1
|
Nakashima A, Takeuchi H. Shaping the olfactory map: cell type-specific activity patterns guide circuit formation. Front Neural Circuits 2024; 18:1409680. [PMID: 38860141 PMCID: PMC11163119 DOI: 10.3389/fncir.2024.1409680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 06/12/2024] Open
Abstract
The brain constructs spatially organized sensory maps to represent sensory information. The formation of sensory maps has traditionally been thought to depend on synchronous neuronal activity. However, recent evidence from the olfactory system suggests that cell type-specific temporal patterns of spontaneous activity play an instructive role in shaping the olfactory glomerular map. These findings challenge traditional views and highlight the importance of investigating the spatiotemporal dynamics of neural activity to understand the development of complex neural circuits. This review discusses the implications of new findings in the olfactory system and outlines future research directions.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Haruki Takeuchi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Raja R, Dumontier E, Phen A, Cloutier JF. Insertion of a neomycin selection cassette in the Amigo1 locus alters gene expression in the olfactory epithelium leading to region-specific defects in olfactory receptor neuron development. Genesis 2024; 62:e23594. [PMID: 38590146 DOI: 10.1002/dvg.23594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
During development of the nervous system, neurons connect to one another in a precisely organized manner. Sensory systems provide a good example of this organization, whereby the composition of the outside world is represented in the brain by neuronal maps. Establishing correct patterns of neural circuitry is crucial, as inaccurate map formation can lead to severe disruptions in sensory processing. In rodents, olfactory stimuli modulate a wide variety of behaviors essential for survival. The formation of the olfactory glomerular map is dependent on molecular cues that guide olfactory receptor neuron axons to broad regions of the olfactory bulb and on cell adhesion molecules that promote axonal sorting into specific synaptic units in this structure. Here, we demonstrate that the cell adhesion molecule Amigo1 is expressed in a subpopulation of olfactory receptor neurons, and we investigate its role in the precise targeting of olfactory receptor neuron axons to the olfactory bulb using a genetic loss-of-function approach in mice. While ablation of Amigo1 did not lead to alterations in olfactory sensory neuron axonal targeting, our experiments revealed that the presence of a neomycin resistance selection cassette in the Amigo1 locus can lead to off-target effects that are not due to loss of Amigo1 expression, including unexpected altered gene expression in olfactory receptor neurons and reduced glomerular size in the ventral region of the olfactory bulb. Our results demonstrate that insertion of a neomycin selection cassette into the mouse genome can have specific deleterious effects on the development of the olfactory system and highlight the importance of removing antibiotic resistance cassettes from genetic loss-of-function mouse models when studying olfactory system development.
Collapse
Affiliation(s)
- Reesha Raja
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Emilie Dumontier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Alina Phen
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
| | - Jean-François Cloutier
- The Neuro (Montreal Neurological Institute-Hospital), Montréal, Québec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Fukuda N, Fukuda T, Percipalle P, Oda K, Takei N, Czaplinski K, Touhara K, Yoshihara Y, Sasaoka T. Axonal mRNA binding of hnRNP A/B is crucial for axon targeting and maturation of olfactory sensory neurons. Cell Rep 2023; 42:112398. [PMID: 37083330 DOI: 10.1016/j.celrep.2023.112398] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 04/22/2023] Open
Abstract
Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.
