1
|
Kulkarni SS, Stephenson RE, Amalraj S, Arrigo A, Betleja E, Moresco JJ, Yates JR, Mahjoub MR, Miller AL, Khokha MK. The Heterotaxy Gene CCDC11 Is Important for Cytokinesis via RhoA Regulation. Cytoskeleton (Hoboken) 2024. [PMID: 39479942 DOI: 10.1002/cm.21952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024]
Abstract
Mutations in CCDC11 (cfap53) have been identified in multiple patients with heterotaxy (Htx), a disorder of left-right (LR) patterning of the internal organs. In Xenopus, depletion of Ccdc11 causes defects in LR patterning, recapitulating the patient phenotype. Upon Ccdc11 depletion, monociliated cells of the Left-Right Organizer (LRO) exhibit multiple cilia per cell. Unexpectedly, we found that Ccdc11 is necessary for successful cytokinesis, explaining the multiciliation phenotype observed in Ccdc11-depleted cells. The small GTPase RhoA is critical for cytokinesis, and our Ccdc11 depletion phenotypes are reminiscent of RhoA loss of function. Here, we demonstrate that during cytokinesis CCDC11 is localized to the cytokinetic contractile ring overlapping with RhoA, and CCDC11 regulates total RhoA protein levels. Our results connect CCDC11 to cytokinesis and LR patterning via RhoA regulation, providing a potential mechanism for heterotaxy disease pathogenesis.
Collapse
Affiliation(s)
- Saurabh S Kulkarni
- Department of Cell Biology and Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Rachel E Stephenson
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Amalraj
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Angelo Arrigo
- Department of Cell Biology and Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Ewelina Betleja
- Department of Medicine (Nephrology), Washington University in St. Louis, St. Louis, Missouri, USA
| | - James J Moresco
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - John R Yates
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology), Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
2
|
Aljiboury A, Hehnly H. The centrosome - diverse functions in fertilization and development across species. J Cell Sci 2023; 136:jcs261387. [PMID: 38038054 PMCID: PMC10730021 DOI: 10.1242/jcs.261387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
The centrosome is a non-membrane-bound organelle that is conserved across most animal cells and serves various functions throughout the cell cycle. In dividing cells, the centrosome is known as the spindle pole and nucleates a robust microtubule spindle to separate genetic material equally into two daughter cells. In non-dividing cells, the mother centriole, a substructure of the centrosome, matures into a basal body and nucleates cilia, which acts as a signal-transducing antenna. The functions of centrosomes and their substructures are important for embryonic development and have been studied extensively using in vitro mammalian cell culture or in vivo using invertebrate models. However, there are considerable differences in the composition and functions of centrosomes during different aspects of vertebrate development, and these are less studied. In this Review, we discuss the roles played by centrosomes, highlighting conserved and divergent features across species, particularly during fertilization and embryonic development.
Collapse
Affiliation(s)
- Abrar Aljiboury
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| | - Heidi Hehnly
- Syracuse University, Department of Biology, 107 College Place, Syracuse, NY 13244, USA
- Syracuse University, BioInspired Institute, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Milas A, Telley IA. Polarity Events in the Drosophila melanogaster Oocyte. Front Cell Dev Biol 2022; 10:895876. [PMID: 35602591 PMCID: PMC9117655 DOI: 10.3389/fcell.2022.895876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Cell polarity is a pre-requirement for many fundamental processes in animal cells, such as asymmetric cell division, axon specification, morphogenesis and epithelial tissue formation. For all these different processes, polarization is established by the same set of proteins, called partitioning defective (Par) proteins. During development in Drosophila melanogaster, decision making on the cellular and organism level is achieved with temporally controlled cell polarization events. The initial polarization of Par proteins occurs as early as in the germline cyst, when one of the 16 cells becomes the oocyte. Another marked event occurs when the anterior–posterior axis of the future organism is defined by Par redistribution in the oocyte, requiring external signaling from somatic cells. Here, we review the current literature on cell polarity events that constitute the oogenesis from the stem cell to the mature egg.
Collapse
Affiliation(s)
- Ana Milas
- *Correspondence: Ana Milas, ; Ivo A. Telley,
| | | |
Collapse
|
4
|
Antony D, Gulec Yilmaz E, Gezdirici A, Slagter L, Bakey Z, Bornaun H, Tanidir IC, Van Dinh T, Brunner HG, Walentek P, Arnold SJ, Backofen R, Schmidts M. Spectrum of Genetic Variants in a Cohort of 37 Laterality Defect Cases. Front Genet 2022; 13:861236. [PMID: 35547246 PMCID: PMC9083912 DOI: 10.3389/fgene.2022.861236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Laterality defects are defined by the perturbed left–right arrangement of organs in the body, occurring in a syndromal or isolated fashion. In humans, primary ciliary dyskinesia (PCD) is a frequent underlying condition of defective left–right patterning, where ciliary motility defects also result in reduced airway clearance, frequent respiratory infections, and infertility. Non-motile cilia dysfunction and dysfunction of non-ciliary genes can also result in disturbances of the left–right body axis. Despite long-lasting genetic research, identification of gene mutations responsible for left–right patterning has remained surprisingly low. Here, we used whole-exome sequencing with Copy Number Variation (CNV) analysis to delineate the underlying molecular cause in 35 mainly consanguineous families with laterality defects. We identified causative gene variants in 14 families with a majority of mutations detected in genes previously associated with PCD, including two small homozygous CNVs. None of the patients were previously clinically diagnosed with PCD, underlining the importance of genetic diagnostics for PCD diagnosis and adequate clinical management. Identified variants in non-PCD-associated genes included variants in PKD1L1 and PIFO, suggesting that dysfunction of these genes results in laterality defects in humans. Furthermore, we detected candidate variants in GJA1 and ACVR2B possibly associated with situs inversus. The low mutation detection rate of this study, in line with other previously published studies, points toward the possibility of non-coding genetic variants, putative genetic mosaicism, epigenetic, or environmental effects promoting laterality defects.
Collapse
Affiliation(s)
- Dinu Antony
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elif Gulec Yilmaz
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Lennart Slagter
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Zeineb Bakey
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helen Bornaun
- Department of Pediatric Cardiology, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | | | - Tran Van Dinh
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Maastricht University Medical Center and GROW School of Oncology and Development, Maastricht University, Maastricht, Netherlands
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J. Arnold
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- *Correspondence: Miriam Schmidts,
| |
Collapse
|
5
|
Shen XL, Yuan JF, Qin XH, Song GP, Hu HB, Tu HQ, Song ZQ, Li PY, Xu YL, Li S, Jian XX, Li JN, He CY, Yu XP, Liang LY, Wu M, Han QY, Wang K, Li AL, Zhou T, Zhang YC, Wang N, Li HY. LUBAC regulates ciliogenesis by promoting CP110 removal from the mother centriole. J Cell Biol 2022; 221:212875. [PMID: 34813648 PMCID: PMC8614155 DOI: 10.1083/jcb.202105092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
Primary cilia transduce diverse signals in embryonic development and adult tissues. Defective ciliogenesis results in a series of human disorders collectively known as ciliopathies. The CP110–CEP97 complex removal from the mother centriole is an early critical step for ciliogenesis, but the underlying mechanism for this step remains largely obscure. Here, we reveal that the linear ubiquitin chain assembly complex (LUBAC) plays an essential role in ciliogenesis by targeting the CP110–CEP97 complex. LUBAC specifically generates linear ubiquitin chains on CP110, which is required for CP110 removal from the mother centriole in ciliogenesis. We further identify that a pre-mRNA splicing factor, PRPF8, at the distal end of the mother centriole acts as the receptor of the linear ubiquitin chains to facilitate CP110 removal at the initial stage of ciliogenesis. Thus, our study reveals a direct mechanism of regulating CP110 removal in ciliogenesis and implicates the E3 ligase LUBAC as a potential therapy target of cilia-associated diseases, including ciliopathies and cancers.
