transactivation domains (TADs) present in various cellular and viral proteins using two binding interfaces, named H1 and H2, which are found on opposite sides of its ACID domain. Here, we use and compare deep learning methods to characterize human MED25-TAD interfaces and assess the predicted models to published experimental data. For the H1 interface, AlphaFold produces predictions with high-reliability scores that agree well with experimental data, while the H2 interface predictions appear inconsistent, preventing reliable binding modes. Despite these limitations, we experimentally assess the validity of MED25 interface predictions with the viral transcriptional activators Lana-1 and IE62. AlphaFold predictions also suggest the existence of a unique hydrophobic pocket for the Arabidopsis MED25 ACID domain.
Collapse
Affiliation(s)
- Didier Monté
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Zoé Lens
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Frédérique Dewitte
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Vincent Villeret
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| | - Alexis Verger
- CNRS EMR 9002 Integrative Structural Biology, Inserm U 1167 - RID-AGE, Univ. Lille, CHU Lille, Institut Pasteur de Lille, France
| |
Collapse
|
11
|
Maiti S, Singh A, Maji T, Saibo NV, De S. Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins. Curr Res Struct Biol 2024; 7:100138. [PMID: 38707546 PMCID: PMC11068507 DOI: 10.1016/j.crstbi.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Eukaryotic proteins often feature long stretches of amino acids that lack a well-defined three-dimensional structure and are referred to as intrinsically disordered proteins (IDPs) or regions (IDRs). Although these proteins challenge conventional structure-function paradigms, they play vital roles in cellular processes. Recent progress in experimental techniques, such as NMR spectroscopy, single molecule FRET, high speed AFM and SAXS, have provided valuable insights into the biophysical basis of IDP function. This review discusses the advancements made in these techniques particularly for the study of disordered regions in proteins. In NMR spectroscopy new strategies such as 13C detection, non-uniform sampling, segmental isotope labeling, and rapid data acquisition methods address the challenges posed by spectral overcrowding and low stability of IDPs. The importance of various NMR parameters, including chemical shifts, hydrogen exchange rates, and relaxation measurements, to reveal transient secondary structures within IDRs and IDPs are presented. Given the high flexibility of IDPs, the review outlines NMR methods for assessing their dynamics at both fast (ps-ns) and slow (μs-ms) timescales. IDPs exert their functions through interactions with other molecules such as proteins, DNA, or RNA. NMR-based titration experiments yield insights into the thermodynamics and kinetics of these interactions. Detailed study of IDPs requires multiple experimental techniques, and thus, several methods are described for studying disordered proteins, highlighting their respective advantages and limitations. The potential for integrating these complementary techniques, each offering unique perspectives, is explored to achieve a comprehensive understanding of IDPs.
Collapse
Affiliation(s)
| | - Aakanksha Singh
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Tanisha Maji
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Nikita V. Saibo
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, WB, 721302, India
| |
Collapse
|
12
|
Liu Y, Joy ST, Henley MJ, Croskey A, Yates JA, Merajver SD, Mapp AK. Inhibition of CREB Binding and Function with a Dual-Targeting Ligand. Biochemistry 2024; 63:1-8. [PMID: 38086054 PMCID: PMC10836052 DOI: 10.1021/acs.biochem.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
CBP/p300 is a master transcriptional coactivator that regulates gene activation by interacting with multiple transcriptional activators. Dysregulation of protein-protein interactions (PPIs) between the CBP/p300 KIX domain and its activators is implicated in a number of cancers, including breast, leukemia, and colorectal cancer. However, KIX is typically considered "undruggable" because of its shallow binding surfaces lacking both significant topology and promiscuous binding profiles. We previously reported a dual-targeting peptide (MybLL-tide) that inhibits the KIX-Myb interaction with excellent specificity and potency. Here, we demonstrate a branched, second-generation analogue, CREBLL-tide, that inhibits the KIX-CREB PPI with higher potency and selectivity. Additionally, the best of these CREBLL-tide analogues shows excellent and selective antiproliferation activity in breast cancer cells. These results indicate that CREBLL-tide is an effective tool for assessing the role of KIX-activator interactions in breast cancer and expanding the dual-targeting strategy for inhibiting KIX and other coactivators that contain multiple binding surfaces.
Collapse
Affiliation(s)
- Yejun Liu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ayza Croskey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joel A Yates
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Sofia D Merajver
- Department of Internal Medicine, Hematology/Oncology, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Basu S, Martínez-Cristóbal P, Frigolé-Vivas M, Pesarrodona M, Lewis M, Szulc E, Bañuelos CA, Sánchez-Zarzalejo C, Bielskutė S, Zhu J, Pombo-García K, Garcia-Cabau C, Zodi L, Dockx H, Smak J, Kaur H, Batlle C, Mateos B, Biesaga M, Escobedo A, Bardia L, Verdaguer X, Ruffoni A, Mawji NR, Wang J, Obst JK, Tam T, Brun-Heath I, Ventura S, Meierhofer D, García J, Robustelli P, Stracker TH, Sadar MD, Riera A, Hnisz D, Salvatella X. Rational optimization of a transcription factor activation domain inhibitor. Nat Struct Mol Biol 2023; 30:1958-1969. [PMID: 38049566 PMCID: PMC10716049 DOI: 10.1038/s41594-023-01159-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 10/23/2023] [Indexed: 12/06/2023]
Abstract
Transcription factors are among the most attractive therapeutic targets but are considered largely 'undruggable' in part due to the intrinsically disordered nature of their activation domains. Here we show that the aromatic character of the activation domain of the androgen receptor, a therapeutic target for castration-resistant prostate cancer, is key for its activity as transcription factor, allowing it to translocate to the nucleus and partition into transcriptional condensates upon activation by androgens. On the basis of our understanding of the interactions stabilizing such condensates and of the structure that the domain adopts upon condensation, we optimized the structure of a small-molecule inhibitor previously identified by phenotypic screening. The optimized compounds had more affinity for their target, inhibited androgen-receptor-dependent transcriptional programs, and had an antitumorigenic effect in models of castration-resistant prostate cancer in cells and in vivo. These results suggest that it is possible to rationally optimize, and potentially even to design, small molecules that target the activation domains of oncogenic transcription factors.
Collapse
Affiliation(s)
- Shaon Basu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paula Martínez-Cristóbal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Frigolé-Vivas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Pesarrodona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Lewis
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Elzbieta Szulc
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - C Adriana Bañuelos
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Carolina Sánchez-Zarzalejo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stasė Bielskutė
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jiaqi Zhu
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carla Garcia-Cabau
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Levente Zodi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jordann Smak
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Harpreet Kaur
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Cristina Batlle
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Borja Mateos
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mateusz Biesaga
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Albert Escobedo
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain
| | - Alessandro Ruffoni
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nasrin R Mawji
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jun Wang
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Jon K Obst
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Teresa Tam
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Isabelle Brun-Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, USA
| | - Travis H Stracker
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Marianne D Sadar
- Genome Sciences, BC Cancer and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Barcelona, Spain.
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
14
|
Martinez-Yamout MA, Nasir I, Shnitkind S, Ellis JP, Berlow RB, Kroon G, Deniz AA, Dyson HJ, Wright PE. Glutamine-rich regions of the disordered CREB transactivation domain mediate dynamic intra- and intermolecular interactions. Proc Natl Acad Sci U S A 2023; 120:e2313835120. [PMID: 37971402 PMCID: PMC10666024 DOI: 10.1073/pnas.2313835120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 11/19/2023] Open
Abstract
The cyclic AMP response element (CRE) binding protein (CREB) is a transcription factor that contains a 280-residue N-terminal transactivation domain and a basic leucine zipper that mediates interaction with DNA. The transactivation domain comprises three subdomains, the glutamine-rich domains Q1 and Q2 and the kinase inducible activation domain (KID). NMR chemical shifts show that the isolated subdomains are intrinsically disordered but have a propensity to populate local elements of secondary structure. The Q1 and Q2 domains exhibit a propensity for formation of short β-hairpin motifs that function as binding sites for glutamine-rich sequences. These motifs mediate intramolecular interactions between the CREB Q1 and Q2 domains as well as intermolecular interactions with the glutamine-rich Q1 domain of the TATA-box binding protein associated factor 4 (TAF4) subunit of transcription factor IID (TFIID). Using small-angle X-ray scattering, NMR, and single-molecule Förster resonance energy transfer, we show that the Q1, Q2, and KID regions remain dynamically disordered in a full-length CREB transactivation domain (CREBTAD) construct. The CREBTAD polypeptide chain is largely extended although some compaction is evident in the KID and Q2 domains. Paramagnetic relaxation enhancement reveals transient long-range contacts both within and between the Q1 and Q2 domains while the intervening KID domain is largely devoid of intramolecular interactions. Phosphorylation results in expansion of the KID domain, presumably making it more accessible for binding the CBP/p300 transcriptional coactivators. Our study reveals the complex nature of the interactions within the intrinsically disordered transactivation domain of CREB and provides molecular-level insights into dynamic and transient interactions mediated by the glutamine-rich domains.