Collapse
Affiliation(s)
- Nanaho Fukuda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Tomoyuki Fukuda
- Niigata University Graduate School of Medical and Dental Science, Niigata 951-8510, Japan
| | - Piergiorgio Percipalle
- Science Division, Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, UAE; Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Kanako Oda
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Nobuyuki Takei
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | - Kazushige Touhara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Toshikuni Sasaoka
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
4
|
An Overview of the Molecular Cues and Their Intracellular Signaling Shared by Cancer and the Nervous System: From Neurotransmitters to Synaptic Proteins, Anatomy of an All-Inclusive Cooperation. Int J Mol Sci 2022; 23:ijms232314695. [PMID: 36499024 PMCID: PMC9739679 DOI: 10.3390/ijms232314695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
We propose an overview of the molecular cues and their intracellular signaling involved in the crosstalk between cancer and the nervous system. While "cancer neuroscience" as a field is still in its infancy, the relation between cancer and the nervous system has been known for a long time, and a huge body of experimental data provides evidence that tumor-nervous system connections are widespread. They encompass different mechanisms at different tumor progression steps, are multifaceted, and display some intriguing analogies with the nervous system's physiological processes. Overall, we can say that many of the paradigmatic "hallmarks of cancer" depicted by Weinberg and Hanahan are affected by the nervous system in a variety of manners.
Collapse
|
5
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
6
|
Wang IH, Murray E, Andrews G, Jiang HC, Park SJ, Donnard E, Durán-Laforet V, Bear DM, Faust TE, Garber M, Baer CE, Schafer DP, Weng Z, Chen F, Macosko EZ, Greer PL. Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nat Neurosci 2022; 25:484-492. [PMID: 35314823 PMCID: PMC9281876 DOI: 10.1038/s41593-022-01030-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022]
Abstract
The olfactory system's ability to detect and discriminate between the vast array of chemicals present in the environment is critical for an animal's survival. In mammals, the first step of this odor processing is executed by olfactory sensory neurons, which project their axons to a stereotyped location in the olfactory bulb (OB) to form glomeruli. The stereotyped positioning of glomeruli in the OB suggests an importance for this organization in odor perception. However, because the location of only a limited subset of glomeruli has been determined, it has been challenging to determine the relationship between glomerular location and odor discrimination. Using a combination of single-cell RNA sequencing, spatial transcriptomics and machine learning, we have generated a map of most glomerular positions in the mouse OB. These observations significantly extend earlier studies and suggest an overall organizational principle in the OB that may be used by the brain to assist in odor decoding.
Collapse
Affiliation(s)
- I-Hao Wang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Greg Andrews
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hao-Ching Jiang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sung Jin Park
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daniel M Bear
- Department of Psychology, Stanford University, Palo Alto, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Palo Alto, CA, USA
| | - Travis E Faust
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Manuel Garber
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christina E Baer
- Sanderson Center for Optical Imaging and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Dorothy P Schafer
- Department of Neurobiology and Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Paul L Greer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Ruiz Tejada Segura ML, Abou Moussa E, Garabello E, Nakahara TS, Makhlouf M, Mathew LS, Wang L, Valle F, Huang SSY, Mainland JD, Caselle M, Osella M, Lorenz S, Reisert J, Logan DW, Malnic B, Scialdone A, Saraiva LR. A 3D transcriptomics atlas of the mouse nose sheds light on the anatomical logic of smell. Cell Rep 2022; 38:110547. [PMID: 35320714 PMCID: PMC8995392 DOI: 10.1016/j.celrep.2022.110547] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/26/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be independent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially expressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underlying Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral representation of smell.
Collapse
Affiliation(s)
- Mayra L Ruiz Tejada Segura
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | | | - Elisa Garabello
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy; Department of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Thiago S Nakahara
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Li Wang
- Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Filippo Valle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | | | - Joel D Mainland
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele Caselle
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Matteo Osella
- Physics Department, University of Turin and INFN, Via P. Giuria 1, 10125 Turin, Italy
| | - Stephan Lorenz
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Johannes Reisert
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Darren W Logan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Feodor-Lynen-Strasse 21, 81377 München, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Luis R Saraiva
- Sidra Medicine, P.O. Box 26999, Doha, Qatar; Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA; College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
8
|
Francia S, Lodovichi C. The role of the odorant receptors in the formation of the sensory map. BMC Biol 2021; 19:174. [PMID: 34452614 PMCID: PMC8394594 DOI: 10.1186/s12915-021-01116-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/02/2021] [Indexed: 11/10/2022] Open
Abstract
In the olfactory system, odorant receptors (ORs) expressed at the cell membrane of olfactory sensory neurons detect odorants and direct sensory axons toward precise target locations in the brain, reflected in the presence of olfactory sensory maps. This dual role of ORs is corroborated by their subcellular expression both in cilia, where they bind odorants, and at axon terminals, a location suitable for axon guidance cues. Here, we provide an overview and discuss previous work on the role of ORs in establishing the topographic organization of the olfactory system and recent findings on the mechanisms of activation and function of axonal ORs.