Collapse
Affiliation(s)
- Xiao-Lin Shen
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xuan-He Qin
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Shanghai East Hospital, Tongji University, Shanghai, China
| | - Guang-Ping Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Huai-Bin Hu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hai-Qing Tu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Pei-Yao Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Ling Xu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sen Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xiao-Xiao Jian
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jia-Ning Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Chun-Yu He
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xi-Ping Yu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Li-Yun Liang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Qiu-Ying Han
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Kai Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- Nanhu Laboratory, State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Grzymkowski J, Wyatt B, Nascone-Yoder N. The twists and turns of left-right asymmetric gut morphogenesis. Development 2020; 147:147/19/dev187583. [PMID: 33046455 DOI: 10.1242/dev.187583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many organs develop left-right asymmetric shapes and positions that are crucial for normal function. Indeed, anomalous laterality is associated with multiple severe birth defects. Although the events that initially orient the left-right body axis are beginning to be understood, the mechanisms that shape the asymmetries of individual organs remain less clear. Here, we summarize new evidence challenging century-old ideas about the development of stomach and intestine laterality. We compare classical and contemporary models of asymmetric gut morphogenesis and highlight key unanswered questions for future investigation.
Collapse
Affiliation(s)
- Julia Grzymkowski
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Brent Wyatt
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
7
|
Wang G, Hu HB, Chang Y, Huang Y, Song ZQ, Zhou SB, Chen L, Zhang YC, Wu M, Tu HQ, Yuan JF, Wang N, Pan X, Li AL, Zhou T, Zhang XM, He K, Li HY. Rab7 regulates primary cilia disassembly through cilia excision. J Cell Biol 2019; 218:4030-4041. [PMID: 31619485 PMCID: PMC6891077 DOI: 10.1083/jcb.201811136] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Wang et al. identify Rab7 as a novel regulator of primary cilia disassembly. Their findings demonstrate that Rab7 localization to primary cilia is required for intraciliary F-actin polymerization, which is indispensable for the regulation of cilia ectocytosis and disassembly. The primary cilium is a sensory organelle that protrudes from the cell surface. Primary cilia undergo dynamic transitions between assembly and disassembly to exert their function in cell signaling. In this study, we identify the small GTPase Rab7 as a novel regulator of cilia disassembly. Depletion of Rab7 potently induced spontaneous ciliogenesis in proliferating cells and promoted cilia elongation during quiescence. Moreover, Rab7 performs an essential role in cilia disassembly; knockdown of Rab7 blocked serum-induced ciliary resorption, and active Rab7 was required for this process. Further, we demonstrate that Rab7 depletion significantly suppresses cilia tip excision, referred to as cilia ectocytosis, which has been identified as required for cilia disassembly. Mechanically, the failure of F-actin polymerization at the site of excision of cilia tips caused suppression of cilia ectocytosis on Rab7 depletion. Overall, our results suggest a novel function for Rab7 in regulating cilia ectocytosis and cilia disassembly via control of intraciliary F-actin polymerization.
Collapse
Affiliation(s)
- Guang Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,Cancer Institute, Institute of Translational Medicine, The Second Military Medical University, Shanghai, China
| | - Huai-Bin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yan Chang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China.,Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yan Huang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Zeng-Qing Song
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Shi-Bo Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Liang Chen
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Yu-Cheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hai-Qing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Jin-Feng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Na Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xin Pan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Xue-Min Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Hui-Yan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China .,Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
9
|
Blum M, Ott T. Mechanical strain, novel genes and evolutionary insights: news from the frog left-right organizer. Curr Opin Genet Dev 2019; 56:8-14. [DOI: 10.1016/j.gde.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 12/11/2022]
|
10
|
Horinouchi T, Morisada N, Uemura H, Kobayashi D, Nozu K, Okamoto N, Iijima K. Male CDPX2 patient with EBP mosaicism and asymmetrically lateralized skin lesions with strict midline demarcation. Am J Med Genet A 2019; 179:1315-1318. [PMID: 31034146 DOI: 10.1002/ajmg.a.61159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/17/2019] [Accepted: 03/24/2019] [Indexed: 11/10/2022]
Abstract
X-linked dominant chondrodysplasia punctata (Conradi-Hunermann-Happle syndrome, CDPX2) caused by mutations in the emopamil-binding protein (EBP) gene and congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome caused by mutation in the NAD(P)H steroid dehydrogenase-like (NSDHL) gene are rare, typically male lethal disorders. CDPX2 skin lesions are characterized by transient severe congenital ichthyosis following the lines of Blaschko, whereas in CHILD syndrome, the lesions show striking lateralization. Here, we report a male CDPX2 patient with postzygotic mosaicism of the EBP gene presenting with lateralized skin lesions with strict midline demarcation as seen in CHILD syndrome (although this diagnosis was ruled out based on analysis of NSDHL), but also partly distributed along Blaschko's lines as seen in CDPX2. The lesions resolved within a few months, but the patient had other abnormalities, including shortening of the limbs, epiphyseal stippling, and forearm asymmetry; he also had problems with respiration and feeding in the first 4 years after birth. Kyphoscoliosis with dysplastic vertebral bodies progressed rapidly and required posterior spinal fusion surgery at 6 years old. These findings provide insights into the pathophysiology of CDPX2 and the mechanism of asymmetric lesion formation during development.
Collapse
Affiliation(s)
- Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Morisada
- Department of Clinical Genetics, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Hiroyasu Uemura
- Department of Pediatrics, Japanese Red Cross Society Himeji Hospital, Hyogo, Japan
| | - Daisuke Kobayashi
- Department of Orthopaedic Surgery, Hyogo Prefectural Kobe Children's Hospital, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
11
|
Tu HQ, Qin XH, Liu ZB, Song ZQ, Hu HB, Zhang YC, Chang Y, Wu M, Huang Y, Bai YF, Wang G, Han QY, Li AL, Zhou T, Liu F, Zhang XM, Li HY. Microtubule asters anchored by FSD1 control axoneme assembly and ciliogenesis. Nat Commun 2018; 9:5277. [PMID: 30538248 PMCID: PMC6290075 DOI: 10.1038/s41467-018-07664-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
Defective ciliogenesis causes human developmental diseases termed ciliopathies. Microtubule (MT) asters originating from centrosomes in mitosis ensure the fidelity of cell division by positioning the spindle apparatus. However, the function of microtubule asters in interphase remains largely unknown. Here, we reveal an essential role of MT asters in transition zone (TZ) assembly during ciliogenesis. We demonstrate that the centrosome protein FSD1, whose biological function is largely unknown, anchors MT asters to interphase centrosomes by binding to microtubules. FSD1 knockdown causes defective ciliogenesis and affects embryonic development in vertebrates. We further show that disruption of MT aster anchorage by depleting FSD1 or other known anchoring proteins delocalizes the TZ assembly factor Cep290 from centriolar satellites, and causes TZ assembly defects. Thus, our study establishes FSD1 as a MT aster anchorage protein and reveals an important function of MT asters anchored by FSD1 in TZ assembly during ciliogenesis. Microtubule asters originate from centrosomes but their role during interphase remains largely unknown. Here, the authors find that microtubule asters anchored by previously-uncharacterized FSD1 play a role in ciliogenesis by maintaining the dynamic localization of centriolar satellites.
Collapse
Affiliation(s)
- Hai-Qing Tu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Xuan-He Qin
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Zhi-Bin Liu
- University of Chinese Academy of Science, Beijing, 100101, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zeng-Qing Song
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huai-Bin Hu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yu-Cheng Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Chang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Min Wu
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Huang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yun-Feng Bai
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Guang Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qiu-Ying Han
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Ai-Ling Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Feng Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xue-Min Zhang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Hui-Yan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, 100850, China. .,Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
12
|
Oonuma K, Kusakabe TG. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Dev Biol 2018; 445:245-255. [PMID: 30502325 DOI: 10.1016/j.ydbio.2018.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 10/27/2022]
Abstract
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.
