1
|
Zhang X, Han Y, Han X, Zhang S, Xiong L, Chen T. Peptide chain release factor DIG8 regulates plant growth by affecting ROS-mediated sugar transportation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1172275. [PMID: 37063204 PMCID: PMC10102589 DOI: 10.3389/fpls.2023.1172275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts have important roles in photosynthesis, stress sensing and retrograde signaling. However, the relationship between chloroplast peptide chain release factor and ROS-mediated plant growth is still unclear. In the present study, we obtained a loss-of-function mutant dig8 by EMS mutation. The dig8 mutant has few lateral roots and a pale green leaf phenotype. By map-based cloning, the DIG8 gene was located on AT3G62910, with a point mutation leading to amino acid substitution in functional release factor domain. Using yeast-two-hybrid and BiFC, we confirmed DIG8 protein was characterized locating in chloroplast by co-localization with plastid marker and interacting with ribosome-related proteins. Through observing by transmission electron microscopy, quantifying ROS content and measuring the transport efficiency of plasmodesmata in dig8 mutant, we found that abnormal thylakoid stack formation and chloroplast dysfunction in the dig8 mutant caused increased ROS activity leading to callose deposition and lower PD permeability. A local sugar supplement partially alleviated the growth retardation phenotype of the mutant. These findings shed light on chloroplast peptide chain release factor-affected plant growth by ROS stress.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Xiao Han
- College of Life Sciences, Fuzhou University, Fuzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, Hong Kong SAR, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Biziaev N, Sokolova E, Yanvarev DV, Toropygin IY, Shuvalov A, Egorova T, Alkalaeva E. Recognition of 3' nucleotide context and stop codon readthrough are determined during mRNA translation elongation. J Biol Chem 2022; 298:102133. [PMID: 35700825 PMCID: PMC9272376 DOI: 10.1016/j.jbc.2022.102133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
The nucleotide context surrounding stop codons significantly affects the efficiency of translation termination. In eukaryotes, various 3′ contexts that are unfavorable for translation termination have been described; however, the exact molecular mechanism that mediates their effects remains unknown. In this study, we used a reconstituted mammalian translation system to examine the efficiency of stop codons in different contexts, including several previously described weak 3′ stop codon contexts. We developed an approach to estimate the level of stop codon readthrough in the absence of eukaryotic release factors (eRFs). In this system, the stop codon is recognized by the suppressor or near-cognate tRNAs. We observed that in the absence of eRFs, readthrough occurs in a 3′ nucleotide context-dependent manner, and the main factors determining readthrough efficiency were the type of stop codon and the sequence of the 3′ nucleotides. Moreover, the efficiency of translation termination in weak 3′ contexts was almost equal to that in the tested standard context. Therefore, the ability of eRFs to recognize stop codons and induce peptide release is not affected by mRNA context. We propose that ribosomes or other participants of the elongation cycle can independently recognize certain contexts and increase the readthrough of stop codons. Thus, the efficiency of translation termination is regulated by the 3′ nucleotide context following the stop codon and depends on the concentrations of eRFs and suppressor/near-cognate tRNAs.
Collapse
Affiliation(s)
- Nikita Biziaev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Elizaveta Sokolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Dmitry V Yanvarev
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Ilya Yu Toropygin
- Orekhovich Research Institute of Biomedical Chemistry, Moscow, 119992, Russia.
| | - Alexey Shuvalov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Tatiana Egorova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| | - Elena Alkalaeva
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
| |
Collapse
|
3
|
Aptamers: A Review of Their Chemical Properties and Modifications for Therapeutic Application. Molecules 2019; 24:molecules24234229. [PMID: 31766318 PMCID: PMC6930564 DOI: 10.3390/molecules24234229] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/29/2022] Open
Abstract
Aptamers are short, single-stranded oligonucleotides that bind to specific target molecules. The shape-forming feature of single-stranded oligonucleotides provides high affinity and excellent specificity toward targets. Hence, aptamers can be used as analogs of antibodies. In December 2004, the US Food and Drug Administration approved the first aptamer-based therapeutic, pegaptanib (Macugen), targeting vascular endothelial growth factor, for the treatment of age-related macular degeneration. Since then, however, no aptamer medication for public health has appeared. During these relatively silent years, many trials and improvements of aptamer therapeutics have been performed, opening multiple novel directions for the therapeutic application of aptamers. This review summarizes the basic characteristics of aptamers and the chemical modifications available for aptamer therapeutics.
Collapse
|
4
|
Cultured bloodstream Trypanosoma brucei adapt to life without mitochondrial translation release factor 1. Sci Rep 2018; 8:5135. [PMID: 29572512 PMCID: PMC5865105 DOI: 10.1038/s41598-018-23472-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/13/2018] [Indexed: 01/07/2023] Open
Abstract
Trypanosoma brucei is an extracellular parasite that alternates between an insect vector (procyclic form) and the bloodstream of a mammalian host (bloodstream form). While it was previously reported that mitochondrial release factor 1 (TbMrf1) is essential in cultured procyclic form cells, we demonstrate here that in vitro bloodstream form cells can tolerate the elimination of TbMrf1. Therefore, we explored if this discrepancy is due to the unique bioenergetics of the parasite since procyclic form cells rely on oxidative phosphorylation; whereas bloodstream form cells utilize glycolysis for ATP production and FoF1-ATPase to maintain the essential mitochondrial membrane potential. The observed disruption of intact bloodstream form FoF1-ATPases serves as a proxy to indicate that the translation of its mitochondrially encoded subunit A6 is impaired without TbMrf1. While these null mutants have a decreased mitochondrial membrane potential, they have adapted by increasing their dependence on the electrogenic contributions of the ADP/ATP carrier to maintain the mitochondrial membrane potential above the minimum threshold required for T. brucei viability in vitro. However, this inefficient compensatory mechanism results in avirulent mutants in mice. Finally, the depletion of the codon-independent release factor TbPth4 in the TbMrf1 knockouts further exacerbates the characterized mitchondrial phenotypes.
Collapse
|
5
|
Hoernes TP, Clementi N, Juen MA, Shi X, Faserl K, Willi J, Gasser C, Kreutz C, Joseph S, Lindner H, Hüttenhofer A, Erlacher MD. Atomic mutagenesis of stop codon nucleotides reveals the chemical prerequisites for release factor-mediated peptide release. Proc Natl Acad Sci U S A 2018; 115:E382-E389. [PMID: 29298914 PMCID: PMC5776981 DOI: 10.1073/pnas.1714554115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Termination of protein synthesis is triggered by the recognition of a stop codon at the ribosomal A site and is mediated by class I release factors (RFs). Whereas in bacteria, RF1 and RF2 promote termination at UAA/UAG and UAA/UGA stop codons, respectively, eukaryotes only depend on one RF (eRF1) to initiate peptide release at all three stop codons. Based on several structural as well as biochemical studies, interactions between mRNA, tRNA, and rRNA have been proposed to be required for stop codon recognition. In this study, the influence of these interactions was investigated by using chemically modified stop codons. Single functional groups within stop codon nucleotides were substituted to weaken or completely eliminate specific interactions between the respective mRNA and RFs. Our findings provide detailed insight into the recognition mode of bacterial and eukaryotic RFs, thereby revealing the chemical groups of nucleotides that define the identity of stop codons and provide the means to discriminate against noncognate stop codons or UGG sense codons.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Nina Clementi
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael Andreas Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Xinying Shi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Jessica Willi
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Catherina Gasser
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Alexander Hüttenhofer
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
6
|
Nakamura Y. Aptamers as therapeutic middle molecules. Biochimie 2017; 145:22-33. [PMID: 29050945 DOI: 10.1016/j.biochi.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/12/2017] [Indexed: 02/04/2023]
Abstract
Therapeutic molecules can be classified as low-, middle- and high-molecular weight drugs depending on their molecular masses. Antibodies represent high-molecular weight drugs and their clinical applications have been developing rapidly. Aptamers, on the other hand, are middle-molecular weight molecules that are short, single-stranded nucleic acid sequences that are selected in vitro from large oligonucleotide libraries based on their high affinity to a target molecule. Hence, aptamers can be thought of as a nucleic acid analog to antibodies. However, several viewpoints hold that the potential of aptamers arises from interesting characteristics that are distinct from, or in some cases, superior to those of antibodies. Recently, therapeutic middle molecules gain considerable attention as protein-protein interaction (PPI) inhibitors. This review summarizes the recent achievements in aptamer development in our laboratory in terms of PPI and non-PPI inhibitors.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan; RIBOMIC Inc., Minato-ku, Tokyo 108-0071, Japan.
