1
|
Popchock AR, Hedouin S, Mao Y, Asbury CL, Stergachis AB, Biggins S. Stable centromere association of the yeast histone variant Cse4 requires its essential N-terminal domain. EMBO J 2025; 44:1488-1511. [PMID: 39809842 PMCID: PMC11876619 DOI: 10.1038/s44318-024-00345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Chromosome segregation relies on kinetochores that assemble on specialized centromeric chromatin containing a histone H3 variant. In budding yeast, a single centromeric nucleosome containing Cse4 assembles at a sequence-defined 125 bp centromere. Yeast centromeric sequences are poor templates for nucleosome formation in vitro, suggesting the existence of mechanisms that specifically stabilize Cse4 nucleosomes in vivo. The extended Cse4 N-terminal tail binds to the chaperone Scm3, and a short essential region called END within the N-terminal tail binds the inner kinetochore complex Okp1/Ame1. To address the roles of these interactions, we utilized single-molecule fluorescence assays to monitor Cse4 during kinetochore assembly. We found that Okp1/Ame1 and Scm3 independently stabilize Cse4 at centromeres via their END interaction. Scm3 and Cse4 stability at the centromere are enhanced by Ipl1/Aurora B phosphorylation of the Cse4 END, identifying a previously unknown role for Ipl1 in ensuring Cse4 stability. Strikingly, a phosphomimetic mutation in the Cse4 END restores Cse4 recruitment in mutants defective in Okp1/Ame1 binding. Together, these data suggest that a key function of the essential Cse4 N-terminus is to ensure Cse4 localization at centromeres.
Collapse
Affiliation(s)
- Andrew R Popchock
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sabrine Hedouin
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
2
|
Yatskevich S, Barford D, Muir KW. Conserved and divergent mechanisms of inner kinetochore assembly onto centromeric chromatin. Curr Opin Struct Biol 2023; 81:102638. [PMID: 37343495 DOI: 10.1016/j.sbi.2023.102638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/StanislauY
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | - Kyle W Muir
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/centromuir
| |
Collapse
|
3
|
Chen X, Portran D, Widmer LA, Stangier MM, Czub MP, Liakopoulos D, Stelling J, Steinmetz MO, Barral Y. The motor domain of the kinesin Kip2 promotes microtubule polymerization at microtubule tips. J Cell Biol 2023; 222:214052. [PMID: 37093124 PMCID: PMC10130750 DOI: 10.1083/jcb.202110126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023] Open
Abstract
Kinesins are microtubule-dependent motor proteins, some of which moonlight as microtubule polymerases, such as the yeast protein Kip2. Here, we show that the CLIP-170 ortholog Bik1 stabilizes Kip2 at microtubule ends where the motor domain of Kip2 promotes microtubule polymerization. Live-cell imaging and mathematical estimation of Kip2 dynamics reveal that disrupting the Kip2-Bik1 interaction aborts Kip2 dwelling at microtubule ends and abrogates its microtubule polymerization activity. Structural modeling and biochemical experiments identify a patch of positively charged residues that enables the motor domain to bind free tubulin dimers alternatively to the microtubule shaft. Neutralizing this patch abolished the ability of Kip2 to promote microtubule growth both in vivo and in vitro without affecting its ability to walk along microtubules. Our studies suggest that Kip2 utilizes Bik1 as a cofactor to track microtubule tips, where its motor domain then recruits free tubulin and catalyzes microtubule assembly.
Collapse
Affiliation(s)
- Xiuzhen Chen
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| | - Didier Portran
- CRBM, Université de Montpellier , CNRS, Montpellier, France
| | - Lukas A Widmer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Marcel M Stangier
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Mateusz P Czub
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
| | - Dimitris Liakopoulos
- CRBM, Université de Montpellier , CNRS, Montpellier, France
- Laboratory of Biology, University of Ioannina, Faculty of Medicine, Ioannina, Greece
| | - Jörg Stelling
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zürich, and Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Michel O Steinmetz
- Department of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute, Villigen, Switzerland
- University of Basel, Biozentrum , Basel, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Eidgenössische Technische Hochschule Zürich , Zurich, Switzerland
| |
Collapse
|
4
|
Meyer RE, Sartin A, Gish M, Harsha J, Wilkie E, Haworth D, LaVictoire R, Alberola I, Chuong HH, Gorbsky GJ, Dawson DS. Polyploid yeast are dependent on elevated levels of Mps1 for successful chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523325. [PMID: 36712123 PMCID: PMC9882063 DOI: 10.1101/2023.01.09.523325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Tumor cell lines with elevated chromosome numbers frequently have correlated elevations of Mps1 expression and these tumors are more dependent on Mps1 activity for their survival than control cell lines. Mps1 is a conserved kinase involved in controlling aspects of chromosome segregation in mitosis and meiosis. The mechanistic explanation for the Mps1-addiction of aneuploid cells is unknown. To address this question, we explored Mps1-dependence in yeast cells with increased sets of chromosomes. These experiments revealed that in yeast, increasing ploidy leads to delays and failures in orienting chromosomes on the mitotic spindle. Yeast cells with elevated numbers of chromosomes proved vulnerable to reductions of Mps1 activity. Cells with reduced Mps1 activity exhibit an extended prometaphase with longer spindles and delays in orienting the chromosomes. One known role of Mps1 is in recruiting Bub1 to the kinetochore in meiosis. We found that the Mps1-addiction of polyploid yeast cells is due in part to its role in Bub1 recruitment. Together, the experiments presented here demonstrate that increased ploidy renders cells more dependent on Mps1 for orienting chromosomes on the spindle. The phenomenon described here may be relevant in understanding why hyper-diploid cancer cells exhibit elevated reliance on Mps1 expression for successful chromosome segregation.
Collapse
Affiliation(s)
- Régis E Meyer
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Ashlea Sartin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Madeline Gish
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Jillian Harsha
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Emily Wilkie
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Dawson Haworth
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Rebecca LaVictoire
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Isabel Alberola
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Hoa H Chuong
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Gary J Gorbsky
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| | - Dean S Dawson
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, United States of America
| |
Collapse
|
5
|
Murase Y, Yamagishi M, Okada N, Toya M, Yajima J, Hamada T, Sato M. Fission yeast Dis1 is an unconventional TOG/XMAP215 that induces microtubule catastrophe to drive chromosome pulling. Commun Biol 2022; 5:1298. [PMID: 36435910 PMCID: PMC9701203 DOI: 10.1038/s42003-022-04271-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022] Open
Abstract
The shortening of microtubules attached to kinetochores is the driving force of chromosome movement during cell division. Specific kinesins are believed to shorten microtubules but are dispensable for viability in yeast, implying the existence of additional factors responsible for microtubule shortening. Here, we demonstrate that Dis1, a TOG/XMAP215 ortholog in fission yeast, promotes microtubule shortening to carry chromosomes. Although TOG/XMAP215 orthologs are generally accepted as microtubule polymerases, Dis1 promoted microtubule catastrophe in vitro and in vivo. Notably, microtubule catastrophe was promoted when the tip was attached to kinetochores, as they steadily anchored Dis1 at the kinetochore-microtubule interface. Engineered Dis1 oligomers artificially tethered at a chromosome arm region induced the shortening of microtubules in contact, frequently pulling the chromosome arm towards spindle poles. This effect was not brought by oligomerised Alp14. Thus, unlike Alp14 and other TOG/XMAP215 orthologs, Dis1 plays an unconventional role in promoting microtubule catastrophe, thereby driving chromosome movement.
