1
|
York HM, Joshi K, Wright CS, Kreplin LZ, Rodgers SJ, Moorthi UK, Gandhi H, Patil A, Mitchell CA, Iyer-Biswas S, Arumugam S. Deterministic early endosomal maturations emerge from a stochastic trigger-and-convert mechanism. Nat Commun 2023; 14:4652. [PMID: 37532690 PMCID: PMC10397212 DOI: 10.1038/s41467-023-40428-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Endosomal maturation is critical for robust and timely cargo transport to specific cellular compartments. The most prominent model of early endosomal maturation involves a phosphoinositide-driven gain or loss of specific proteins on individual endosomes, emphasising an autonomous and stochastic description. However, limitations in fast, volumetric imaging long hindered direct whole cell-level measurements of absolute numbers of maturation events. Here, we use lattice light-sheet imaging and bespoke automated analysis to track individual very early (APPL1-positive) and early (EEA1-positive) endosomes over the entire population, demonstrating that direct inter-endosomal contact drives maturation between these populations. Using fluorescence lifetime, we show that this endosomal interaction is underpinned by asymmetric binding of EEA1 to very early and early endosomes through its N- and C-termini, respectively. In combination with agent-based simulation which supports a 'trigger-and-convert' model, our findings indicate that APPL1- to EEA1-positive maturation is driven not by autonomous events but by heterotypic EEA1-mediated interactions, providing a mechanism for temporal and population-level control of maturation.
Collapse
Affiliation(s)
- Harrison M York
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
| | - Kunaal Joshi
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Charles S Wright
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Laura Z Kreplin
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Samuel J Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Ullhas K Moorthi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Hetvi Gandhi
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Abhishek Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Christina A Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton/Melbourne, VIC, 3800, Australia
| | - Srividya Iyer-Biswas
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC, 3800, Australia.
- Single Molecule Science, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
2
|
Bashkirov PV, Kuzmin PI, Vera Lillo J, Frolov VA. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes. Annu Rev Biophys 2022; 51:473-497. [PMID: 35239417 PMCID: PMC10787580 DOI: 10.1146/annurev-biophys-011422-100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular membranes self-assemble from and interact with various molecular species. Each molecule locally shapes the lipid bilayer, the soft elastic core of cellular membranes. The dynamic architecture of intracellular membrane systems is based on elastic transformations and lateral redistribution of these elementary shapes, driven by chemical and curvature stress gradients. The minimization of the total elastic stress by such redistribution composes the most basic, primordial mechanism of membrane curvature-composition coupling (CCC). Although CCC is generally considered in the context of dynamic compositional heterogeneity of cellular membrane systems, in this article we discuss a broader involvement of CCC in controlling membrane deformations. We focus specifically on the mesoscale membrane transformations in open, reservoir-governed systems, such as membrane budding, tubulation, and the emergence of highly curved sites of membrane fusion and fission. We reveal that the reshuffling of molecular shapes constitutes an independent deformation mode with complex rheological properties.This mode controls effective elasticity of local deformations as well as stationary elastic stress, thus emerging as a major regulator of intracellular membrane remodeling.
Collapse
Affiliation(s)
- Pavel V Bashkirov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
- Department of Molecular and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Peter I Kuzmin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Javier Vera Lillo
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain;
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
3
|
Wagner K, Smylla TK, Lampe M, Krieg J, Huber A. Phospholipase D and retromer promote recycling of TRPL ion channel via the endoplasmic reticulum. Traffic 2021; 23:42-62. [PMID: 34719094 DOI: 10.1111/tra.12824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/27/2022]
Abstract
Plasma membrane protein trafficking is of fundamental importance for cell function and cell integrity of neurons and includes regulated protein recycling. In this work, we report a novel role of the endoplasmic reticulum (ER) for protein recycling as discovered in trafficking studies of the ion channel TRPL in photoreceptor cells of Drosophila. TRPL is located within the rhabdomeric membrane from where it is endocytosed upon light stimulation and stored in the cell body. Conventional immunohistochemistry as well as stimulated emission depletion super-resolution microscopy revealed TRPL storage at the ER after illumination, suggesting an unusual recycling route of TRPL. Our results also imply that both phospholipase D (PLD) and retromer complex are required for correct recycling of TRPL to the rhabdomeric membrane. Loss of PLD activity in PLD3.1 mutants results in enhanced degradation of TRPL. In the retromer mutant vps35MH20 , TRPL is trapped in a Rab5-positive compartment. Evidenced by epistatic analysis in the double mutant PLD3.1 vps35MH20 , PLD activity precedes retromer function. We propose a model in which PLD and retromer function play key roles in the transport of TRPL to an ER enriched compartment.
Collapse
Affiliation(s)
- Krystina Wagner
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| | - Thomas K Smylla
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| | - Marko Lampe
- European Molecular Biology Laboratory, Advanced Light Microscopy Core Facility, Heidelberg, Germany
| | - Jana Krieg
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| | - Armin Huber
- Department of Biochemistry, University of Hohenheim, Institute of Biology, Stuttgart, Germany
| |
Collapse
|
4
|
Kawai K, Nishigaki A, Moriya S, Egami Y, Araki N. Rab10-Positive Tubular Structures Represent a Novel Endocytic Pathway That Diverges From Canonical Macropinocytosis in RAW264 Macrophages. Front Immunol 2021; 12:649600. [PMID: 34135890 PMCID: PMC8203412 DOI: 10.3389/fimmu.2021.649600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Using the optogenetic photo-manipulation of photoactivatable (PA)-Rac1, remarkable cell surface ruffling and the formation of a macropinocytic cup (premacropinosome) could be induced in the region of RAW264 macrophages irradiated with blue light due to the activation of PA-Rac1. However, the completion of macropinosome formation did not occur until Rac1 was deactivated by the removal of the light stimulus. Following PA-Rac1 deactivation, some premacropinosomes closed into intracellular macropinosomes, whereas many others transformed into long Rab10-positive tubules without forming typical macropinosomes. These Rab10-positive tubules moved centripetally towards the perinuclear Golgi region along microtubules. Surprisingly, these Rab10-positive tubules did not contain any endosome/lysosome compartment markers, such as Rab5, Rab7, or LAMP1, suggesting that the Rab10-positive tubules were not part of the degradation pathway for lysosomes. These Rab10-positive tubules were distinct from recycling endosomal compartments, which are labeled with Rab4, Rab11, or SNX1. These findings suggested that these Rab10-positive tubules may be a part of non-degradative endocytic pathway that has never been known. The formation of Rab10-positive tubules from premacropinosomes was also observed in control and phorbol myristate acetate (PMA)-stimulated macrophages, although their frequencies were low. Interestingly, the formation of Rab10-positive premacropinosomes and tubules was not inhibited by phosphoinositide 3-kinase (PI3K) inhibitors, while the classical macropinosome formation requires PI3K activity. Thus, this study provides evidence to support the existence of Rab10-positive tubules as a novel endocytic pathway that diverges from canonical macropinocytosis.
Collapse
Affiliation(s)
- Katsuhisa Kawai
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Arata Nishigaki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Seiji Moriya
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Youhei Egami
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Japan
| |
Collapse
|
5
|
Chen CC, Krogsaeter E, Butz ES, Li Y, Puertollano R, Wahl-Schott C, Biel M, Grimm C. TRPML2 is an osmo/mechanosensitive cation channel in endolysosomal organelles. SCIENCE ADVANCES 2020; 6:6/46/eabb5064. [PMID: 33177082 PMCID: PMC7673730 DOI: 10.1126/sciadv.abb5064] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/24/2020] [Indexed: 05/12/2023]
Abstract
Endolysosomes are dynamic, intracellular compartments, regulating their surface-to-volume ratios to counteract membrane swelling or shrinkage caused by osmotic challenges upon tubulation and vesiculation events. While osmosensitivity has been extensively described on the plasma membrane, the mechanisms underlying endolysosomal surface-to-volume ratio changes and identities of involved ion channels remain elusive. Endolysosomes mediate endocytosis, exocytosis, cargo transport, and sorting of material for recycling or degradation. We demonstrate the endolysosomal cation channel TRPML2 to be hypotonicity/mechanosensitive, a feature crucial to its involvement in fast-recycling processes of immune cells. We demonstrate that the phosphoinositide binding pocket is required for TRPML2 hypotonicity-sensitivity, as substitution of L314 completely abrogates hypotonicity-sensitivity. Last, the hypotonicity-insensitive TRPML2 mutant L314R slows down the fast recycling pathway, corroborating the functional importance of hypotonicity-sensitive TRPML2. Our results highlight TRPML2 as an accelerator of endolysosomal trafficking by virtue of its hypotonicity-sensitivity, with implications in immune cell surveillance and viral trafficking.