| |
Collapse
|
7
|
Pillay S, Li Y, Wong LE, Pervushin K. Structural characterization of eRF1 mutants indicate a complex mechanism of stop codon recognition. Sci Rep 2016; 6:18644. [PMID: 26725946 PMCID: PMC4698671 DOI: 10.1038/srep18644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
Eukarya translation termination requires the stop codon recognizing protein eRF1. In contrast to the multiple proteins required for translation termination in Bacteria, eRF1 retains the ability to recognize all three of the stop codons. The details of the mechanism that eRF1 uses to recognize stop codons has remained elusive. This study describes the structural effects of mutations in the eRF1 N-domain that have previously been shown to alter stop codon recognition specificity. Here, we propose a model of eRF1 binding to the pre-translation termination ribosomal complex that is based in part on our solution NMR structures of the wild-type and mutant eRF1 N-domains. Since structural perturbations induced by these mutations were spread throughout the protein structure, residual dipolar coupling (RDC) data were recorded to establish the long-range effects of the specific mutations, E55Q, Y125F, Q(122)FM(Y)F(126). RDCs were recorded on (15)N-labeled eRF1 N-domain weakly aligned in either 5% w/v n-octyl-penta (ethylene glycol)/octanol (C8E5) or the filamentous phage Pf1. These data indicate that the mutations alter the conformation and dynamics of the GTS loop that is distant from the mutation sites. We propose that the GTS loop forms a switch that is key for the multiple codon recognition capability of eRF1.
Collapse
Affiliation(s)
- Shubhadra Pillay
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| |
Collapse
|
8
|
Bezerra AR, Guimarães AR, Santos MAS. Non-Standard Genetic Codes Define New Concepts for Protein Engineering. Life (Basel) 2015; 5:1610-28. [PMID: 26569314 PMCID: PMC4695839 DOI: 10.3390/life5041610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 11/16/2022] Open
Abstract
The essential feature of the genetic code is the strict one-to-one correspondence between codons and amino acids. The canonical code consists of three stop codons and 61 sense codons that encode 20% of the amino acid repertoire observed in nature. It was originally designated as immutable and universal due to its conservation in most organisms, but sequencing of genes from the human mitochondrial genomes revealed deviations in codon assignments. Since then, alternative codes have been reported in both nuclear and mitochondrial genomes and genetic code engineering has become an important research field. Here, we review the most recent concepts arising from the study of natural non-standard genetic codes with special emphasis on codon re-assignment strategies that are relevant to engineering genetic code in the laboratory. Recent tools for synthetic biology and current attempts to engineer new codes for incorporation of non-standard amino acids are also reviewed in this article.
Collapse
Affiliation(s)
- Ana R Bezerra
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Ana R Guimarães
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| | - Manuel A S Santos
- Health Sciences Department, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
9
|
Nakamura Y, Ishiguro A, Miyakawa S. RNA plasticity and selectivity applicable to therapeutics and novel biosensor development. Genes Cells 2012; 17:344-64. [PMID: 22487172 PMCID: PMC3444689 DOI: 10.1111/j.1365-2443.2012.01596.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/03/2012] [Indexed: 12/25/2022]
Abstract
Aptamers are short, single-stranded nucleic acid sequences that are selected in vitro from large oligonucleotide libraries based on their high affinity to a target molecule. Hence, aptamers can be thought of as a nucleic acid analog to antibodies. However, several viewpoints hold that the potential of aptamers arises from interesting characteristics that are distinct from, or in some cases, superior to those of antibodies. This review summarizes the recent achievements in aptamer programs developed in our laboratory against basic and therapeutic protein targets. Through these studies, we became aware of the remarkable conformational plasticity and selectivity of RNA, on which the published report has not shed much light even though this is evidently a crucial feature for the strong specificity and affinity of RNA aptamers.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Basic Medical Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | |
Collapse
|
10
|
Graille M, Figaro S, Kervestin S, Buckingham RH, Liger D, Heurgué-Hamard V. Methylation of class I translation termination factors: structural and functional aspects. Biochimie 2012; 94:1533-43. [PMID: 22266024 DOI: 10.1016/j.biochi.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/23/2022]
Abstract
During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.
Collapse
Affiliation(s)
- Marc Graille
- IBBMC, Université Paris-Sud 11, CNRS UMR8619, Orsay Cedex, F-91405, France.
| | | | | | | | | | | |
Collapse
|
11
|
Nakamura Y, Ito K. tRNA mimicry in translation termination and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:647-68. [DOI: 10.1002/wrna.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Bulygin KN, Khairulina YS, Kolosov PM, Ven'yaminova AG, Graifer DM, Vorobjev YN, Frolova LY, Kisselev LL, Karpova GG. Three distinct peptides from the N domain of translation termination factor eRF1 surround stop codon in the ribosome. RNA (NEW YORK, N.Y.) 2010; 16:1902-14. [PMID: 20688868 PMCID: PMC2941099 DOI: 10.1261/rna.2066910] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/27/2010] [Indexed: 05/07/2023]
Abstract
To study positioning of the polypeptide release factor eRF1 toward a stop signal in the ribosomal decoding site, we applied photoactivatable mRNA analogs, derivatives of oligoribonucleotides. The human eRF1 peptides cross-linked to these short mRNAs were identified. Cross-linkers on the guanines at the second, third, and fourth stop signal positions modified fragment 31-33, and to lesser extent amino acids within region 121-131 (the "YxCxxxF loop") in the N domain. Hence, both regions are involved in the recognition of the purines. A cross-linker at the first uridine of the stop codon modifies Val66 near the NIKS loop (positions 61-64), and this region is important for recognition of the first uridine of stop codons. Since the N domain distinct regions of eRF1 are involved in a stop-codon decoding, the eRF1 decoding site is discontinuous and is not of "protein anticodon" type. By molecular modeling, the eRF1 molecule can be fitted to the A site proximal to the P-site-bound tRNA and to a stop codon in mRNA via a large conformational change to one of its three domains. In the simulated eRF1 conformation, the YxCxxxF motif and positions 31-33 are very close to a stop codon, which becomes also proximal to several parts of the C domain. Thus, in the A-site-bound state, the eRF1 conformation significantly differs from those in crystals and solution. The model suggested for eRF1 conformation in the ribosomal A site and cross-linking data are compatible.
Collapse
MESH Headings
- Base Sequence
- Codon, Terminator/genetics
- Codon, Terminator/metabolism
- Cross-Linking Reagents
- Humans
- In Vitro Techniques
- Models, Molecular
- Mutagenesis, Site-Directed
- Peptide Chain Termination, Translational
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Peptide Mapping
- Peptide Termination Factors/chemistry
- Peptide Termination Factors/genetics
- Peptide Termination Factors/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- Konstantin N Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Merritt GH, Naemi WR, Mugnier P, Webb HM, Tuite MF, von der Haar T. Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast. Nucleic Acids Res 2010; 38:5479-92. [PMID: 20444877 PMCID: PMC2938225 DOI: 10.1093/nar/gkq338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/24/2010] [Accepted: 04/17/2010] [Indexed: 12/03/2022] Open
Abstract
Translation termination in eukaryotes typically requires the decoding of one of three stop codons UAA, UAG or UGA by the eukaryotic release factor eRF1. The molecular mechanisms that allow eRF1 to decode either A or G in the second nucleotide, but to exclude UGG as a stop codon, are currently not well understood. Several models of stop codon recognition have been developed on the basis of evidence from mutagenesis studies, as well as studies on the evolutionary sequence conservation of eRF1. We show here that point mutants of Saccharomyces cerevisiae eRF1 display significant variability in their stop codon read-through phenotypes depending on the background genotype of the strain used, and that evolutionary conservation of amino acids in eRF1 is only a poor indicator of the functional importance of individual residues in translation termination. We further show that many phenotypes associated with eRF1 mutants are quantitatively unlinked with translation termination defects, suggesting that the evolutionary history of eRF1 was shaped by a complex set of molecular functions in addition to translation termination. We reassess current models of stop-codon recognition by eRF1 in the light of these new data.