Collapse
Affiliation(s)
- Yuichi Murase
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| | - Masahiko Yamagishi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Naoyuki Okada
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5808.50000 0001 1503 7226Instituto de Biologia Molecular e Celular, Instituto de Investigacao e Inovacao em Saude (i3S), Universidade do Porto, 208 Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Mika Toya
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Global Center for Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan
| | - Junichiro Yajima
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XKomaba Institute for Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan ,grid.26999.3d0000 0001 2151 536XResearch Center for Complex Systems Biology, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, 153-8902 Tokyo Japan
| | - Takahiro Hamada
- grid.444568.f0000 0001 0672 2184Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama-shi 700-0005 Japan
| | - Masamitsu Sato
- grid.5290.e0000 0004 1936 9975Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan ,grid.5290.e0000 0004 1936 9975Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555 Japan ,grid.5290.e0000 0004 1936 9975Institute for Medical-Oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480 Japan
| |
Collapse
|
6
|
Flores RL, Peterson ZE, Zelter A, Riffle M, Asbury CL, Davis TN. Three interacting regions of the Ndc80 and Dam1 complexes support microtubule tip-coupling under load. J Cell Biol 2022; 221:213102. [PMID: 35353161 DOI: 10.1083/jcb.202107016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 01/15/2023] Open
Abstract
Accurate mitosis requires kinetochores to make persistent, load-bearing attachments to dynamic microtubule tips, thereby coupling chromosome movements to tip growth and shortening. This tip-coupling behavior depends on the conserved Ndc80 complex and, in budding yeast, on the Dam1 complex, which bind each other directly via three distinct interacting regions. The functional relevance of these multiple interactions was mysterious. Here we show that interactions between two of these regions support the high rupture strengths that occur when applied force is rapidly increased and also support the stability of tip-coupling when force is held constant over longer durations. The contribution of either of these two regions to tip-coupling is reduced by phosphorylation by Aurora B kinase. The third interaction region makes no apparent contribution to rupture strength, but its phosphorylation by Aurora B kinase specifically decreases the long-term stability of tip-coupling. The specific reduction of long-term stability relative to short-term strength might have important implications for mitotic error correction.
Collapse
Affiliation(s)
- Rachel L Flores
- Department of Biochemistry, University of Washington, Seattle, WA
| | | | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
7
|
SWAP, SWITCH, and STABILIZE: Mechanisms of Kinetochore–Microtubule Error Correction. Cells 2022; 11:cells11091462. [PMID: 35563768 PMCID: PMC9104000 DOI: 10.3390/cells11091462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
For correct chromosome segregation in mitosis, eukaryotic cells must establish chromosome biorientation where sister kinetochores attach to microtubules extending from opposite spindle poles. To establish biorientation, any aberrant kinetochore–microtubule interactions must be resolved in the process called error correction. For resolution of the aberrant interactions in error correction, kinetochore–microtubule interactions must be exchanged until biorientation is formed (the SWAP process). At initiation of biorientation, the state of weak kinetochore–microtubule interactions should be converted to the state of stable interactions (the SWITCH process)—the conundrum of this conversion is called the initiation problem of biorientation. Once biorientation is established, tension is applied on kinetochore–microtubule interactions, which stabilizes the interactions (the STABILIZE process). Aurora B kinase plays central roles in promoting error correction, and Mps1 kinase and Stu2 microtubule polymerase also play important roles. In this article, we review mechanisms of error correction by considering the SWAP, SWITCH, and STABILIZE processes. We mainly focus on mechanisms found in budding yeast, where only one microtubule attaches to a single kinetochore at biorientation, making the error correction mechanisms relatively simpler.
Collapse
|
8
|
Doodhi H, Tanaka TU. Swap and stop - Kinetochores play error correction with microtubules: Mechanisms of kinetochore-microtubule error correction: Mechanisms of kinetochore-microtubule error correction. Bioessays 2022; 44:e2100246. [PMID: 35261042 PMCID: PMC9344824 DOI: 10.1002/bies.202100246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 12/30/2022]
Abstract
Correct chromosome segregation in mitosis relies on chromosome biorientation, in which sister kinetochores attach to microtubules from opposite spindle poles prior to segregation. To establish biorientation, aberrant kinetochore–microtubule interactions must be resolved through the error correction process. During error correction, kinetochore–microtubule interactions are exchanged (swapped) if aberrant, but the exchange must stop when biorientation is established. In this article, we discuss recent findings in budding yeast, which have revealed fundamental molecular mechanisms promoting this “swap and stop” process for error correction. Where relevant, we also compare the findings in budding yeast with mechanisms in higher eukaryotes. Evidence suggests that Aurora B kinase differentially regulates kinetochore attachments to the microtubule end and its lateral side and switches relative strength of the two kinetochore–microtubule attachment modes, which drives the exchange of kinetochore–microtubule interactions to resolve aberrant interactions. However, Aurora B kinase, recruited to centromeres and inner kinetochores, cannot reach its targets at kinetochore–microtubule interface when tension causes kinetochore stretching, which stops the kinetochore–microtubule exchange once biorientation is established.
Collapse
Affiliation(s)
- Harinath Doodhi
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
9
|
Zahm JA, Stewart MG, Carrier JS, Harrison SC, Miller MP. Structural basis of Stu2 recruitment to yeast kinetochores. eLife 2021; 10:e65389. [PMID: 33591274 PMCID: PMC7909949 DOI: 10.7554/elife.65389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 12/02/2022] Open
Abstract
Chromosome segregation during cell division requires engagement of kinetochores of sister chromatids with microtubules emanating from opposite poles. As the corresponding microtubules shorten, these 'bioriented' sister kinetochores experience tension-dependent stabilization of microtubule attachments. The yeast XMAP215 family member and microtubule polymerase, Stu2, associates with kinetochores and contributes to tension-dependent stabilization in vitro. We show here that a C-terminal segment of Stu2 binds the four-way junction of the Ndc80 complex (Ndc80c) and that residues conserved both in yeast Stu2 orthologs and in their metazoan counterparts make specific contacts with Ndc80 and Spc24. Mutations that perturb this interaction prevent association of Stu2 with kinetochores, impair cell viability, produce biorientation defects, and delay cell cycle progression. Ectopic tethering of the mutant Stu2 species to the Ndc80c junction restores wild-type function in vivo. These findings show that the role of Stu2 in tension-sensing depends on its association with kinetochores by binding with Ndc80c.
Collapse
Affiliation(s)
- Jacob A Zahm
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Howard Hughes Medical InstituteBostonUnited States
| | - Michael G Stewart
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Joseph S Carrier
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Howard Hughes Medical InstituteBostonUnited States
| | - Matthew P Miller
- Department of Biochemistry, University of Utah School of MedicineSalt Lake CityUnited States
| |
Collapse
|
10
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Lawrimore J, Doshi A, Walker B, Bloom K. AI-Assisted Forward Modeling of Biological Structures. Front Cell Dev Biol 2019; 7:279. [PMID: 31799251 PMCID: PMC6868055 DOI: 10.3389/fcell.2019.00279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
The rise of machine learning and deep learning technologies have allowed researchers to automate image classification. We describe a method that incorporates automated image classification and principal component analysis to evaluate computational models of biological structures. We use a computational model of the kinetochore to demonstrate our artificial-intelligence (AI)-assisted modeling method. The kinetochore is a large protein complex that connects chromosomes to the mitotic spindle to facilitate proper cell division. The kinetochore can be divided into two regions: the inner kinetochore, including proteins that interact with DNA; and the outer kinetochore, comprised of microtubule-binding proteins. These two kinetochore regions have been shown to have different distributions during metaphase in live budding yeast and therefore act as a test case for our forward modeling technique. We find that a simple convolutional neural net (CNN) can correctly classify fluorescent images of inner and outer kinetochore proteins and show a CNN trained on simulated, fluorescent images can detect difference in experimental images. A polymer model of the ribosomal DNA locus serves as a second test for the method. The nucleolus surrounds the ribosomal DNA locus and appears amorphous in live-cell, fluorescent microscopy experiments in budding yeast, making detection of morphological changes challenging. We show a simple CNN can detect subtle differences in simulated images of the ribosomal DNA locus, demonstrating our CNN-based classification technique can be used on a variety of biological structures.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ayush Doshi
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin Walker
- Department of Mathematics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kerry Bloom
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Miller MP, Evans RK, Zelter A, Geyer EA, MacCoss MJ, Rice LM, Davis TN, Asbury CL, Biggins S. Kinetochore-associated Stu2 promotes chromosome biorientation in vivo. PLoS Genet 2019; 15:e1008423. [PMID: 31584935 PMCID: PMC6795502 DOI: 10.1371/journal.pgen.1008423] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Accurate segregation of chromosomes to daughter cells is a critical aspect of cell division. It requires the kinetochores on duplicated chromosomes to biorient, attaching to microtubules from opposite poles of the cell. Bioriented attachments come under tension, while incorrect attachments lack tension and must be released to allow proper attachments to form. A well-studied error correction pathway is mediated by the Aurora B kinase, which destabilizes low tension-bearing attachments. We recently discovered that in vitro, kinetochores display an additional intrinsic tension-sensing pathway that utilizes Stu2. The contribution of kinetochore-associated Stu2 to error correction in cells, however, was unknown. Here, we identify a Stu2 mutant that abolishes its kinetochore function and show that it causes biorientation defects in vivo. We also show that this Stu2-mediated pathway functions together with the Aurora B-mediated pathway. Altogether, our work indicates that cells employ multiple pathways to ensure biorientation and the accuracy of chromosome segregation. The precise regulation of cell division is critical to processes such as self-renewal, proliferation and development. A key event in the cell cycle is the partitioning of every pair of duplicated chromosomes to daughter cells. Defects in chromosome partitioning lead to aneuploidy, a condition that is a common hallmark of cancer cells and the cause of some birth defects. Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA sequences and attach to spindle microtubules. Here, we report that a protein that associates with kinetochores called Stu2 ensures that each kinetochore attaches to the proper microtubules. We identified a Stu2 mutant that does not associate with kinetochores and found that it generates aneuploidy. Together, our work identifies a previously unknown mechanism where cells ensure that chromosomes are accurately inherited during cell division.