Collapse
Affiliation(s)
- Kouhei Oonuma
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| | - Takehiro G Kusakabe
- Institute for Integrative Neurobiology and Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan.
| |
Collapse
|
13
|
Kulkarni SS, Khokha MK. WDR5 regulates left-right patterning via chromatin-dependent and -independent functions. Development 2018; 145:dev.159889. [PMID: 30377171 DOI: 10.1242/dev.159889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/24/2018] [Indexed: 01/01/2023]
Abstract
Congenital heart disease (CHD) is a major cause of infant mortality and morbidity, yet the genetic causes and mechanisms remain opaque. In a patient with CHD and heterotaxy, a disorder of left-right (LR) patterning, a de novo mutation was identified in the chromatin modifier gene WDR5 WDR5 acts as a scaffolding protein in the H3K4 methyltransferase complex, but a role in LR patterning is unknown. Here, we show that Wdr5 depletion leads to LR patterning defects in Xenopus via its role in ciliogenesis. Unexpectedly, we find a dual role for WDR5 in LR patterning. First, WDR5 is expressed in the nuclei of monociliated cells of the LR organizer (LRO) and regulates foxj1 expression. LR defects in wdr5 morphants can be partially rescued with the addition of foxj1 Second, WDR5 localizes to the bases of cilia. Using a mutant form of WDR5, we demonstrate that WDR5 also has an H3K4-independent role in LR patterning. Guided by the patient phenotype, we identify multiple roles for WDR5 in LR patterning, providing plausible mechanisms for its role in ciliopathies like heterotaxy and CHD.
Collapse
Affiliation(s)
- Saurabh S Kulkarni
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|
14
|
Byrnes KG, McDermott K, Coffey JC. Development of mesenteric tissues. Semin Cell Dev Biol 2018; 92:55-62. [PMID: 30347243 DOI: 10.1016/j.semcdb.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
Mesothelial, neurovascular, lymphatic, adipose and mesenchymal tissues make up the mesentery. These tissues are pathobiologically important for numerous reasons. Collectively, they form a continuous, discrete and substantive organ. Additionally, they maintain abdominal digestive organs in position and in continuity with other systems. Furthermore, as they occupy a central position, they mediate transmission of signals between the abdominal digestive system and the remainder of the body. Despite this physiologic centrality, mesenteric tissue development has received little investigatory focus. However, recent advances in our understanding of anatomy demonstrate continuity between all mesenteric tissues, thereby linking previously unrelated studies. In this review, we examine the development of mesenteric tissue in normality and in the setting of congenital abnormalities.
Collapse
Affiliation(s)
- Kevin Gerard Byrnes
- Department of Surgery, University Hospital Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Kieran McDermott
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - John Calvin Coffey
- Department of Surgery, University Hospital Limerick, Limerick, Ireland; Graduate Entry Medical School, University of Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick, Limerick, Ireland.
| |
Collapse
|
15
|
A mathematical model of the biochemical network underlying left-right asymmetry establishment in mammals. Biosystems 2018; 173:281-297. [PMID: 30292532 DOI: 10.1016/j.biosystems.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022]
Abstract
The expression of the TGF-β protein Nodal on the left side of vertebrate embryos is a determining event in the development of internal-organ asymmetry. We present a mathematical model for the control of the expression of Nodal and its antagonist Lefty consisting entirely of realistic elementary reactions. We analyze the model in the absence of Lefty and find a wide range of parameters over which bistability (two stable steady states) is observed, with one stable steady state a low-Nodal state corresponding to the right-hand developmental fate, and the other a high-Nodal state corresponding to the left. We find that bistability requires a transcription factor containing two molecules of phosphorylated Smad2. A numerical survey of the full model, including Lefty, shows the effects of Lefty on the potential for bistability, and on the conditions that lead to the system reaching one or the other steady state.
Collapse
|
16
|
Omori T, Winter K, Shinohara K, Hamada H, Ishikawa T. Simulation of the nodal flow of mutant embryos with a small number of cilia: comparison of mechanosensing and vesicle transport hypotheses. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180601. [PMID: 30225054 PMCID: PMC6124027 DOI: 10.1098/rsos.180601] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/03/2018] [Indexed: 05/14/2023]
Abstract
Left-right (L-R) asymmetry in the body plan is determined by nodal flow in vertebrate embryos. Shinohara et al. (Shinohara K et al. 2012 Nat. Commun.3, 622 (doi:10.1038/ncomms1624)) used Dpcd and Rfx3 mutant mouse embryos and showed that only a few cilia were sufficient to achieve L-R asymmetry. However, the mechanism underlying the breaking of symmetry by such weak ciliary flow is unclear. Flow-mediated signals associated with the L-R asymmetric organogenesis have not been clarified, and two different hypotheses-vesicle transport and mechanosensing-are now debated in the research field of developmental biology. In this study, we developed a computational model of the node system reported by Shinohara et al. and examined the feasibilities of the two hypotheses with a small number of cilia. With the small number of rotating cilia, flow was induced locally and global strong flow was not observed in the node. Particles were then effectively transported only when they were close to the cilia, and particle transport was strongly dependent on the ciliary positions. Although the maximum wall shear rate was also influenced by ciliary position, the mean wall shear rate at the perinodal wall increased monotonically with the number of cilia. We also investigated the membrane tension of immotile cilia, which is relevant to the regulation of mechanotransduction. The results indicated that tension of about 0.1 μN m-1 was exerted at the base even when the fluid shear rate was applied at about 0.1 s-1. The area of high tension was also localized at the upstream side, and negative tension appeared at the downstream side. Such localization may be useful to sense the flow direction at the periphery, as time-averaged anticlockwise circulation was induced in the node by rotation of a few cilia. Our numerical results support the mechanosensing hypothesis, and we expect that our study will stimulate further experimental investigations of mechanotransduction in the near future.
Collapse
Affiliation(s)
- Toshihiro Omori
- School of Engineering, Tohoku University, Sendai Miyagi, Japan
| | | | | | | | - Takuji Ishikawa
- School of Engineering, Tohoku University, Sendai Miyagi, Japan
| |
Collapse
|
17
|
Soukup V, Kozmik Z. The Bmp signaling pathway regulates development of left-right asymmetry in amphioxus. Dev Biol 2018; 434:164-174. [PMID: 29224891 DOI: 10.1016/j.ydbio.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 01/31/2023]
Abstract
Establishment of asymmetry along the left-right (LR) body axis in vertebrates requires interplay between Nodal and Bmp signaling pathways. In the basal chordate amphioxus, the left-sided activity of the Nodal signaling has been attributed to the asymmetric morphogenesis of paraxial structures and pharyngeal organs, however the role of Bmp signaling in LR asymmetry establishment has not been addressed to date. Here, we show that Bmp signaling is necessary for the development of LR asymmetric morphogenesis of amphioxus larvae through regulation of Nodal signaling. Loss of Bmp signaling results in loss of the left-sided expression of Nodal, Gdf1/3, Lefty and Pitx and in gain of ectopic expression of Cerberus on the left side. As a consequence, the larvae display loss of the offset arrangement of axial structures, loss of the left-sided pharyngeal organs including the mouth, and ectopic development of the right-sided organs on the left side. Bmp inhibition thus phenocopies inhibition of Nodal signaling and results in the right isomerism. We conclude that Bmp and Nodal pathways act in concert to specify the left side and that Bmp signaling plays a fundamental role during LR development in amphioxus.
Collapse
Affiliation(s)
- Vladimir Soukup
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic.
| | - Zbynek Kozmik
- Institute of Molecular Genetics, The Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
18
|
Schweickert A, Ott T, Kurz S, Tingler M, Maerker M, Fuhl F, Blum M. Vertebrate Left-Right Asymmetry: What Can Nodal Cascade Gene Expression Patterns Tell Us? J Cardiovasc Dev Dis 2017; 5:jcdd5010001. [PMID: 29367579 PMCID: PMC5872349 DOI: 10.3390/jcdd5010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/25/2017] [Accepted: 12/25/2017] [Indexed: 11/16/2022] Open
Abstract
Laterality of inner organs is a wide-spread characteristic of vertebrates and beyond. It is ultimately controlled by the left-asymmetric activation of the Nodal signaling cascade in the lateral plate mesoderm of the neurula stage embryo, which results from a cilia-driven leftward flow of extracellular fluids at the left-right organizer. This scenario is widely accepted for laterality determination in wildtype specimens. Deviations from this norm come in different flavors. At the level of organ morphogenesis, laterality may be inverted (situs inversus) or non-concordant with respect to the main body axis (situs ambiguus or heterotaxia). At the level of Nodal cascade gene activation, expression may be inverted, bilaterally induced, or absent. In a given genetic situation, patterns may be randomized or predominantly lacking laterality (absence or bilateral activation). We propose that the distributions of patterns observed may be indicative of the underlying molecular defects, with randomizations being primarily caused by defects in the flow-generating ciliary set-up, and symmetrical patterns being the result of impaired flow sensing, on the left, the right, or both sides. This prediction, the reasoning of which is detailed in this review, pinpoints functions of genes whose role in laterality determination have remained obscure.