Collapse
Affiliation(s)
| | | | | | | | | | - Tobias von der Haar
- Kent Fungal Group and Protein Science Group, School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| |
Collapse
|
14
|
Nakamura Y, Endo K, Adachi H, Ishiguro A. RNA aptamers to translational components. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:369-95. [PMID: 20374747 DOI: 10.1016/s1877-1173(09)90010-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Potential applications for functional RNAs are rapidly expanding, not only to address functions based on primary nucleotide sequences, but also by RNA aptamers, which can suppress the activity of any target molecule. Aptamers are short DNA or RNA folded molecules that can be selected in vitro on the basis of their high affinity for a target molecule. Here, we summarize RNA aptamers selected against human translation initiation factors, and their superior potentials to recognize and inhibit their target proteins. Importantly, the high affinity of RNA aptamers to proteins without RNA recognition motifs or intrinsic, strong affinity to RNA is achieved through the capture of the protein's global conformation. In other words, RNA has a high potential to form a vast set of tertiary structures, which we would like to refer to as 'RNA plasticity'. This provides us with a solid and promising basis to take steps to create novel RNA molecules of therapeutic potential with distinct structures, which should be equivalent or superior to antibodies.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
15
|
Fan-Minogue H, Du M, Pisarev AV, Kallmeyer AK, Salas-Marco J, Keeling KM, Thompson SR, Pestova TV, Bedwell DM. Distinct eRF3 requirements suggest alternate eRF1 conformations mediate peptide release during eukaryotic translation termination. Mol Cell 2008; 30:599-609. [PMID: 18538658 DOI: 10.1016/j.molcel.2008.03.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/25/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.
Collapse
Affiliation(s)
- Hua Fan-Minogue
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nozaki Y, Matsunaga N, Ishizawa T, Ueda T, Takeuchi N. HMRF1L is a human mitochondrial translation release factor involved in the decoding of the termination codons UAA and UAG. Genes Cells 2008; 13:429-38. [PMID: 18429816 DOI: 10.1111/j.1365-2443.2008.01181.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
While all essential mammalian mitochondrial factors involved in the initiation and elongation phases of translation have been cloned and well characterized, little is known about the factors involved in the termination process. In the present work, we report the functional analysis of human mitochondrial translation release factors (RF). Here, we show that HMRF1, which had been previously denoted as a human mitochondrial RF, was inactive in in vitro translation system, although it is a mitochondrial protein. Instead, we identified another human mitochondrial RF candidate, HMRF1L, and demonstrated that HMRF1L is indeed a mitochondrial protein that functions specifically as an RF for the decoding of mitochondrial UAA and UAG termination codons in vitro. The identification of the functional mitochondrial RF brings us much closer to a detailed understanding of the translational termination process in mammalian mitochondria as well as to the unraveling of the molecular mechanism of diseases caused by the dys-regulation of translational termination in human mitochondria.
Collapse
Affiliation(s)
- Yusuke Nozaki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Building FSB-401, 5-1-5, Kashiwanoha, Kashiwa, Chiba Prefecture 277-8562, Japan
| | | | | | | | | |
Collapse
|
17
|
Soleimanpour-Lichaei HR, Kühl I, Gaisne M, Passos JF, Wydro M, Rorbach J, Temperley R, Bonnefoy N, Tate W, Lightowlers R, Chrzanowska-Lightowlers Z. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Mol Cell 2007; 27:745-57. [PMID: 17803939 PMCID: PMC1976341 DOI: 10.1016/j.molcel.2007.06.031] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/30/2007] [Accepted: 06/21/2007] [Indexed: 11/28/2022]
Abstract
Human mitochondria contain their own genome, encoding 13 polypeptides that are synthesized within the organelle. The molecular processes that govern and facilitate this mitochondrial translation remain unclear. Many key factors have yet to be characterized—for example, those required for translation termination. All other systems have two classes of release factors that either promote codon-specific hydrolysis of peptidyl-tRNA (class I) or lack specificity but stimulate the dissociation of class I factors from the ribosome (class II). One human mitochondrial protein has been previously identified in silico as a putative member of the class I release factors. Although we could not confirm the function of this factor, we report the identification of a different mitochondrial protein, mtRF1a, that is capable in vitro and in vivo of terminating translation at UAA/UAG codons. Further, mtRF1a depletion in HeLa cells led to compromised growth in galactose and increased production of reactive oxygen species.
Collapse
Affiliation(s)
| | - Inge Kühl
- Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Mauricette Gaisne
- Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Joao F. Passos
- Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 6BE, UK
| | - Mateusz Wydro
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Joanna Rorbach
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Richard Temperley
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Nathalie Bonnefoy
- Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Warren Tate
- Department of Biochemistry, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin 9016, New Zealand
| | - Robert Lightowlers
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Zofia Chrzanowska-Lightowlers
- Mitochondrial Research Group, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Corresponding author
| |
Collapse
|
18
|
Taliaferro D, Farabaugh PJ. An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting. RNA (NEW YORK, N.Y.) 2007; 13:606-13. [PMID: 17329356 PMCID: PMC1831869 DOI: 10.1261/rna.412707] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Programmed translational frameshift sites are sequences in mRNAs that promote frequent stochastic changes in translational reading frame allowing expression of alternative forms of protein products. The EST3 gene of Saccharomyces cerevisiae, encoding a subunit of telomerase, uses a programmed +1 frameshift site in its expression. We show that the site is complex, consisting of a heptameric sequence at which the frameshift occurs and a downstream 27-nucleotide stimulator sequence that increases frameshifting eightfold. The stimulator appears to be modular, composed of at least three separable domains. It increases frameshifting only when ribosomes pause at the frameshift site because of a limiting supply of a cognate aminoacyl-tRNA and not when pausing occurs at a nonsense codon. These data suggest that the EST3 stimulator may modulate access by aminoacyl-tRNAs to the ribosomal A site by interacting with several targets in a ribosome paused during elongation.
Collapse
Affiliation(s)
- Dwayne Taliaferro
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | | |
Collapse
|
19
|
Song L, Chai BF, Wang W, Liang AH. Identification of translational release factor eRF1a binding sites on eRF3 in Euplotes octocarinatus. Res Microbiol 2006; 157:842-50. [PMID: 16963230 DOI: 10.1016/j.resmic.2006.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 07/24/2006] [Accepted: 07/25/2006] [Indexed: 11/19/2022]
Abstract
Translation termination in eukaryotes is mediated by two polypeptide chain-release factors, eRF1 and eRF3. eRF1 recognizes stop signals, while eRF3 is a ribosome-dependent and eRF1-dependent GTPase. eRF1 forms a stable complex with eRF3 in vivo and in vitro. In the present study, a variety of truncated forms of Euplotes octocarinatus eRF3 were created, and systematic analysis of the interaction between E. octocarinatus eRF1a and these eRF3 mutants was performed by employing both in vivo a yeast two-hybrid assay and in vitro a pull-down assay. The results demonstrated that a short portion of the C-terminal domain of eRF3 is sufficient for eRF1a binding in E. octocarinatus. Specifically, the eRF1a-binding sites on eRF3 are located at a region containing amino acid residues 640-723 in E. octocarinatus eRF3. Amino acid sequence analysis of eRF3 from E. octocarinatus, humans and yeast showed that the eRF1a binding domain on E. octocarinatus eRF3 was similar to that of yeast eRF3 but different from that of human eRF3.