Collapse
Affiliation(s)
- Maria A. Martinez-Yamout
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Irem Nasir
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Sergey Shnitkind
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Jamie P. Ellis
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Rebecca B. Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - H. Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA92037
| |
Collapse
|
15
|
Breen ME, Joy ST, Baruti OJ, Beyersdorf MS, Henley MJ, De Salle SN, Ycas PD, Croskey A, Cierpicki T, Pomerantz WCK, Mapp AK. Garcinolic Acid Distinguishes Between GACKIX Domains and Modulates Interaction Networks. Chembiochem 2023; 24:e202300439. [PMID: 37525583 PMCID: PMC10870240 DOI: 10.1002/cbic.202300439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Natural products are often uniquely suited to modulate protein-protein interactions (PPIs) due to their architectural and functional group complexity relative to synthetic molecules. Here we demonstrate that the natural product garcinolic acid allosterically blocks the CBP/p300 KIX PPI network and displays excellent selectivity over related GACKIX motifs. It does so via a strong interaction (KD 1 μM) with a non-canonical binding site containing a structurally dynamic loop in CBP/p300 KIX. Garcinolic acid engages full-length CBP in the context of the proteome and in doing so effectively inhibits KIX-dependent transcription in a leukemia model. As the most potent small-molecule KIX inhibitor yet reported, garcinolic acid represents an important step forward in the therapeutic targeting of CBP/p300.
Collapse
Affiliation(s)
- Meghan E Breen
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Stephen T Joy
- Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Omari J Baruti
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Matthew S Beyersdorf
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Madeleine J Henley
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Samantha N De Salle
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Peter D Ycas
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN-55455, USA
| | - Ayza Croskey
- Program in Chemical Biology, Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN-55455, USA
| | - Anna K Mapp
- Department of Chemistry and Life Sciences Institute, University of Michigan, 210 Washtenaw Avenue, Ann Arbor, MI-48109, USA
| |
Collapse
|
16
|
Dyson HJ, Wright PE. From Immunogenic Peptides to Intrinsically Disordered Proteins. Isr J Chem 2023; 63:e202300051. [PMID: 38454968 PMCID: PMC10919381 DOI: 10.1002/ijch.202300051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 03/09/2024]
Abstract
It is hard to evaluate the role of individual mentors in the genesis of important ideas. In the case of our realization that proteins do not have to be stably folded to be functional, the influence of Richard Lerner and our collaborative work in the 1980s on the conformations of immunogenic peptides provided a base level of thinking about the nature of polypeptides in water solutions that led us to formulate and develop our ideas on the importance of intrinsic disorder in proteins. This review describes how the insights gained into the behavior of peptides led directly to the realization that proteins were not only capable of being functional while disordered, but also that disorder provided a distinct functional advantage in many important cellular processes.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
17
|
Park GT, Moon JK, Park S, Park SK, Baek J, Seo MS. Genome-wide analysis of KIX gene family for organ size regulation in soybean ( Glycine max L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1252016. [PMID: 37828927 PMCID: PMC10565003 DOI: 10.3389/fpls.2023.1252016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
The KIX domain, conserved among various nuclear and co-activator factors, acts as a binding site that interacts with other transcriptional activators and co-activators, playing a crucial role in gene expression regulation. In plants, the KIX domain is involved in plant hormone signaling, stress response regulation, cell cycle control, and differentiation, indicating its potential relevance to crop productivity. This study aims to identify and characterize KIX domains within the soybean (Glycine max L.) genome to predict their potential role in improving crop productivity. The conservation and evolutionary history of the KIX domains were explored in 59 plant species, confirming the presence of the KIX domains in diverse plants. Specifically, 13 KIX domains were identified within the soybean genome and classified into four main groups, namely GmKIX8/9, GmMED15, GmHAC, and GmRECQL, through sequence alignment, structural analysis, and phylogenetic tree construction. Association analysis was performed between KIX domain haplotypes and soybean seed-related agronomic traits using re-sequencing data from a core collection of 422 accessions. The results revealed correlations between SNP variations observed in GmKIX8-3 and GmMED15-4 and soybean seed phenotypic traits. Additionally, transcriptome analysis confirmed significant expression of the KIX domains during the early stages of soybean seed development. This study provides the first characterization of the structural, expression, genomic haplotype, and molecular features of the KIX domain in soybean, offering a foundation for functional analysis of the KIX domain in soybean and other plants.
Collapse
Affiliation(s)
- Gyu Tae Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Jung-Kyung Moon
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Sewon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - Soo-Kwon Park
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| | - JeongHo Baek
- Gene Engineering Division, National Institute of Agricultural Science, Rural Development Administration (RDA), Jeonju, Republic of Korea
| | - Mi-Suk Seo
- Crop Foundation Research Division, National Institute of Crop Sciences, Rural Development Administration (RDA), Wanju-gun, Republic of Korea
| |
Collapse
|
18
|
Mao Y, Zhou S, Yang J, Wen J, Wang D, Zhou X, Wu X, He L, Liu M, Wu H, Yang L, Zhao B, Tadege M, Liu Y, Liu C, Chen J. The MIO1-MtKIX8 module regulates the organ size in Medicago truncatula. PHYSIOLOGIA PLANTARUM 2023; 175:e14046. [PMID: 37882293 DOI: 10.1111/ppl.14046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plant organ size is an important agronomic trait tightly related to crop yield. However, the molecular mechanisms underlying organ size regulation remain largely unexplored in legumes. We previously characterized a key regulator F-box protein MINI ORGAN1 (MIO1)/SMALL LEAF AND BUSHY1 (SLB1), which controls plant organ size in the model legume Medicago truncatula. In order to further dissect the molecular mechanism, MIO1 was used as the bait to screen its interacting proteins from a yeast library. Subsequently, a KIX protein, designated MtKIX8, was identified from the candidate list. The interaction between MIO1 and MtKIX8 was confirmed further by Y2H, BiFC, split-luciferase complementation and pull-down assays. Phylogenetic analyses indicated that MtKIX8 is highly homologous to Arabidopsis KIX8, which negatively regulates organ size. Moreover, loss-of-function of MtKIX8 led to enlarged leaves and seeds, while ectopic expression of MtKIX8 in Arabidopsis resulted in decreased cotyledon area and seed weight. Quantitative reverse-transcription PCR and in situ hybridization showed that MtKIX8 is expressed in most developing organs. We also found that MtKIX8 serves as a crucial molecular adaptor, facilitating interactions with BIG SEEDS1 (BS1) and MtTOPLESS (MtTPL) proteins in M. truncatula. Overall, our results suggest that the MIO1-MtKIX8 module plays a significant and conserved role in the regulation of plant organ size. This module could be a good target for molecular breeding in legume crops and forages.
Collapse
Affiliation(s)
- Yawen Mao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shaoli Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Jiangqi Wen
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Dongfa Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuan Zhou
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyuan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liangliang He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Mingli Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- Southwest Forestry University, Kunming, China
| | - Huan Wu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Liling Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Baolin Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Million Tadege
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, USA
| | - Yu Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Jianghua Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence for Molecular Plant Science, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
19
|
Liu Z, Zheng X, Chen J, Zheng L, Ma Z, Chen L, Deng M, Tang H, Zhou L, Kang T, Wu Y, Liu Z. NFYC-37 promotes tumor growth by activating the mevalonate pathway in bladder cancer. Cell Rep 2023; 42:112963. [PMID: 37561631 DOI: 10.1016/j.celrep.2023.112963] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Dysregulation of transcription is a hallmark of cancer, including bladder cancer (BLCA). CRISPR-Cas9 screening using a lentivirus library with single guide RNAs (sgRNAs) targeting human transcription factors and chromatin modifiers is used to reveal genes critical for the proliferation and survival of BLCA cells. As a result, the nuclear transcription factor Y subunit gamma (NFYC)-37, but not NFYC-50, is observed to promote cell proliferation and tumor growth in BLCA. Mechanistically, NFYC-37 interacts with CBP and SREBP2 to activate mevalonate pathway transcription, promoting cholesterol biosynthesis. However, NFYC-50 recruits more of the arginine methyltransferase CARM1 than NFYC-37 to methylate CBP, which prevents the CBP-SREBP2 interaction and subsequently inhibits the mevalonate pathway. Importantly, statins targeting the mevalonate pathway can suppress NFYC-37-induced cell proliferation and tumor growth, indicating the need for conducting a clinical trial with statins for treating patients with BLCA and high NFYC-37 levels, as most patients with BLCA have high NFYC-37 levels.