Collapse
Affiliation(s)
- Cheng-Chang Chen
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Einar Krogsaeter
- Walther Straub Institute of Pharmacology and Toxicology Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elisabeth S Butz
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yanfen Li
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Martin Biel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
6
|
Bono K, Hara-Miyauchi C, Sumi S, Oka H, Iguchi Y, Okano HJ. Endosomal dysfunction in iPSC-derived neural cells from Parkinson's disease patients with VPS35 D620N. Mol Brain 2020; 13:137. [PMID: 33032646 PMCID: PMC7542911 DOI: 10.1186/s13041-020-00675-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the Vacuolar protein sorting 35 (VPS35) gene have been linked to familial Parkinson’s disease (PD), PARK17. VPS35 is a key component of the retromer complex, which plays a central role in endosomal trafficking. However, whether and how VPS35 deficiency or mutation contributes to PD pathogenesis remain unclear. Here, we analyzed human induced pluripotent stem cell (iPSC)-derived neurons from PD patients with the VPS35 D620N mutation and addressed relevant disease mechanisms. In the disease group, dopaminergic (DA) neurons underwent extensive apoptotic cell death. The movement of Rab5a- or Rab7a-positive endosomes was slower, and the endosome fission and fusion frequencies were lower in the PD group than in the healthy control group. Interestingly, vesicles positive for cation-independent mannose 6-phosphate receptor transported by retromers were abnormally localized in glial cells derived from patient iPSCs. Furthermore, we found α-synuclein accumulation in TH positive DA neurons. Our results demonstrate the induction of cell death, endosomal dysfunction and α -synuclein accumulation in neural cells of the PD group. PARK17 patient-derived iPSCs provide an excellent experimental tool for understanding the pathophysiology underlying PD.
Collapse
Affiliation(s)
- Keiko Bono
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.,Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Chikako Hara-Miyauchi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Shunsuke Sumi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hisayoshi Oka
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.,Department of Neurology, Daisan Hospital, The Jikei University School of Medicine, 4-11-1 Izumihoncho, Komae-shi, Tokyo, 201-8601, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
7
|
Suddala KC, Lee CC, Meraner P, Marin M, Markosyan RM, Desai TM, Cohen FS, Brass AL, Melikyan GB. Interferon-induced transmembrane protein 3 blocks fusion of sensitive but not resistant viruses by partitioning into virus-carrying endosomes. PLoS Pathog 2019; 15:e1007532. [PMID: 30640957 PMCID: PMC6347298 DOI: 10.1371/journal.ppat.1007532] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/25/2019] [Accepted: 12/14/2018] [Indexed: 11/19/2022] Open
Abstract
Late endosome-resident interferon-induced transmembrane protein 3 (IFITM3) inhibits fusion of diverse viruses, including Influenza A virus (IAV), by a poorly understood mechanism. Despite the broad antiviral activity of IFITM3, viruses like Lassa virus (LASV), are fully resistant to its inhibitory effects. It is currently unclear whether resistance arises from a highly efficient fusion machinery that is capable of overcoming IFITM3 restriction or the ability to enter from cellular sites devoid of this factor. Here, we constructed and validated a functional IFITM3 tagged with EGFP or other fluorescent proteins. This breakthrough allowed live cell imaging of virus co-trafficking and fusion with endosomal compartments in cells expressing fluorescent IFITM3. Three-color single virus and endosome tracking revealed that sensitive (IAV), but not resistant (LASV), viruses become trapped within IFITM3-positive endosomes where they underwent hemifusion but failed to release their content into the cytoplasm. IAV fusion with IFITM3-containing compartments could be rescued by amphotericin B treatment, which has been previously shown to antagonize the antiviral activity of this protein. By comparison, virtually all LASV particles trafficked and fused with endosomes lacking detectable levels of fluorescent IFITM3, implying that this virus escapes restriction by utilizing endocytic pathways that are distinct from the IAV entry pathways. The importance of virus uptake and transport pathways is further reinforced by the observation that LASV glycoprotein-mediated cell-cell fusion is inhibited by IFITM3 and other members of the IFITM family expressed in target cells. Together, our results strongly support a model according to which IFITM3 accumulation at the sites of virus fusion is a prerequisite for its antiviral activity and that this protein traps viral fusion at a hemifusion stage by preventing the formation of fusion pores. We conclude that the ability to utilize alternative endocytic pathways for entry confers IFITM3-resistance to otherwise sensitive viruses.
Collapse
Affiliation(s)
- Krishna C Suddala
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Christine C Lee
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Paul Meraner
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Mariana Marin
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Ruben M Markosyan
- Rush University Medical Center, Department of Physiology and Biophysics, Chicago, IL, United States of America
| | - Tanay M Desai
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| | - Fredric S Cohen
- Rush University Medical Center, Department of Physiology and Biophysics, Chicago, IL, United States of America
| | - Abraham L Brass
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States of America
- Gastroenterology Division, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Gregory B Melikyan
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
- Children's Healthcare of Atlanta, Atlanta, GA, United States of America
| |
Collapse
|
8
|
Xia WQ, Liang Y, Chi Y, Pan LL, Zhao J, Liu SS, Wang XW. Intracellular trafficking of begomoviruses in the midgut cells of their insect vector. PLoS Pathog 2018; 14:e1006866. [PMID: 29370296 PMCID: PMC5800681 DOI: 10.1371/journal.ppat.1006866] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/06/2018] [Accepted: 01/09/2018] [Indexed: 01/28/2023] Open
Abstract
Begomoviruses are exclusively transmitted by whiteflies in a persistent circulative manner and cause considerable economic losses to crop production worldwide. Previous studies have shown that begomoviruses accumulate in vesicle-like structures in whitefly midgut cells and that clathrin-mediated endocytosis is responsible for their internalization. However, the process by which begomoviruses are trafficked within whitefly midgut cells remains largely unknown. In this study, we investigated the roles of vesicle trafficking in the transport of Tomato yellow leaf curl virus (TYLCV), a begomovirus that has spread to over 50 countries and caused extensive damage to a range of important crops, within midgut cells of whitefly (Bemisia tabaci). By disrupting vesicle trafficking using RNA silencing and inhibitors, we demonstrated that the early steps of endosomal trafficking are important for the intracellular transport of TYLCV in the whitefly midgut. In addition, our data show that, unlike many animal viruses, TYCLV is trafficked within cells in a manner independent of recycling endosomes, late endosomes, lysosomes, the Golgi apparatus and the endoplasmic reticulum. Instead, our results suggest that TYLCV might be transported directly from early endosomes to the basal plasma membrane and released into the hemolymph. Silencing of the sorting nexin Snx12, which may be involved in membrane tubulation, resulted in fewer viral particles in hemolymph; this suggests that the tubular endosomal network may be involved in the transport of TYLCV. Our results also support a role for the endo-lysosomal system in viral degradation. We further showed that the functions of vector early endosomes and sorting nexin Snx12 are conserved in the transmission of several other begomoviruses. Overall, our data indicate the importance of early endosomes and the tubular endosomal network in begomovirus transmission.
Collapse
Affiliation(s)
- Wen-Qiang Xia
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yan Liang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yao Chi
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Licon-Munoz Y, Michel V, Fordyce CA, Parra KJ. F-actin reorganization by V-ATPase inhibition in prostate cancer. Biol Open 2017; 6:1734-1744. [PMID: 29038303 PMCID: PMC5703614 DOI: 10.1242/bio.028837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The vacuolar ATPase (V-ATPase) proton pump sustains cellular pH homeostasis, and its inhibition triggers numerous stress responses. However, the cellular mechanisms involved remain largely elusive in cancer cells. We studied V-ATPase in the prostate cancer (PCa) cell line PC-3, which has characteristics of highly metastatic PCa. V-ATPase inhibitors impaired endo-lysosomal pH, vesicle trafficking, migration, and invasion. V-ATPase accrual in the Golgi and recycling endosomes suggests that traffic of internalized membrane vesicles back to the plasma membrane was particularly impaired. Directed movement provoked co-localization of V-ATPase containing vesicles with F-actin near the leading edge of migrating cells. V-ATPase inhibition prompted prominent F-actin cytoskeleton reorganization. Filopodial projections were reduced, which related to reduced migration velocity. F-actin formed novel cytoplasmic rings. F-actin rings increased with extended exposure to sublethal concentrations of V-ATPase inhibitors, from 24 to 48 h, as the amount of alkalinized endo-lysosomal vesicles increased. Studies with chloroquine indicated that F-actin rings formation was pH-dependent. We hypothesize that these novel F-actin rings assemble to overcome widespread traffic defects caused by V-ATPase inhibition, similar to F-actin rings on the surface of exocytic organelles. Summary: V-ATPase activates multiple stress responses. In prostate cancer, sub-lethal concentrations of V-ATPase inhibitors trigger widespread traffic defects. F-actin assembles into rings that mimic those seen during regulated exocytosis.