Collapse
Affiliation(s)
- Matthew P. Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Rena K. Evans
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States of America
| | - Elisabeth A. Geyer
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Luke M. Rice
- Departments of Biophysics and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Trisha N. Davis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States of America
| | - Charles L. Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
13
|
French BT, Straight AF. The Power of Xenopus Egg Extract for Reconstitution of Centromere and Kinetochore Function. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:59-84. [PMID: 28840233 DOI: 10.1007/978-3-319-58592-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Faithful transmission of genetic information during cell division requires attachment of chromosomes to the mitotic spindle via the kinetochore. In vitro reconstitution studies are beginning to uncover how the kinetochore is assembled upon the underlying centromere, how the kinetochore couples chromosome movement to microtubule dynamics, and how cells ensure the site of kinetochore assembly is maintained from one generation to the next. Here we give special emphasis to advances made in Xenopus egg extract, which provides a unique, biochemically tractable in vitro system that affords the complexity of cytoplasm and nucleoplasm to permit reconstitution of the dynamic, cell cycle-regulated functions of the centromere and kinetochore.
Collapse
Affiliation(s)
- Bradley T French
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, 279 Campus Drive, Beckman 409, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Glucose Signaling Is Connected to Chromosome Segregation Through Protein Kinase A Phosphorylation of the Dam1 Kinetochore Subunit in Saccharomyces cerevisiae. Genetics 2018; 211:531-547. [PMID: 30546002 DOI: 10.1534/genetics.118.301727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022] Open
Abstract
The Dam1 complex is an essential component of the outer kinetochore that mediates attachments between spindle microtubules and chromosomes. Dam1p, a subunit of the Dam1 complex, binds to microtubules and is regulated by Aurora B/Ipl1p phosphorylation. We find that overexpression of cAMP-dependent protein kinase (PKA) catalytic subunits (i.e., TPK1, TPK2, TPK3) is lethal in DAM1 mutants and increases the rate of chromosome loss in wild-type cells. Replacing an evolutionarily conserved PKA site (S31) in Dam1p with a nonphosphorylatable alanine suppressed the high-copy PKA dosage lethality in dam1-1 Consistent with Dam1p as a target of PKA, we find that in vitro PKA can directly phosphorylate S31 in Dam1p and we observed phosphorylation of S31 in Dam1p purified from asynchronously growing yeast cells. Cells carrying high-copy TPK2 or a Dam1p phospho-mimetic S31D mutant displayed a reduction in Dam1p localization at the kinetochore, suggesting that PKA phosphorylation plays a role in assembly and/or stability of the Dam1 complex. Furthermore, we observed spindle defects associated with S31 phosphorylation. Finally, we find that phosphorylation of Dam1p on S31 is reduced when glucose is limiting as well as during α-factor arrest, conditions that inhibit PKA activity. These observations suggest that the PKA site of Dam1p participates in regulating kinetochore activity. While PKA is a well-established effector of glucose signaling, our work shows for the first time that glucose-dependent PKA activity has an important function in chromosome segregation.
Collapse
|
15
|
Llauró A, Hayashi H, Bailey ME, Wilson A, Ludzia P, Asbury CL, Akiyoshi B. The kinetoplastid kinetochore protein KKT4 is an unconventional microtubule tip-coupling protein. J Cell Biol 2018; 217:3886-3900. [PMID: 30209069 PMCID: PMC6219724 DOI: 10.1083/jcb.201711181] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
The evolutionarily divergent class of kinetoplastid organisms has a set of unconventional kinetochore proteins that drive chromosome segregation, but it is unclear which components interact with spindle microtubules. Llauró et al. now identify KKT4 as the first microtubule-binding kinetochore protein in Trypanosoma brucei, a major human pathogenic parasite. Kinetochores are multiprotein machines that drive chromosome segregation by maintaining persistent, load-bearing linkages between chromosomes and dynamic microtubule tips. Kinetochores in commonly studied eukaryotes bind microtubules through widely conserved components like the Ndc80 complex. However, in evolutionarily divergent kinetoplastid species such as Trypanosoma brucei, which causes sleeping sickness, the kinetochores assemble from a unique set of proteins lacking homology to any known microtubule-binding domains. Here, we show that the T. brucei kinetochore protein KKT4 binds directly to microtubules and maintains load-bearing attachments to both growing and shortening microtubule tips. The protein localizes both to kinetochores and to spindle microtubules in vivo, and its depletion causes defects in chromosome segregation. We define a microtubule-binding domain within KKT4 and identify several charged residues important for its microtubule-binding activity. Thus, despite its lack of significant similarity to other known microtubule-binding proteins, KKT4 has key functions required for driving chromosome segregation. We propose that it represents a primary element of the kinetochore–microtubule interface in kinetoplastids.
Collapse
Affiliation(s)
- Aida Llauró
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Hanako Hayashi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Megan E Bailey
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Alex Wilson
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Patryk Ludzia
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Suzuki A, Gupta A, Long SK, Evans R, Badger BL, Salmon ED, Biggins S, Bloom K. A Kinesin-5, Cin8, Recruits Protein Phosphatase 1 to Kinetochores and Regulates Chromosome Segregation. Curr Biol 2018; 28:2697-2704.e3. [PMID: 30174190 DOI: 10.1016/j.cub.2018.08.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/02/2018] [Accepted: 08/16/2018] [Indexed: 01/03/2023]
Abstract
Kinesin-5 is a highly conserved homo-tetrameric protein complex responsible for crosslinking microtubules and pushing spindle poles apart. The budding yeast Kinesin-5, Cin8, is highly concentrated at kinetochores in mitosis before anaphase, but its functions there are largely unsolved. Here, we show that Cin8 localizes to kinetochores in a cell-cycle-dependent manner and concentrates near the microtubule binding domains of Ndc80 at metaphase. Cin8's kinetochore localization depends on the Ndc80 complex, kinetochore microtubules, and the Dam1 complex. Consistent with its kinetochore localization, a Cin8 deletion induces a loss of tension at the Ndc80 microtubule binding domains and a major delay in mitotic progression. Cin8 associates with Protein Phosphatase 1 (PP1), and mutants that inhibit its PP1 binding also induce a loss of tension at the Ndc80 microtubule binding domains and delay mitotic progression. Taken together, our results suggest that Cin8-PP1 plays a critical role at kinetochores to promote accurate chromosome segregation by controlling Ndc80 attachment to microtubules.