Collapse
Affiliation(s)
- Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | | | | | | |
Collapse
|
20
|
Abstract
As concepts evolve in mammalian and yeast prion biology, rather preliminary research investigating the interplay between prion and RNA processes are gaining momentum. The yeast prion [PSI+] represents an aggregated state of the translation termination factor Sup35 resulting in the tendency of ribosomes to readthrough stop codons. This "nonsense suppression" activity is investigated for its possible physiological role to engender on Saccharomyces cerevisiae the ability to respond to stress or variable growth conditions and thereby act as a capacitor to evolve. The interaction between prion and RNA is a two way street--the cell may have adopted RNA processes in translation to govern the presence of prions and the [PSI+] prion's nonsense suppressor phenotype may exhibit different growth phenotypes by its control of translation termination. RNA processes in the mammalian cell also effect and are affected by prions.
Collapse
Affiliation(s)
- Colin G Crist
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639
| | | |
Collapse
|
21
|
Amrani N, Sachs MS, Jacobson A. Early nonsense: mRNA decay solves a translational problem. Nat Rev Mol Cell Biol 2006; 7:415-25. [PMID: 16723977 DOI: 10.1038/nrm1942] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression is highly accurate and rarely generates defective proteins. Several mechanisms ensure this fidelity, including specialized surveillance pathways that rid the cell of mRNAs that are incompletely processed or that lack complete open reading frames. One such mechanism, nonsense-mediated mRNA decay, is triggered when ribosomes encounter a premature translation-termination--or nonsense--codon. New evidence indicates that the specialized factors that are recruited for this process not only promote rapid mRNA degradation, but are also required to resolve a poorly dissociable termination complex.
Collapse
Affiliation(s)
- Nadia Amrani
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655-0122, USA
| | | | | |
Collapse
|
22
|
Sato H, Ito K, Nakamura Y. Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity. Mol Microbiol 2006; 60:108-20. [PMID: 16556224 DOI: 10.1111/j.1365-2958.2006.05094.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial release factors (RFs) 1 and 2 catalyse translation termination at UAG/UAA and UGA/UAA stop codons respectively. It has been shown that limiting the amount of ribosomal protein L11 affects translation termination at UAG and UGA differently. To understand the functional interplay between L11 and RF1/RF2, we isolated 21 distinct mutations in L11 as suppressors of either temperature-sensitive (ts) RF1/RF2 strains or read-through mutants of lacZ nonsense (UAG or UGA) strains. 10 of 21 mutants restored ts lethal growth of RF1 and/or RF2 strains. All the selected L11 mutants, including the RF1ts- and RF2ts-specific suppressors, had the same effect, either enhancing or reducing, on UAG and UGA termination efficiency in vivo. The specific properties of the selected L11 mutations remained unchanged in an RF3 deletion strain. Moreover, ribosomes absent of L11 had equally reduced activity for both RF1- and RF2-mediated peptide release in vitro. These results suggest that, unlike the previous notion, L11 has a common, cooperative role with RF1 and RF2. These L11 mutations were located on the surface of two domains of L11, and interpreted to affect the interaction between L11 and rRNA or the RFs thereby leading to the altered translation termination.
Collapse
Affiliation(s)
- Hanae Sato
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
23
|
Liu Q. Comparative analysis of base biases around the stop codons in six eukaryotes. Biosystems 2006; 81:281-9. [PMID: 15979780 DOI: 10.1016/j.biosystems.2005.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/11/2005] [Accepted: 05/14/2005] [Indexed: 11/17/2022]
Abstract
Using full-length cDNA sequences, a comparative analysis of sequence patterns around the stop codons in six eukaryotes was performed. Here, it was showed that the codon immediately before and after the stop codons (defined as -1 codon and +1 codon, respectively) were much more biased than other examined positions, especially at the second position of -1 codons and the first position of +1 codons which were rich in As/Us and purines, respectively, for most species. The author speculated that strongly biased sequence pattern from position -2 to +4 might act as an extended translation termination signal. Translation termination was catalyzed by release factors that recognized the stop codons. The multiple amino acid sequence alignment of eukaryotic release factor 1 (eRF1) of 20 species showed that there were 16 residue sites that were strictly conserved, especially the invariant amino acids Ile70 and Lys71. Accordingly, it could be inferred that those candidate amino acids might involve in the recognition process. Moreover, the possible stop signal recognition hypothesis was also discussed herein.
Collapse
Affiliation(s)
- Qingpo Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China.
| |
Collapse
|
24
|
Kolosov P, Frolova L, Seit-Nebi A, Dubovaya V, Kononenko A, Oparina N, Justesen J, Efimov A, Kisselev L. Invariant amino acids essential for decoding function of polypeptide release factor eRF1. Nucleic Acids Res 2005; 33:6418-25. [PMID: 16282590 PMCID: PMC1283522 DOI: 10.1093/nar/gki927] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 10/08/2005] [Accepted: 10/08/2005] [Indexed: 11/12/2022] Open
Abstract
In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabilized as demonstrated by calorimetric measurements and calculated free energy perturbations. In mutants, the UAG response was most profoundly and selectively affected. Surprisingly, Glu55Arg mutant completely retained its release activity. Substitution of the aromatic ring in position 125 reduced response toward all stop codons. This result demonstrates the critical importance of Tyr125 for maintenance of the intact structure of the eRF1 decoding site. The results also suggest that Tyr125 is implicated in recognition of the 3d stop codon position and probably forms an H-bond with Glu55. The data point to a pivotal role played by the YxCxxxF motif (positions 125-131) in purine discrimination of the stop codons. We speculate that eRF1 decoding site is formed by a 3D network of amino acids side chains.
Collapse
Affiliation(s)
- Petr Kolosov
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Ludmila Frolova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Alim Seit-Nebi
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Vera Dubovaya
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Artem Kononenko
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Nina Oparina
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences119991 Moscow, Russia
- Institute of Molecular Biology, Aarhus UniversityDenmark
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Just Justesen
- Institute of Molecular Biology, Aarhus UniversityDenmark
| | - Alexandr Efimov
- Institute of Protein ResearchPustchino, 142290 Moscow Region, Russia
| | - Lev Kisselev
- To whom correspondence should be addressed. Tel: +7 095 1356009; Fax: +7 095 1351405;
| |
Collapse
|
25
|
Crist CG, Kurahashi H, Nakayashiki T, Nakamura Y. Conformation preserved in a weak-to-strong or strong-to-weak [PSI+] conversion during transmission to Sup35 prion variants. Biochimie 2005; 88:485-96. [PMID: 16364534 DOI: 10.1016/j.biochi.2005.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 10/03/2005] [Indexed: 11/19/2022]
Abstract
The cytoplasmic [PSI(+)] element of budding yeast represents the prion conformation of translation release factor Sup35. Much interest lies in understanding how prions are able to generate variation in isogenic strains. Recent observations suggest that a single prion domain, PrD, is able to adopt several conformations that account for prion strains. We report novel PrD variants of Sup35 that convert weak [PSI(+)] to strong [PSI(+)], and vice versa, upon transmission from wild-type Sup35. During the transmission from wild-type Sup35 to variant Sup35s, no conformational changes were detected by proteolytic fingerprinting and the original [PSI(+)] strain was remembered upon return to wild-type Sup35. These findings suggest that during transmission to variant Sup35s, the [PSI(+)] phenotype is variable while the original conformation is remembered. A mechanism of "conformational memory" to remember specific [PSI(+)] conformations during transmission is proposed.