Collapse
Affiliation(s)
- Axel Schweickert
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Tim Ott
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Sabrina Kurz
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Melanie Tingler
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Markus Maerker
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Franziska Fuhl
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, 70593 Stuttgart, Germany.
| |
Collapse
|
19
|
The Role of Cerl2 in the Establishment of Left-Right Asymmetries during Axis Formation and Heart Development. J Cardiovasc Dev Dis 2017; 4:jcdd4040023. [PMID: 29367552 PMCID: PMC5753124 DOI: 10.3390/jcdd4040023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the asymmetric left-right (LR) body axis is one of the fundamental aspects of vertebrate embryonic development, and one still raising passionate discussions among scientists. Although the conserved role of nodal is unquestionable in this process, several of the details around this signaling cascade are still unanswered. To further understand this mechanism, we have been studying Cerberus-like 2 (Cerl2), an inhibitor of Nodal, and its role in the generation of asymmetries in the early vertebrate embryo. The absence of Cerl2 results in a wide spectrum of malformations commonly known as heterotaxia, which comprises defects in either global organ position (e.g., situs inversus totalis), reversed orientation of at least one organ (e.g., situs ambiguus), and mirror images of usually asymmetric paired organs (e.g., left or right isomerisms of the lungs). Moreover, these laterality defects are frequently associated with congenital heart diseases (e.g., transposition of the great arteries, or atrioventricular septal defects). Here, reviewing the knowledge on the establishment of LR asymmetry in mouse embryos, the emerging conclusion is that as necessary as is the activation of the Nodal signaling cascade, the tight control that Cerl2-mediates on Nodal signaling is equally important, and that generates a further regionalized LR genetic program in the proper time and space.
Collapse
|
20
|
Boutet A. The evolution of asymmetric photosensitive structures in metazoans and the Nodal connection. Mech Dev 2017; 147:49-60. [PMID: 28986126 DOI: 10.1016/j.mod.2017.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 07/26/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023]
Abstract
Asymmetries are observed in a great number of taxa in metazoans. More particularly, functional lateralization and neuroanatomical asymmetries within the central nervous system have been a matter of intense research for at least two hundred years. While asymmetries of some paired structures/organs (e.g. eyes, ears, kidneys, legs, arms) constitute random deviations from a pure bilateral symmetry, brain asymmetries such as those observed in the cortex and epithalamus are directional. This means that molecular and anatomical features located on one side of a given structure are observed in most individuals. For instance, in humans, the neuronal tract connecting the language areas is enlarged in the left hemisphere. When asymmetries are fixed, their molecular mechanisms can be studied using mutants displaying different phenotypes: left or right isomerism of the structure, reversed asymmetry or random asymmetry. Our understanding of asymmetry in the nervous system has been widely enriched thanks to the characterization of mutants affecting epithalamus asymmetry. Furthermore, two decades ago, pioneering studies revealed that a specific morphogen, Nodal, active only on one side of the embryo during development is an important molecule in asymmetry patterning. In this review, I have gathered important data bringing insight into the origin and evolution of epithalamus asymmetry and the role of Nodal in metazoans. After a short introduction on brain asymmetries (chapter I), I secondly focus on the molecular and anatomical characteristics of the epithalamus in vertebrates and explore some functional aspects such as its photosensitive ability related to the pineal complex (chapter II). Third, I discuss homology relationship of the parapineal organ among vertebrates (chapter III). Fourth, I discuss the possible origin of the epithalamus, presenting cells displaying photosensitive properties and/or asymmetry in the anterior part of the body in non-vertebrates (chapter IV). Finally, I report Nodal signaling expression data and functional experiments performed in different metazoan groups (chapter V).
Collapse
Affiliation(s)
- Agnès Boutet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 8227, Laboratoire de Biologie Intégrative des Modèles Marins, Station Biologique, F-29688 Roscoff, France.
| |
Collapse
|
21
|
Gao Q, Zhang J, Wang X, Liu Y, He R, Liu X, Wang F, Feng J, Yang D, Wang Z, Meng A, Yan X. The signalling receptor MCAM coordinates apical-basal polarity and planar cell polarity during morphogenesis. Nat Commun 2017; 8:15279. [PMID: 28589943 PMCID: PMC5467231 DOI: 10.1038/ncomms15279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
The apical-basal (AB) polarity and planar cell polarity (PCP) provide an animal cell population with different phenotypes during morphogenesis. However, how cells couple these two patterning systems remains unclear. Here we provide in vivo evidence that melanoma cell adhesion molecule (MCAM) coordinates AB polarity-driven lumenogenesis and c-Jun N-terminal kinase (JNK)/PCP-dependent ciliogenesis. We identify that MCAM is an independent receptor of fibroblast growth factor 4 (FGF4), a membrane anchor of phospholipase C-γ (PLC-γ), an immediate upstream receptor of nuclear factor of activated T-cells (NFAT) and a constitutive activator of JNK. We find that MCAM-mediated vesicular trafficking towards FGF4, while generating a priority-grade transcriptional response of NFAT determines lumenogenesis. We demonstrate that MCAM plays indispensable roles in ciliogenesis through activating JNK independently of FGF signals. Furthermore, mcam-deficient zebrafish and Xenopus exhibit a global defect in left-right (LR) asymmetric establishment as a result of morphogenetic failure of their LR organizers. Therefore, MCAM coordination of AB polarity and PCP provides insight into the general mechanisms of morphogenesis.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junfeng Zhang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiumei Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingfeng Liu
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Feng
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongling Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoqing Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Davis A, Amin NM, Johnson C, Bagley K, Ghashghaei HT, Nascone-Yoder N. Stomach curvature is generated by left-right asymmetric gut morphogenesis. Development 2017; 144:1477-1483. [PMID: 28242610 PMCID: PMC5399665 DOI: 10.1242/dev.143701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/21/2017] [Indexed: 01/09/2023]
Abstract
Left-right (LR) asymmetry is a fundamental feature of internal anatomy, yet the emergence of morphological asymmetry remains one of the least understood phases of organogenesis. Asymmetric rotation of the intestine is directed by forces outside the gut, but the morphogenetic events that generate anatomical asymmetry in other regions of the digestive tract remain unknown. Here, we show in mouse and Xenopus that the mechanisms that drive the curvature of the stomach are intrinsic to the gut tube itself. The left wall of the primitive stomach expands more than the right wall, as the left epithelium becomes more polarized and undergoes radial rearrangement. These asymmetries exist across several species, and are dependent on LR patterning genes, including Foxj1, Nodal and Pitx2 Our findings have implications for how LR patterning manifests distinct types of morphological asymmetries in different contexts.
Collapse
Affiliation(s)
- Adam Davis
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nirav M Amin
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Caroline Johnson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Kristen Bagley
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - H Troy Ghashghaei
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Nanette Nascone-Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
23
|
Ferreira RR, Vermot J. The balancing roles of mechanical forces during left-right patterning and asymmetric morphogenesis. Mech Dev 2017; 144:71-80. [DOI: 10.1016/j.mod.2016.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022]
|
24
|
Abstract
The endoderm is the innermost embryonic germ layer, and in zebrafish, it gives rise to the lining of the gut, the gills, liver, pancreas, gallbladder, and derivatives of the pharyngeal pouch. These organs form the gastrointestinal tract and are involved with the absorption, delivery, and metabolism of nutrients. The liver has a central role in regulating these processes because it controls carbohydrate and lipid metabolism, protein synthesis, and breakdown of endogenous and xenobiotic products. Liver dysfunction frequently leads to significant morbidity and mortality; however, in most settings of organ injury, the liver exhibits remarkable regenerative capacity. In this chapter, we review the principal mechanisms of endoderm and liver formation and provide protocols to assess liver formation and liver regeneration.