Collapse
Affiliation(s)
- Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Vera Michel
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Colleen A Fordyce
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
10
|
Wen MH, Wang JY, Chiu YT, Wang MP, Lee SP, Tai CY. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic 2016; 17:769-85. [DOI: 10.1111/tra.12402] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Meng-Hsuan Wen
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Jen-Yeu Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Yu-Ting Chiu
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
| | - Mei-Pin Wang
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
| | - Chin-Yin Tai
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei 114 Taiwan
- Institute of Molecular Biology; Academia Sinica; Taipei 115 Taiwan
- Institute of Genomics Sciences; National Yang-Ming University; Taipei 112 Taiwan
- Institute of Pharmaceutics; Development Center for Biotechnology; New Taipei City 221 Taiwan
| |
Collapse
|
11
|
Zheng H, Zheng W, Wu C, Yang J, Xi Y, Xie Q, Zhao X, Deng X, Lu G, Li G, Ebbole D, Zhou J, Wang Z. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum. Environ Microbiol 2015; 17:4580-99. [PMID: 26177389 DOI: 10.1111/1462-2920.12982] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Abstract
Rab GTPases represent the largest subfamily of Ras-related small GTPases and regulate membrane trafficking. Vesicular transport is a general mechanism that governs intracellular membrane trafficking along the endocytic and exocytic pathways in all eukaryotic cells. Fusarium graminearum is a filamentous fungus and causes the devastating and economically important head blight of wheat and related species. The mechanism of vesicular transport is not well understood, and little is known about Rab GTPases in F. graminearum. In this study, we systematically characterized all eleven FgRabs by live cell imaging and genetic analysis. We find that FgRab51 and FgRab52 are important for the endocytosis, FgRab7 localizes to the vacuolar membrane and regulates the fusion of vacuoles and autophagosomes, and FgRab8 and FgRab11 are important for polarized growth and/or exocytosis. Furthermore, both endocytic and exocytic FgRabs are required for vegetative growth, conidiogenesis, sexual reproduction, as well as pathogenesis and deoxynivalenol metabolism in F. graminearum. Thus, we conclude that Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in F. graminearum.
Collapse
Affiliation(s)
- Huawei Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Congxian Wu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Yang
- Institute of Forestry Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Xi
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiurong Xie
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Zhao
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolong Deng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guangpu Li
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Daniel Ebbole
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China.,Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
12
|
Abstract
Rho GTPases are critical for platelet function. Although the roles of RhoA, Rac and Cdc42 are characterized, platelets express other Rho GTPases, whose activities are less well understood. This review summarizes our understanding of the roles of platelet Rho GTPases and focuses particularly on the functions of Rif and RhoG. In human platelets, Rif interacts with cytoskeleton regulators including formins mDia1 and mDia3, whereas RhoG binds SNARE-complex proteins and cytoskeletal regulators ELMO and DOCK1. Knockout mouse studies suggest that Rif plays no critical functions in platelets, likely due to functional overlap with other Rho GTPases. In contrast, RhoG is essential for normal granule secretion downstream of the collagen receptor GPVI. The central defect in RhoG-/- platelets is reduced dense granule secretion, which impedes integrin activation and aggregation and limits platelet recruitment to growing thrombi under shear, translating into reduced thrombus formation in vivo. Potential avenues for future work on Rho GTPases in platelets are also highlighted, including identification of the key regulator for platelet filopodia formation and investigation of the role of the many Rho GTPase regulators in platelet function in both health and disease.
Collapse
|
13
|
Priya A, Kalaidzidis IV, Kalaidzidis Y, Lambright D, Datta S. Molecular Insights into Rab7-Mediated Endosomal Recruitment of Core Retromer: Deciphering the Role of Vps26 and Vps35. Traffic 2014; 16:68-84. [DOI: 10.1111/tra.12237] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 10/31/2014] [Accepted: 10/31/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Amulya Priya
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; ITI Gas Rahat Building Bhopal 462023 India
| | - Inna V Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; 108 Pfotenhauerstrasse Dresden 01307 Germany
| | - Yannis Kalaidzidis
- Max Planck Institute of Molecular Cell Biology and Genetics; 108 Pfotenhauerstrasse Dresden 01307 Germany
- Faculty of Bioengineering and Bioinformatics; Moscow State University; Moscow 119991 Russia
| | - David Lambright
- Program in Molecular Medicine; University of Massachusetts Medical School; 373 Plantation Street Worcester MA 01605 USA
| | - Sunando Datta
- Department of Biological Sciences; Indian Institute of Science Education and Research Bhopal; ITI Gas Rahat Building Bhopal 462023 India
| |
Collapse
|
14
|
Kienzle C, von Blume J. Secretory cargo sorting at the trans-Golgi network. Trends Cell Biol 2014; 24:584-93. [DOI: 10.1016/j.tcb.2014.04.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/15/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022]
|
15
|
Ferreira Lacerda A, Hartjes E, Brunetti CR. LITAF mutations associated with Charcot-Marie-Tooth disease 1C show mislocalization from the late endosome/lysosome to the mitochondria. PLoS One 2014; 9:e103454. [PMID: 25058650 PMCID: PMC4110028 DOI: 10.1371/journal.pone.0103454] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 07/02/2014] [Indexed: 01/01/2023] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is one of the most common heritable neuromuscular disorders, affecting 1 in every 2500 people. Mutations in LITAF have been shown to be causative for CMT type 1C disease. In this paper we explore the subcellular localization of wild type LITAF and mutant forms of LITAF known to cause CMT1C (T49M, A111G, G112S, T115N, W116G, L122V and P135T). The results show that LITAF mutants A111G, G112S, W116G, and T115N mislocalize from the late endosome/lysosome to the mitochondria while the mutants T49M, L122V, and P135T show partial mislocalization with a portion of the total protein present in the late endosome/lysosome and the remainder of the protein localized to the mitochondria. This suggests that different mutants of LITAF will produce differing severity of disease. We also explored the effect of the presence of mutant LITAF on wild-type LITAF localization. We showed that in cells heterozygous for LITAF, CMT1C mutants T49M and G112S are dominant since wild-type LITAF localized to the mitochondria when co-transfected with a LITAF mutant. Finally, we demonstrated how LITAF transits to the endosome and mitochondria compartments of the cell. Using Brefeldin A to block ER to Golgi transport we demonstrated that wild type LITAF traffics through the secretory pathway to the late endosome/lysosome while the LITAF mutants transit to the mitochondria independent of the secretory pathway. In addition, we demonstrated that the C-terminus of LITAF is necessary and sufficient for targeting of wild-type LITAF to the late endosome/lysosome and the mutants to the mitochondria. Together these data provide insight into how mutations in LITAF cause CMT1C disease.
Collapse
Affiliation(s)
| | - Emily Hartjes
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Craig R. Brunetti
- Biology Department, Trent University, Peterborough, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, Ideris A. Simvastatin modulates cellular components in influenza A virus-infected cells. Int J Mol Med 2014; 34:61-73. [PMID: 24788303 PMCID: PMC4072341 DOI: 10.3892/ijmm.2014.1761] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/24/2014] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Hair-Bejo
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | | | - Abdul Rahman Omar
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohamed El Zowalaty
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Zahra Ajdari
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Aini Ideris
- Institute of Bioscience, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
17
|
Khan AR, Ménétrey J. Structural biology of Arf and Rab GTPases' effector recruitment and specificity. Structure 2014; 21:1284-97. [PMID: 23931141 DOI: 10.1016/j.str.2013.06.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
Arf and Rab proteins, members of small GTPases superfamily, localize to specific subcellular compartments and regulate intracellular trafficking. To carry out their cellular functions, Arfs/Rabs interact with numerous and structurally diverse effector proteins. Over the years, a number of Arf/Rab:effector complexes have been crystallized and their structures reveal shared binding modes including α-helical packing, β-β complementation, and heterotetrameric assemblies. We review available structural information and provide a framework for in-depth analysis of complexes. The unifying features that we identify are organized into a classification scheme for different modes of Arf/Rab:effector interactions, which includes "all-α-helical," "mixed α-helical," "β-β zipping," and "bivalent" modes of binding. Additionally, we highlight structural determinants that are the basis of effector specificity. We conclude by expanding on functional implications that are emerging from available structural information under our proposed classification scheme.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
18
|
Li G, Wang Y. Protein kinase D: a new player among the signaling proteins that regulate functions in the nervous system. Neurosci Bull 2014; 30:497-504. [PMID: 24526660 DOI: 10.1007/s12264-013-1403-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/07/2013] [Indexed: 10/25/2022] Open
Abstract
Protein kinase D (PKD) is an evolutionarily-conserved family of protein kinases. It has structural, regulatory, and enzymatic properties quite different from the PKC family. Many stimuli induce PKD signaling, including G-protein-coupled receptor agonists and growth factors. PKD1 is the most studied member of the family. It functions during cell proliferation, differentiation, secretion, cardiac hypertrophy, immune regulation, angiogenesis, and cancer. Previously, we found that PKD1 is also critically involved in pain modulation. Since then, a series of studies performed in our lab and by other groups have shown that PKDs also participate in other processes in the nervous system including neuronal polarity establishment, neuroprotection, and learning. Here, we discuss the connections between PKD structure, enzyme function, and localization, and summarize the recent findings on the roles of PKD-mediated signaling in the nervous system.