Collapse
Affiliation(s)
- Aussie Suzuki
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Amitabha Gupta
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sarah K Long
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rena Evans
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Benjamin L Badger
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Edward D Salmon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Tripartite Chromatin Localization of Budding Yeast Shugoshin Involves Higher-Ordered Architecture of Mitotic Chromosomes. G3-GENES GENOMES GENETICS 2018; 8:2901-2911. [PMID: 30002083 PMCID: PMC6118306 DOI: 10.1534/g3.118.200522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The spindle assembly checkpoint (SAC) is key to faithful segregation of chromosomes. One requirement that satisfies SAC is appropriate tension between sister chromatids at the metaphase-anaphase juncture. Proper tension generated by poleward pulling of mitotic spindles signals biorientation of the underlying chromosome. In the budding yeast, the tension status is monitored by the conserved Shugoshin protein, Sgo1p, and the tension sensing motif (TSM) of histone H3. ChIP-seq reveals a unique TSM-dependent, tripartite domain of Sgo1p in each mitotic chromosome. This domain consists of one centromeric and two flanking peaks 3 - 4 kb away, present exclusively in mitosis. Strikingly, this trident motif coincides with cohesin localization, but only at the centromere and the two immediate adjacent loci, despite that cohesin is enriched at numerous regions throughout mitotic chromosomes. Chromosome conformation capture assays reveal apparent looping at the centromeric and pericentric regions. The TSM-Sgo1p-cohesin triad is therefore at the center stage of higher-ordered chromatin architecture for error-free segregation.
Collapse
|
18
|
Abstract
Chromosome segregation relies on forces generated by spindle microtubules that are translated into chromosome movement through interactions with kinetochores, highly conserved macromolecular machines that assemble on a specialized centromeric chromatin structure. Kinetochores not only have to stably attach to growing and shrinking microtubules, but they also need to recruit spindle assembly checkpoint proteins to halt cell cycle progression when there are attachment defects. Even the simplest kinetochore in budding yeast contains more than 50 unique components that are present in multiple copies, totaling more than 250 proteins in a single kinetochore. The complex nature of kinetochores makes it challenging to elucidate the contributions of individual components to its various functions. In addition, it is difficult to manipulate forces in vivo to understand how they regulate kinetochore-microtubule attachments and the checkpoint. To address these issues, we developed a technique to purify kinetochores from budding yeast that can be used to analyze kinetochore functions and composition as well as to reconstitute kinetochore-microtubule attachments in vitro.
Collapse
|
19
|
Abstract
The ability of an organism to replicate and segregate its genome with high fidelity is vital to its survival and for the production of future generations. Errors in either of these steps (replication or segregation) can lead to a change in ploidy or chromosome number. While these drastic genome changes can be detrimental to the organism, resulting in decreased fitness, they can also provide increased fitness during periods of stress. A change in ploidy or chromosome number can fundamentally change how a cell senses and responds to its environment. Here, we discuss current ideas in fungal biology that illuminate how eukaryotic genome size variation can impact the organism at a cellular and evolutionary level. One of the most fascinating observations from the past 2 decades of research is that some fungi have evolved the ability to tolerate large genome size changes and generate vast genomic heterogeneity without undergoing canonical meiosis.
Collapse
|
20
|
Haase KP, Fox JC, Byrnes AE, Adikes RC, Speed SK, Haase J, Friedman B, Cook DM, Bloom K, Rusan NM, Slep KC. Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle. Mol Biol Cell 2018; 29:285-294. [PMID: 29187574 PMCID: PMC5996958 DOI: 10.1091/mbc.e17-01-0057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/10/2017] [Accepted: 11/22/2017] [Indexed: 11/23/2022] Open
Abstract
XMAP215/Dis1 family proteins are potent microtubule polymerases, critical for mitotic spindle structure and dynamics. While microtubule polymerase activity is driven by an N-terminal tumor overexpressed gene (TOG) domain array, proper cellular localization is a requisite for full activity and is mediated by a C-terminal domain. Structural insight into the C-terminal domain's architecture and localization mechanism remain outstanding. We present the crystal structure of the Saccharomyces cerevisiae Stu2 C-terminal domain, revealing a 15-nm parallel homodimeric coiled coil. The parallel architecture of the coiled coil has mechanistic implications for the arrangement of the homodimer's N-terminal TOG domains during microtubule polymerization. The coiled coil has two spatially distinct conserved regions: CRI and CRII. Mutations in CRI and CRII perturb the distribution and localization of Stu2 along the mitotic spindle and yield defects in spindle morphology including increased frequencies of mispositioned and fragmented spindles. Collectively, these data highlight roles for the Stu2 dimerization domain as a scaffold for factor binding that optimally positions Stu2 on the mitotic spindle to promote proper spindle structure and dynamics.
Collapse
Affiliation(s)
- Karen P Haase
- Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jaime C Fox
- Molecular and Cellular Biophysics Program, University of North Carolina, Chapel Hill, NC 27599
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Amy E Byrnes
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Rebecca C Adikes
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Sarah K Speed
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Julian Haase
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Brandon Friedman
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Diana M Cook
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kevin C Slep
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
Humphrey L, Felzer-Kim I, Joglekar AP. Stu2 acts as a microtubule destabilizer in metaphase budding yeast spindles. Mol Biol Cell 2017; 29:247-255. [PMID: 29187578 PMCID: PMC5996951 DOI: 10.1091/mbc.e17-08-0494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 01/22/2023] Open
Abstract
Stu2 colocalizes with budding yeast kinetochores by interacting with polymerizing microtubule plus ends. Furthermore, it destabilizes these plus ends. It is proposed that Stu2-mediated destabilization contributes indirectly to the “catch-bond” activity of yeast kinetochores. The microtubule-associated protein Stu2 (XMAP215) has the remarkable ability to act either as a polymerase or as a destabilizer of the microtubule plus end. In budding yeast, it is required for the dynamicity of spindle microtubules and also for kinetochore force generation. To understand how Stu2 contributes to these distinct activities, we analyzed the contributions of its functional domains to its localization and function. We find that Stu2 colocalizes with kinetochores using its TOG domains, which bind GTP-tubulin, a coiled-coil homodimerization domain, and a domain that interacts with plus-end interacting proteins. Stu2 localization is also promoted by phosphorylation at a putative CDK1 phosphorylation site located within its microtubule-binding basic patch. Surprisingly, however, we find that kinetochore force generation is uncorrelated with the amount of kinetochore-colocalized Stu2. These and other data imply that Stu2 colocalizes with kinetochores by recognizing growing microtubule plus ends within yeast kinetochores. We propose that Stu2 destabilizes these plus ends to indirectly contribute to the “catch-bond” activity of the kinetochores.
Collapse
Affiliation(s)
- Lauren Humphrey
- Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48019
| | - Isabella Felzer-Kim
- Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48019
| | - Ajit P Joglekar
- Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48019 .,Department of Biophysics, University of Michigan, Ann Arbor, MI 48019
| |
Collapse
|
22
|
Dhatchinamoorthy K, Shivaraju M, Lange JJ, Rubinstein B, Unruh JR, Slaughter BD, Gerton JL. Structural plasticity of the living kinetochore. J Cell Biol 2017; 216:3551-3570. [PMID: 28939613 PMCID: PMC5674893 DOI: 10.1083/jcb.201703152] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/17/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022] Open
Abstract
The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells.
Collapse
Affiliation(s)
- Karthik Dhatchinamoorthy
- Stowers Institute for Medical Research, Kansas City, MO
- The Open University, Milton Keynes, England, UK
| | | | | | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO
| | | | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
23
|
Asbury CL. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles. BIOLOGY 2017; 6:E15. [PMID: 28218660 PMCID: PMC5372008 DOI: 10.3390/biology6010015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through 'flux', where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed.