Collapse
Affiliation(s)
- Zefu Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Xianchong Zheng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Jiawei Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Lisi Zheng
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Zikun Ma
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Lei Chen
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Huancheng Tang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Liwen Zhou
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China
| | - Tiebang Kang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China.
| | - Yuanzhong Wu
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China.
| | - Zhuowei Liu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, Guangdong, China; Department of Urology, Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730000, Gansu, China.
| |
Collapse
|
20
|
Sato N, Suetaka S, Hayashi Y, Arai M. Rational peptide design for inhibition of the KIX-MLL interaction. Sci Rep 2023; 13:6330. [PMID: 37072438 PMCID: PMC10113271 DOI: 10.1038/s41598-023-32848-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
The kinase-inducible domain interacting (KIX) domain is an integral part of the general transcriptional coactivator CREB-binding protein, and has been associated with leukemia, cancer, and various viral diseases. Hence, the KIX domain has attracted considerable attention in drug discovery and development. Here, we rationally designed a KIX inhibitor using a peptide fragment corresponding to the transactivation domain (TAD) of the transcriptional activator, mixed-lineage leukemia protein (MLL). We performed theoretical saturation mutagenesis using the Rosetta software to search for mutants expected to bind KIX more tightly than the wild-type MLL TAD. Mutant peptides with higher helical propensities were selected for experimental characterization. We found that the T2857W mutant of the MLL TAD peptide had the highest binding affinity for KIX compared to the other 12 peptides designed in this study. Moreover, the peptide had a high inhibitory effect on the KIX-MLL interaction with a half-maximal inhibitory concentration close to the dissociation constant for this interaction. To our knowledge, this peptide has the highest affinity for KIX among all previously reported inhibitors that target the MLL site of KIX. Thus, our approach may be useful for rationally developing helical peptides that inhibit protein-protein interactions implicated in the progression of various diseases.
Collapse
Affiliation(s)
- Nao Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Shunji Suetaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
- Environmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
21
|
Bentley EP, Scholl D, Wright PE, Deniz AA. Coupling of binding and differential subdomain folding of the intrinsically disordered transcription factor CREB. FEBS Lett 2023; 597:917-932. [PMID: 36480418 PMCID: PMC10089947 DOI: 10.1002/1873-3468.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The cyclic AMP response element binding protein (CREB) contains a basic leucine zipper motif (bZIP) that forms a coiled coil structure upon dimerization and specific DNA binding. Although this state is well characterized, key features of CREB bZIP binding and folding are not well understood. We used single-molecule Förster resonance energy transfer (smFRET) to probe conformations of CREB bZIP subdomains. We found differential folding of the basic region and leucine zipper in response to different binding partners; a strong and previously unreported DNA-independent dimerization affinity; folding upon binding to nonspecific DNA; and evidence of long-range interdomain interactions in full-length CREB that modulate DNA binding. These studies provide new insights into DNA binding and dimerization and have implications for CREB function.
Collapse
Affiliation(s)
- Emily P. Bentley
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Daniel Scholl
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Peter E. Wright
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|
22
|
Zhang Y, Liu X, Chen J. Re-Balancing Replica Exchange with Solute Tempering for Sampling Dynamic Protein Conformations. J Chem Theory Comput 2023; 19:1602-1614. [PMID: 36791464 PMCID: PMC10795075 DOI: 10.1021/acs.jctc.2c01139] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Replica exchange with solute tempering (REST) is a highly effective variant of replica exchange for enhanced sampling in explicit solvent simulations of biomolecules. By scaling the Hamiltonian for a selected "solute" region of the system, REST effectively applies tempering only to the degrees of freedom of interest but not the rest of the system ("solvent"), allowing fewer replicas for covering the same temperature range. A key consideration of REST is how the solute-solvent interactions are scaled together with the solute-solute interactions. Here, we critically evaluate the performance of the latest REST2 protocol for sampling large-scale conformation fluctuations of intrinsically disordered proteins (IDPs). The results show that REST2 promotes artificial protein conformational collapse at high effective temperatures, which seems to be a designed feature originally to promote the sampling of reversible folding of small proteins. The collapse is particularly severe with larger IDPs, leading to replica segregation in the effective temperature space and hindering effective sampling of large-scale conformational changes. We propose that the scaling of the solute-solvent interactions can be treated as free parameters in REST, which can be tuned to control the solute conformational properties (e.g., chain expansion) at different effective temperatures and achieve more effective sampling. To this end, we derive a new REST3 protocol, where the strengths of the solute-solvent van der Waals interactions are recalibrated to reproduce the levels of protein chain expansion at high effective temperatures. The efficiency of REST3 is examined using two IDPs with nontrivial local and long-range structural features, including the p53 N-terminal domain and the kinase inducible transactivation domain of transcription factor CREB. The results suggest that REST3 leads to a much more efficient temperature random walk and improved sampling efficiency, which also further reduces the number of replicas required. Nonetheless, our analysis also reveals significant challenges of relying on tempering alone for sampling large-scale conformational fluctuations of disordered proteins. It is likely that more efficient sampling protocols will require incorporating more sophisticated Hamiltonian replica exchange schemes in addition to tempering.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaorong Liu
- Corresponding Authors: (XL), (JC), Phone: (413) 545-3386 (JC)
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
23
|
Jones M, Grosche P, Floersheimer A, André J, Gattlen R, Oser D, Tinchant J, Wille R, Chie-Leon B, Gerspacher M, Ertl P, Ostermann N, Altmann E, Manchado E, Vorherr T, Chène P. Design and Biochemical Characterization of Peptidic Inhibitors of the Myb/p300 Interaction. Biochemistry 2023; 62:1321-1329. [PMID: 36883372 DOI: 10.1021/acs.biochem.2c00690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The Myb transcription factor is involved in the proliferation of hematopoietic cells, and deregulation of its expression can lead to cancers such as leukemia. Myb interacts with various proteins, including the histone acetyltransferases p300 and CBP. Myb binds to a small domain of p300, the KIX domain (p300KIX), and inhibiting this interaction is a potential new drug discovery strategy in oncology. The available structures show that Myb binds to a very shallow pocket of the KIX domain, indicating that it might be challenging to identify inhibitors of this interaction. Here, we report the design of Myb-derived peptides which interact with p300KIX. We show that by mutating only two Myb residues that bind in or near a hotspot at the surface of p300KIX, it is possible to obtain single-digit nanomolar peptidic inhibitors of the Myb/p300KIX interaction that bind 400-fold tighter to p300KIX than wildtype Myb. These findings suggest that it might also be possible to design potent low molecular-weight compounds to disrupt the Myb/p300KIX interaction.
Collapse
Affiliation(s)
- Matthew Jones
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Philipp Grosche
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Andreas Floersheimer
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Jérome André
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Raphael Gattlen
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Dieter Oser
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Juliette Tinchant
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Roman Wille
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Barbara Chie-Leon
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Marc Gerspacher
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Nils Ostermann
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research, Emeryville, California 94608, United States
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Eusebio Manchado
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Thomas Vorherr
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| | - Patrick Chène
- Disease Area Oncology, Novartis Institutes for Biomedical Research, Basel CH-4002, Switzerland
| |
Collapse
|
24
|
Functional Analyses of Rare Germline Missense BRCA1 Variants Located within and outside Protein Domains with Known Functions. Genes (Basel) 2023; 14:genes14020262. [PMID: 36833189 PMCID: PMC9957003 DOI: 10.3390/genes14020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The BRCA1 protein is implicated in numerous important cellular processes to prevent genomic instability and tumorigenesis, and pathogenic germline variants predispose carriers to hereditary breast and ovarian cancer (HBOC). Most functional studies of missense variants in BRCA1 focus on variants located within the Really Interesting New Gene (RING), coiled-coil and BRCA1 C-terminal (BRCT) domains, and several missense variants in these regions have been shown to be pathogenic. However, the majority of these studies focus on domain specific assays, and have been performed using isolated protein domains and not the full-length BRCA1 protein. Furthermore, it has been suggested that BRCA1 missense variants located outside domains with known function are of no functional importance, and could be classified as (likely) benign. However, very little is known about the role of the regions outside the well-established domains of BRCA1, and only a few functional studies of missense variants located within these regions have been published. In this study, we have, therefore, functionally evaluated the effect of 14 rare BRCA1 missense variants considered to be of uncertain clinical significance, of which 13 are located outside the well-established domains and one within the RING domain. In order to investigate the hypothesis stating that most BRCA1 variants located outside the known protein domains are benign and of no functional importance, multiple protein assays including protein expression and stability, subcellular localisation and protein interactions have been performed, utilising the full-length protein to better mimic the native state of the protein. Two variants located outside the known domains (p.Met297Val and p.Asp1152Asn) and one variant within the RING domain (p.Leu52Phe) were found to make the BRCA1 protein more prone to proteasome-mediated degradation. In addition, two variants (p.Leu1439Phe and p.Gly890Arg) also located outside known domains were found to have reduced protein stability compared to the wild type protein. These findings indicate that variants located outside the RING, BRCT and coiled-coiled domains could also affect the BRCA1 protein function. For the nine remaining variants, no significant effects on BRCA1 protein functions were observed. Based on this, a reclassification of seven variants from VUS to likely benign could be suggested.
Collapse
|
25
|
Yang Q, Tang J, Cao J, Liu F, Fu M, Xue B, Zhou A, Chen S, Liu J, Zhou Y, Shi Y, Peng W, Chen X. SARS-CoV-2 infection activates CREB/CBP in cellular cyclic AMP-dependent pathways. J Med Virol 2023; 95:e28383. [PMID: 36477795 PMCID: PMC9877775 DOI: 10.1002/jmv.28383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/15/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 μM to Remdesivir 0.57 μM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.