Collapse
Affiliation(s)
- Gang Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, 100191, China
| | | |
Collapse
|
19
|
Aoyama N, Yamakawa T, Sasamura T, Yoshida Y, Ohori M, Okubo H, Iida E, Sasaki N, Ueda R, Matsuno K. Loss- and gain-of-function analyses of vacuolar protein sorting 2 in Notch signaling of Drosophila melanogaster. Genes Genet Syst 2014; 88:45-57. [PMID: 23676709 DOI: 10.1266/ggs.88.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Notch signaling is an evolutionarily conserved mechanism that controls many cell-fate specifications through local cell-cell interactions. The core mechanisms of Notch activation and its subsequent intracellular signaling are well understood. Various cellular functions are required for the activation and regulation of Notch signaling. Among them, the endocytosis of Notch and its ligands is important for the activation and suppression of Notch signaling. The endosomal sorting complex required for transport (ESCRT) proteins are required to sort ubiquitinated membrane proteins, such as Notch, into early endosomes. A loss-of-function allele of vacuolar protein sorting 2 (vps2), which encodes a component of ESCRT-III, has been reported. However, this vps2 mutant still produces the N-terminal half of the protein, and its phenotypes were studied in only a few organs. Here, we generated the first null mutant allele of Drosophila vps2, designated vps2², to better understand the function of this gene. In Drosophila wing imaginal discs homozygous for the vps2² allele, early endosomes and multivesicular bodies (MVBs) were enlarged, and Notch and Delta accumulated inside them. As reported for the previous vps2 mutant, the epithelium grew excessively under this condition. We further studied the roles of vps2 by RNA interference-knockdown. These experiments revealed that a partial reduction of vps2 attenuated Notch signaling; in contrast, the loss-of-function vps2 mutant is reported to up-regulate the Notch signaling in eye imaginal disc cells. These results suggest that Notch signaling can be up- or down-regulated, depending on the level of vps2 expression. Finally, we found that vps2 overexpression also resulted in early-endosome enlargement and the accumulation of Notch and Delta. In these cells, a portion of the Vps2 protein was detected in MVBs and colocalized with Notch. These data indicate that the expression of vps2 must be precisely regulated to maintain the normal structure of early endosomes.
Collapse
Affiliation(s)
- Naoki Aoyama
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki,Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Giorgini F, Steinert JR. Rab11 as a modulator of synaptic transmission. Commun Integr Biol 2013; 6:e26807. [PMID: 24563714 PMCID: PMC3922788 DOI: 10.4161/cib.26807] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/12/2013] [Indexed: 01/07/2023] Open
Abstract
Many neurodegenerative disorders are characterized by synaptic dysfunction preceding general neuronal loss and subsequent cognitive or behavioral anomalies. Much recent research has been aimed at understanding the early underlying processes leading to dysfunction at the synapse, as this knowledge would likely inform interventions that could potentially slow progression and delay onset of disease. We have recently reported that synaptic dysfunction in a Drosophila melanogaster model of Huntington's disease (HD) can be prevented by enhanced neuronal expression of Rab11, a Rab family GTPase involved in endosomal recycling, which complements studies that have found disrupted Rab11 activity in several models of this disorder. Indeed, inhibition of Rab11 function in fibroblasts of HD patients has been observed to perturb vesicle formation from recycling endosomes. Therefore, our study investigated a potential role of Rab11 in synaptic dysfunction prior to the onset of HD symptoms, with the aim of finding a possible early intervention to disease progression. We found that Rab11 ameliorates synaptic dysfunction due to expression of mutant huntingtin-the causative protein in HD-by normalizing synaptic vesicle size, which consequently ameliorates locomotor deficits in Drosophila larvae. Here we further consider these results and the implications this work has on potential therapeutic intervention in HD and other neurodegenerative disorders.
Collapse
|
21
|
Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, Levine TP, Tomasetto C. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J Cell Sci 2013; 126:5500-12. [PMID: 24105263 DOI: 10.1242/jcs.139295] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inter-organelle membrane contacts sites (MCSs) are specific subcellular regions favoring the exchange of metabolites and information. We investigated the potential role of the late-endosomal membrane-anchored proteins StAR related lipid transfer domain-3 (STARD3) and STARD3 N-terminal like (STARD3NL) in the formation of MCSs involving late-endosomes (LEs). We demonstrate that both STARD3 and STARD3NL create MCSs between LEs and the endoplasmic reticulum (ER). STARD3 and STARD3NL use a conserved two phenylalanines in an acidic tract (FFAT)-motif to interact with ER-anchored VAP proteins. Together, they form an LE-ER tethering complex allowing heterologous membrane apposition. This LE-ER tethering complex affects organelle dynamics by altering the formation of endosomal tubules. An in situ proximity ligation assay between STARD3, STARD3NL and VAP proteins identified endogenous LE-ER MCS. Thus, we report here the identification of proteins involved in inter-organellar interaction.
Collapse
Affiliation(s)
- Fabien Alpy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Functional Genomics and Cancer Department, 1 rue Laurent Fries, Illkirch, 67404, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Su H, Liu B, Fröhlich O, Ma H, Sands JM, Chen G. Small GTPase Rab14 down-regulates UT-A1 urea transport activity through enhanced clathrin-dependent endocytosis. FASEB J 2013; 27:4100-7. [PMID: 23796783 PMCID: PMC4046183 DOI: 10.1096/fj.13-229294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/11/2013] [Indexed: 11/11/2022]
Abstract
The UT-A1 urea transporter plays an important role in the urinary concentration mechanism. However, the molecular mechanisms regarding UT-A1 trafficking, endocytosis, and degradation are still unclear. In this study, we identified the small GTPase Rab14 as a binding partner to the C terminus of UT-A1 in a yeast 2-hybrid assay. Interestingly, UT-A1 binding is preferential for the GDP-bound inactive form of Rab14. Coinjection of Rab14 in Xenopus oocytes results in a decrease of UT-A1 urea transport activity, suggesting that Rab14 acts as a negative regulator of UT-A1. We subsequently found that Rab14 reduces the cell membrane expression of UT-A1, as evidenced by cell surface biotinylation. This effect is blocked by chlorpromazine, an inhibitor of the clathrin-mediated endocytic pathway, but not by filipin, an inhibitor of the caveolin-mediated endocytic pathway. In kidney, Rab14 is mainly expressed in IMCD epithelial cells with a pattern identical to UT-A1 expression. Consistent with its role in participating in clathrin-mediated endocytosis, Rab14 localizes in nonlipid raft microdomains and codistributes with Rab5, a marker of the clathrin-mediated endocytic pathway. Taken together, our study suggests that Rab14, as a novel UT-A1 partner, may have an important regulatory function for UT-A1 urea transport activity in the kidney inner medulla.
Collapse
Affiliation(s)
- Hua Su
- 1Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M, Jeffrey PD, Hughson FM, Glick BS. Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol Biol Cell 2013; 24:3406-19. [PMID: 24006484 PMCID: PMC3814151 DOI: 10.1091/mbc.e13-04-0185] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During the budding of coat protein complex II (COPII) vesicles from transitional endoplasmic reticulum (tER) sites, Sec16 has been proposed to play two distinct roles: negatively regulating COPII turnover and organizing COPII assembly at tER sites. We tested these ideas using the yeast Pichia pastoris. Redistribution of Sec16 to the cytosol accelerates tER dynamics, supporting a negative regulatory role for Sec16. To evaluate a possible COPII organization role, we dissected the functional regions of Sec16. The central conserved domain, which had been implicated in coordinating COPII assembly, is actually dispensable for normal tER structure. An upstream conserved region (UCR) localizes Sec16 to tER sites. The UCR binds COPII components, and removal of COPII from tER sites also removes Sec16, indicating that COPII recruits Sec16 rather than the other way around. We propose that Sec16 does not in fact organize COPII. Instead, regulation of COPII turnover can account for the influence of Sec16 on tER sites.
Collapse
Affiliation(s)
- Nike Bharucha
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Nallaseth FS, Anderson S. A screen for over-secretion of proteins by yeast based on a dual component cellular phosphatase and immuno-chromogenic stain for exported bacterial alkaline phosphatase reporter. Microb Cell Fact 2013; 12:36. [PMID: 23602005 PMCID: PMC3654994 DOI: 10.1186/1475-2859-12-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/04/2013] [Indexed: 12/02/2022] Open
Abstract
Background To isolate over-secretors, we subjected to saturation mutagenesis, a strain of P.pastoris exporting E. coli alkaline phosphatase (EAP) fused to the secretory domain of the yeast α factor pheromone through cellular PHO1/KEX2 secretory processing signals as the α-sec-EAP reporter protein. Direct chromogenic staining for α-sec-EAP activity is non-specific as its NBT/BCIP substrate cross-reacts with cellular phosphatases which can be inhibited with Levulinic acid. However, the parental E(P) strain only exports detectable levels of α-sec-EAP at 69 hours and not within the 36 hour period post-seeding required for effective screening with the consequent absence of a reference for secretion. We substituted the endogenous cellular phosphatase activity as a comparative reference for secretion rate and levels as well as for colony alignment while elevating specificity and sensitivity of detection of the exported protein with other innovative modifications of the immuno-chromogenic staining application for screening protein export mutants. Results Raising the specificity and utility of staining for α-sec-EAP activity required 5 modifications including some to published methods. These included, exploitation of endogenous phosphatase activity, reduction of the cell/protein burden, establishment of the direct relation between concentrations of transcriptional inducer and exported membrane immobilized protein and concentrations of protein exported into growth media, amplification of immuno-specificity and sensitivity of detection of α-sec-EAP reporter enzyme signal and restriction of staining to optimal concentrations of antisera and time periods. The resultant immuno-chromogenic screen allows for the detection of early secretion and as little as 1.3 fold over-secretion of α-sec-EAP reporter protein by E(M) mutants in the presence of 10 fold -216 fold higher concentrations of HSA. Conclusions The modified immuno-chromogenic screen is sensitive, specific and has led to the isolation of mutants E(M) over-secreting the α-sec-EAP reporter protein by a minimum of 50 fold higher levels than that exported by non-mutagenized E(P) parental strains. Unselected proteins were also over-secreted.