Collapse
Affiliation(s)
- Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Zheng H, Wu H, Pan X, Jin W, Li X. Aberrant Meiotic Modulation Partially Contributes to the Lower Germination Rate of Pollen Grains in Maize (Zea mays L.) Under Low Nitrogen Supply. PLANT & CELL PHYSIOLOGY 2017; 58:342-353. [PMID: 28007967 DOI: 10.1093/pcp/pcw195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 06/06/2023]
Abstract
Pollen germination is an essential step towards successful pollination during maize reproduction. How low niutrogen (N) affects pollen germination remains an interesting biological question to be addressed. We found that only low N resulted in a significantly lower germination rate of pollen grains after 4 weeks of low N, phosphorus or potassium treatment in maize production. Importantly, cytological analysis showed 7-fold more micronuclei in male meiocytes under the low N treatment than in the control, indicating that the lower germination rate of pollen grains was partially due to numerous chromosome loss events resulting from preceding meiosis. The appearance of 10 bivalents in the control and low N cells at diakinesis suggested that chromosome pairing and recombination in meiosis I was not affected by low N. Further gene expression analysis revealed dramatic down-regulation of Nuclear Division Cycle 80 (Ndc80) and Regulator of Chromosome Condensation 1 (Rcc1-1) expression and up-regulation of Cell Division Cycle 20 (Cdc20-1) expression, although no significant difference in the expression level of kinetochore foundation proteins Centromeric Histone H3 (Cenh3) and Centromere Protein C (Cenpc) and cohesion regulators Recombination 8 (Rec8) and Shugoshin (Sgo1) was observed. Aberrant modulation of three key meiotic regulators presumably resulted in a high likelihood of erroneous chromosome segregation, as testified by pronounced lagging chromosomes at anaphase I or cell cycle disruption at meiosis II. Thus, we proposed a cytogenetic mechanism whereby low N affects male meiosis and causes a higher chromosome loss frequency and eventually a lower germination rate of pollen grains in a staple crop plant.
Collapse
Affiliation(s)
- Hongyan Zheng
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Huamao Wu
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xiaoying Pan
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Weiwei Jin
- The National Maize Center, and Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions of the Ministry of Education, and Department of Plant Nutrition, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Prajapati HK, Rizvi SMA, Rathore I, Ghosh SK. Microtubule-associated proteins, Bik1 and Bim1, are required for faithful partitioning of the endogenous 2 micron plasmids in budding yeast. Mol Microbiol 2017; 103:1046-1064. [PMID: 28004422 DOI: 10.1111/mmi.13608] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2016] [Indexed: 12/01/2022]
Abstract
The 2 μ plasmid of budding yeast shows high mitotic stability similar to that of chromosomes by using its self-encoded systems, namely partitioning and amplification. The partitioning system consists of the plasmid-borne proteins Rep1, Rep2 and a cis-acting locus STB that, along with several host factors, ensures efficient segregation of the plasmid. The plasmids show high stability as they presumably co-segregate with chromosomes through utilization of various host factors. To acquire these host factors, the plasmids are thought to localize to a certain sub-nuclear locale probably assisted by the motor protein, Kip1 and microtubules. Here, we show that the microtubule-associated proteins Bik1 and Bim1 are also important host factors in this process, perhaps by acting as an adapter between the plasmid and the motor and thus helping to anchor the plasmid to microtubules. Abrogation of Kip1 recruitment at STB in the absence of Bik1 argues for its function at STB upstream of Kip1. Consistent with this, both Bik1 and Bim1 associate with plasmids without any assistance from the Rep proteins. As observed earlier with other host factors, lack of Bik1 or Bim1 also causes a cohesion defect between sister plasmids leading to plasmid missegregation.
Collapse
Affiliation(s)
- Hemant Kumar Prajapati
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Syed Meraj Azhar Rizvi
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Ishan Rathore
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| | - Santanu K Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
26
|
Ribeiro AL, Silva RD, Foyn H, Tiago MN, Rathore OS, Arnesen T, Martinho RG. Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for sister chromatid cohesion. Sci Rep 2016; 6:39118. [PMID: 27996020 PMCID: PMC5171793 DOI: 10.1038/srep39118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/17/2016] [Indexed: 12/17/2022] Open
Abstract
The gene separation anxiety (san) encodes Naa50/San, a N-terminal acetyltransferase required for chromosome segregation during mitosis. Although highly conserved among higher eukaryotes, the mitotic function of this enzyme is still poorly understood. Naa50/San was originally proposed to be required for centromeric sister chromatid cohesion in Drosophila and human cells, yet, more recently, it was also suggested to be a negative regulator of microtubule polymerization through internal acetylation of beta Tubulin. We used genetic and biochemical approaches to clarify the function of Naa50/San during development. Our work suggests that Naa50/San is required during tissue proliferation for the correct interaction between the cohesin subunits Scc1 and Smc3. Our results also suggest a working model where Naa50/San N-terminally acetylates the nascent Scc1 polypeptide, and that this co-translational modification is subsequently required for the establishment and/or maintenance of sister chromatid cohesion.
Collapse
Affiliation(s)
- Ana Luisa Ribeiro
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Center for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
| | - Rui D Silva
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Center for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
| | - Håvard Foyn
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway
| | - Margarida N Tiago
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Center for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
| | - Om Singh Rathore
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Center for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
| | - Thomas Arnesen
- Department of Molecular Biology, University of Bergen, N-5020 Bergen, Norway.,Department of Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Rui Gonçalo Martinho
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Center for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Regulation of a Spindle Positioning Factor at Kinetochores by SUMO-Targeted Ubiquitin Ligases. Dev Cell 2016; 36:415-27. [PMID: 26906737 DOI: 10.1016/j.devcel.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/04/2015] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
Correct function of the mitotic spindle requires balanced interplay of kinetochore and astral microtubules that mediate chromosome segregation and spindle positioning, respectively. Errors therein can cause severe defects ranging from aneuploidy to developmental disorders. Here, we describe a protein degradation pathway that functionally links astral microtubules to kinetochores via regulation of a microtubule-associated factor. We show that the yeast spindle positioning protein Kar9 localizes not only to astral but also to kinetochore microtubules, where it becomes targeted for proteasomal degradation by the SUMO-targeted ubiquitin ligases (STUbLs) Slx5-Slx8. Intriguingly, this process does not depend on preceding sumoylation of Kar9 but rather requires SUMO-dependent recruitment of STUbLs to kinetochores. Failure to degrade Kar9 leads to defects in both chromosome segregation and spindle positioning. We propose that kinetochores serve as platforms to recruit STUbLs in a SUMO-dependent manner in order to ensure correct spindle function by regulating levels of microtubule-associated proteins.
Collapse
|
28
|
Miller MP, Asbury CL, Biggins S. A TOG Protein Confers Tension Sensitivity to Kinetochore-Microtubule Attachments. Cell 2016; 165:1428-1439. [PMID: 27156448 DOI: 10.1016/j.cell.2016.04.030] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/25/2016] [Accepted: 04/07/2016] [Indexed: 01/10/2023]
Abstract
The development and survival of all organisms depends on equal partitioning of their genomes during cell division. Accurate chromosome segregation requires selective stabilization of kinetochore-microtubule attachments that come under tension due to opposing pulling forces exerted on sister kinetochores by dynamic microtubule tips. Here, we show that the XMAP215 family member, Stu2, makes a major contribution to kinetochore-microtubule coupling. Stu2 and its human ortholog, ch-TOG, exhibit a conserved interaction with the Ndc80 kinetochore complex that strengthens its attachment to microtubule tips. Strikingly, Stu2 can either stabilize or destabilize kinetochore attachments, depending on the level of kinetochore tension and whether the microtubule tip is assembling or disassembling. These dichotomous effects of Stu2 are independent of its previously studied regulation of microtubule dynamics. Altogether, our results demonstrate how a kinetochore-associated factor can confer opposing, tension-dependent effects to selectively stabilize tension-bearing attachments, providing mechanistic insight into the basis for accuracy during chromosome segregation.