Collapse
Affiliation(s)
- Colin G Crist
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
26
|
Oparina NJ, Kalinina OV, Gelfand MS, Kisselev LL. Common and specific amino acid residues in the prokaryotic polypeptide release factors RF1 and RF2: possible functional implications. Nucleic Acids Res 2005; 33:5226-34. [PMID: 16162810 PMCID: PMC1214553 DOI: 10.1093/nar/gki841] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Termination of protein synthesis is promoted in ribosomes by proper stop codon discrimination by class 1 polypeptide release factors (RFs). A large set of prokaryotic RFs differing in stop codon specificity, RF1 for UAG and UAA, and RF2 for UGA and UAA, was analyzed by means of a recently developed computational method allowing identification of the specificity-determining positions (SDPs) in families composed of proteins with similar but not identical function. Fifteen SDPs were identified within the RF1/2 superdomain II/IV known to be implicated in stop codon decoding. Three of these SDPs had particularly high scores. Five residues invariant for RF1 and RF2 [invariant amino acid residues (IRs)] were spatially clustered with the highest-scoring SDPs that in turn were located in two zones within the SDP/IR area. Zone 1 (domain II) included PxT and SPF motifs identified earlier by others as ‘discriminator tripeptides’. We suggest that IRs in this zone take part in the recognition of U, the first base of all stop codons. Zone 2 (domain IV) possessed two SDPs with the highest scores not identified earlier. Presumably, they also take part in stop codon binding and discrimination. Elucidation of potential functional role(s) of the newly identified SDP/IR zones requires further experiments.
Collapse
Affiliation(s)
- Nina J. Oparina
- To whom correspondence should be addressed. Tel: +7 095 1351419; Fax: +7 095 1351405;
| | - Olga V. Kalinina
- Department of Bioengineering and Bioinformatics, Moscow State UniversityVorob'evy Gory, 1-73, Moscow 119992, Russia
| | - Mikhail S. Gelfand
- Institute for Information Transmission Problems, Russian Academy of SciencesBolshoi Karetnyi per., 19, Moscow 127994, Russia
- State Scientific Centre GosNIIGenetika1st Dorozhny pr. 1, Moscow, 113545, Russia
| | | |
Collapse
|
27
|
Liang H, Wong JY, Bao Q, Cavalcanti ARO, Landweber LF. Decoding the decoding region: analysis of eukaryotic release factor (eRF1) stop codon-binding residues. J Mol Evol 2005; 60:337-44. [PMID: 15871044 DOI: 10.1007/s00239-004-0211-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/18/2004] [Indexed: 10/25/2022]
Abstract
Peptide synthesis in eukaryotes terminates when eukaryotic release factor 1 (eRF1) binds to an mRNA stop codon and occupies the ribosomal A site. Domain 1 of the eRF1 protein has been implicated in stop codon recognition in a number of experimental studies. In order to further pinpoint the residues of this protein involved in stop codon recognition, we sequenced and compared eRF1 genes from a variety of ciliated protozoan species. We then performed a series of computational analyses to evaluate the conservation, accessibility, and structural environment of each amino acid located in domain 1. With this new dataset and methodology, we were able to identify eight specific amino acid sites important for stop codon recognition and also to propose a set of cooperative paired substitutions that may underlie stop codon reassignment. Our results are more consistent with current experimental data than previously described models.
Collapse
Affiliation(s)
- Han Liang
- Department of Chemistry, Princeton University, NJ 08544, USA.
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Zhang Y, Baranov PV, Atkins JF, Gladyshev VN. Pyrrolysine and Selenocysteine Use Dissimilar Decoding Strategies. J Biol Chem 2005; 280:20740-51. [PMID: 15788401 DOI: 10.1074/jbc.m501458200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selenocysteine (Sec) and pyrrolysine (Pyl) are known as the 21st and 22nd amino acids in protein. Both are encoded by codons that normally function as stop signals. Sec specification by UGA codons requires the presence of a cis-acting selenocysteine insertion sequence (SECIS) element. Similarly, it is thought that Pyl is inserted by UAG codons with the help of a putative pyrrolysine insertion sequence (PYLIS) element. Herein, we analyzed the occurrence of Pyl-utilizing organisms, Pyl-associated genes, and Pyl-containing proteins. The Pyl trait is restricted to several microbes, and only one organism has both Pyl and Sec. We found that methanogenic archaea that utilize Pyl have few genes that contain in-frame UAG codons, and many of these are followed with nearby UAA or UGA codons. In addition, unambiguous UAG stop signals could not be identified. This bias was not observed in Sec-utilizing organisms and non-Pyl-utilizing archaea, as well as with other stop codons. These observations as well as analyses of the coding potential of UAG codons, overlapping genes, and release factor sequences suggest that UAG is not a typical stop signal in Pyl-utilizing archaea. On the other hand, searches for conserved Pyl-containing proteins revealed only four protein families, including methylamine methyltransferases and transposases. Only methylamine methyltransferases matched the Pyl trait and had conserved Pyl, suggesting that this amino acid is used primarily by these enzymes. These findings are best explained by a model wherein UAG codons may have ambiguous meaning and Pyl insertion can effectively compete with translation termination for UAG codons obviating the need for a specific PYLIS structure. Thus, Sec and Pyl follow dissimilar decoding and evolutionary strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | | | | | |
Collapse
|
30
|
Kim OTP, Yura K, Go N, Harumoto T. Newly sequenced eRF1s from ciliates: the diversity of stop codon usage and the molecular surfaces that are important for stop codon interactions. Gene 2005; 346:277-86. [PMID: 15716103 DOI: 10.1016/j.gene.2004.11.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 11/04/2004] [Accepted: 11/26/2004] [Indexed: 11/18/2022]
Abstract
The genetic code of nuclear genes in some ciliates was found to differ from that of other organisms in the assignment of UGA, UAG, and UAA codons, which are normally assigned as stop codons. In some ciliate species, the universal stop codons UAA and UAG instead encode glutamine. In some other ciliates, the universal stop codon UGA appears to be translated as cysteine or tryptophan. Eukaryotic release factor 1 (eRF1) is a key protein in stop codon recognition, thus, the protein is believed to play an important role in the stop codon reassignment in ciliates. We have cloned, sequenced, and analyzed the cDNA of eRF1 from four ciliate species of three different classes: Karyorelictea (Loxodes striatus), Heterotrichea (Blepharisma musculus), and Litostomatea (Didinium nasutum, Dileptus margaritifer). Phylogenetic analysis of these eRF1s supports the hypothesis that the genetic code in ciliates has deviated independently several times from the universal genetic code, and that different ciliate eRF1s may have undergone different processes to change the codon specificity. Using computational methods, we have also suggested areas on the surface of eRF1s that are important for stop codon recognition in ciliate eRF1s.
Collapse
Affiliation(s)
- Oanh Thi Phuong Kim
- The Division of Human Environmental Sciences, Graduate School of Human Culture, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | | | | | | |
Collapse
|
31
|
Hara H, Nakayashiki T, Crist CG, Nakamura Y. Prion domain interaction responsible for species discrimination in yeast [PSI+] transmission. Genes Cells 2004; 8:925-39. [PMID: 14750948 DOI: 10.1111/j.1365-2443.2003.00694.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The yeast [PSI+] factor is transmitted by a prion mechanism involving self-propagating Sup35 aggregates. As with mammalian prions, a species barrier prevents prion transmission between yeast species. The N-terminal of Sup35 of Saccharomyces cerevisiae, necessary for [PSI+], contains two species-signature elements-a Gln/Asn-rich region (residues 1-41; designated NQ) that is followed by oligopeptide repeats (designated NR). RESULTS In this study, we show that S. cerevisiae[PSI+] is transmissible through plasmid shuffling and cytoplasmic transfer to heterotypic Sup35s whose NQ is replaced with the S. cerevisiae NQ. In addition to homology, the N-terminal location is essential for NQ mediated susceptibility to [PSI+] transmission amongst heterotypic Sup35s. In vitro, a swap of NQ of S. cerevisiae Sup35 led to cross seeding of amyloid formation. CONCLUSIONS These findings suggest that NQ discriminates self from non-self, and is sufficient to initiate [PSI+] transmission irrespective of whether NR is heterotypic. NR as well as NQ alone coalesces into existing [PSI+] aggregates, showing their independent potentials to interact with the identical sequence in the [PSI+] conformer. The role of NQ and NR in [PSI+] prion formation is discussed.