Collapse
Affiliation(s)
- Ferez S Nallaseth
- Department for Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
25
|
Rac and Rab GTPases dual effector Nischarin regulates vesicle maturation to facilitate survival of intracellular bacteria. EMBO J 2013; 32:713-27. [PMID: 23386062 DOI: 10.1038/emboj.2013.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/08/2013] [Indexed: 12/31/2022] Open
Abstract
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella-containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane-bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP-bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63-containing late endosomes. Nischarin is recruited to the SCV in a Rab14-dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners--Rac1, Rab14 and Rab9 GTPases--reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.
Collapse
|
26
|
Secretion of soluble vascular endothelial growth factor receptor 1 (sVEGFR1/sFlt1) requires Arf1, Arf6, and Rab11 GTPases. PLoS One 2012; 7:e44572. [PMID: 22962618 PMCID: PMC3433446 DOI: 10.1371/journal.pone.0044572] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022] Open
Abstract
The soluble form of vascular endothelial growth factor receptor 1 (sVEGFR-1/sFlt1) is generated by alternative splicing of the FLT1 gene. Secretion of sFlt1 from endothelial cells plays an important role in blood vessel sprouting and morphogenesis. However, excess sFlt1 secretion is associated with diseases such as preeclampsia and chronic kidney disease. To date, the secretory transport process involved in the secretion of sFlt1 is poorly understood. In the present study, we investigated the itinerary of sFlt1 trafficking along the secretory pathway. To understand the timecourse of sFlt1 secretion, endothelial cells stably expressing sFlt1 were metabolically radiolabeled with [(35)S]-methionine and cysteine. Our results indicate that after initial synthesis the levels of secreted [(35)S]-sFlt1 in the extracellular medium peaks at 8 hours. Treatment with brefeldin A (BFA), a drug which blocks trafficking between the endoplasmic reticulum (ER) and the Golgi complex, inhibited extracellular release of sFlt1 suggesting that ER to Golgi and intra-Golgi trafficking of sFlt1 are essential for its secretion. Furthermore, we show that ectopic expression of dominant-negative mutant forms of Arf1, Arf6, and Rab11 as well as siRNA-mediated knockdown of these GTPases block secretion of sFlt1 during normoxic and hypoxic conditions suggesting role for these small GTPases. This work is the first to report role of regulatory proteins involved in sFlt1 trafficking along the secretory pathway and may provide insights and new molecular targets for the modulation of sFlt-1 release during physiological and pathological conditions.
Collapse
|
27
|
Zagorac GB, Mahmutefendić H, Tomaš MI, Kučić N, Le Bouteiller P, Lučin P. Early endosomal rerouting of major histocompatibility class I conformers. J Cell Physiol 2012; 227:2953-64. [PMID: 21959869 DOI: 10.1002/jcp.23042] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major histocompatibility class I (MHC-I) molecules are present at the cell surface both as fully conformed trimolecular complexes composed of heavy chain (HC), beta-2-microglobulin (β2m) and peptide, and various open forms, devoid of peptide and/or β2m (open MHC-I conformers). Fully conformed MHC-I complexes and open MHC-I conformers can be distinguished by well characterized monoclonal antibody reagents that recognize their conformational difference in the extracellular domain. In the present study, we used these tools in order to test whether conformational difference in the extracellular domain determines endocytic and endosomal route of plasma membrane (PM) proteins. We analyzed PM localization, internalization, endosomal trafficking, and recycling of human and murine MHC-I proteins on various cell lines. We have shown that fully conformed MHC-I and open MHC-I conformers segregate at the PM and during endosomal trafficking resulting in the exclusion of open MHC-I conformers from the recycling route. This segregation is associated with their partitioning into the membranes of different compositions. As a result, the open MHC-I conformers internalized with higher rate than fully conformed counterparts. Thus, our data suggest the existence of conformation-based protein sorting mechanism in the endosomal system.
Collapse
|
28
|
Sann SB, Crane MM, Lu H, Jin Y. Rabx-5 regulates RAB-5 early endosomal compartments and synaptic vesicles in C. elegans. PLoS One 2012; 7:e37930. [PMID: 22675499 PMCID: PMC3366993 DOI: 10.1371/journal.pone.0037930] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/30/2012] [Indexed: 01/25/2023] Open
Abstract
Early endosomal membrane compartments are required for the formation and recycling of synaptic vesicles, but how these compartments are regulated is incompletely understood. We performed a forward genetic screen in C. elegans for mutations that affect RAB-5 labeled early endosomal compartments in GABAergic motoneurons. Here we report the isolation and characterization of one mutation, rabx-5. The rabx-5 mutation leads to decreased intensity of YFP::RAB-5 in the cell soma but increased intensity in the synaptic and intersynaptic regions of the axon. This effect is due to the bias of the cycling state of RAB-5, and results from a change in the organization of the early endosomal compartment as well as the membrane binding state of RAB-5. Synaptic vesicle accumulation is altered in rabx-5 mutants, and synaptic transmission from cholinergic neurons is decreased. Early endosomal membrane compartments show disorganization with ageing and rabx-5 mutant animals age faster. These results suggest that rabx-5 regulation of RAB-5 compartments is important for maintaining proper synaptic function throughout the lifetime.
Collapse
Affiliation(s)
- Sharon B. Sann
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SS); (YJ)
| | - Matthew M. Crane
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
- Howard Hughes Medical Institute University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SS); (YJ)
| |
Collapse
|
29
|
Goggs R, Poole AW. Platelet signaling-a primer. J Vet Emerg Crit Care (San Antonio) 2012; 22:5-29. [PMID: 22316389 DOI: 10.1111/j.1476-4431.2011.00704.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 11/25/2011] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To review the receptors and signal transduction pathways involved in platelet plug formation and to highlight links between platelets, leukocytes, endothelium, and the coagulation system. DATA SOURCES Original studies, review articles, and book chapters in the human and veterinary medical fields. DATA SYNTHESIS Platelets express numerous surface receptors. Critical among these are glycoprotein VI, the glycoprotein Ib-IX-V complex, integrin α(IIb) β(3) , and the G-protein-coupled receptors for thrombin, ADP, and thromboxane. Activation of these receptors leads to various important functional events, in particular activation of the principal adhesion receptor α(IIb) β(3) . Integrin activation allows binding of ligands such as fibrinogen, mediating platelet-platelet interaction in the process of aggregation. Signals activated by these receptors also couple to 3 other important functional events, secretion of granule contents, change in cell shape through cytoskeletal rearrangement, and procoagulant membrane expression. These processes generate a stable thrombus to limit blood loss and promote restoration of endothelial integrity. CONCLUSIONS Improvements in our understanding of how platelets operate through their signaling networks are critical for diagnosis of unusual primary hemostatic disorders and for rational antithrombotic drug design.
Collapse
Affiliation(s)
- Robert Goggs
- School of Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, UK.
| | | |
Collapse
|
30
|
Baron M. Endocytic routes to Notch activation. Semin Cell Dev Biol 2012; 23:437-42. [PMID: 22285298 DOI: 10.1016/j.semcdb.2012.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/17/2012] [Indexed: 01/16/2023]
Abstract
It is well established that Notch signalling is activated in response to ligand binding through a series of proteolytic cleavages that release the Notch intracellular domain, allowing it to translocate to the nucleus to regulate downstream target gene expression. However there is still much to learn about the mechanisms that can bring about these proteolytic events in the numerous physiological contexts in which signal activation occurs. A number of studies have suggested that endocytosis of Notch contributes to the signal activation process, but the molecular details are unclear and controversial. There is conflicting data as to whether endocytosis of the receptor is essential for ligand-induced signalling or supplements it. Other studies have revealed that Notch can be activated in the endosomal pathway, independently of its ligands, through the activity of Deltex, a Ring-domain Ubiquitin ligase that binds to the Notch intracellular domain. However, it is unclear how the Deltex-activation mechanism relates to that of ligand-induced signalling, or to ectopic Notch signalling brought about by disruption of ESCRT complexes that affect multivesicular body formation. This review will address these issues and argue that the data are best reconciled by proposing distinct activation mechanisms in different cellular locations that contribute to the cellular pool of the soluble Notch intracellular domain. The resulting signalling network may provide developmental robustness to environmental and genetic variation.
Collapse
Affiliation(s)
- Martin Baron
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
31
|
Turing instabilities in a mathematical model for signaling networks. J Math Biol 2011; 65:1215-44. [DOI: 10.1007/s00285-011-0495-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/15/2011] [Indexed: 12/11/2022]
|
32
|
Kramer SR, Goregaoker SP, Culver JN. Association of the Tobacco mosaic virus 126kDa replication protein with a GDI protein affects host susceptibility. Virology 2011; 414:110-8. [PMID: 21492894 DOI: 10.1016/j.virol.2010.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 11/14/2010] [Accepted: 12/16/2010] [Indexed: 11/23/2022]
Abstract
An interaction between the Tobacco mosaic virus (TMV) 126kDa replication protein and a host-encoded Rab GDP dissociation inhibitor (GDI2) was identified and investigated for its role in infection. GDI proteins are essential components of vesicle trafficking pathways. TMV infection alters the localization of GDI2 from the cytoplasm to ER-associated complexes. Partial silencing of GDI2 results in significant increases in the number of TMV infection foci observed in inoculated tissues. However, GDI2 silencing does not affect TMV accumulation at the infection site, cell-to-cell movement, or susceptibility of the host to mechanical inoculation. Furthermore, increases in the number of successful infection foci were specific to TMV and correlated with the appearance of vesicle-like rearrangements in the vacuolar membrane. Tissue infiltrations with brefeldin A, an inhibitor of vesicle trafficking, also enhanced host susceptibility to TMV. Combined these findings suggest that the 126kDa-GDI2 interaction alters vesicle trafficking to enhance the establishment of an infection.