Collapse
Affiliation(s)
- Matthew P Miller
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
29
|
Cairo L, Wozniak R. The Nuclear Transport Factor Kap121 Is Required for Stability of the Dam1 Complex and Mitotic Kinetochore Bi-orientation. Cell Rep 2016; 14:2440-50. [DOI: 10.1016/j.celrep.2016.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/04/2015] [Accepted: 02/04/2016] [Indexed: 12/30/2022] Open
|
30
|
Regulation of outer kinetochore Ndc80 complex-based microtubule attachments by the central kinetochore Mis12/MIND complex. Proc Natl Acad Sci U S A 2015; 112:E5583-9. [PMID: 26430240 DOI: 10.1073/pnas.1513882112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multiple protein subcomplexes of the kinetochore cooperate as a cohesive molecular unit that forms load-bearing microtubule attachments that drive mitotic chromosome movements. There is intriguing evidence suggesting that central kinetochore components influence kinetochore-microtubule attachment, but the mechanism remains unclear. Here, we find that the conserved Mis12/MIND (Mtw1, Nsl1, Nnf1, Dsn1) and Ndc80 (Ndc80, Nuf2, Spc24, Spc25) complexes are connected by an extensive network of contacts, each essential for viability in cells, and collectively able to withstand substantial tensile load. Using a single-molecule approach, we demonstrate that an individual MIND complex enhances the microtubule-binding affinity of a single Ndc80 complex by fourfold. MIND itself does not bind microtubules. Instead, MIND binds Ndc80 complex far from the microtubule-binding domain and confers increased microtubule interaction of the complex. In addition, MIND activation is redundant with the effects of a mutation in Ndc80 that might alter its ability to adopt a folded conformation. Together, our results suggest a previously unidentified mechanism for regulating microtubule binding of an outer kinetochore component by a central kinetochore complex.
Collapse
|
31
|
Kobayashi N, Suzuki Y, Schoenfeld LW, Müller CA, Nieduszynski C, Wolfe KH, Tanaka TU. Discovery of an unconventional centromere in budding yeast redefines evolution of point centromeres. Curr Biol 2015; 25:2026-33. [PMID: 26166782 PMCID: PMC4533239 DOI: 10.1016/j.cub.2015.06.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/26/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
Centromeres are the chromosomal regions promoting kinetochore assembly for chromosome segregation. In many eukaryotes, the centromere consists of up to mega base pairs of DNA. On such “regional centromeres,” kinetochore assembly is mainly defined by epigenetic regulation [1]. By contrast, a clade of budding yeasts (Saccharomycetaceae) has a “point centromere” of 120–200 base pairs of DNA, on which kinetochore assembly is defined by the consensus DNA sequence [2, 3]. During evolution, budding yeasts acquired point centromeres, which replaced ancestral, regional centromeres [4]. All known point centromeres among different yeast species share common consensus DNA elements (CDEs) [5, 6], implying that they evolved only once and stayed essentially unchanged throughout evolution. Here, we identify a yeast centromere that challenges this view: that of the budding yeast Naumovozyma castellii is the first unconventional point centromere with unique CDEs. The N. castellii centromere CDEs are essential for centromere function but have different DNA sequences from CDEs in other point centromeres. Gene order analyses around N. castellii centromeres indicate their unique, and separate, evolutionary origin. Nevertheless, they are still bound by the ortholog of the CBF3 complex, which recognizes CDEs in other point centromeres. The new type of point centromere originated prior to the divergence between N. castellii and its close relative Naumovozyma dairenensis and disseminated to all N. castellii chromosomes through extensive genome rearrangement. Thus, contrary to the conventional view, point centromeres can undergo rapid evolutionary changes. These findings give new insights into the evolution of point centromeres. A new type of point centromere has been identified in budding yeast N. castellii Its DNA sequence and evolutionary origin are different from other point centromeres N. castellii centromeres are bound by CBF3 that recognizes other point centromeres Contrary to the conventional view, point centromeres can change rapidly in evolution
Collapse
Affiliation(s)
- Norihiko Kobayashi
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Yutaka Suzuki
- Department of Computational Biology, School of Frontier Medicine, University of Tokyo, Chiba 277-8562, Japan
| | - Lori W Schoenfeld
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carolin A Müller
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Conrad Nieduszynski
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kenneth H Wolfe
- UCD Conway Institute, School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Tomoyuki U Tanaka
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
32
|
Discovering centromere proteins: from cold white hands to the A, B, C of CENPs. Nat Rev Mol Cell Biol 2015; 16:443-9. [PMID: 25991376 DOI: 10.1038/nrm4001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The kinetochore is a complex molecular machine that directs chromosome segregation during mitosis. It is one of the most elaborate subcellular protein structures in eukaryotes, comprising more than 100 different proteins. Inner kinetochore proteins associate with specialized centromeric chromatin containing the histone H3 variant centromere protein A (CENP-A) in place of H3. Outer kinetochore proteins bind to microtubules and signal to delay anaphase onset when microtubules are absent. Since the first kinetochore proteins were discovered and cloned 30 years ago using autoimmune sera from patients with scleroderma-spectrum disease, much has been learnt about the composition, functions and regulation of this remarkable structure.
Collapse
|
33
|
Nerusheva OO, Galander S, Fernius J, Kelly D, Marston AL. Tension-dependent removal of pericentromeric shugoshin is an indicator of sister chromosome biorientation. Genes Dev 2014; 28:1291-309. [PMID: 24939933 PMCID: PMC4066400 DOI: 10.1101/gad.240291.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/20/2014] [Indexed: 12/24/2022]
Abstract
During mitosis and meiosis, sister chromatid cohesion resists the pulling forces of microtubules, enabling the generation of tension at kinetochores upon chromosome biorientation. How tension is read to signal the bioriented state remains unclear. Shugoshins form a pericentromeric platform that integrates multiple functions to ensure proper chromosome biorientation. Here we show that budding yeast shugoshin Sgo1 dissociates from the pericentromere reversibly in response to tension. The antagonistic activities of the kinetochore-associated Bub1 kinase and the Sgo1-bound phosphatase protein phosphatase 2A (PP2A)-Rts1 underlie a tension-dependent circuitry that enables Sgo1 removal upon sister kinetochore biorientation. Sgo1 dissociation from the pericentromere triggers dissociation of condensin and Aurora B from the centromere, thereby stabilizing the bioriented state. Conversely, forcing sister kinetochores to be under tension during meiosis I leads to premature Sgo1 removal and precocious loss of pericentromeric cohesion. Overall, we show that the pivotal role of shugoshin is to build a platform at the pericentromere that attracts activities that respond to the absence of tension between sister kinetochores. Disassembly of this platform in response to intersister kinetochore tension signals the bioriented state. Therefore, tension sensing by shugoshin is a central mechanism by which the bioriented state is read.
Collapse
Affiliation(s)
- Olga O. Nerusheva
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Stefan Galander
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Josefin Fernius
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - David Kelly
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Adele L. Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| |
Collapse
|
34
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
35
|
Abstract
Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multiprotein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review serves as a guide for the current knowledge of cohesins.
Collapse
Affiliation(s)
- Amanda S Brooker
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
36
|
Kim S, Meyer R, Chuong H, Dawson DS. Dual mechanisms prevent premature chromosome segregation during meiosis. Genes Dev 2013; 27:2139-46. [PMID: 24115770 PMCID: PMC3850097 DOI: 10.1101/gad.227454.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In meiosis I, homologous chromosomes pair and then attach to the spindle so that the homologs can be pulled apart at anaphase I. The segregation of homologs before pairing would be catastrophic. We describe two mechanisms that prevent this. First, in early meiosis, Ipl1, the budding yeast homolog of the mammalian Aurora B kinase, triggers shedding of a kinetochore protein, preventing microtubule attachment. Second, Ipl1 localizes to the spindle pole bodies (SPBs), where it blocks spindle assembly. These processes are reversed upon expression of Ndt80. Previous studies have shown that Ndt80 is expressed when homologs have successfully partnered, and this triggers a rise in the levels of cyclin-dependent kinase (CDK). We found that CDK phosphorylates Ipl1, delocalizing it from SPBs, triggering spindle assembly. At the same time, kinetochores reassemble. Thus, dual mechanisms controlled by Ipl1 and Ntd80 coordinate chromosome and spindle behaviors to prevent the attachment of unpartnered chromosomes to the meiotic spindle.
Collapse
Affiliation(s)
- Seoyoung Kim
- Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | |
Collapse
|
37
|
At the (kineto)chore, yeast really are like people. Cell 2013; 154:959-961. [PMID: 23993089 DOI: 10.1016/j.cell.2013.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proper chromosome segregation depends on correct attachments between microtubules and kinetochores. Budding yeast have been thought to achieve these attachments with different kinetics than other eukaryotes. Now, deploying specialized data processing techniques to achieve super-resolution images, Marco et al. demonstrate that this tractable cell-cycle model system shares more similarities with plants and animals than previously thought.