Collapse
|
25
|
Piacentino ML, Chung O, Ramachandran J, Zuch DT, Yu J, Conaway EA, Reyna AE, Bradham CA. Zygotic LvBMP5-8 is required for skeletal patterning and for left–right but not dorsal–ventral specification in the sea urchin embryo. Dev Biol 2016; 412:44-56. [DOI: 10.1016/j.ydbio.2016.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/31/2016] [Accepted: 02/18/2016] [Indexed: 01/25/2023]
|
26
|
|
27
|
Chiandetti C, Galliussi J, Andrew RJ, Vallortigara G. Early-light embryonic stimulation suggests a second route, via gene activation, to cerebral lateralization in vertebrates. Sci Rep 2014; 3:2701. [PMID: 24048072 PMCID: PMC3776965 DOI: 10.1038/srep02701] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/03/2013] [Indexed: 11/09/2022] Open
Abstract
Genetic factors determine the asymmetrical position of vertebrate embryos allowing asymmetric environmental stimulation to shape cerebral lateralization. In birds, late-light stimulation, just before hatching, on the right optic nerve triggers anatomical and functional cerebral asymmetries. However, some brain asymmetries develop in absence of embryonic light stimulation. Furthermore, early-light action affects lateralization in the transparent zebrafish embryos before their visual system is functional. Here we investigated whether another pathway intervenes in establishing brain specialization. We exposed chicks' embryos to light before their visual system was formed. We observed that such early stimulation modulates cerebral lateralization in a comparable vein of late-light stimulation on active retinal cells. Our results show that, in a higher vertebrate brain, a second route, likely affecting the genetic expression of photosensitive regions, acts before the development of a functional visual system. More than one sensitive period seems thus available to light stimulation to trigger brain lateralization.
Collapse
Affiliation(s)
- Cinzia Chiandetti
- 1] CIMeC - Center for Mind/Brain Sciences. University of Trento [2] Department of Life Science - Psychology Unit "Gaetano Kanizsa". University of Trieste
| | | | | | | |
Collapse
|
28
|
Powles-Glover N. Cilia and ciliopathies: classic examples linking phenotype and genotype-an overview. Reprod Toxicol 2014; 48:98-105. [PMID: 24859270 DOI: 10.1016/j.reprotox.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 01/22/2023]
Abstract
The importance of the role of cilia in pre and post natal development has been appreciated since the previous century. However, a better understanding of the physiological and, conversely, dysfunctional role that cilia have in developmental disease is still emerging. Dysfunctioning cilia can lead to diseases with a remarkable spectrum of phenotypes ranging from embryofetal lethality, through "classic" organ malformation to severe loss of function that leads to diseases during infancy or more subtle loss of function that may not become apparent until adulthood. Collectively, these diseased are termed ciliopathies. A shift in the focus of research by using tools and models that highlight the similarity between the genetics of mice, zebrafish and human cells, is starting to form an interesting mechanistic picture of how cilia have a role in the developmental pathologies and human diseases. Some of the underlying cellular principles, implicated genes and, where possible, mechanisms will be briefly described in this manuscript and there are several more detailed reviews available [Quinlan et al, 2008; Veland et al, 2009 and Norris and Grimes, 2013].
Collapse
Affiliation(s)
- Nicola Powles-Glover
- Astrazeneca, Drug Safety Metabolism, Mereside, Alderley Edge, Cheshire SK10 4TG, UK.
| |
Collapse
|
29
|
Reference gene selection for quantitative real-time RT-PCR normalization in the half-smooth tongue sole (Cynoglossus semilaevis) at different developmental stages, in various tissue types and on exposure to chemicals. PLoS One 2014; 9:e91715. [PMID: 24667563 PMCID: PMC3965400 DOI: 10.1371/journal.pone.0091715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/14/2014] [Indexed: 12/20/2022] Open
Abstract
Quantitative real time RT-PCR has been described as the most sensitive method for the detection of low abundance mRNA. To date, no reference genes have been screened in the half-smooth tongue sole (Cynoglossus semilaevis). The aim of this study was to select the most stable genes for quantitative real-time RT-PCR. Eight housekeeping genes (18S, TUBA, B2M, ACTB, EF1A, GAPDH, RPL17 and UBCE) were tested at different developmental stages, in different tissues, and following exposure to the drug SB-431542. Using geNorm, BestKeeper and NormFinder software, GAPDH/B2M, GAPDH/18S and UBCE/GAPDH were identified as the most suitable genes from samples taken of different developmental stages while 18S/RPL17 were consistently ranked as the best reference genes for different tissue types. Furthermore, TUBA/B2M, TUBA/UBCE and B2M/TUBA were found to be the most suitable genes in samples treated with the drug, SB-431542 by geNorm, BestKeeper and NormFinder respectively. Across both different developmental stages and tissue types, the combination of 18S and GAPDH was the most stable reference gene analyzed by Ref-Finder. To test and verify the screened reference genes, the expression profiles of LEFTY-normalized to the combination of GAPDH/18S and ACTB were presented. These results will be useful for future gene-expression studies in the half-smooth tongue sole.
Collapse
|
30
|
Namigai EK, Kenny NJ, Shimeld SM. Right across the tree of life: The evolution of left-right asymmetry in the Bilateria. Genesis 2014; 52:458-70. [DOI: 10.1002/dvg.22748] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/02/2023]
Affiliation(s)
- Erica K.O. Namigai
- Department of Zoology; University of Oxford; South Parks Road Oxford United Kingdom
| | - Nathan J. Kenny
- Department of Zoology; University of Oxford; South Parks Road Oxford United Kingdom
| | - Sebastian M. Shimeld
- Department of Zoology; University of Oxford; South Parks Road Oxford United Kingdom
| |
Collapse
|
31
|
Samara A, Tsangaris GT. Brain asymmetry: both sides of the story. Expert Rev Proteomics 2014; 8:693-703. [DOI: 10.1586/epr.11.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
|
33
|
Hochgreb-Hägele T, Yin C, Koo DES, Bronner ME, Stainier DYR. Laminin β1a controls distinct steps during the establishment of digestive organ laterality. Development 2013; 140:2734-45. [PMID: 23757411 DOI: 10.1242/dev.097618] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visceral organs, including the liver and pancreas, adopt asymmetric positions to ensure proper function. Yet the molecular and cellular mechanisms controlling organ laterality are not well understood. We identified a mutation affecting zebrafish laminin β1a (lamb1a) that disrupts left-right asymmetry of the liver and pancreas. In these mutants, the liver spans the midline and the ventral pancreatic bud remains split into bilateral structures. We show that lamb1a regulates asymmetric left-right gene expression in the lateral plate mesoderm (LPM). In particular, lamb1a functions in Kupffer's vesicle (KV), a ciliated organ analogous to the mouse node, to control the length and function of the KV cilia. Later during gut-looping stages, dynamic expression of Lamb1a is required for the bilayered organization and asymmetric migration of the LPM. Loss of Lamb1a function also results in aberrant protrusion of LPM cells into the gut. Collectively, our results provide cellular and molecular mechanisms by which extracellular matrix proteins regulate left-right organ morphogenesis.
Collapse
Affiliation(s)
- Tatiana Hochgreb-Hägele
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA.
| | | | | | | | | |
Collapse
|
34
|
Komatsu Y, Mishina Y. Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos. Cell Mol Life Sci 2013; 70:4659-66. [PMID: 23771646 DOI: 10.1007/s00018-013-1399-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/30/2013] [Accepted: 05/31/2013] [Indexed: 01/20/2023]
Abstract
Establishment of vertebrate left-right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left-right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left-right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left-right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left-right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left-right asymmetry.
Collapse
Affiliation(s)
- Yoshihiro Komatsu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, 1011 N. University Ave., Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
35
|
Inácio JM, Marques S, Nakamura T, Shinohara K, Meno C, Hamada H, Belo JA. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node. PLoS One 2013; 8:e60406. [PMID: 23544137 PMCID: PMC3609817 DOI: 10.1371/journal.pone.0060406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
The determination of left-right body asymmetry in mouse embryos depends on the interplay of molecules in a highly sensitive structure, the node. Here, we show that the localization of Cerl2 protein does not correlate to its mRNA expression pattern, from 3-somite stage onwards. Instead, Cerl2 protein displays a nodal flow-dependent dynamic behavior that controls the activity of Nodal in the node, and the transmission of the laterality information to the left lateral plate mesoderm (LPM). Our results indicate that Cerl2 initially localizes and prevents the activation of Nodal genetic circuitry on the right side of the embryo, and later its right-to-left translocation shutdowns Nodal activity in the node. The consequent prolonged Nodal activity in the node by the absence of Cerl2 affects local Nodal expression and prolongs its expression in the LPM. Simultaneous genetic removal of both Nodal node inhibitors, Cerl2 and Lefty1, sustains even longer and bilateral this LPM expression.