Collapse
Affiliation(s)
- Sabrina R Kramer
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
33
|
Oberegelsbacher C, Schneidler C, Voolstra O, Cerny A, Huber A. The Drosophila TRPL ion channel shares a Rab-dependent translocation pathway with rhodopsin. Eur J Cell Biol 2011; 90:620-30. [PMID: 21507505 DOI: 10.1016/j.ejcb.2011.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 11/26/2022] Open
Abstract
The Drosophila visual transduction cascade is embedded in the rhabdomeres of photoreceptor cells and culminates in the opening of the two ion channels, TRP and TRPL. TRPL translocates from the rhabdomeres to the cell body upon illumination and vice versa when flies are kept in the dark. Here, we studied the mechanisms underlying the light-dependent internalization of TRPL. Co-localization of TRPL and rhodopsin in endocytic particles revealed that TRPL is internalized by a vesicular transport pathway that is also utilized, at least partially, for rhodopsin endocytosis. TRPL internalization is attenuated under light conditions that result in a high rate of rhodopsin internalization and is highest in orange light that result in very little rhodopsin internalization. In line with a canonical vesicular transport pathway, we found that rab proteins, Rab5 and RabX4, are required for the internalization of TRPL into the cell body. Our results provide insight into stimulus-dependent internalization of a prominent member of the TRP superfamily.
Collapse
Affiliation(s)
- Claudia Oberegelsbacher
- Department of Biosensorics, Institute of Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
34
|
Gardner LA, Hajjhussein H, Frederick KC, Bahouth SW. Rab11a and its binding partners regulate the recycling of the ß1-adrenergic receptor. Cell Signal 2011; 23:46-57. [PMID: 20727405 PMCID: PMC2956792 DOI: 10.1016/j.cellsig.2010.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/27/2010] [Accepted: 07/30/2010] [Indexed: 01/12/2023]
Abstract
ß1-adrenergic receptors (ß1-AR) are internalized in response to agonists and then recycle back for another round of signaling. The serine 312 to alanine mutant of the ß1-AR (S312A) is internalized but does not recycle. We determined that WT ß1-AR and S312A were internalized initially to an early sorting compartment because they colocalized by >70% with the early endosomal markers rab5a and early endosomal antigen-1 (EEA1). Subsequently, the WT ß1-AR trafficked via rab4a-expressing sorting endosomes to recycling endosomes. In recycling endosomes WT ß1-AR were colocalized by >70% with the rab11 GTPase. S312A did not colocalize with either rab4a or rab11, instead they exited from early endosomes to late endosomes/lysosomes in which they were degraded. Rab11a played a prominent role in recycling of the WT ß1-AR because dominant negative rab11a inhibited, while constitutively active rab11a accelerated the recycling of the ß1-AR. Next, we determined the effect of each of the rab11-interacting proteins on trafficking of the WT ß1-AR. The recycling of the ß1-AR was markedly inhibited when myosin Vb, FIP2, FIP3 and rabphillin were knocked down. These data indicate that rab11a and a select group of its binding partners play a prominent role in recycling of the human ß1-AR.
Collapse
Affiliation(s)
- Lidia A. Gardner
- Department of Neurology, University of Tennessee Health Sciences Center, 874 Union Avenue, Memphis, TN 38163
| | | | | | - Suleiman W. Bahouth
- To whom correspondence should be addressed. Corresponding Author: Suleiman Bahouth, Ph.D., Department of Pharmacology, The University of Tennessee-HSC, 874 Union Avenue, Memphis, TN 38163, Tel: 901-448-1503, Fax: 901-448-7206,
| |
Collapse
|
35
|
Ramser EM, Wolters G, Dityateva G, Dityatev A, Schachner M, Tilling T. The 14-3-3ζ protein binds to the cell adhesion molecule L1, promotes L1 phosphorylation by CKII and influences L1-dependent neurite outgrowth. PLoS One 2010; 5:e13462. [PMID: 20976158 PMCID: PMC2956685 DOI: 10.1371/journal.pone.0013462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 09/24/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The cell adhesion molecule L1 is crucial for mammalian nervous system development. L1 acts as a mediator of signaling events through its intracellular domain, which comprises a putative binding site for 14-3-3 proteins. These regulators of diverse cellular processes are abundant in the brain and preferentially expressed by neurons. In this study, we investigated whether L1 interacts with 14-3-3 proteins, how this interaction is mediated, and whether 14-3-3 proteins influence the function of L1. METHODOLOGY/PRINCIPAL FINDINGS By immunoprecipitation, we demonstrated that 14-3-3 proteins are associated with L1 in mouse brain. The site of 14-3-3 interaction in the L1 intracellular domain (L1ICD), which was identified by site-directed mutagenesis and direct binding assays, is phosphorylated by casein kinase II (CKII), and CKII phosphorylation of the L1ICD enhances binding of the 14-3-3 zeta isoform (14-3-3ζ). Interestingly, in an in vitro phosphorylation assay, 14-3-3ζ promoted CKII-dependent phosphorylation of the L1ICD. Given that L1 phosphorylation by CKII has been implicated in L1-triggered axonal elongation, we investigated the influence of 14-3-3ζ on L1-dependent neurite outgrowth. We found that expression of a mutated form of 14-3-3ζ, which impairs interactions of 14-3-3ζ with its binding partners, stimulated neurite elongation from cultured rat hippocampal neurons, supporting a functional connection between L1 and 14-3-3ζ. CONCLUSIONS/SIGNIFICANCE Our results suggest that 14-3-3ζ, a novel direct binding partner of the L1ICD, promotes L1 phosphorylation by CKII in the central nervous system, and regulates neurite outgrowth, an important biological process triggered by L1.
Collapse
Affiliation(s)
- Elisa M. Ramser
- Zentrum für Molekulare Neurobiologie Hamburg, University of Hamburg, Hamburg, Germany
| | - Gerrit Wolters
- Zentrum für Molekulare Neurobiologie Hamburg, University of Hamburg, Hamburg, Germany
| | - Galina Dityateva
- Zentrum für Molekulare Neurobiologie Hamburg, University of Hamburg, Hamburg, Germany
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - Alexander Dityatev
- Zentrum für Molekulare Neurobiologie Hamburg, University of Hamburg, Hamburg, Germany
- Department of Neuroscience and Brain Technologies, Italian Institute of Technology, Genova, Italy
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie Hamburg, University of Hamburg, Hamburg, Germany
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| | - Thomas Tilling
- Zentrum für Molekulare Neurobiologie Hamburg, University of Hamburg, Hamburg, Germany
| |
Collapse
|
36
|
Kato M, Chiba T, Li M, Hanyu Y. Bioluminescence assay for detecting cell surface membrane protein expression. Assay Drug Dev Technol 2010; 9:31-9. [PMID: 20836709 DOI: 10.1089/adt.2010.0278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a method to measure the amounts of cell surface-expressed membrane proteins with bioluminescence. Dinoflagellate luciferase was expressed on the surface of a mammalian cell as a chimeric fusion protein with a membrane protein of interest. Using a membrane-impermeable substrate to quantify the membrane-displayed luciferase, the expression of the membrane protein on the cell surface was determined. By inclusion of a quenching step for the luminescent activity of luciferase on the cell surface, we were able to monitor the membrane protein expression kinetics by measuring the luminescence recovery from the cell surface after quenching. The reported methods provide a convenient way to monitor the kinetics of expression and transport of membrane proteins to the cell surface. It is applicable to the high-throughput analysis of drugs or drug candidates concerning their effects on membrane protein expression.
Collapse
Affiliation(s)
- Mieko Kato
- Signaling Molecules Research Group, Neuroscience Research Institute, National Institutes of Advanced Industrial Science and Technology, Tsukuba, 1-1-1 Higashi, Tsukuba, Japan
| | | | | | | |
Collapse
|
37
|
Li H, Yu P, Sun Y, Felder RA, Periasamy A, Jose PA. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:056003. [PMID: 21054097 PMCID: PMC2966490 DOI: 10.1117/1.3484751] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 07/19/2010] [Accepted: 07/20/2010] [Indexed: 05/30/2023]
Abstract
The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ∼2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01±0.10 ns) or Rab7 (2.11±0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78±0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09±0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.