Collapse
|
38
|
Marco E, Dorn JF, Hsu PH, Jaqaman K, Sorger PK, Danuser G. S. cerevisiae chromosomes biorient via gradual resolution of syntely between S phase and anaphase. Cell 2013; 154:1127-1139. [PMID: 23993100 PMCID: PMC3802543 DOI: 10.1016/j.cell.2013.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/01/2013] [Accepted: 08/07/2013] [Indexed: 01/08/2023]
Abstract
Following DNA replication, eukaryotic cells must biorient all sister chromatids prior to cohesion cleavage at anaphase. In animal cells, sister chromatids gradually biorient during prometaphase, but current models of mitosis in S. cerevisiae assume that biorientation is established shortly after S phase. This assumption is based on the observation of a bilobed distribution of yeast kinetochores early in mitosis and suggests fundamental differences between yeast mitosis and mitosis in animal cells. By applying super-resolution imaging methods, we show that yeast and animal cells share the key property of gradual and stochastic chromosome biorientation. The characteristic bilobed distribution of yeast kinetochores, hitherto considered synonymous for biorientation, arises from kinetochores in mixed attachment states to microtubules, the length of which discriminates bioriented from syntelic attachments. Our results offer a revised view of mitotic progression in S. cerevisiae that augments the relevance of mechanistic information obtained in this powerful genetic system for mammalian mitosis.
Collapse
Affiliation(s)
- Eugenio Marco
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jonas F Dorn
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal QC H3C 3J7, Canada
| | - Pei-Hsin Hsu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Khuloud Jaqaman
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Peter K Sorger
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
39
|
Coupling unbiased mutagenesis to high-throughput DNA sequencing uncovers functional domains in the Ndc80 kinetochore protein of Saccharomyces cerevisiae. Genetics 2013; 195:159-70. [PMID: 23833183 DOI: 10.1534/genetics.113.152728] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During mitosis, kinetochores physically link chromosomes to the dynamic ends of spindle microtubules. This linkage depends on the Ndc80 complex, a conserved and essential microtubule-binding component of the kinetochore. As a member of the complex, the Ndc80 protein forms microtubule attachments through a calponin homology domain. Ndc80 is also required for recruiting other components to the kinetochore and responding to mitotic regulatory signals. While the calponin homology domain has been the focus of biochemical and structural characterization, the function of the remainder of Ndc80 is poorly understood. Here, we utilized a new approach that couples high-throughput sequencing to a saturating linker-scanning mutagenesis screen in Saccharomyces cerevisiae. We identified domains in previously uncharacterized regions of Ndc80 that are essential for its function in vivo. We show that a helical hairpin adjacent to the calponin homology domain influences microtubule binding by the complex. Furthermore, a mutation in this hairpin abolishes the ability of the Dam1 complex to strengthen microtubule attachments made by the Ndc80 complex. Finally, we defined a C-terminal segment of Ndc80 required for tetramerization of the Ndc80 complex in vivo. This unbiased mutagenesis approach can be generally applied to genes in S. cerevisiae to identify functional properties and domains.
Collapse
|
40
|
Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol 2013; 14:25-37. [PMID: 23258294 DOI: 10.1038/nrm3494] [Citation(s) in RCA: 497] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In eukaryotes, chromosome segregation during cell division is facilitated by the kinetochore, a multiprotein structure that is assembled on centromeric DNA. The kinetochore attaches chromosomes to spindle microtubules, modulates the stability of these attachments and relays the microtubule-binding status to the spindle assembly checkpoint (SAC), a cell cycle surveillance pathway that delays chromosome segregation in response to unattached kinetochores. Recent studies are shaping current thinking on how each of these kinetochore-centred processes is achieved, and how their integration ensures faithful chromosome segregation, focusing on the essential roles of kinase-phosphatase signalling and the microtubule-binding KMN protein network.
Collapse
|
41
|
Meyer RE, Kim S, Obeso D, Straight PD, Winey M, Dawson DS. Mps1 and Ipl1/Aurora B act sequentially to correctly orient chromosomes on the meiotic spindle of budding yeast. Science 2013; 339:1071-4. [PMID: 23371552 DOI: 10.1126/science.1232518] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.
Collapse
Affiliation(s)
- Régis E Meyer
- Department of Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Makhnevych T, Wong P, Pogoutse O, Vizeacoumar FJ, Greenblatt JF, Emili A, Houry WA. Hsp110 is required for spindle length control. ACTA ACUST UNITED AC 2012; 198:623-36. [PMID: 22908312 PMCID: PMC3514029 DOI: 10.1083/jcb.201111105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Systematic affinity purification combined with mass spectrometry analysis of N- and C-tagged cytoplasmic Hsp70/Hsp110 chaperones was used to identify new roles of Hsp70/Hsp110 in the cell. This allowed the mapping of a chaperone-protein network consisting of 1,227 unique interactions between the 9 chaperones and 473 proteins and highlighted roles for Hsp70/Hsp110 in 14 broad biological processes. Using this information, we uncovered an essential role for Hsp110 in spindle assembly and, more specifically, in modulating the activity of the widely conserved kinesin-5 motor Cin8. The role of Hsp110 Sse1 as a nucleotide exchange factor for the Hsp70 chaperones Ssa1/Ssa2 was found to be required for maintaining the proper distribution of kinesin-5 motors within the spindle, which was subsequently required for bipolar spindle assembly in S phase. These data suggest a model whereby the Hsp70-Hsp110 chaperone complex antagonizes Cin8 plus-end motility and prevents premature spindle elongation in S phase.
Collapse
Affiliation(s)
- Taras Makhnevych
- Department of Biochemistry, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Roy B, Varshney N, Yadav V, Sanyal K. The process of kinetochore assembly in yeasts. FEMS Microbiol Lett 2012; 338:107-17. [PMID: 23039831 DOI: 10.1111/1574-6968.12019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 09/29/2012] [Accepted: 10/01/2012] [Indexed: 12/14/2022] Open
Abstract
High fidelity chromosome segregation is essential for efficient transfer of the genetic material from the mother to daughter cells. The kinetochore (KT), which connects the centromere DNA to the spindle apparatus, plays a pivotal role in this process. In spite of considerable divergence in the centromere DNA sequence, basic architecture of a KT is evolutionarily conserved from yeast to humans. However, the identification of a large number of KT proteins paved the way of understanding conserved and diverged regulatory steps that lead to the formation of a multiprotein KT super-complex on the centromere DNA in different organisms. Because it is a daunting task to summarize the entire spectrum of information in a minireview, we focus here on the recent understanding in the process of KT assembly in three yeasts: Saccharomyces cerevisiae, Schizosaccharomyces pombe and Candida albicans. Studies in these unicellular organisms suggest that although the basic process of KT assembly remains the same, the dependence of a conserved protein for its KT localization may vary in these organisms.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | | | | |
Collapse
|
44
|
Alonso A, D'Silva S, Rahman M, Meluh PB, Keeling J, Meednu N, Hoops HJ, Miller RK. The yeast homologue of the microtubule-associated protein Lis1 interacts with the sumoylation machinery and a SUMO-targeted ubiquitin ligase. Mol Biol Cell 2012; 23:4552-66. [PMID: 23034179 PMCID: PMC3510017 DOI: 10.1091/mbc.e12-03-0195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The two yeast members of the CLIP-170/Bik1p and Lis1/Pac1p families of microtubule-associated proteins are shown to interact with the sumoylation machinery and the STUbL complex Ris1p–Nis1p. Pac1p can be modified by both SUMO and ubiquitin. The She1 regulator of dynactin is identified as a novel inhibitor of Pac1p modification. Microtubules and microtubule-associated proteins are fundamental for multiple cellular processes, including mitosis and intracellular motility, but the factors that control microtubule-associated proteins (MAPs) are poorly understood. Here we show that two MAPs—the CLIP-170 homologue Bik1p and the Lis1 homologue Pac1p—interact with several proteins in the sumoylation pathway. Bik1p and Pac1p interact with Smt3p, the yeast SUMO; Ubc9p, an E2; and Nfi1p, an E3. Bik1p interacts directly with SUMO in vitro, and overexpression of Smt3p and Bik1p results in its in vivo sumoylation. Modified Pac1p is observed when the SUMO protease Ulp1p is inactivated. Both ubiquitin and Smt3p copurify with Pac1p. In contrast to ubiquitination, sumoylation does not directly tag the substrate for degradation. However, SUMO-targeted ubiquitin ligases (STUbLs) can recognize a sumoylated substrate and promote its degradation via ubiquitination and the proteasome. Both Pac1p and Bik1p interact with the STUbL Nis1p-Ris1p and the protease Wss1p. Strains deleted for RIS1 or WSS1 accumulate Pac1p conjugates. This suggests a novel model in which the abundance of these MAPs may be regulated via STUbLs. Pac1p modification is also altered by Kar9p and the dynein regulator She1p. This work has implications for the regulation of dynein's interaction with various cargoes, including its off-loading to the cortex.