Collapse
Affiliation(s)
- José Manuel Inácio
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Marques
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Tetsuya Nakamura
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Osaka, Japan
| | - Kyosuke Shinohara
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Osaka, Japan
| | - Chikara Meno
- Graduate School of Medical Sciences, Dept Dev Biol, Kyushu University, Fukuoka, Japan
| | - Hiroshi Hamada
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Osaka, Japan
| | - José António Belo
- Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Faro, Portugal
- IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- * E-mail:
| |
Collapse
|
36
|
Lai SL, Yao WL, Tsao KC, Houben AJS, Albers HMHG, Ovaa H, Moolenaar WH, Lee SJ. Autotaxin/Lpar3 signaling regulates Kupffer's vesicle formation and left-right asymmetry in zebrafish. Development 2012; 139:4439-48. [DOI: 10.1242/dev.081745] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Left-right (L-R) patterning is essential for proper organ morphogenesis and function. Calcium fluxes in dorsal forerunner cells (DFCs) are known to regulate the formation of Kupffer's vesicle (KV), a central organ for establishing L-R asymmetry in zebrafish. Here, we identify the lipid mediator lysophosphatidic acid (LPA) as a regulator of L-R asymmetry in zebrafish embryos. LPA is produced by Autotaxin (Atx), a secreted lysophospholipase D, and triggers various cellular responses through activation of specific G protein-coupled receptors (Lpar1-6). Knockdown of Atx or LPA receptor 3 (Lpar3) by morpholino oligonucleotides perturbed asymmetric gene expression in lateral plate mesoderm and disrupted organ L-R asymmetries, whereas overexpression of lpar3 partially rescued those defects in both atx and lpar3 morphants. Similar defects were observed in embryos treated with the Atx inhibitor HA130 and the Lpar1-3 inhibitor Ki16425. Knockdown of either Atx or Lpar3 impaired calcium fluxes in DFCs during mid-epiboly stage and compromised DFC cohesive migration, KV formation and ciliogenesis. Application of LPA to DFCs rescued the calcium signal and laterality defects in atx morphants. This LPA-dependent L-R asymmetry is mediated via Wnt signaling, as shown by the accumulation of β-catenin in nuclei at the dorsal side of both atx and lpar3 morphants. Our results suggest a major role for the Atx/Lpar3 signaling axis in regulating KV formation, ciliogenesis and L-R asymmetry via a Wnt-dependent pathway.
Collapse
Affiliation(s)
- Shih-Lei Lai
- Institute of Zoology, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
| | - Wan-Ling Yao
- Institute of Zoology, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
| | - Ku-Chi Tsao
- Institute of Zoology, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
| | - Anna J. S. Houben
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Harald M. H. G. Albers
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Wouter H. Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Shyh-Jye Lee
- Institute of Zoology, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
- Department of Life Science, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
- Center for Systems Biology, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
- Center for Biotechnology, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 1 Roosevelt Road, Sec. 4, Taipei 10617, Taiwan, Republic of China
| |
Collapse
|
37
|
Cohen MM. Perspectives on asymmetry: the Erickson Lecture. Am J Med Genet A 2012; 158A:2981-98. [PMID: 23132826 DOI: 10.1002/ajmg.a.34348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/08/2011] [Indexed: 11/10/2022]
Abstract
Topics discussed include asymmetry of the brain; prosopagnosia with asymmetric involvement; the blaspheming brain; effects of the numbers of X chromosomes on brain asymmetry; normal facial asymmetry; kissing asymmetry; left- and right-handedness; left-sided baby cradling; Nodal signaling and left/right asymmetry; primary cilium and left/right asymmetry in zebrafish; right/left asymmetry in snails; species differences in Shh and Fgf8; primary cilium in vertebrate asymmetry; Hedgehog signaling on the cilium; Wnt signaling on the cilium; situs solitus, situs inversus, and situs ambiguus (heterotaxy); ciliopathies; right-sided injuries in trilobites; unilateral ocular use in the octopus; fiddler crabs; scale-eating cichlids; narwhals; left-footed parrots; asymmetric whisker use in rats; and right-sided fatigue fractures in greyhounds.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
38
|
Evidence of a role of inositol polyphosphate 5-phosphatase INPP5E in cilia formation in zebrafish. Vision Res 2012; 75:98-107. [PMID: 23022135 DOI: 10.1016/j.visres.2012.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/28/2012] [Accepted: 09/17/2012] [Indexed: 11/23/2022]
Abstract
Inositol phosphatases are important regulators of cell signaling and membrane trafficking. Mutations in inositol polyphosphate 5-phosphatase, INPP5E, have been identified in Joubert syndrome, a rare congenital disorder characterized by midbrain malformation, retinitis pigmentosa, renal cysts, and polydactyly. Previous studies have implicated primary cilia abnormalities in Joubert syndrome, yet the role of INPP5E in cilia formation is not well understood. In this study, we examined the function of INPP5E in cilia development in zebrafish. Using specific antisense morpholino oligonucleotides to knockdown Inpp5e expression, we observed phenotypes of microphthalmia, pronephros cysts, pericardial effusion, and left-right body axis asymmetry. The Inpp5e morphant zebrafish exhibited shortened and decreased cilia formation in the Kupffer's vesicle and pronephric ducts as compared to controls. Epinephrine-stimulated melanosome trafficking was delayed in the Inpp5e zebrafish morphants. Expression of human INPP5E expression rescued the phenotypic defects in the Inpp5e morphants. Taken together, we showed that INPP5E is critical for the cilia development in zebrafish.
Collapse
|
39
|
Miyake H, Tsukube H. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates. Chem Soc Rev 2012; 41:6977-91. [PMID: 22850749 DOI: 10.1039/c2cs35192g] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
'Chirality switching' is one of the most important chemical processes controlling many biological systems. DNAs and proteins often work as time-programmed functional helices, in which specific external stimuli alter the helical direction and tune the time scale of subsequent events. Although a variety of organic foldamers and their hybrids with natural helices have been developed, we highlight coordination chemistry strategies for development of structurally and functionally defined metal helicates. These metal helicates have characteristic coordination geometries, redox reactivities and spectroscopic/magnetic properties as well as complex chiralities. Several kinds of inert metal helicates maintain rigid helical structures and their stereoisomers are separable by optical resolution techniques, while labile metal helicates offer dynamic inversion of their helical structures via non-covalent interactions with external chemical signals. The latter particularly have dynamically ordered helical structures, which are controlled by the combinations of metal centres and chiral ligands. They further function as time-programmable switches of chirality-derived dynamic rotations, translations, stretching and shape flipping, which are useful applications in nanoscience and related technology.