Collapse
Affiliation(s)
- Hewang Li
- Children's Research Institute, Children's National Medical Center, Center for Molecular Physiology Research, Washington, DC 20010, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sakurai A, Maruyama F, Funao J, Nozawa T, Aikawa C, Okahashi N, Shintani S, Hamada S, Ooshima T, Nakagawa I. Specific behavior of intracellular Streptococcus pyogenes that has undergone autophagic degradation is associated with bacterial streptolysin O and host small G proteins Rab5 and Rab7. J Biol Chem 2010; 285:22666-75. [PMID: 20472552 PMCID: PMC2903418 DOI: 10.1074/jbc.m109.100131] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus pyogenes (group A streptococcus (GAS)) is a pathogen that invades non-phagocytic host cells, and causes a variety of acute infections such as pharyngitis. Our group previously reported that intracellular GAS is effectively degraded by the host-cell autophagic machinery, and that a cholesterol-dependent cytolysin, streptolysin O (SLO), is associated with bacterial escape from endosomes in epithelial cells. However, the details of both the intracellular behavior of GAS and the process leading to its autophagic degradation remain unknown. In this study, we found that two host small G proteins, Rab5 and Rab7, were associated with the pathway of autophagosome formation and the fate of intracellular GAS. Rab5 was involved in bacterial invasion and endosome fusion. Rab7 was clearly multifunctional, with roles in bacterial invasion, endosome maturation, and autophagosome formation. In addition, this study showed that the bacterial cytolysin SLO supported the escape of GAS into the cytoplasm from endosomes, and surprisingly, a SLO-deficient mutant of GAS was viable longer than the wild-type strain although it failed to escape the endosomes. This intracellular behavior of GAS is unique and distinct from that of other types of bacterial invaders. Our results provide a new picture of GAS infection and host-cell responses in epithelial cells.
Collapse
Affiliation(s)
- Atsuo Sakurai
- From the Department of Pediatric Dentistry, Tokyo Dental College, 1-2-2 Masago, Mihama-Ku, Chiba 261-8502, Japan
- the Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
- the Oral Health Science Center, hrc7, Tokyo Dental College, Mihama-ku, Chiba 261-8502, Japan
| | - Fumito Maruyama
- the Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Junko Funao
- the Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Takashi Nozawa
- the Section of Bacterial Pathogenesis, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Chihiro Aikawa
- the Section of Bacterial Pathogenesis, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Nobuo Okahashi
- the Department of Oral Frontier Biology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita-Osaka 565-0871, Japan, and
| | - Seikou Shintani
- From the Department of Pediatric Dentistry, Tokyo Dental College, 1-2-2 Masago, Mihama-Ku, Chiba 261-8502, Japan
- the Oral Health Science Center, hrc7, Tokyo Dental College, Mihama-ku, Chiba 261-8502, Japan
| | - Shigeyuki Hamada
- the Department of Medical Sciences, Research Collaboration Center on Emerging and Reemerging Infections (RCC-ERI) 6F, Ministry of Public Health, Tiwanon Road, Muang Nonthaburi 11000, Thailand
| | - Takashi Ooshima
- the Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
- To whom correspondence should be addressed. Fax: 81-6-6879-2965; E-mail:
| | - Ichiro Nakagawa
- the Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
39
|
Mayorga LS, Campoy EM. Modeling Fusion/Fission-Dependent Intracellular Transport of Fluid Phase Markers. Traffic 2010; 11:1001-15. [DOI: 10.1111/j.1600-0854.2010.01067.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Lin WJ, Yang CY, Lin YC, Tsai MC, Yang CW, Tung CY, Ho PY, Kao FJ, Lin CH. Phafin2 modulates the structure and function of endosomes by a Rab5-dependent mechanism. Biochem Biophys Res Commun 2009; 391:1043-8. [PMID: 19995552 DOI: 10.1016/j.bbrc.2009.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Accepted: 12/03/2009] [Indexed: 12/20/2022]
Abstract
By regulating the amount of protein receptors on the cell membrane and the metabolisms of receptor-bound ligands, endocytosis represents one of the fundamental biological activities that regulate how cells respond to the environment. We report here that a Fab1-YotB-Vac1p-EEA1 (FYVE) domain-containing lipid associated protein, called Phafin2, is preferentially expressed in the human hepatocellular carcinoma (HCC) and is involved in the biogenesis of endosomes. Over-expression of Phafin2 or its FYVE domain results in the formation of enlarged endosomes that are still functional for endocytosis; the biogenesis of such abnormal organelles is mediated by phosphoinositide 3-kinases (PI3K) and Rab5 signaling. Using fluorescence resonance energy transfer measured by fluorescence lifetime imaging microscopy (FLIM-FRET), we further demonstrate in live cells that Phafin2 can directly activate Rab5. By modulating the receptor internalization/recycling and Rab5 activation, Phafin2 affects the density of membranous insulin receptors, and regulates the transcriptional activity of AP-1 that is downstream of the insulin signaling pathway. These results provide a vivid example that an endosome modulator, such as Phafin2, may control the cells' responses to the extracellular cues.
Collapse
Affiliation(s)
- Wen-Jie Lin
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Doody AM, Antosh AL, Brown WJ. Cytoplasmic phospholipase A2 antagonists inhibit multiple endocytic membrane trafficking pathways. Biochem Biophys Res Commun 2009; 388:695-9. [PMID: 19695219 PMCID: PMC2764267 DOI: 10.1016/j.bbrc.2009.08.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 08/12/2009] [Indexed: 11/30/2022]
Abstract
Previous studies have suggested a role for cytosolic Ca(2+)-independent phospholipase A(2) (PLA(2)) activity in the formation of endosome membrane tubules that participate in the export of transferrin (Tf) and transferrin receptors (TfR) from sorting endosomes (SEs) and the endocytic recycling compartment (ERC). Here we show that the PLA(2) requirement is a general feature of endocytic trafficking. The reversible cytoplasmic PLA(2) antagonist ONO-RS-082 (ONO) produced a concentration-dependent, differential block in the endocytic recycling of both low-density lipoprotein receptor (LDLR) and TfRs, and in the degradative pathways of LDL and epidermal growth factor (EGF). These results are consistent with the model that a cytoplasmic PLA(2) plays a general role in the export of cargo from multiple endocytic compartments by mediating the formation of membrane tubules.
Collapse
Affiliation(s)
- Anne M Doody
- Department of Molecular Biology and Genetics, Cornell University, Biotechnology Building, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
42
|
Fu X, Zang K, Zhou Z, Reichardt LF, Xu B. Retrograde neurotrophic signaling requires a protein interacting with receptor tyrosine kinases via C2H2 zinc fingers. Mol Biol Cell 2009; 21:36-49. [PMID: 19864463 PMCID: PMC2801717 DOI: 10.1091/mbc.e09-04-0321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
NTRAP is a novel protein that interacts with Trk receptors through its C2H2 zinc fingers in a kinase-dependent manner. It is associated with signaling endosomes in neurons. Down-regulation of NTRAP inhibits NGF-induced signaling within endosomes and neurite outgrowth in PC12 cells, and it also decreases retrograde neurotrophic signaling in cultured sensory neurons. Neurotrophins at axonal terminals signal to cell bodies to regulate neuronal development via signaling endosomes containing activated Trk receptor tyrosine kinases and mitogen-activated protein kinases (MAPKs). Requirements for the formation of signaling endosomes remain, however, poorly characterized. Here we show that a novel Trk-interacting protein, NTRAP (neurotrophic factor receptor–associated protein), plays a crucial role in this signaling process. NTRAP interacts with the Trk intracellular domain through its C2H2 zinc fingers in a kinase-dependent manner. It is associated with vesicles, some of which contain markers for signaling endosomes. Inhibition of NTRAP function suppresses neurotrophin-induced neurite outgrowth in PC12 cells by altering TrkA endocytic traffic, inhibiting the formation of endosomes containing persistently active MAPKs. In compartmentalized sensory neuron cultures, down-regulation of NTRAP abolishes the ability of neurotrophins applied to distal axons to activate the transcription factor adenosine 3′,5′-monophosphate response element-binding protein (CREB) and to promote neuronal survival. We propose that NTRAP regulates retrograde neurotrophic signaling by controlling the formation of signaling endosomes.
Collapse
Affiliation(s)
- Xiaoqin Fu
- Department of Pharmacology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
43
|
Eggers CT, Schafer JC, Goldenring JR, Taylor SS. D-AKAP2 interacts with Rab4 and Rab11 through its RGS domains and regulates transferrin receptor recycling. J Biol Chem 2009; 284:32869-80. [PMID: 19797056 PMCID: PMC2781703 DOI: 10.1074/jbc.m109.022582] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dual-specific A-kinase-anchoring protein 2 (D-AKAP2/AKAP10), which interacts at its carboxyl terminus with protein kinase A and PDZ domain proteins, contains two tandem regulator of G-protein signaling (RGS) domains for which the binding partners have remained unknown. We show here that these RGS domains interact with Rab11 and GTP-bound Rab4, the first demonstration of RGS domains binding small GTPases. Rab4 and Rab11 help regulate membrane trafficking through the endocytic recycling pathways by recruiting effector proteins to specific membrane domains. Although D-AKAP2 is primarily cytosolic in HeLa cells, a fraction of the protein localizes to endosomes and can be recruited there to a greater extent by overexpression of Rab4 or Rab11. D-AKAP2 also regulates the morphology of the Rab11-containing compartment, with co-expression causing accumulation of both proteins on enlarged endosomes. Knockdown of D-AKAP2 by RNA interference caused a redistribution of both Rab11 and the constitutively recycling transferrin receptor to the periphery of cells. Knockdown also caused an increase in the rate of transferrin recycling, suggesting that D-AKAP2 promotes accumulation of recycling proteins in the Rab4/Rab11-positive endocytic recycling compartment.