Collapse
Affiliation(s)
- Hideyuki Hara
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
32
|
Shin DH, Brandsen J, Jancarik J, Yokota H, Kim R, Kim SH. Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. J Mol Biol 2004; 341:227-39. [PMID: 15312775 DOI: 10.1016/j.jmb.2004.05.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Revised: 05/25/2004] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
We have determined the crystal structure of peptide chain release factor 1 (RF1) from Thermotoga maritima (gi 4981173) at 2.65 Angstrom resolution by selenomethionine single-wavelength anomalous dispersion (SAD) techniques. RF1 is a protein that recognizes stop codons and promotes the release of a nascent polypeptide from tRNA on the ribosome. Selenomethionine-labeled RF1 crystallized in space group P2(1) with three monomers per asymmetric unit. It has approximate dimensions of 75 Angstrom x 70 Angstrom x 45 Angstrom and is composed of four domains. The overall fold of each RF1 domain shows almost the same topology with Escherichia coli RF2, except that the RF1 N-terminal domain is shorter and the C-terminal domain is longer than that of RF2. The N-terminal domain of RF1 indicates a rigid-body movement relative to that of RF2 with an angle of approximately 90 degrees. Including these features, RF1 has a tripeptide anticodon PVT motif instead of the SPF motif of RF2, which confers the specificity towards the stop codons. The analyses of three molecules in the asymmetric unit and comparison with RF2 revealed the presence of dynamic movement of domains I and III, which are anchored to the central domain by hinge loops. The crystal structure of RF1 elucidates the intrinsic property of this family of having large domain movements for proper function with the ribosome.
Collapse
Affiliation(s)
- Dong Hae Shin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kobayashi T, Funakoshi Y, Hoshino SI, Katada T. The GTP-binding release factor eRF3 as a key mediator coupling translation termination to mRNA decay. J Biol Chem 2004; 279:45693-700. [PMID: 15337765 DOI: 10.1074/jbc.m405163200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP is essential for eukaryotic translation termination, where the release factor 3 (eRF3) complexed with eRF1 is involved as the guanine nucleotide-binding protein. In addition, eRF3 regulates the termination-coupled events, eRF3 interacts with poly(A)-binding protein (Pab1) and the surveillance factor Upf1 to mediate normal and nonsense-mediated mRNA decay. However, the roles of GTP binding to eRF3 in these processes remain largely unknown. Here, we showed in yeast that GTP is essentially required for the association of eRF3 with eRF1, but not with Pab1 and Upf1. A mutation in the GTP-binding motifs of eRF3 impairs the eRF1-binding ability without altering the Pab1- or Upf1-binding activity. Interestingly, the mutation causes not only a defect in translation termination but also delay of normal and nonsense-mediated mRNA decay, suggesting that GTP/eRF3-dependent termination exerts its influence on the subsequent mRNA degradation. The termination reaction itself is not sufficient, but eRF3 is essential for triggering mRNA decay. Thus, eRF3 is a key mediator that transduces termination signal to mRNA decay.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
34
|
Kong C, Ito K, Walsh MA, Wada M, Liu Y, Kumar S, Barford D, Nakamura Y, Song H. Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol Cell 2004; 14:233-45. [PMID: 15099522 DOI: 10.1016/s1097-2765(04)00206-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 03/03/2004] [Accepted: 03/10/2004] [Indexed: 11/28/2022]
Abstract
Translation termination in eukaryotes is governed by two interacting release factors, eRF1 and eRF3. The crystal structure of the eEF1alpha-like region of eRF3 from S. pombe determined in three states (free protein, GDP-, and GTP-bound forms) reveals an overall structure that is similar to EF-Tu, although with quite different domain arrangements. In contrast to EF-Tu, GDP/GTP binding to eRF3c does not induce dramatic conformational changes, and Mg(2+) is not required for GDP binding to eRF3c. Mg(2+) at higher concentration accelerates GDP release, suggesting a novel mechanism for nucleotide exchange on eRF3 from that of other GTPases. Mapping sequence conservation onto the molecular surface, combined with mutagenesis analysis, identified the eRF1 binding region, and revealed an essential function for the C terminus of eRF3. The N-terminal extension, rich in acidic amino acids, blocks the proposed eRF1 binding site, potentially regulating eRF1 binding to eRF3 in a competitive manner.
Collapse
Affiliation(s)
- Chunguang Kong
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Karamysheva ZN, Karamyshev AL, Ito K, Yokogawa T, Nishikawa K, Nakamura Y, Matsufuji S. Antizyme frameshifting as a functional probe of eukaryotic translational termination. Nucleic Acids Res 2004; 31:5949-56. [PMID: 14530443 PMCID: PMC219470 DOI: 10.1093/nar/gkg789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Translation termination in eukaryotes is mediated by the release factors eRF1 and eRF3, but mechanisms of the interplay between these factors are not fully understood, due partly to the difficulty of measuring termination on eukaryotic mRNAs. Here, we describe an in vitro system for the assay of termination using competition with programmed frameshifting at the recoding signal of mammalian antizyme. The efficiency of antizyme frameshifting in rabbit reticulocyte lysates was reduced by addition of recombinant rabbit eRF1 and eRF3 in a synergistic manner. Addition of suppressor tRNA to this assay system revealed competition with a third event, stop codon readthrough. Using these assays, we demonstrated that an eRF3 mutation at the GTPase domain repressed termination in a dominant negative fashion probably by binding to eRF1. The effect of the release factors and the suppressor tRNA showed that the stop codon at the antizyme frameshift site is relatively inefficient compared to either the natural termination signals at the end of protein coding sequences or the readthrough signal from a plant virus. The system affords a convenient assay for release factor activity and has provided some novel views of the mechanism of antizyme frameshifting.
Collapse
Affiliation(s)
- Zemfira N Karamysheva
- Department of Biochemistry II, The Jikei University, School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Mora L, Zavialov A, Ehrenberg M, Buckingham RH. Stop codon recognition and interactions with peptide release factor RF3 of truncated and chimeric RF1 and RF2 from Escherichia coli. Mol Microbiol 2003; 50:1467-76. [PMID: 14651631 DOI: 10.1046/j.1365-2958.2003.03799.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Release factors RF1 and RF2 recognize stop codons present at the A-site of the ribosome and activate hydrolysis of peptidyl-tRNA to release the peptide chain. Interactions with RF3, a ribosome-dependent GTPase, then initiate a series of reactions that accelerate the dissociation of RF1 or RF2 and their recycling between ribosomes. Two regions of Escherichia coli RF1 and RF2 were identified previously as involved in stop codon recognition and peptidyl-tRNA hydrolysis. We show here that removing the N-terminal domain of RF1 or RF2 or exchanging this domain between the two factors does not affect RF specificity but has different effects on the activity of RF1 and RF2: truncated RF1 remains highly active and able to support rapid cell growth, whereas cells with truncated RF2 grow only poorly. Transplanting a loop of 13 amino acid residues from RF2 to RF1 switches the stop codon specificity. The interaction of the truncated factors with RF3 on the ribosome is defective: they fail to stimulate guanine nucleotide exchange on RF3, recycling is not stimulated by RF3, and nucleotide-free RF3 fails to stabilize the binding of RF1 or RF2 to the ribosome. However, the N-terminal domain seems not to be required for the expulsion of RF1 or RF2 by RF3:GTP.
Collapse
Affiliation(s)
- Liliana Mora
- UPR9073 du CNRS, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, Paris 75005, France
| | | | | | | |
Collapse
|
37
|
Abstract
Selenium is an essential trace element that is incorporated into proteins as selenocysteine (Sec), the twenty-first amino acid. Sec is encoded by a UGA codon in the selenoprotein mRNA. The decoding of UGA as Sec requires the reprogramming of translation because UGA is normally read as a stop codon. The translation of selenoprotein mRNAs requires cis-acting sequences in the mRNA and novel trans-acting factors dedicated to Sec incorporation. Selenoprotein synthesis in vivo is highly selenium-dependent, and there is a hierarchy of selenoprotein expression in mammals when selenium is limiting. This review describes emerging themes from studies on the mechanism, kinetics, and efficiency of Sec insertion in prokaryotes. Recent developments that provide mechanistic insight into how the eukaryotic ribosome distinguishes between UGA/Sec and UGA/stop codons are discussed. The efficiency and regulation of mammalian selenoprotein synthesis are considered in the context of current models for Sec insertion.