Collapse
Affiliation(s)
- Hiroyuki Miyake
- Department of Chemistry, Graduate School of Science, Osaka City University, Sugimoto, Osaka 558-8585, Japan.
| | | |
Collapse
|
40
|
Sasakura Y, Mita K, Ogura Y, Horie T. Ascidians as excellent chordate models for studying the development of the nervous system during embryogenesis and metamorphosis. Dev Growth Differ 2012; 54:420-37. [DOI: 10.1111/j.1440-169x.2012.01343.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Kaoru Mita
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | - Yosuke Ogura
- Shimoda Marine Research Center; University of Tsukuba; Shimoda; Shizuoka; 415-0025; Japan
| | | |
Collapse
|
41
|
Beyer T, Thumberger T, Schweickert A, Blum M. Connexin26-mediated transfer of laterality cues in Xenopus. Biol Open 2012; 1:473-81. [PMID: 23213439 PMCID: PMC3507211 DOI: 10.1242/bio.2012760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A cilia-driven leftward flow of extracellular fluid breaks bilateral symmetry in the dorsal midline of the neurula stage vertebrate embryo. The left-specific Nodal signaling cascade in the lateral plate mesoderm (LPM) is key to asymmetric morphogenesis and placement of organs during subsequent development. The nature of the initial asymmetric cue(s) as well as the transfer of information from the midline to the left side has remained elusive. Gap junctional communication has been previously involved in Xenopus left-right (LR) development, however a function at cleavage stages was inferred from inhibitor experiments. Here we show by heptanol-mediated block of connexin function that flow stages during neurulation represent the critical time window. Flow in Xenopus occurs at the gastrocoel roof plate (GRP), a ciliated sheath of cells of mesodermal fate transiently positioned within the dorsal epithelial lining of the forming archenteron. We reasoned that endodermal cells immediately adjacent to the GRP are important for transfer of asymmetry. A systematic screen identified two connexin genes, Cx26 and Cx32, which were co-expressed in these lateral endodermal cells. Gain- and loss-of-function experiments pinpointed Cx26 as the critical connexin for LR development, while Cx32 had no effect on laterality. Importantly, GRP morphology, ciliation and flow were not affected in Cx26 morphants. Our results demonstrate a decisive role of Cx26 in the transfer of laterality cues from the GRP to the left LPM, providing a novel access to the identification of the initial asymmetric signal generated by flow.
Collapse
Affiliation(s)
- Tina Beyer
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, 70593 Stuttgart, Germany
| | | | | | | |
Collapse
|
42
|
Domenichini A, Dadda M, Facchin L, Bisazza A, Argenton F. Isolation and genetic characterization of mother-of-snow-white, a maternal effect allele affecting laterality and lateralized behaviors in zebrafish. PLoS One 2011; 6:e25972. [PMID: 22022484 PMCID: PMC3192786 DOI: 10.1371/journal.pone.0025972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/14/2011] [Indexed: 11/18/2022] Open
Abstract
In the present work we report evidence compatible with a maternal effect allele affecting left-right development and functional lateralization in vertebrates. Our study demonstrates that the increased frequency of reversed brain asymmetries in a zebrafish line isolated through a behavioral assay is due to selection of mother-of-snow-white (msw), a maternal effect allele involved in early stages of left-right development in zebrafish. msw homozygous females could be identified by screening of their progeny for the position of the parapineal organ because in about 50% of their offspring we found an altered, either bilateral or right-sided, expression of lefty1 and spaw. Deeper investigations at earlier stages of development revealed that msw is involved in the specification and differentiation of precursors of the Kupffer's vesicle, a structure homologous to the mammalian node. To test the hypothesis that msw, by controlling Kupffer's vesicle morphogenesis, controls lateralized behaviors related to diencephalic asymmetries, we analyzed left- and right-parapineal offspring in a "viewing test". As a result, left- and right-parapineal individuals showed opposite and complementary eye preference when scrutinizing a model predator, and a different degree of lateralization when scrutinizing a virtual companion. As maternal effect genes are expected to evolve more rapidly when compared to zygotic ones, our results highlight the driving force of maternal effect alleles in the evolution of vertebrates behaviors.
Collapse
Affiliation(s)
- Alice Domenichini
- Dipartimento di Biologia dell'Università degli Studi di Padova, Padova, Italy
| | - Marco Dadda
- Dipartimento di Psicologia Generale dell'Università degli Studi di Padova, Padova, Italy
| | - Lucilla Facchin
- Dipartimento di Biologia dell'Università degli Studi di Padova, Padova, Italy
| | - Angelo Bisazza
- Dipartimento di Psicologia Generale dell'Università degli Studi di Padova, Padova, Italy
| | - Francesco Argenton
- Dipartimento di Biologia dell'Università degli Studi di Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
43
|
Tariq M, Belmont JW, Lalani S, Smolarek T, Ware SM. SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing. Genome Biol 2011; 12:R91. [PMID: 21936905 PMCID: PMC3308054 DOI: 10.1186/gb-2011-12-9-r91] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/09/2011] [Accepted: 09/21/2011] [Indexed: 01/14/2023] Open
Abstract
Background Heterotaxy-spectrum cardiovascular disorders are challenging for traditional genetic analyses because of clinical and genetic heterogeneity, variable expressivity, and non-penetrance. In this study, high-resolution SNP genotyping and exon-targeted array comparative genomic hybridization platforms were coupled to whole-exome sequencing to identify a novel disease candidate gene. Results SNP genotyping identified absence-of-heterozygosity regions in the heterotaxy proband on chromosomes 1, 4, 7, 13, 15, 18, consistent with parental consanguinity. Subsequently, whole-exome sequencing of the proband identified 26,065 coding variants, including 18 non-synonymous homozygous changes not present in dbSNP132 or 1000 Genomes. Of these 18, only 4 - one each in CXCL2, SHROOM3, CTSO, RXFP1 - were mapped to the absence-of-heterozygosity regions, each of which was flanked by more than 50 homozygous SNPs, confirming recessive segregation of mutant alleles. Sanger sequencing confirmed the SHROOM3 homozygous missense mutation and it was predicted as pathogenic by four bioinformatic tools. SHROOM3 has been identified as a central regulator of morphogenetic cell shape changes necessary for organogenesis and can physically bind ROCK2, a rho kinase protein required for left-right patterning. Screening 96 sporadic heterotaxy patients identified four additional patients with rare variants in SHROOM3. Conclusions Using whole exome sequencing, we identify a recessive missense mutation in SHROOM3 associated with heterotaxy syndrome and identify rare variants in subsequent screening of a heterotaxy cohort, suggesting SHROOM3 as a novel target for the control of left-right patterning. This study reveals the value of SNP genotyping coupled with high-throughput sequencing for identification of high yield candidates for rare disorders with genetic and phenotypic heterogeneity.
Collapse
Affiliation(s)
- Muhammad Tariq
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
44
|
Chen D, Norris D, Ventikos Y. Ciliary behaviour and mechano-transduction in the embryonic node: computational testing of hypotheses. Med Eng Phys 2011; 33:857-67. [PMID: 21126903 DOI: 10.1016/j.medengphy.2010.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 10/12/2010] [Accepted: 10/19/2010] [Indexed: 02/03/2023]
Abstract
Left-right symmetry breaking in the mammalian embryo is believed to occur in a transient embryonic structure, the node: rotational motion of cilia within this structure creates a leftward flow of liquid that is the first asymmetric event observed. A hypothesis, often referred to as the "two-cilia" hypothesis, proposes that the node contains two kinds of primary cilia: motile cilia, driven by motor proteins, that rotate clockwise generating the leftward flow and passive cilia that act as mechano-sensors, reacting mechanically to the emerging flow. The exact mechanism that underlies the initial breaking of symmetry remains unclear, in spite of several studies that have attempted to elucidate the processes involved. In this paper, we present two computational models to (i) simulate the unidirectional flow induced by the active ciliary motion as well as their propulsion on the passive cilia and to (ii) investigate the protein activity that produces the active ciliary rotation-like movement. The models presented incorporate methodologies from computational fluid dynamics, deformable mesh computational techniques and fluid-structure interaction analysis. By solving the three-dimensional unsteady transport equations, with suitable boundary conditions, we confirm that the whirling motion of active cilia is capable of inducing the unidirectional flow and that the passive cilia are pushed by this flow towards the left with a visible deformation of 41.7% of the ciliary length on the tip, supporting the plausibility of the two-cilia hypothesis. Further, by applying finite element analysis and grid deformation techniques, we investigate the ciliary motion triggered by the activation of protein motors and propose a possible dynein activation pattern that is able to produce the clockwise rotation of embryonic cilia.