Collapse
Affiliation(s)
- Christopher T Eggers
- Department of Pharmacology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Insulin stimulates GLUT4 (glucose transporter 4) translocation in adipocytes and muscles. An emerging picture is that Rab10 could bridge the gap between the insulin signalling cascade and GLUT4 translocation in adipocytes. In the present study, two potential effectors of Rab10, GDI (guanine-nucleotide-dissociation inhibitor)-1 and GDI-2, are characterized in respect to their roles in insulin-stimulated GLUT4 translocation. It is shown that both GDI-1 and GDI-2 exhibit similar distribution to GLUT4 and Rab10 at the TGN (trans-Golgi network) and periphery structures. Meanwhile, GDI-1 clearly interacts with Rab10 with higher affinity, as shown by both immunoprecipitation and in vivo FRET (fluorescence resonance energy transfer). In addition, the participation of GDIs in GLUT4 translocation is illustrated when overexpression of either GDI inhibits insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. Taken together, we propose that GDI-1 is preferentially involved in insulin-stimulated GLUT4 translocation through facilitating Rab10 recycling.
Collapse
|
45
|
Jeyifous O, Waites CL, Specht CG, Fujisawa S, Schubert M, Lin EI, Marshall J, Aoki C, de Silva T, Montgomery JM, Garner CC, Green WN. SAP97 and CASK mediate sorting of NMDA receptors through a previously unknown secretory pathway. Nat Neurosci 2009; 12:1011-9. [PMID: 19620977 PMCID: PMC2779056 DOI: 10.1038/nn.2362] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/08/2009] [Indexed: 02/08/2023]
Abstract
Synaptic plasticity is dependent on the differential sorting, delivery and retention of neurotransmitter receptors, but the mechanisms underlying these processes are poorly understood. We found that differential sorting of glutamate receptor subtypes began in the endoplasmic reticulum of rat hippocampal neurons. As AMPA receptors (AMPARs) were trafficked to the plasma membrane via the conventional somatic Golgi network, NMDA receptors (NMDARs) were diverted from the somatic endoplasmic reticulum into a specialized endoplasmic reticulum subcompartment that bypasses somatic Golgi, merging instead with dendritic Golgi outposts. This endoplasmic reticulum subcompartment was composed of highly mobile vesicles containing the NMDAR subunits NR1 and NR2B, the microtubule-dependent motor protein KIF17, and the postsynaptic adaptor proteins CASK and SAP97. Our data demonstrate that the retention and trafficking of NMDARs in this endoplasmic reticulum subcompartment requires both CASK and SAP97. These findings indicate that NMDARs are sorted away from AMPARs via a non-conventional secretory pathway that utilizes dendritic Golgi outposts.
Collapse
Affiliation(s)
- Okunola Jeyifous
- Department of Psychiatry and Behavioral Science, Stanford University, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sann S, Wang Z, Brown H, Jin Y. Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 2009; 19:317-24. [PMID: 19540123 DOI: 10.1016/j.tcb.2009.05.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/04/2009] [Accepted: 05/07/2009] [Indexed: 02/06/2023]
Abstract
Membrane trafficking and cargo delivery are essential for axonal and dendritic growth and guidance. Neurons have numerous diverse post-Golgi vesicles and recent advances have clarified their identity and regulation. Combinatorial approaches using in vivo imaging of 'intracellular cargo address labels' and functional perturbation have provided insight into these processes. In particular, the UNC-51 kinase regulates the trafficking of early endosomes and their axon guidance molecular cargos in several types of neurons in multiple organisms. Vesicular compartments bearing features of recycling endosomes, late endosomes or lysosomes also contribute to membrane addition and protein trafficking during neurite outgrowth and extension. New work shows that ubiquitylation of cargos and Rab effectors further specifies the trafficking routes of post-Golgi vesicles. These findings have begun to provide a more detailed view of the molecular mechanisms involved in neurite outgrowth and guidance. Additionally, high-resolution light microscopy imaging promises greater temporal and spatial understanding of vesicular exchange and maturation in neurons in the near future.
Collapse
Affiliation(s)
- Sharon Sann
- Division of Biological Sciences, University of California, San Diego, CA 92093, USA.
| | | | | | | |
Collapse
|
47
|
Gan Z, Ram S, Vaccaro C, Ober RJ, Ward ES. Analyses of the recycling receptor, FcRn, in live cells reveal novel pathways for lysosomal delivery. Traffic 2009; 10:600-14. [PMID: 19192244 PMCID: PMC2813311 DOI: 10.1111/j.1600-0854.2009.00887.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lysosomes play a central role in the degradation of proteins and other macromolecules. The mechanisms by which receptors are transferred to lysosomes for constitutive degradation are poorly understood. We have analyzed the processes that lead to the lysosomal delivery of the Fc receptor, FcRn. These studies provide support for a novel pathway for receptor delivery. Specifically, unlike other receptors that enter intraluminal vesicles in late endosomes, FcRn is transferred from the limiting membrane of such endosomes to lysosomes, and is rapidly internalized into the lysosomal lumen. By contrast, LAMP-1 persists on the limiting membrane. Receptor transfer is mediated by tubular extensions from late endosomes to lysosomes, or by interactions of the two participating organelles in kiss-and-linger-like processes, whereas full fusion is rarely observed. The persistence of FcRn on the late endosomal limiting membrane, together with selective transfer to lysosomes, allows this receptor to undergo recycling or degradation. Consequently, late endosomes have functional plasticity, consistent with the presence of the Rab5 GTPase in discrete domains on these compartments.
Collapse
Affiliation(s)
- Zhuo Gan
- Biomedical Engineering Graduate Program, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| | - Sripad Ram
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| | - Carlos Vaccaro
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| | - Raimund J. Ober
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
- Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - E. Sally Ward
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, Dallas TX 75390, USA
| |
Collapse
|
48
|
Kucharz K, Krogh M, Ng AN, Toresson H. NMDA receptor stimulation induces reversible fission of the neuronal endoplasmic reticulum. PLoS One 2009; 4:e5250. [PMID: 19381304 PMCID: PMC2668765 DOI: 10.1371/journal.pone.0005250] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 03/19/2009] [Indexed: 12/02/2022] Open
Abstract
With few exceptions the endoplasmic reticulum (ER) is considered a continuous system of endomembranes within which proteins and ions can move. We have studied dynamic structural changes of the ER in hippocampal neurons in primary culture and organotypic slices. Fluorescence recovery after photobleaching (FRAP) was used to quantify and model ER structural dynamics. Ultrastructure was assessed by electron microscopy. In live cell imaging experiments we found that, under basal conditions, the ER of neuronal soma and dendrites was continuous. The smooth and uninterrupted appearance of the ER changed dramatically after glutamate stimulation. The ER fragmented into isolated vesicles in a rapid fission reaction that occurred prior to overt signs of neuronal damage. ER fission was found to be independent of ER calcium levels. Apart from glutamate, the calcium ionophore ionomycin was able to induce ER fission. The N-methyl, D-aspartate (NMDA) receptor antagonist MK-801 inhibited ER fission induced by glutamate as well as by ionomycin. Fission was not blocked by either ifenprodil or kinase inhibitors. Interestingly, sub-lethal NMDA receptor stimulation caused rapid ER fission followed by fusion. Hence, ER fission is not strictly associated with cellular damage or death. Our results thus demonstrate that neuronal ER structure is dynamically regulated with important consequences for protein mobility and ER luminal calcium tunneling.
Collapse
Affiliation(s)
- Krzysztof Kucharz
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Centre, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Morten Krogh
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, Lund, Sweden
| | - Ai Na Ng
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Centre, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Håkan Toresson
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Centre, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
49
|
Nada S, Hondo A, Kasai A, Koike M, Saito K, Uchiyama Y, Okada M. The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes. EMBO J 2009; 28:477-89. [PMID: 19177150 DOI: 10.1038/emboj.2008.308] [Citation(s) in RCA: 259] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 12/22/2008] [Indexed: 12/29/2022] Open
Abstract
The regulation of endosome dynamics is crucial for fundamental cellular functions, such as nutrient intake/digestion, membrane protein cycling, cell migration and intracellular signalling. Here, we show that a novel lipid raft adaptor protein, p18, is involved in controlling endosome dynamics by anchoring the MEK1-ERK pathway to late endosomes. p18 is anchored to lipid rafts of late endosomes through its N-terminal unique region. p18(-/-) mice are embryonic lethal and have severe defects in endosome/lysosome organization and membrane protein transport in the visceral endoderm. p18(-/-) cells exhibit apparent defects in endosome dynamics through perinuclear compartment, such as aberrant distribution and/or processing of lysosomes and impaired cycling of Rab11-positive recycling endosomes. p18 specifically binds to the p14-MP1 complex, a scaffold for MEK1. Loss of p18 function excludes the p14-MP1 complex from late endosomes, resulting in a downregulation of the MEK-ERK activity. These results indicate that the lipid raft adaptor p18 is essential for anchoring the MEK-ERK pathway to late endosomes, and shed new light on a role of endosomal MEK-ERK pathway in controlling endosome dynamics.
Collapse
Affiliation(s)
- Shigeyki Nada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
del Toro D, Alberch J, Lázaro-Diéguez F, Martín-Ibáñez R, Xifró X, Egea G, Canals JM. Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell 2009; 20:1478-92. [PMID: 19144827 DOI: 10.1091/mbc.e08-07-0726] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function.
Collapse
Affiliation(s)
- Daniel del Toro
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, IDIBAPS, Universitat de Barcelona, E-08036 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|