Collapse
Affiliation(s)
- Annabel Alonso
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Akiyoshi B, Biggins S. Reconstituting the kinetochore–microtubule interface: what, why, and how. Chromosoma 2012; 121:235-50. [PMID: 22289864 DOI: 10.1007/s00412-012-0362-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/15/2012] [Accepted: 01/16/2012] [Indexed: 10/14/2022]
Abstract
The kinetochore is the proteinaceous complex that governs the movement of duplicated chromosomes by interacting with spindle microtubules during mitosis and meiosis. Faithful chromosome segregation requires that kinetochores form robust load-bearing attachments to the tips of dynamic spindle microtubules, correct microtubule attachment errors, and delay the onset of anaphase until all chromosomes have made proper attachments. To understand how this macromolecular machine operates to segregate duplicated chromosomes with exquisite accuracy, it is critical to reconstitute and study kinetochore–microtubule interactions in vitro using defined components. Here, we review the current status of reconstitution as well as recent progress in understanding the microtubule-binding functions of kinetochores in vivo.
Collapse
Affiliation(s)
- Bungo Akiyoshi
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | | |
Collapse
|
46
|
Abstract
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.
Collapse
|
47
|
Interactions between the kinetochore complex and the protein kinase A pathway in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2012; 2:831-41. [PMID: 22870406 PMCID: PMC3385989 DOI: 10.1534/g3.112.002675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/16/2012] [Indexed: 11/28/2022]
Abstract
The kinetochore is a large structure composed of multiple protein subcomplexes that connect chromosomes to spindle microtubules to enable accurate chromosome segregation. Significant advances have been made in the identification of kinetochore proteins and elucidation of kinetochore structure; however, comparatively little is known about how cellular signals integrate with kinetochore function. In the budding yeast Saccharomyces cerevisiae, the cyclic AMP protein kinase A signaling pathway promotes cellular growth in response to glucose. In this study, we find that decreasing protein kinase A activity, either by overexpressing negative regulators of the pathway or deleting the upstream effector Ras2, improves the viability of ipl1 and spc24 kinetochore mutants. Ipl1/Aurora B is a highly conserved kinase that corrects attachment of sister kinetochores that have attached to the same spindle pole, whereas Spc24 is a component of the conserved Ndc80 kinetochore complex that attaches directly to microtubules. Unexpectedly, we find that kinetochore mutants have increased phosphorylation levels of protein kinase A substrates, suggesting that the cyclic AMP protein kinase A signaling pathway is stimulated. The increase in protein kinase A activity in kinetochore mutants is not induced by activation of the spindle checkpoint or a metaphase delay because protein kinase A activity remains constant during an unperturbed cell cycle. Finally, we show that lowering protein kinase A activity can rescue the chromosome loss defect of the inner kinetochore ndc10 mutant. Overall, our data suggest that the increased protein kinase A activity in kinetochore mutants is detrimental to cellular growth and chromosome transmission fidelity.
Collapse
|
48
|
Currie JD, Stewman S, Schimizzi G, Slep KC, Ma A, Rogers SL. The microtubule lattice and plus-end association of Drosophila Mini spindles is spatially regulated to fine-tune microtubule dynamics. Mol Biol Cell 2011; 22:4343-61. [PMID: 21965297 PMCID: PMC3216660 DOI: 10.1091/mbc.e11-06-0520] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Individual microtubules (MTs) exhibit dynamic instability, a behavior in which they cycle between phases of growth and shrinkage while the total amount of MT polymer remains constant. Dynamic instability is promoted by the conserved XMAP215/Dis1 family of microtubule-associated proteins (MAPs). In this study, we conducted an in vivo structure-function analysis of the Drosophila homologue Mini spindles (Msps). Msps exhibits EB1-dependent and spatially regulated MT localization, targeting to microtubule plus ends in the cell interior and decorating the lattice of growing and shrinking microtubules in the cell periphery. RNA interference rescue experiments revealed that the NH(2)-terminal four TOG domains of Msps function as paired units and were sufficient to promote microtubule dynamics and EB1 comet formation. We also identified TOG5 and novel inter-TOG linker motifs that are required for targeting Msps to the microtubule lattice. These novel microtubule contact sites are necessary for the interplay between the conserved TOG domains and inter-TOG MT binding that underlies the ability of Msps to promote MT dynamic instability.
Collapse
Affiliation(s)
- Joshua D Currie
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
49
|
Temperature-sensitive ipl1-2/Aurora B mutation is suppressed by mutations in TOR complex 1 via the Glc7/PP1 phosphatase. Proc Natl Acad Sci U S A 2011; 108:3994-9. [PMID: 21368139 DOI: 10.1073/pnas.1014406108] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ipl1/Aurora B is the catalytic subunit of a complex that is required for chromosome segregation and nuclear division. Before anaphase, Ipl1 localizes to kinetochores, where it is required to establish proper kinetochore-microtubule associations and regulate the spindle assembly checkpoint. The protein phosphatase Glc7/PP1 opposes Ipl1 for some of these activities. To more thoroughly characterize the Glc7 phosphatase that opposes Ipl1, we have identified mutations that suppress the thermosensitivity of an ipl1-2 mutant. In addition to mutations in genes previously associated with ipl1 suppression, we recovered a null mutant in TCO89, which encodes a subunit of the TOR complex 1 (TORC1), the conserved rapamycin-sensitive kinase activity that regulates cell growth in response to nutritional status. The temperature sensitivity of ipl1-2 can also be suppressed by null mutation of TOR1 or by administration of pharmacological TORC1 inhibitors, indicating that reduced TORC1 activity is responsible for the suppression. Suppression of the ipl1-2 growth defect is accompanied by increased fidelity of chromosome segregation and increased phosphorylation of the Ipl1 substrates histone H3 and Dam1. Nuclear Glc7 levels are reduced in a tco89 mutant, suggesting that TORC1 activity is required for the nuclear accumulation of Glc7. In addition, several mutant GLC7 alleles that suppress the temperature sensitivity of ipl1-2 exhibit negative synthetic genetic interactions with TORC1 mutants. Together, our results suggest that TORC1 positively regulates the Glc7 activity that opposes Ipl1 and provide a mechanism to tie nutritional status with mitotic regulation.
Collapse
|
50
|
Kinetochore-microtubule interactions: steps towards bi-orientation. EMBO J 2010; 29:4070-82. [PMID: 21102558 DOI: 10.1038/emboj.2010.294] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 10/29/2010] [Indexed: 11/08/2022] Open
Abstract
Eukaryotic cells segregate their chromosomes accurately to opposite poles during mitosis, which is necessary for maintenance of their genetic integrity. This process mainly relies on the forces generated by kinetochore-microtubule (KT-MT) attachment. During prometaphase, the KT initially interacts with a single MT extending from a spindle pole and then moves towards a spindle pole. Subsequently, MTs from the other spindle pole also interact with the KT. Eventually, one sister KT becomes attached to MTs from one pole while the other sister to those from the other pole (sister KT bi-orientation). If sister KTs interact with MTs with aberrant orientation, this must be corrected to attain proper bi-orientation (error correction) before the anaphase is initiated. Here, I discuss how KTs initially interact with MTs and how this interaction develops into bi-orientation; both processes are fundamentally crucial for proper chromosome segregation in the subsequent anaphase.
Collapse
|