Collapse
Affiliation(s)
- Duanduan Chen
- Institute of Biomedical Engineering & Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
45
|
Liu DW, Hsu CH, Tsai SM, Hsiao CD, Wang WP. A variant of fibroblast growth factor receptor 2 (Fgfr2) regulates left-right asymmetry in zebrafish. PLoS One 2011; 6:e21793. [PMID: 21747958 PMCID: PMC3128613 DOI: 10.1371/journal.pone.0021793] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 06/13/2011] [Indexed: 11/19/2022] Open
Abstract
Many organs in vertebrates are left-right asymmetrical located. For example, liver is at the right side and stomach is at the left side in human. Fibroblast growth factor (Fgf) signaling is important for left-right asymmetry. To investigate the roles of Fgfr2 signaling in zebrafish left-right asymmetry, we used splicing blocking morpholinos to specifically block the splicing of fgfr2b and fgfr2c variants, respectively. We found that the relative position of the liver and the pancreas were disrupted in fgfr2c morphants. Furthermore, the left-right asymmetry of the heart became random. Expression pattern of the laterality controlling genes, spaw and pitx2c, also became random in the morphants. Furthermore, lefty1 was not expressed in the posterior notochord, indicating that the molecular midline barrier had been disrupted. It was also not expressed in the brain diencephalon. Kupffer's vesicle (KV) size became smaller in fgfr2c morphants. Furthermore, KV cilia were shorter in fgfr2c morphants. We conclude that the fgfr2c isoform plays an important role in the left-right asymmetry during zebrafish development.
Collapse
Affiliation(s)
- Da-Wei Liu
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Chia-Hao Hsu
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Su-Mei Tsai
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Wen-Pin Wang
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
46
|
Yoshida K, Saiga H. Repression of Rx gene on the left side of the sensory vesicle by Nodal signaling is crucial for right-sided formation of the ocellus photoreceptor in the development of Ciona intestinalis. Dev Biol 2011; 354:144-50. [PMID: 21402066 DOI: 10.1016/j.ydbio.2011.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 02/02/2023]
Abstract
Nodal signaling plays an essential role in the establishment of left-right asymmetry in various animals. However, it is largely unknown how Nodal signaling is involved in the establishment of the left-right asymmetric morphology. In this study, the role of Nodal signaling in the left-right asymmetric ocellus formation in the ascidian, Ciona intestinalis was dealt with. During the development of C. intestinalis, the ocellus pigment cell forms on the midline and moves to the right side of the midline. Then, the photoreceptor cells form on the right side of the sensory vesicle (SV). Ci-Nodal is expressed on the left side of the SV in the developing tail bud embryo. When Nodal signaling is inhibited, the ocellus pigment cell form but remain on the midline, and expression of marker genes of the ocellus photoreceptor cells is ectopically detected on the left side as well as on the right side of the SV in the larva. Furthermore, Ci-Rx, which is essential for the ocellus differentiation, turns out to be negatively regulated by the Nodal signaling on the left side of the SV, even though it is required for the right-sided photoreceptor formation. These results indicate that Nodal signaling controls the left-right asymmetric ocellus formation in the development of C. intestinalis.
Collapse
Affiliation(s)
- Keita Yoshida
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiohsawa, Hachioji, Tokyo, Japan
| | | |
Collapse
|
47
|
Williams GD, Feng A. Heterotaxy Syndrome: Implications for Anesthesia Management. J Cardiothorac Vasc Anesth 2010; 24:834-44. [DOI: 10.1053/j.jvca.2010.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Indexed: 11/11/2022]
|
48
|
Hirokawa N, Tanaka Y, Okada Y. Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harb Perspect Biol 2010; 1:a000802. [PMID: 20066075 DOI: 10.1101/cshperspect.a000802] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian left-right determination is a good example for how multiple cell biological processes coordinate in the formation of a basic body plan. The leftward movement of fluid at the ventral node, called nodal flow, is the central process in symmetry breaking on the left-right axis. Nodal flow is autonomously generated by the rotation of posteriorly tilted cilia that are built by transport via KIF3 motor on cells of the ventral node. How nodal flow is interpreted to create left-right asymmetry has been a matter of debate. Recent evidence suggests that the leftward movement of sheathed lipidic particles, called nodal vesicular parcels (NVPs), may result in the activation of the noncanonical hedgehog signaling pathway, an asymmetric elevation in intracellular Ca(2+) and changes in gene expression.
Collapse
Affiliation(s)
- Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, University of Tokyo, Graduate School of Medicine, 7-3-1 Hongo, Tokyo, 113-0033 Japan.
| | | | | |
Collapse
|
49
|
Chung MI, Nascone-Yoder NM, Grover SA, Drysdale TA, Wallingford JB. Direct activation of Shroom3 transcription by Pitx proteins drives epithelial morphogenesis in the developing gut. Development 2010; 137:1339-49. [PMID: 20332151 DOI: 10.1242/dev.044610] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Individual cell shape changes are essential for epithelial morphogenesis. A transcriptional network for epithelial cell shape change is emerging in Drosophila, but this area remains largely unexplored in vertebrates. The distinction is important as so far, key downstream effectors of cell shape change in Drosophila appear not to be conserved. Rather, Shroom3 has emerged as a central effector of epithelial morphogenesis in vertebrates, driving both actin- and microtubule-based cell shape changes. To date, the morphogenetic role of Shroom3 has been explored only in the neural epithelium, so the broad expression of this gene raises two important questions: what are the requirements for Shroom3 in non-neural tissues and what factors control Shroom3 transcription? Here, we show in Xenopus that Shroom3 is essential for cell shape changes and morphogenesis in the developing vertebrate gut and that Shroom3 transcription in the gut requires the Pitx1 transcription factor. Moreover, we show that Pitx proteins directly activate Shroom3 transcription, and we identify Pitx-responsive regulatory elements in the genomic DNA upstream of Shroom3. Finally, we show that ectopic expression of Pitx proteins is sufficient to induce Shroom3-dependent cytoskeletal reorganization and epithelial cell shape change. These data demonstrate new breadth to the requirements for Shroom3 in morphogenesis, and they also provide a cell-biological basis for the role of Pitx transcription factors in morphogenesis. More generally, these results provide a foundation for deciphering the transcriptional network that underlies epithelial cell shape change in developing vertebrates.
Collapse
Affiliation(s)
- Mei-I Chung
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
50
|
Vogel P, Read R, Hansen GM, Freay LC, Zambrowicz BP, Sands AT. Situs inversus in Dpcd/Poll-/-, Nme7-/- , and Pkd1l1-/- mice. Vet Pathol 2010; 47:120-31. [PMID: 20080492 DOI: 10.1177/0300985809353553] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Situs inversus (SI) is a congenital condition characterized by left-right transposition of thoracic and visceral organs and associated vasculature. The usual asymmetrical positioning of organs is established early in development in a transient structure called the embryonic node. The 2-cilia hypothesis proposes that 2 kinds of primary cilia in the embryonic node determine left-right asymmetry: motile cilia that generate a leftward fluid flow, and immotile mechanosensory cilia that respond to the flow. Here, we describe 3 mouse SI models that provide support for the 2-cilia hypothesis. In addition to having SI, Dpcd/Poll(-/-) mice (for: deleted in a mouse model of primary ciliary dyskinesia) and Nme7(-/-) mice (for: nonmetastatic cells 7) had lesions consistent with deficient ciliary motility: Hydrocephalus, sinusitis, and male infertility developed in Dpcd/Poll(-/-) mice, whereas hydrocephalus and excessive nasal exudates were seen in Nme7(-/-) mice. In contrast, the absence of respiratory tract lesions, hydrocephalus, and male infertility in Pkd1l1(-/-) mice (for: polycystic kidney disease 1 like 1) suggested that dysfunction of motile cilia was not involved in the development of SI in this line. Moreover, the gene Pkd1l1 has considerable sequence similarity with Pkd1 (for: polycystic kidney disease 1), which encodes a protein (polycystin-1) that is essential for the mechanosensory function of immotile primary cilia in the kidney. The markedly reduced viability of Pkd1l1(-/-) mice is somewhat surprising given the absence of any detected abnormalities (other than SI) in surviving Pkd1l1(-/-) mice subjected to a comprehensive battery of phenotype-screening exams. However, the heart and great vessels of Pkd1l1(-/-) mice were not examined, and it is possible that the decreased viability of Pkd1l1(-/-) mice is due to undiagnosed cardiovascular defects associated with heterotaxy.
Collapse
Affiliation(s)
- P Vogel
- Pathology Department, Lexicon Pharmaceuticals Inc., 8800 Technology Forest Place, The Woodlands, TX 77381, USA.
| | | | | | | | | | | |
Collapse
|