Collapse
Affiliation(s)
- Qi Yang
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Jielin Tang
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina,Center for Infection & Immunity, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Juan Cao
- Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Fengjiang Liu
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina
| | - Muqing Fu
- Center for Infection & Immunity, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
| | - Bao Xue
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Anqi Zhou
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Sijie Chen
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Junjun Liu
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina
| | - Yuan Zhou
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Yongxia Shi
- Guangzhou Customs District Technology CenterGuangzhouChina
| | - Wei Peng
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Guangzhou Medical UniversityGuangzhouChina
| | - Xinwen Chen
- Chen Xinwen Lab in Department of Basic ResearchGuangzhou LaboratoryGuangzhouChina,Hepatitis Virus and Gene Therapy Lab, State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina,Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
26
|
Nam K, Wolf-Watz M. Protein dynamics: The future is bright and complicated! STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:014301. [PMID: 36865927 PMCID: PMC9974214 DOI: 10.1063/4.0000179] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Biological life depends on motion, and this manifests itself in proteins that display motion over a formidable range of time scales spanning from femtoseconds vibrations of atoms at enzymatic transition states, all the way to slow domain motions occurring on micro to milliseconds. An outstanding challenge in contemporary biophysics and structural biology is a quantitative understanding of the linkages among protein structure, dynamics, and function. These linkages are becoming increasingly explorable due to conceptual and methodological advances. In this Perspective article, we will point toward future directions of the field of protein dynamics with an emphasis on enzymes. Research questions in the field are becoming increasingly complex such as the mechanistic understanding of high-order interaction networks in allosteric signal propagation through a protein matrix, or the connection between local and collective motions. In analogy to the solution to the "protein folding problem," we argue that the way forward to understanding these and other important questions lies in the successful integration of experiment and computation, while utilizing the present rapid expansion of sequence and structure space. Looking forward, the future is bright, and we are in a period where we are on the doorstep to, at least in part, comprehend the importance of dynamics for biological function.
Collapse
Affiliation(s)
- Kwangho Nam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | | |
Collapse
|
27
|
Differential Regulation of the BDNF Gene in Cortical and Hippocampal Neurons. J Neurosci 2022; 42:9110-9128. [PMID: 36316156 PMCID: PMC9761680 DOI: 10.1523/jneurosci.2535-21.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a widely expressed neurotrophin that supports the survival, differentiation, and signaling of various neuronal populations. Although it has been well described that expression of BDNF is strongly regulated by neuronal activity, little is known whether regulation of BDNF expression is similar in different brain regions. Here, we focused on this fundamental question using neuronal populations obtained from rat cerebral cortices and hippocampi of both sexes. First, we thoroughly characterized the role of the best-described regulators of BDNF gene - cAMP response element binding protein (CREB) family transcription factors, and show that activity-dependent BDNF expression depends more on CREB and the coactivators CREB binding protein (CBP) and CREB-regulated transcriptional coactivator 1 (CRTC1) in cortical than in hippocampal neurons. Our data also reveal an important role of CREB in the early induction of BDNF mRNA expression after neuronal activity and only modest contribution after prolonged neuronal activity. We further corroborated our findings at BDNF protein level. To determine the transcription factors regulating BDNF expression in these rat brain regions in addition to CREB family, we used in vitro DNA pulldown assay coupled with mass spectrometry, chromatin immunoprecipitation (ChIP), and bioinformatics, and propose a number of neurodevelopmentally important transcription factors, such as FOXP1, SATB2, RAI1, BCL11A, and TCF4 as brain region-specific regulators of BDNF expression. Together, our data reveal complicated brain region-specific fine-tuning of BDNF expression.SIGNIFICANCE STATEMENT To date, majority of the research has focused on the regulation of brain-derived neurotrophic factor (BDNF) in the brain but much less is known whether the regulation of BDNF expression is universal in different brain regions and neuronal populations. Here, we report that the best described regulators of BDNF gene from the cAMP-response element binding protein (CREB) transcription factor family have a more profound role in the activity-dependent regulation of BDNF in cortex than in hippocampus. Our results indicate a brain region-specific fine tuning of BDNF expression. Moreover, we have used unbiased determination of novel regulators of the BDNF gene and report a number of neurodevelopmentally important transcription factors as novel potential regulators of the BDNF expression.
Collapse
|
28
|
de Thonel A, Ahlskog JK, Daupin K, Dubreuil V, Berthelet J, Chaput C, Pires G, Leonetti C, Abane R, Barris LC, Leray I, Aalto AL, Naceri S, Cordonnier M, Benasolo C, Sanial M, Duchateau A, Vihervaara A, Puustinen MC, Miozzo F, Fergelot P, Lebigot É, Verloes A, Gressens P, Lacombe D, Gobbo J, Garrido C, Westerheide SD, David L, Petitjean M, Taboureau O, Rodrigues-Lima F, Passemard S, Sabéran-Djoneidi D, Nguyen L, Lancaster M, Sistonen L, Mezger V. CBP-HSF2 structural and functional interplay in Rubinstein-Taybi neurodevelopmental disorder. Nat Commun 2022; 13:7002. [PMID: 36385105 PMCID: PMC9668993 DOI: 10.1038/s41467-022-34476-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Patients carrying autosomal dominant mutations in the histone/lysine acetyl transferases CBP or EP300 develop a neurodevelopmental disorder: Rubinstein-Taybi syndrome (RSTS). The biological pathways underlying these neurodevelopmental defects remain elusive. Here, we unravel the contribution of a stress-responsive pathway to RSTS. We characterize the structural and functional interaction between CBP/EP300 and heat-shock factor 2 (HSF2), a tuner of brain cortical development and major player in prenatal stress responses in the neocortex: CBP/EP300 acetylates HSF2, leading to the stabilization of the HSF2 protein. Consequently, RSTS patient-derived primary cells show decreased levels of HSF2 and HSF2-dependent alteration in their repertoire of molecular chaperones and stress response. Moreover, we unravel a CBP/EP300-HSF2-N-cadherin cascade that is also active in neurodevelopmental contexts, and show that its deregulation disturbs neuroepithelial integrity in 2D and 3D organoid models of cerebral development, generated from RSTS patient-derived iPSC cells, providing a molecular reading key for this complex pathology.
Collapse
Affiliation(s)
- Aurélie de Thonel
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| | - Johanna K Ahlskog
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kevin Daupin
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Véronique Dubreuil
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Jérémy Berthelet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Carole Chaput
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Ksilink, Strasbourg, France
| | - Geoffrey Pires
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Camille Leonetti
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Ryma Abane
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Lluís Cordón Barris
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Isabelle Leray
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Anna L Aalto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Sarah Naceri
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Marine Cordonnier
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carène Benasolo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Matthieu Sanial
- CNRS, UMR 7592 Institut Jacques Monod, F-75205, Paris, France
| | - Agathe Duchateau
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
| | - Anniina Vihervaara
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mikael C Puustinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Federico Miozzo
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France
- Neuroscience Institute-CNR (IN-CNR), Milan, Italy
| | - Patricia Fergelot
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Élise Lebigot
- Service de Biochimie-pharmaco-toxicologie, Hôpital Bicêtre, Hopitaux Universitaires Paris-Sud, 94270 Le Kremlin Bicêtre, Paris-Sud, France
| | - Alain Verloes
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Pierre Gressens
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | - Didier Lacombe
- Department of Medical Genetics, University Hospital of Bordeaux, Bordeaux, France and INSERM U1211, University of Bordeaux, Bordeaux, France
| | - Jessica Gobbo
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Carmen Garrido
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Département d'Oncologie médicale, Centre Georges-François Leclerc, Dijon, France
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Laurent David
- Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000, Nantes, France
| | - Michel Petitjean
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Olivier Taboureau
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | | | - Sandrine Passemard
- Université de Paris, INSERM, NeuroDiderot, Robert-Debré Hospital, F-75019, Paris, France
| | | | - Laurent Nguyen
- Laboratory of Molecular Regulation of Neurogenesis, GIGA-Stem Cells and GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), University of Liège, CHU Sart Tilman, Liège, Belgium
| | - Madeline Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical, Campus, Cambridge, UK
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Valérie Mezger
- Université de Paris, CNRS, Epigenetics and Cell Fate, F-75013, Paris, France.
| |
Collapse
|
29
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
30
|
Lázár T, Tantos A, Tompa P, Schad E. Intrinsic protein disorder uncouples affinity from binding specificity. Protein Sci 2022; 31:e4455. [PMID: 36305763 PMCID: PMC9601785 DOI: 10.1002/pro.4455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins often function by molecular recognition, in which they undergo induced folding. Based on prior generalizations, the idea prevails in the IDP field that due to the entropic penalty of induced folding, the major functional advantage associated with this binding mode is "uncoupling" specificity from binding strength. Nevertheless, both weaker binding and high specificity of IDPs/IDRs rest on limited experimental observations, making these assumptions more speculations than evidence-supported facts. The issue is also complicated by the rather vague concept of specificity that lacks an exact measure, such as the Kd for binding strength. We addressed these issues by creating and analyzing a comprehensive dataset of well-characterized ID/globular protein complexes, for which both the atomic structure of the complex and free energy (ΔG, Kd ) of interaction is known. Through this analysis, we provide evidence that the affinity distributions of IDP/globular and globular/globular complexes show different trends, whereas specificity does not connote to weaker binding strength of IDPs/IDRs. Furthermore, protein disorder extends the spectrum in the direction of very weak interactions, which may have important regulatory consequences and suggest that, in a biological sense, strict correlation of specificity and binding strength are uncoupled by structural disorder.