Collapse
Affiliation(s)
- Simona Francia
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Veneto Institute of Molecular Medicine, Padua, Italy
| | - Claudia Lodovichi
- Veneto Institute of Molecular Medicine, Padua, Italy. .,Neuroscience Institute CNR, Via Orus 2, 35129, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Padua, Italy. .,Padova Neuroscience Center, Padua, Italy.
| |
Collapse
|
9
|
Qiu Q, Wu Y, Ma L, Xu W, Hills M, Ramalingam V, Yu CR. Acquisition of innate odor preference depends on spontaneous and experiential activities during critical period. eLife 2021; 10:e60546. [PMID: 33769278 PMCID: PMC8032394 DOI: 10.7554/elife.60546] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 03/24/2021] [Indexed: 01/15/2023] Open
Abstract
Animals possess an inborn ability to recognize certain odors to avoid predators, seek food, and find mates. Innate odor preference is thought to be genetically hardwired. Here we report that acquisition of innate odor recognition requires spontaneous neural activity and is influenced by sensory experience during early postnatal development. Genetic silencing of mouse olfactory sensory neurons during the critical period has little impact on odor sensitivity, discrimination, and recognition later in life. However, it abolishes innate odor preference and alters the patterns of activation in brain centers. Exposure to innately recognized odors during the critical period abolishes the associated valence in adulthood in an odor-specific manner. The changes are associated with broadened projection of olfactory sensory neurons and expression of axon guidance molecules. Thus, a delicate balance of neural activity is needed during the critical period in establishing innate odor preference and convergent axon input is required to encode innate odor valence.
Collapse
Affiliation(s)
- Qiang Qiu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Yunming Wu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Limei Ma
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Wenjing Xu
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Max Hills
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Vivekanandan Ramalingam
- Stowers Institute for Medical ResearchKansas CityUnited States
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Kansas Medical CenterKansas CityUnited States
| | - C Ron Yu
- Stowers Institute for Medical ResearchKansas CityUnited States
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Kansas Medical CenterKansas CityUnited States
- Department of Anatomy and Cell Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
10
|
Lodovichi C. Topographic organization in the olfactory bulb. Cell Tissue Res 2021; 383:457-472. [PMID: 33404841 PMCID: PMC7873094 DOI: 10.1007/s00441-020-03348-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Veneto Institute of Molecular Medicine, Padova Neuroscience Center, Padova, Italy.