Collapse
Affiliation(s)
- Donna M Driscoll
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | |
Collapse
|
38
|
Chavatte L, Frolova L, Laugâa P, Kisselev L, Favre A. Stop codons and UGG promote efficient binding of the polypeptide release factor eRF1 to the ribosomal A site. J Mol Biol 2003; 331:745-58. [PMID: 12909007 DOI: 10.1016/s0022-2836(03)00813-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To investigate the codon dependence of human eRF1 binding to the mRNA-ribosome complex, we examined the formation of photocrosslinks between ribosomal components and mRNAs bearing a photoactivable 4-thiouridine probe in the first position of the codon located in the A site. Addition of eRF1 to the phased mRNA-ribosome complexes triggers a codon-dependent quenching of crosslink formation. The concentration of eRF1 triggering half quenching ranges from low for the three stop codons, to intermediate for s4UGG and high for other near-cognate triplets. A theoretical analysis of the photochemical processes occurring in a two-state bimolecular model raises a number of stringent conditions, fulfilled by the system studied here, and shows that in any case sound KD values can be extracted if the ratio mT/KD<<1 (mT is total concentration of mRNA added). Considering the KD values obtained for the stop, s4UGG and sense codons (approximately 0.06 microM, 0.45 microM and 2.3 microM, respectively) and our previous finding that only the stop and s4UGG codons are able to promote formation of an eRF1-mRNA crosslink, implying a role for the NIKS loop at the tip of the N domain, we propose a two-step model for eRF1 binding to the A site: a codon-independent bimolecular step is followed by an isomerisation step observed solely with stop and s4UGG codons. Full recognition of the stop codons by the N domain of eRF1 triggers a rearrangement of bound eRF1 from an open to a closed conformation, allowing the universally conserved GGQ loop at the tip of the M domain to come into close proximity of the peptidyl transferase center of the ribosome. UGG is expected to behave as a cryptic stop codon, which, owing to imperfect eRF1-codon recognition, does not allow full reorientation of the M domain of eRF1. As far as the physical steps of eRF1 binding to the ribosome are considered, they appear to closely mimic the behaviour of the tRNA/EF-Tu/GTP complex, but clearly eRF1 is endowed with a greater conformational flexibility than tRNA.
Collapse
Affiliation(s)
- Laurent Chavatte
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7-Paris 6, 2 place Jussieu Tour 43, 75251 Paris, France
| | | | | | | | | |
Collapse
|
39
|
Crist CG, Nakayashiki T, Kurahashi H, Nakamura Y. [PHI+], a novel Sup35-prion variant propagated with non-Gln/Asn oligopeptide repeats in the absence of the chaperone protein Hsp104. Genes Cells 2003; 8:603-18. [PMID: 12839621 DOI: 10.1046/j.1365-2443.2003.00661.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The [PSI+] element of the budding yeast is an aggregated form of the translation release factor Sup35 that is propagated and transmitted cytoplasmically in a manner analogous to that of mammalian prions. The N-terminal of Sup35, necessary for [PSI+], contains oligopeptide repeats and multiple Gln/Asn residues. RESULTS We replaced the Gln/Asn-rich prion repeats of Sup35 with non-Gln/Asn repeats from heterologous yeast strains. These non-Gln/Asn repeat Sup35s propagated a novel [PSI+] variant, [PHI+], that appeared de novo 103 times more frequent than [PSI+]. [PHI+] was stably inherited in a non-Mendelian fashion, but not eliminated upon the inactivation of Hsp104, unlike known [PSI+] elements. In vitro, non-Gln/Asn repeat domains formed amyloid fibres that were shorter and grew more slowly than did Gln/Asn-rich prion domains, while [PHI+] aggregates were smaller than [PSI+] aggregates in vivo. CONCLUSIONS These findings suggest the existence of an alternative, Hsp104-independent pathway to replicate non-Gln/Asn variant Sup35 prion seeds.
Collapse
Affiliation(s)
- Colin G Crist
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
40
|
Frankel A, Roberts RW. In vitro selection for sense codon suppression. RNA (NEW YORK, N.Y.) 2003; 9:780-786. [PMID: 12810911 PMCID: PMC1370444 DOI: 10.1261/rna.5350303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2003] [Accepted: 03/28/2003] [Indexed: 05/24/2023]
Abstract
The universal genetic code links the 20 naturally occurring amino acids to the 61 sense codons. Previously, the UAG amber stop codon (a nonsense codon) has been used as a blank in the code to insert natural and unnatural amino acids via nonsense suppression. We have developed a selection methodology to investigate whether the unnatural amino acid biocytin could be incorporated into an mRNA display library at sense codons. In these experiments we probed a single randomized NNN codon with a library of 16 orthogonal, biocytin-acylated tRNAs. In vitro selection for efficient incorporation of the unnatural amino acid resulted in templates containing the GUA codon at the randomized position. This sense suppression occurs via Watson-Crick pairing with similar efficiency to UAG-mediated nonsense suppression. These experiments suggest that sense codon suppression is a viable means to expand the chemical and functional diversity of the genetic code.
Collapse
Affiliation(s)
- Adam Frankel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
41
|
Nakamura Y, Uno M, Toyoda T, Fujiwara T, Ito K. Protein tRNA mimicry in translation termination. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:469-75. [PMID: 12762049 DOI: 10.1101/sqb.2001.66.469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Y Nakamura
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
42
|
Frank J, Agrawal RK. Ratchet-like movements between the two ribosomal subunits: their implications in elongation factor recognition and tRNA translocation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:67-75. [PMID: 12762009 DOI: 10.1101/sqb.2001.66.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc., Wadsworth Center, Department of Biomedical Sciences, State University of New York at Albany, New York, USA
| | | |
Collapse
|
43
|
Christensen SK, Gerdes K. RelE toxins from bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA. Mol Microbiol 2003; 48:1389-400. [PMID: 12787364 DOI: 10.1046/j.1365-2958.2003.03512.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RelE of Escherichia coli is a global inhibitor of translation that is activated by nutritional stress. Activation of RelE depends on Lon-mediated degradation of RelB, the antagonist that neutralizes RelE. In vitro, RelE cleaves synthetic mRNAs positioned at the ribosomal A-site. We show here that in vivo overexpression of RelE confers cleavage of mRNA and tmRNA in their coding regions. RelE-mediated cleavage depended on translation of the RNAs and occurred at both sense and stop codons. RelE cleavage of mRNA and tmRNA was also induced by amino acid starvation. An ssrA deletion strain was hypersensitive to RelE, whereas overproduction of tmRNA counteracted RelE toxicity. After neutralization of RelE by RelB, rapid recovery of translation required tmRNA, indicating that tmRNA alleviated RelE toxicity by rescuing ribosomes stalled on damaged mRNAs. RelE proteins from Gram-positive Bacteria and Archaea cleaved tmRNA with a pattern similar to that of E. coli RelE, suggesting that the function and target of RelE may be conserved across the prokaryotic domains.
Collapse
Affiliation(s)
- Susanne K Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
44
|
Chavatte L, Kervestin S, Favre A, Jean-Jean O. Stop codon selection in eukaryotic translation termination: comparison of the discriminating potential between human and ciliate eRF1s. EMBO J 2003; 22:1644-53. [PMID: 12660170 PMCID: PMC152891 DOI: 10.1093/emboj/cdg146] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During eukaryotic translation termination, eRF1 responds to three stop codons. However, in ciliates with variant genetic codes, only one or two codons function as a stop signal. To localize the region of ciliate eRF1 implicated in stop codon discrimination, we have constructed ciliate-human hybrid eRF1s by swapping regions of human eRF1 for the equivalent region of ciliate Euplotes eRF1. We have examined the formation of a cross-link between recombinant eRF1s and mRNA analogs containing the photoactivable 4-thiouridine (s(4)U) at the first position of stop and control sense codons. With human eRF1, this cross-link can be detected only when either stop or UGG codons are located in the ribosomal A site. Here we show that the cross-link of the Euplotes-human hybrid eRF1 is restricted to mRNAs containing UAG and UAA codons, and that the entire N-terminal domain of Euplotes eRF1 is involved in discriminating against UGA and UGG. On the basis of these results, we discuss the steps of the selection process that determine the accuracy of stop codon recognition in eukaryotes.