Collapse
Affiliation(s)
- Tamas Lázár
- VIB‐VUB Center for Structural BiologyFlanders Institute for Biotechnology (VIB)BrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| | - Agnes Tantos
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| | - Peter Tompa
- VIB‐VUB Center for Structural BiologyFlanders Institute for Biotechnology (VIB)BrusselsBelgium
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| | - Eva Schad
- Institute of EnzymologyResearch Centre for Natural SciencesBudapestHungary
| |
Collapse
|
31
|
Hatakeyama D, Sunada H, Totani Y, Watanabe T, Felletár I, Fitchett A, Eravci M, Anagnostopoulou A, Miki R, Okada A, Abe N, Kuzuhara T, Kemenes I, Ito E, Kemenes G. Molecular and functional characterization of an evolutionarily conserved CREB-binding protein in the Lymnaea CNS. FASEB J 2022; 36:e22593. [PMID: 36251357 PMCID: PMC9828244 DOI: 10.1096/fj.202101225rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 01/12/2023]
Abstract
In eukaryotes, CREB-binding protein (CBP), a coactivator of CREB, functions both as a platform for recruiting other components of the transcriptional machinery and as a histone acetyltransferase (HAT) that alters chromatin structure. We previously showed that the transcriptional activity of cAMP-responsive element binding protein (CREB) plays a crucial role in neuronal plasticity in the pond snail Lymnaea stagnalis. However, there is no information on the molecular structure and HAT activity of CBP in the Lymnaea central nervous system (CNS), hindering an investigation of its postulated role in long-term memory (LTM). Here, we characterize the Lymnaea CBP (LymCBP) gene and identify a conserved domain of LymCBP as a functional HAT. Like CBPs of other species, LymCBP possesses functional domains, such as the KIX domain, which is essential for interaction with CREB and was shown to regulate LTM. In-situ hybridization showed that the staining patterns of LymCBP mRNA in CNS are very similar to those of Lymnaea CREB1. A particularly strong LymCBP mRNA signal was observed in the cerebral giant cell (CGC), an identified extrinsic modulatory interneuron of the feeding circuit, the key to both appetitive and aversive LTM for taste. Biochemical experiments using the recombinant protein of the LymCBP HAT domain showed that its enzymatic activity was blocked by classical HAT inhibitors. Preincubation of the CNS with such inhibitors blocked cAMP-induced synaptic facilitation between the CGC and an identified follower motoneuron of the feeding system. Taken together, our findings suggest a role for the HAT activity of LymCBP in synaptic plasticity in the feeding circuitry.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK,Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Hiroshi Sunada
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanukiJapan,Present address:
Advanced Medicine, Innovation and Clinical Research CentreTottori University HospitalYonagoJapan
| | - Yuki Totani
- Department of BiologyWaseda UniversityTokyoJapan
| | | | - Ildikó Felletár
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Adam Fitchett
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Murat Eravci
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Aikaterini Anagnostopoulou
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK,Present address:
School of Life SciencesUniversity of WestminsterLondonUK
| | - Ryosuke Miki
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Ayano Okada
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Naoya Abe
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical SciencesTokushima Bunri UniversityTokushimaJapan
| | - Ildikó Kemenes
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanukiJapan,Department of BiologyWaseda UniversityTokyoJapan
| | - György Kemenes
- Sussex NeuroscienceSchool of Life Sciences, University of SussexBrightonUK
| |
Collapse
|
32
|
Chen R, Li X, Yang Y, Song X, Wang C, Qiao D. Prediction of protein-protein interaction sites in intrinsically disordered proteins. Front Mol Biosci 2022; 9:985022. [PMID: 36250006 PMCID: PMC9567019 DOI: 10.3389/fmolb.2022.985022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) participate in many biological processes by interacting with other proteins, including the regulation of transcription, translation, and the cell cycle. With the increasing amount of disorder sequence data available, it is thus crucial to identify the IDP binding sites for functional annotation of these proteins. Over the decades, many computational approaches have been developed to predict protein-protein binding sites of IDP (IDP-PPIS) based on protein sequence information. Moreover, there are new IDP-PPIS predictors developed every year with the rapid development of artificial intelligence. It is thus necessary to provide an up-to-date overview of these methods in this field. In this paper, we collected 30 representative predictors published recently and summarized the databases, features and algorithms. We described the procedure how the features were generated based on public data and used for the prediction of IDP-PPIS, along with the methods to generate the feature representations. All the predictors were divided into three categories: scoring functions, machine learning-based prediction, and consensus approaches. For each category, we described the details of algorithms and their performances. Hopefully, our manuscript will not only provide a full picture of the status quo of IDP binding prediction, but also a guide for selecting different methods. More importantly, it will shed light on the inspirations for future development trends and principles.
Collapse
Affiliation(s)
- Ranran Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Xinlu Li
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Yaqing Yang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Xixi Song
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Cheng Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Institute of Health Data Science of China, Shandong University, Jinan, China
| | - Dongdong Qiao
- Shandong Mental Health Center, Shandong University, Jinan, China
| |
Collapse
|
33
|
Zhang Y, Liu X, Chen J. Toward Accurate Coarse-Grained Simulations of Disordered Proteins and Their Dynamic Interactions. J Chem Inf Model 2022; 62:4523-4536. [PMID: 36083825 PMCID: PMC9910785 DOI: 10.1021/acs.jcim.2c00974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) play crucial roles in cellular regulatory networks and are now recognized to often remain highly dynamic even in specific interactions and assemblies. Accurate description of these dynamic interactions is extremely challenging using atomistic simulations because of the prohibitive computational cost. Efficient coarse-grained approaches could offer an effective solution to overcome this bottleneck if they could provide an accurate description of key local and global properties of IDPs in both unbound and bound states. The recently developed hybrid-resolution (HyRes) protein model has been shown to be capable of providing a semiquantitative description of the secondary structure propensities of IDPs. Here, we show that greatly improved description of global structures and transient interactions can be achieved by introducing a solvent-accessible surface area-based implicit solvent term followed by reoptimization of effective interaction strengths. The new model, termed HyRes II, can semiquantitatively reproduce a wide range of local and global structural properties of a set of IDPs of various lengths and complexities. It can also distinguish the level of compaction between folded proteins and IDPs. In particular, applied to the disordered N-terminal transactivation domain (TAD) of tumor suppressor p53, HyRes II is able to recapitulate various nontrivial structural properties compared to experimental results, some of them to a level of accuracy that is almost comparable to results from atomistic explicit solvent simulations. Furthermore, we demonstrate that HyRes II can be used to simulate the dynamic interactions of TAD with the DNA-binding domain of p53, generating structural ensembles that are highly consistent with existing NMR data. We anticipate that HyRes II will provide an efficient and relatively reliable tool toward accurate coarse-grained simulations of dynamic protein interactions.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
34
|
Sato M. Biological Significance of Intrinsically Disordered Protein Structure. CHEM-BIO INFORMATICS JOURNAL 2022. [DOI: 10.1273/cbij.22.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Mamoru Sato
- Graduate School of Medical Life Science, Yokohama City University
| |
Collapse
|
35
|
Wickramaratne AC, Li L, Hopkins JB, Joachimiak LA, Green CB. The Disordered Amino Terminus of the Circadian Enzyme Nocturnin Modulates Its NADP(H) Phosphatase Activity by Changing Protein Dynamics. Biochemistry 2022; 61:10.1021/acs.biochem.2c00072. [PMID: 35535990 PMCID: PMC9646931 DOI: 10.1021/acs.biochem.2c00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Endogenous circadian clocks control the rhythmicity of a broad range of behavioral and physiological processes, and this is entrained by the daily fluctuations in light and dark. Nocturnin (Noct) is a rhythmically expressed gene regulated by the circadian clock that belongs to the CCR4 family of endonuclease-exonuclease-phosphatase (EEP) enzymes, and the NOCT protein exhibits phosphatase activity, catalyzing the removal of the 2'-phosphate from NADP(H). In addition to its daily nighttime peak of expression, it is also induced by acute stimuli. Loss of Nocturnin (Noct-/-) in mice results in resistance to high-fat diet-induced obesity, and loss of Noct in HEK293T cells confers a protective effect to oxidative stress. Modeling of the full-length Nocturnin protein reveals a partially structured amino terminus that is disparate from its CCR4 family members. The high sequence conservation of a leucine zipper-like (LZ-like) motif, the only structural element in the amino terminus, highlights the potential importance of this domain in modulating phosphatase activity. In vitro biochemical and biophysical techniques demonstrate that the LZ-like domain within the flexible N-terminus is necessary for preserving the active site cleft in an optimal conformation to promote the efficient turnover of the substrate. This modulation occurs in cis and is pivotal in maintaining the stability and conformational integrity of the enzyme. These new findings suggest an additional layer of modulating the activity of Nocturnin in addition to its rhythmicity to provide fine-tuned control over cellular levels of NADPH.
Collapse
Affiliation(s)
- Anushka C. Wickramaratne
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesse B. Hopkins
- Biophysics Collaborative Access Team, Illinois Institute of Technology, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Lukasz A. Joachimiak
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carla B. Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
36
|
Vuoristo S, Bhagat S, Hydén-Granskog C, Yoshihara M, Gawriyski L, Jouhilahti EM, Ranga V, Tamirat M, Huhtala M, Kirjanov I, Nykänen S, Krjutškov K, Damdimopoulos A, Weltner J, Hashimoto K, Recher G, Ezer S, Paluoja P, Paloviita P, Takegami Y, Kanemaru A, Lundin K, Airenne TT, Otonkoski T, Tapanainen JS, Kawaji H, Murakawa Y, Bürglin TR, Varjosalo M, Johnson MS, Tuuri T, Katayama S, Kere J. DUX4 is a multifunctional factor priming human embryonic genome activation. iScience 2022; 25:104137. [PMID: 35402882 PMCID: PMC8990217 DOI: 10.1016/j.isci.2022.104137] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/04/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022] Open
Abstract
Double homeobox 4 (DUX4) is expressed at the early pre-implantation stage in human embryos. Here we show that induced human DUX4 expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes ZSCAN4 and KHDC1P1. We show that DUX4 is markedly enriched in human zygotes, followed by intense nuclear DUX4 localization preceding and coinciding with minor EGA. DUX4 knockdown in human zygotes led to changes in the EGA transcriptome but did not terminate the embryos. We also show that the DUX4 protein interacts with the Mediator complex via the C-terminal KIX binding motif. Our findings contribute to the understanding of DUX4 as a regulator of the non-coding genome.
Collapse
Affiliation(s)
- Sanna Vuoristo
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Shruti Bhagat
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Instutute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan
| | | | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden
| | - Lisa Gawriyski
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Vipin Ranga
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Mahlet Tamirat
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Mikko Huhtala
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Ida Kirjanov
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Sonja Nykänen
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Competence Centre for Health Technologies, 51010 Tartu, Estonia.,University of Tartu, Department of Obstetrics and Gynecology, Institute of Clinical Medicine, 50406 Tartu, Estonia
| | | | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland
| | - Kosuke Hashimoto
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Gaëlle Recher
- Laboratoire Photonique Numérique et Nanosciences, CNRS, Institut d'Optique Graduate School, University of Bordeaux, UMR 5298, 33400 Bordeaux, France
| | - Sini Ezer
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Priit Paluoja
- Competence Centre for Health Technologies, 51010 Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, 50090 Tartu, Estonia.,University of Helsinki, Doctoral Program in Population Health, 00014 Helsinki, Finland
| | - Pauliina Paloviita
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | | | | | - Karolina Lundin
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Children's Hospital, Helsinki University Central Hospital, 00290
| | - Juha S Tapanainen
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.,Reproductive Medicine Unit, Helsinki University Hospital, 00290 Helsinki, Finland.,Oulu University Hospital, 90220 Oulu, Finland
| | - Hideya Kawaji
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,RIKEN Preventive Medicine and Diagnosis Innovation Program, Wako 351-0198, Japan.,Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yasuhiro Murakawa
- RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.,Instutute for the Advanced Study of Human Biology, Kyoto University, Kyoto 606-8501, Japan.,IFOM, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Thomas R Bürglin
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Markku Varjosalo
- Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00014, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland.,Reproductive Medicine Unit, Helsinki University Hospital, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, 17177 Huddinge, Sweden.,Stem Cells and Metabolism Research Program, University of Helsinki, 00014 Helsinki, Finland.,Folkhälsan Research Center, 00290 Helsinki, Finland
| |
Collapse
|
37
|
Gong R, Li H, Liu Y, Wang Y, Ge L, Shi L, Wu G, Lyu J, Gu H, He L. Gab2 promotes acute myeloid leukemia growth and migration through the SHP2-Erk-CREB signaling pathway. J Leukoc Biol 2022; 112:669-677. [PMID: 35322464 DOI: 10.1002/jlb.2a0421-221r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignant disease largely affecting older adults with poor outcomes. Lack of effective targeted treatment is a major challenge in managing the disease in the clinic. Scaffolding adaptor Gab2 is amplified in a subset of AML. However, the causative role of Gab2 in AML remains to be explored. In this study, it was found that Gab2 was expressed at high levels in AML patient samples and AML cell lines. Experiments by knocking down Gab2 expression using shRNA showed that Gab2 promoted AML cell growth and migration in vitro and in vivo. Further studies using Gab2 mutants and pharmacological inhibitors revealed that Gab2 increased CREB phosphorylation via the SHP-2/Erk signaling pathway. CREB phosphorylation contributed to Gab2-induced cell migration by increasing MMP2 and MMP9 expression. This research indicates that high Gab2 expression promotes AML progression through the SHP2-Erk-CREB signaling pathway. CREB suppression may help treat AML with high Gab2 expression.
Collapse
Affiliation(s)
- Rui Gong
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Clinical Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haoying Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yaqi Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanyan Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lu Ge
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liuzhi Shi
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guang Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haihua Gu
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Licai He
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Peng J, Miller M, Li BX, Xiao X. Design, Synthesis and Biological Evaluation of Prodrugs of 666-15 as Inhibitors of CREB-Mediated Gene Transcription. ACS Med Chem Lett 2022; 13:388-395. [PMID: 35300089 PMCID: PMC8919383 DOI: 10.1021/acsmedchemlett.1c00499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
cAMP-response element binding protein (CREB) is a transcription factor involved in multiple cancers. Chemical inhibitors of CREB represent potential anticancer agents. We previously identified 666-15 as a potent CREB inhibitor. While 666-15 showed efficacious anticancer activity in vivo through intraperitoneal (IP) injection, its oral bioavailability is limited. To increase its oral bioavailability, we describe synthesis and evaluation of prodrugs based on 666-15. The amino acid esters were attempted, but they were not stable for detailed characterization. The corresponding sulfate and phosphates were prepared. The sulfate of 666-15 was too stable to release 666-15 while the phosphates were converted into 666-15 with half-lives of ∼2 h. Phosphate 3 was also a potent CREB inhibitor with anti-breast cancer activity. Furthermore, compound 3 showed much improved oral bioavailability at 38%. These studies support that 3 can be used as an oral CREB inhibitor while IP administration of 666-15 is preferred for in vivo applications.
Collapse
Affiliation(s)
- Jiangling Peng
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Mark Miller
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Bingbing X. Li
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Xiangshu Xiao
- Department
of Chemical Physiology and Biochemistry, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|
39
|
Zhang K, Horikoshi N, Li S, Powers AS, Hameedi MA, Pintilie GD, Chae HD, Khan YA, Suomivuori CM, Dror RO, Sakamoto KM, Chiu W, Wakatsuki S. Cryo-EM, Protein Engineering, and Simulation Enable the Development of Peptide Therapeutics against Acute Myeloid Leukemia. ACS CENTRAL SCIENCE 2022; 8:214-222. [PMID: 35233453 PMCID: PMC8875425 DOI: 10.1021/acscentsci.1c01090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 06/14/2023]
Abstract
Cryogenic electron microscopy (cryo-EM) has emerged as a viable structural tool for molecular therapeutics development against human diseases. However, it remains a challenge to determine structures of proteins that are flexible and smaller than 30 kDa. The 11 kDa KIX domain of CREB-binding protein (CBP), a potential therapeutic target for acute myeloid leukemia and other cancers, is a protein which has defied structure-based inhibitor design. Here, we develop an experimental approach to overcome the size limitation by engineering a protein double-shell to sandwich the KIX domain between apoferritin as the inner shell and maltose-binding protein as the outer shell. To assist homogeneous orientations of the target, disulfide bonds are introduced at the target-apoferritin interface, resulting in a cryo-EM structure at 2.6 Å resolution. We used molecular dynamics simulations to design peptides that block the interaction of the KIX domain of CBP with the intrinsically disordered pKID domain of CREB. The double-shell design allows for fluorescence polarization assays confirming the binding between the KIX domain in the double-shell and these interacting peptides. Further cryo-EM analysis reveals a helix-helix interaction between a single KIX helix and the best peptide, providing a possible strategy for developments of next-generation inhibitors.