Collapse
Affiliation(s)
- Laurent Chavatte
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7-Paris 6, France
| | | | | | | |
Collapse
|
45
|
Moskalenko SE, Chabelskaya SV, Inge-Vechtomov SG, Philippe M, Zhouravleva GA. Viable nonsense mutants for the essential gene SUP45 of Saccharomyces cerevisiae. BMC Mol Biol 2003; 4:2. [PMID: 12589713 PMCID: PMC150568 DOI: 10.1186/1471-2199-4-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2002] [Accepted: 02/10/2003] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Termination of protein synthesis in eukaryotes involves at least two polypeptide release factors (eRFs) - eRF1 and eRF3. The highly conserved translation termination factor eRF1 in Saccharomyces cerevisiae is encoded by the essential gene SUP45. RESULTS We have isolated five sup45-n (n from nonsense) mutations that cause nonsense substitutions in the following amino acid positions of eRF1: Y53 --> UAA, E266 --> UAA, L283 --> UAA, L317 --> UGA, E385 --> UAA. We found that full-length eRF1 protein is present in all mutants, although in decreased amounts. All mutations are situated in a weak termination context. All these sup45-n mutations are viable in different genetic backgrounds, however their viability increases after growth in the absence of wild-type allele. Any of sup45-n mutations result in temperature sensitivity (37 degrees C). Most of the sup45-n mutations lead to decreased spore viability and spores bearing sup45-n mutations are characterized by limited budding after germination leading to formation of microcolonies of 4-20 cells. CONCLUSIONS Nonsense mutations in the essential gene SUP45 can be isolated in the absence of tRNA nonsense suppressors.
Collapse
Affiliation(s)
- Svetlana E Moskalenko
- Université de Rennes 1, CNRS UMR 6061, IFR 97, 2 av. Pr. Léon Bernard 35043 Rennes Cedex, France
- Department of Genetics, St Petersburg State University, Universitetskaya emb. 7/1, 199034, St Petersburg, Russia
| | - Svetlana V Chabelskaya
- Université de Rennes 1, CNRS UMR 6061, IFR 97, 2 av. Pr. Léon Bernard 35043 Rennes Cedex, France
- Department of Genetics, St Petersburg State University, Universitetskaya emb. 7/1, 199034, St Petersburg, Russia
| | - Sergei G Inge-Vechtomov
- Department of Genetics, St Petersburg State University, Universitetskaya emb. 7/1, 199034, St Petersburg, Russia
| | - Michel Philippe
- Université de Rennes 1, CNRS UMR 6061, IFR 97, 2 av. Pr. Léon Bernard 35043 Rennes Cedex, France
| | - Galina A Zhouravleva
- Université de Rennes 1, CNRS UMR 6061, IFR 97, 2 av. Pr. Léon Bernard 35043 Rennes Cedex, France
- Department of Genetics, St Petersburg State University, Universitetskaya emb. 7/1, 199034, St Petersburg, Russia
| |
Collapse
|
46
|
Abstract
The mechanism of translation termination has long been a puzzle. Recent crystallographic evidence suggests that the eukaryotic release factor (eRF1), the bacterial release factor (RF2) and the ribosome recycling factor (RRF) all mimic a tRNA structure, whereas biochemical and genetic evidence supports the idea of a tripeptide 'anticodon' in bacterial release factors RF1 and RF2. However, the suggested structural mimicry of RF2 is not in agreement with the tripeptide 'anticodon' hypothesis and, furthermore, recently determined structures using cryo-electron microscopy show that, when bound to the ribosome, RF2 has a conformation that is distinct from the RF2 crystal structure. In addition, hydroxyl-radical probings of RRF on the ribosome are not in agreement with the simple idea that RRF mimics tRNA in the ribosome A-site. All of this evidence seriously questions the simple concept of structural mimicry between proteins and RNA and, thus, leaves only functional mimicry of protein factors of translation to be investigated.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Basic Medical Sciences, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | | |
Collapse
|
47
|
Kisselev L, Ehrenberg M, Frolova L. Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J 2003; 22:175-82. [PMID: 12514123 PMCID: PMC140092 DOI: 10.1093/emboj/cdg017] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Termination of translation in eukaryotes has focused recently on functional anatomy of polypeptide chain release factor, eRF1, by using a variety of different approaches. The tight correlation between the domain structure and different functions of eRF1 has been revealed. Independently, the role of prokaryotic RF1/2 in GTPase activity of RF3 has been deciphered, as well as RF3 function itself.
Collapse
Affiliation(s)
- Lev Kisselev
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia and
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S75124 Uppsala, Sweden Corresponding author e-mail:
| | - Måns Ehrenberg
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia and
Department of Cell and Molecular Biology, BMC, Uppsala University, Box 596, S75124 Uppsala, Sweden Corresponding author e-mail:
| | | |
Collapse
|
48
|
Lancaster L, Kiel MC, Kaji A, Noller HF. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 2002; 111:129-40. [PMID: 12372306 DOI: 10.1016/s0092-8674(02)00938-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation. The striking resemblance of its L-shaped structure to that of tRNA has suggested that the mode of action of RRF may be based on mimicry of tRNA. Directed hydroxyl radical probing of 16S and 23S rRNA from Fe(II) tethered to ten positions on the surface of E. coli RRF constrains it to a well-defined location in the subunit interface cavity. Surprisingly, the orientation of RRF in the ribosome differs markedly from any of those previously observed for tRNA, suggesting that structural mimicry does not necessarily reflect functional mimicry.
Collapse
Affiliation(s)
- Laura Lancaster
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
49
|
Wada M. Cloning and sequence analysis of translational release factors eRF1 and eRF3 of Pneumocystis carinii. J Eukaryot Microbiol 2002; Suppl:116S-117S. [PMID: 11906017 DOI: 10.1111/j.1550-7408.2001.tb00476.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M Wada
- Institute of Medical Science, University of Tokyo, Japan.
| |
Collapse
|
50
|
Chavatte L, Seit-Nebi A, Dubovaya V, Favre A. The invariant uridine of stop codons contacts the conserved NIKSR loop of human eRF1 in the ribosome. EMBO J 2002; 21:5302-11. [PMID: 12356746 PMCID: PMC129024 DOI: 10.1093/emboj/cdf484] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To unravel the region of human eukaryotic release factor 1 (eRF1) that is close to stop codons within the ribosome, we used mRNAs containing a single photoactivatable 4-thiouridine (s(4)U) residue in the first position of stop or control sense codons. Accurate phasing of these mRNAs onto the ribosome was achieved by the addition of tRNA(Asp). Under these conditions, eRF1 was shown to crosslink exclusively to mRNAs containing a stop or s(4)UGG codon. A procedure that yielded (32)P-labeled eRF1 deprived of the mRNA chain was developed; analysis of the labeled peptides generated after specific cleavage of both wild-type and mutant eRF1s maps the crosslink in the tripeptide KSR (positions 63-65 of human eRF1) and points to K63 located in the conserved NIKS loop as the main crosslinking site. These data directly show the interaction of the N-terminal (N) domain of eRF1 with stop codons within the 40S ribosomal subunit and provide strong support for the positioning of the eRF1 middle (M) domain on the 60S subunit. Thus, the N and M domains mimic the tRNA anticodon and acceptor arms, respectively.
Collapse
Affiliation(s)
- Laurent Chavatte
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| | - Alim Seit-Nebi
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| | - Vera Dubovaya
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| | - Alain Favre
- Institut Jacques Monod, UMR 7592 CNRS-Universités Paris 7–Paris 6, 2 place Jussieu, F-75251 Paris cedex 05, France and Engelhardt Institute of Molecular Biology, Moscow 119991, Russia Present address: Cleveland Clinic Foundation, 9500 Euclid Avenue NC-10, Cleveland, OH 44195, USA Corresponding author e-mail:
| |
Collapse
|