Collapse
Affiliation(s)
- Kaiming Zhang
- MOE
Key Laboratory for Cellular Dynamics and Division of Life Sciences
and Medicine, University of Science and
Technology of China, Hefei 230027, China
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Naoki Horikoshi
- Life
Science Center for Survival Dynamics, University
of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Department
of Structural Biology, Stanford University, Stanford, California 94305, United States
| | - Shanshan Li
- MOE
Key Laboratory for Cellular Dynamics and Division of Life Sciences
and Medicine, University of Science and
Technology of China, Hefei 230027, China
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Alexander S. Powers
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
| | - Mikhail A. Hameedi
- Department
of Structural Biology, Stanford University, Stanford, California 94305, United States
- Biosciences
Division, SLAC National Accelerator Laboratory, Stanford University, Menlo
Park, California 94025, United States
| | - Grigore D. Pintilie
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Hee-Don Chae
- Department
of Pediatrics, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Yousuf A. Khan
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Carl-Mikael Suomivuori
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
| | - Ron O. Dror
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
| | - Kathleen M. Sakamoto
- Department
of Pediatrics, Stanford University School
of Medicine, Stanford, California 94305, United States
| | - Wah Chiu
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- CryoEM
and Bioimaging Division, Stanford Synchrotron Radiation Lightsource,
SLAC National Accelerator Laboratory, Stanford
University, Menlo
Park, California 94025, United States
| | - Soichi Wakatsuki
- Department
of Structural Biology, Stanford University, Stanford, California 94305, United States
- Biosciences
Division, SLAC National Accelerator Laboratory, Stanford University, Menlo
Park, California 94025, United States
| |
Collapse
|
40
|
Rational design of a helical peptide inhibitor targeting c-Myb–KIX interaction. Sci Rep 2022; 12:816. [PMID: 35058484 PMCID: PMC8776815 DOI: 10.1038/s41598-021-04497-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
The transcription factor c-Myb promotes the proliferation of hematopoietic cells by interacting with the KIX domain of CREB-binding protein; however, its aberrant expression causes leukemia. Therefore, inhibitors of the c-Myb–KIX interaction are potentially useful as antitumor drugs. Since the intrinsically disordered transactivation domain (TAD) of c-Myb binds KIX via a conformational selection mechanism where helix formation precedes binding, stabilizing the helical structure of c-Myb TAD is expected to increase the KIX-binding affinity. Here, to develop an inhibitor of the c-Myb–KIX interaction, we designed mutants of the c-Myb TAD peptide fragment where the helical structure is stabilized, based on theoretical predictions using AGADIR. Three of the four initially designed peptides each had a different Lys-to-Arg substitution on the helix surface opposite the KIX-binding interface. Furthermore, the triple mutant with three Lys-to-Arg substitutions, named RRR, showed a high helical propensity and achieved three-fold higher affinity to KIX than the wild-type TAD with a dissociation constant of 80 nM. Moreover, the RRR inhibitor efficiently competed out the c-Myb–KIX interaction. These results suggest that stabilizing the helical structure based on theoretical predictions, especially by conservative Lys-to-Arg substitutions, is a simple and useful strategy for designing helical peptide inhibitors of protein–protein interactions.
Collapse
|
41
|
A propolis-derived small molecule ameliorates metabolic syndrome in obese mice by targeting the CREB/CRTC2 transcriptional complex. Nat Commun 2022; 13:246. [PMID: 35017472 PMCID: PMC8752738 DOI: 10.1038/s41467-021-27533-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
The molecular targets and mechanisms of propolis ameliorating metabolic syndrome are not fully understood. Here, we report that Brazilian green propolis reduces fasting blood glucose levels in obese mice by disrupting the formation of CREB/CRTC2 transcriptional complex, a key regulator of hepatic gluconeogenesis. Using a mammalian two-hybrid system based on CREB-CRTC2, we identify artepillin C (APC) from propolis as an inhibitor of CREB-CRTC2 interaction. Without apparent toxicity, APC protects mice from high fat diet-induced obesity, decreases fasting glucose levels, enhances insulin sensitivity and reduces lipid levels in the serum and liver by suppressing CREB/CRTC2-mediated both gluconeogenic and SREBP transcriptions. To develop more potential drugs from APC, we designed and found a novel compound, A57 that exhibits higher inhibitory activity on CREB-CRTC2 association and better capability of improving insulin sensitivity in obese animals, as compared with APC. In this work, our results indicate that CREB/CRTC2 is a suitable target for developing anti-metabolic syndrome drugs.
Collapse
|
42
|
Zhou R, Duan M. Metadynamics Simulations to Study the Structural Ensembles and Binding Processes of Intrinsically Disordered Proteins. Methods Mol Biol 2022; 2405:169-178. [PMID: 35298814 DOI: 10.1007/978-1-0716-1855-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structures of intrinsically disordered proteins (IDPs) are highly dynamic. It is hard to characterize the structures of these proteins experimentally. Molecular dynamics (MD) simulation is a powerful tool in the understanding of protein dynamic structures and function. This chapter describes the application of metadynamics-based enhanced sampling methods in the study of phosphorylation regulation on the structure of kinase-inducible domains (KID). The structural properties of free pKID and KID were obtained by parallel tempering metadynamics combined with well-tempered ensemble (PTMetaD WTE) method, and the binding free energy surfaces of pKID/KID and KIX were characterized by bias-exchanged metadynamics (BE-MetaD) simulations.
Collapse
Affiliation(s)
- Rui Zhou
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Mojie Duan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
43
|
Molecular Simulations of Intrinsically Disordered Proteins and Their Binding Mechanisms. Methods Mol Biol 2022; 2376:343-362. [PMID: 34845619 DOI: 10.1007/978-1-0716-1716-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) lack well-defined secondary or tertiary structures in solution but are found to be involved in a wide range of critical cellular processes that highlight their functional importance. IDPs usually undergo folding upon binding to their targets. Such binding coupled to folding behavior has widened our perspective on the protein structure-dynamics-function paradigm in molecular biology. However, characterizing the folding upon binding mechanism of IDPs experimentally remains quite challenging. Molecular simulations emerge as a potentially powerful tool that offers information complementary to experiments. Here we present a general computational framework for the molecular simulations of IDP folding upon binding processes that combines all-atom molecular dynamics (MD) and coarse-grained simulations. The classical all-atom molecular dynamics approach using GPU acceleration allows the researcher to explore the properties of the IDP conformational ensemble, whereas coarse-grained structure-based models implemented with parameters carefully calibrated to available experimental measurements can be used to simulate the entire folding upon binding process. We also discuss a set of tools for the analysis of MD trajectories and describe the details of the computational protocol to follow so that it can be adapted by the user to study any IDP in isolation and in complex with partners.
Collapse
|
44
|
Bernardini A, Lorenzo M, Chaves-Sanjuan A, Swuec P, Pigni M, Saad D, Konarev PV, Graewert MA, Valentini E, Svergun DI, Nardini M, Mantovani R, Gnesutta N. The USR domain of USF1 mediates NF-Y interactions and cooperative DNA binding. Int J Biol Macromol 2021; 193:401-413. [PMID: 34673109 DOI: 10.1016/j.ijbiomac.2021.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
The trimeric CCAAT-binding NF-Y is a "pioneer" Transcription Factor -TF- known to cooperate with neighboring TFs to regulate gene expression. Genome-wide analyses detected a precise stereo-alignment -10/12 bp- of CCAAT with E-box elements and corresponding colocalization of NF-Y with basic-Helix-Loop-Helix (bHLH) TFs. We dissected here NF-Y interactions with USF1 and MAX. USF1, but not MAX, cooperates in DNA binding with NF-Y. NF-Y and USF1 synergize to activate target promoters. Reconstruction of complexes by structural means shows independent DNA binding of MAX, whereas USF1 has extended contacts with NF-Y, involving the USR, a USF-specific amino acid sequence stretch required for trans-activation. The USR is an intrinsically disordered domain and adopts different conformations based on E-box-CCAAT distances. Deletion of the USR abolishes cooperative DNA binding with NF-Y. Our data indicate that the functionality of certain unstructured domains involves adapting to small variation in stereo-alignments of the multimeric TFs sites.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Mariangela Lorenzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | | | - Paolo Swuec
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Matteo Pigni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Dana Saad
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Petr V Konarev
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Science, Moscow 119333, Russian Federation
| | | | - Erica Valentini
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy.
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy.
| |
Collapse
|
45
|
Structural and thermodynamical insights into the binding and inhibition of FIH-1 by the N-terminal disordered region of Mint3. J Biol Chem 2021; 297:101304. [PMID: 34655613 PMCID: PMC8571082 DOI: 10.1016/j.jbc.2021.101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mint3 is known to enhance aerobic ATP production, known as the Warburg effect, by binding to FIH-1. Since this effect is considered to be beneficial for cancer cells, the interaction is a promising target for cancer therapy. However, previous research has suggested that the interacting region of Mint3 with FIH-1 is intrinsically disordered, which makes investigation of this interaction challenging. Therefore, we adopted thermodynamic and structural studies in solution to clarify the structural and thermodynamical changes of Mint3 binding to FIH-1. First, using a combination of circular dichroism, nuclear magnetic resonance, and hydrogen/deuterium exchange–mass spectrometry (HDX-MS), we confirmed that the N-terminal half, which is the interacting part of Mint3, is mostly disordered. Next, we revealed a large enthalpy and entropy change in the interaction of Mint3 using isothermal titration calorimetry (ITC). The profile is consistent with the model that the flexibility of disordered Mint3 is drastically reduced upon binding to FIH-1. Moreover, we performed a series of ITC experiments with several types of truncated Mint3s, an effective approach since the interacting part of Mint3 is disordered, and identified amino acids 78 to 88 as a novel core site for binding to FIH-1. The truncation study of Mint3 also revealed the thermodynamic contribution of each part of Mint3 to the interaction with FIH-1, where the core sites contribute to the affinity (ΔG), while other sites only affect enthalpy (ΔH), by forming noncovalent bonds. This insight can serve as a foothold for further investigation of intrinsically disordered regions (IDRs) and drug development for cancer therapy.
Collapse
|
46
|
Li SY, Shang J, Mao XM, Fan R, Li HQ, Li RH, Shen DY. Diosgenin exerts anti-tumor effects through inactivation of cAMP/PKA/CREB signaling pathway in colorectal cancer. Eur J Pharmacol 2021; 908:174370. [PMID: 34324855 DOI: 10.1016/j.ejphar.2021.174370] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023]
Abstract
Colorectal cancer (CRC) is the most fatal gastrointestinal tumor and it is urge to explore powerful drugs for the treatment. Diosgenin (DSG) as a new steroidal had been reported exerts anti-tumor activity in multiple cancers, including CRC. However, the potential mechanism of DSG suppresses CRC remains further to be revealed. Here, we reported that DSG inhibited proliferation of CRC cells in dose- and time-dependent manner, induced apoptosis by modulating p53 and Bcl-2 family proteins expression to mediate mitochondrial apoptosis pathway, suppressed migration and invasion by reducing MMP-9 (matrix metalloproteinase) and decreased aerobic glycolysis by mediating glucose transporter (GLUT) like GLUT3 and GLUT4, and pyruvate carboxylase PC downregulation. Intriguingly, mechanistic study suggests those phenotypes involved DSG inhibited cAMP/PKA/CREB pathway in CRC cells, and result to inhibit the phosphorylation of CREB to regulate the transcription of genes above-mentioned. Finally, nude mice xenograft tumor model further indicated that DSG could be a great agent to suppress the growth of CRC cells in vivo and have no obvious side effects. Taken together, we revealed a unique mechanism that DSG suppresses CRC cells through cAMP/PKA/CREB pathway and DSG is a promising candidate drug for CRC treatment.
Collapse
Affiliation(s)
- Si-Yang Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Jin Shang
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Xiao-Mei Mao
- School of Life Sciences, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Rui Fan
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Hui-Qi Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Rui-Han Li
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China
| | - Dong-Yan Shen
- Xiamen Cell Therapy Research Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, Fujian Province, China.
| |
Collapse
|
47
|
Target-binding behavior of IDPs via pre-structured motifs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:187-247. [PMID: 34656329 DOI: 10.1016/bs.pmbts.2021.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pre-Structured Motifs (PreSMos) are transient secondary structures observed in many intrinsically disordered proteins (IDPs) and serve as protein target-binding hot spots. The prefix "pre" highlights that PreSMos exist a priori in the target-unbound state of IDPs as the active pockets of globular proteins pre-exist before target binding. Therefore, a PreSMo is an "active site" of an IDP; it is not a spatial pocket, but rather a secondary structural motif. The classical and perhaps the most effective approach to understand the function of a protein has been to determine and investigate its structure. Ironically or by definition IDPs do not possess structure (here structure refers to tertiary structure only). Are IDPs then entirely structureless? The PreSMos provide us with an atomic-resolution answer to this question. For target binding, IDPs do not rely on the spatial pockets afforded by tertiary or higher structures. Instead, they utilize the PreSMos possessing particular conformations that highly presage the target-bound conformations. PreSMos are recognized or captured by targets via conformational selection (CS) before their conformations eventually become stabilized via structural induction into more ordered bound structures. Using PreSMos, a number of, if not all, IDPs can bind targets following a sequential pathway of CS followed by an induced fit (IF). This chapter presents several important PreSMos implicated in cancers, neurodegenerative diseases, and other diseases along with discussions on their conformational details that mediate target binding, a structural rationale for unstructured proteins.
Collapse
|
48
|
Joy ST, Henley MJ, De Salle SN, Beyersdorf MS, Vock IW, Huldin AJL, Mapp AK. A Dual-Site Inhibitor of CBP/p300 KIX is a Selective and Effective Modulator of Myb. J Am Chem Soc 2021; 143:15056-15062. [PMID: 34491719 DOI: 10.1021/jacs.1c04432] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The protein-protein interaction between the KIX motif of the transcriptional coactivator CBP/p300 and the transcriptional activator Myb is a high-value target due to its established role in certain acute myeloid leukemias (AML) and potential contributions to other cancers. However, the CBP/p300 KIX domain has multiple binding sites, several structural homologues, many binding partners, and substantial conformational plasticity, making it challenging to specifically target using small-molecule inhibitors. Here, we report a picomolar dual-site inhibitor (MybLL-tide) of the Myb-CBP/p300 KIX interaction. MybLL-tide has higher affinity for CBP/p300 KIX than any previously reported compounds while also possessing 5600-fold selectivity for the CBP/p300 KIX domain over other coactivator domains. MybLL-tide blocks the association of CBP and p300 with Myb in the context of the proteome, leading to inhibition of key Myb·KIX-dependent genes in AML cells. These results show that MybLL-tide is an effective, modifiable tool to selectively target the KIX domain and assess transcriptional effects in AML cells and potentially other cancers featuring aberrant Myb behavior. Additionally, the dual-site design has applicability to the other challenging coactivators that bear multiple binding surfaces.
Collapse
Affiliation(s)
- Stephen T Joy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Madeleine J Henley
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samantha N De Salle
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Matthew S Beyersdorf
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Isaac W Vock
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Interdisciplinary Research Experiences for Undergraduates Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allison J L Huldin
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
49
|
Strodel B. Energy landscapes of protein aggregation and conformation switching in intrinsically disordered proteins. J Mol Biol 2021; 433:167182. [PMID: 34358545 DOI: 10.1016/j.jmb.2021.167182] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022]
Abstract
The protein folding problem was apparently solved recently by the advent of a deep learning method for protein structure prediction called AlphaFold. However, this program is not able to make predictions about the protein folding pathways. Moreover, it only treats about half of the human proteome, as the remaining proteins are intrinsically disordered or contain disordered regions. By definition these proteins differ from natively folded proteins and do not adopt a properly folded structure in solution. However these intrinsically disordered proteins (IDPs) also systematically differ in amino acid composition and uniquely often become folded upon binding to an interaction partner. These factors preclude solving IDP structures by current machine-learning methods like AlphaFold, which also cannot solve the protein aggregation problem, since this meta-folding process can give rise to different aggregate sizes and structures. An alternative computational method is provided by molecular dynamics simulations that already successfully explored the energy landscapes of IDP conformational switching and protein aggregation in multiple cases. These energy landscapes are very different from those of 'simple' protein folding, where one energy funnel leads to a unique protein structure. Instead, the energy landscapes of IDP conformational switching and protein aggregation feature a number of minima for different competing low-energy structures. In this review, I discuss the characteristics of these multifunneled energy landscapes in detail, illustrated by molecular dynamics simulations that elucidated the underlying conformational transitions and aggregation processes.
Collapse
Affiliation(s)
- Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätstrasse 1, 40225Düsseldorf, Germany
| |
Collapse
|
50
|
Kim SH, Wu CG, Jia W, Xing Y, Tibbetts RS. Roles of constitutive and signal-dependent protein phosphatase 2A docking motifs in burst attenuation of the cyclic AMP response element-binding protein. J Biol Chem 2021; 297:100908. [PMID: 34171357 PMCID: PMC8294589 DOI: 10.1016/j.jbc.2021.100908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022] Open
Abstract
The cAMP response element-binding protein (CREB) is an important regulator of cell growth, metabolism, and synaptic plasticity. CREB is activated through phosphorylation of an evolutionarily conserved Ser residue (S133) within its intrinsically disordered kinase-inducible domain (KID). Phosphorylation of S133 in response to cAMP, Ca2+, and other stimuli triggers an association of the KID with the KID-interacting (KIX) domain of the CREB-binding protein (CBP), a histone acetyl transferase (HAT) that promotes transcriptional activation. Here we addressed the mechanisms of CREB attenuation following bursts in CREB phosphorylation. We show that phosphorylation of S133 is reversed by protein phosphatase 2A (PP2A), which is recruited to CREB through its B56 regulatory subunits. We found that a B56-binding site located at the carboxyl-terminal boundary of the KID (BS2) mediates high-affinity B56 binding, while a second binding site (BS1) located near the amino terminus of the KID mediates low affinity binding enhanced by phosphorylation of adjacent casein kinase (CK) phosphosites. Mutations that diminished B56 binding to BS2 elevated both basal and stimulus-induced phosphorylation of S133, increased CBP interaction with CREB, and potentiated the expression of CREB-dependent reporter genes. Cells from mice harboring a homozygous CrebE153D mutation that disrupts BS2 exhibited increased S133 phosphorylation stoichiometry and elevated transcriptional bursts to cAMP. These findings provide insights into substrate targeting by PP2A holoenzymes and establish a new mechanism of CREB attenuation that has implications for understanding CREB signaling in cell growth, metabolism, synaptic plasticity, and other physiologic contexts.
Collapse
Affiliation(s)
- Sang Hwa Kim
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Cheng-Guo Wu
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Weiyan Jia
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Yongna Xing
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Randal S Tibbetts
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA.
| |
Collapse
|