| |
Collapse
|
11
|
Axonal Odorant Receptors Mediate Axon Targeting. Cell Rep 2020; 29:4334-4348.e7. [PMID: 31875544 PMCID: PMC6941231 DOI: 10.1016/j.celrep.2019.11.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 12/05/2022] Open
Abstract
In mammals, odorant receptors not only detect odors but also define the target in the olfactory bulb, where sensory neurons project to give rise to the sensory map. The odorant receptor is expressed at the cilia, where it binds odorants, and at the axon terminal. The mechanism of activation and function of the odorant receptor at the axon terminal is, however, still unknown. Here, we identify phosphatidylethanolamine-binding protein 1 as a putative ligand that activates the odorant receptor at the axon terminal and affects the turning behavior of sensory axons. Genetic ablation of phosphatidylethanolamine-binding protein 1 in mice results in a strongly disturbed olfactory sensory map. Our data suggest that the odorant receptor at the axon terminal of olfactory neurons acts as an axon guidance cue that responds to molecules originating in the olfactory bulb. The dual function of the odorant receptor links specificity of odor perception and axon targeting. Axonal odorant receptors respond to cues elaborated in the olfactory bulb PEBP1, expressed in the olfactory bulb, is a putative ligand of axonal receptors Genetic ablation of PEBP1 results in disrupted olfactory map in vivo Axonal odorant receptors modulate axon targeting in the sensory map formation
Collapse
|
12
|
Lodovichi C. Role of Axonal Odorant Receptors in Olfactory Topography. Neurosci Insights 2020; 15:2633105520923411. [PMID: 32529185 PMCID: PMC7262975 DOI: 10.1177/2633105520923411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022] Open
Abstract
A unique feature in the organization of the olfactory system is the dual role of the odorant receptors: they detect odors in the nasal epithelium and they play an instructive role in the convergence of olfactory sensory neuron axons in specific loci, ie, glomeruli, in the olfactory bulb. The dual role is corroborated by the expression of the odorant receptors in 2 specific locations of the olfactory sensory neurons: the cilia that protrude in the nostril, where the odorant receptors interact with odors, and the axon terminal, a suitable location for a potential axon guidance molecule. The mechanism of activation and function of the odorant receptors expressed at the axon terminal remained unknown for almost 20 years. A recent study identified the first putative ligand of the axonal odorant receptors, phosphatidylethanolamine-binding protein1, a molecule expressed in the olfactory bulb. The distinctive mechanisms of activation of the odorant receptors expressed at the opposite locations in sensory neurons, by odors, at the cilia, and by molecules expressed in the olfactory bulb, at the axon terminal, explain the dual role of the odorant receptors and link the specificity of odor perception with its internal representation, in the topographic map.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Neuroscience Institute CNR, Department of Biomedical Science, Padova, Italy.,PNC, Padova Neuroscience Center, Padova, Italy.,VIMM, Veneto Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
13
|
Dibattista M, Pifferi S, Menini A, Reisert J. Alzheimer's Disease: What Can We Learn From the Peripheral Olfactory System? Front Neurosci 2020; 14:440. [PMID: 32508565 PMCID: PMC7248389 DOI: 10.3389/fnins.2020.00440] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
The sense of smell has been shown to deteriorate in patients with some neurodegenerative disorders. In Parkinson's disease (PD) and Alzheimer's disease (AD), decreased ability to smell is associated with early disease stages. Thus, olfactory neurons in the nose and olfactory bulb (OB) may provide a window into brain physiology and pathophysiology to address the pathogenesis of neurodegenerative diseases. Because nasal olfactory receptor neurons regenerate throughout life, the olfactory system offers a broad variety of cellular mechanisms that could be altered in AD, including odorant receptor expression, neurogenesis and neurodegeneration in the olfactory epithelium, axonal targeting to the OB, and synaptogenesis and neurogenesis in the OB. This review focuses on pathophysiological changes in the periphery of the olfactory system during the progression of AD in mice, highlighting how the olfactory epithelium and the OB are particularly sensitive to changes in proteins and enzymes involved in AD pathogenesis. Evidence reviewed here in the context of the emergence of other typical pathological changes in AD suggests that olfactory impairments could be used to understand the molecular mechanisms involved in the early phases of the pathology.
Collapse
Affiliation(s)
- Michele Dibattista
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari A. Moro, Bari, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | | |
Collapse
|
14
|
Vaddadi N, Iversen K, Raja R, Phen A, Brignall A, Dumontier E, Cloutier JF. Kirrel2 is differentially required in populations of olfactory sensory neurons for the targeting of axons in the olfactory bulb. Development 2019; 146:dev.173310. [PMID: 31142543 DOI: 10.1242/dev.173310] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/15/2019] [Indexed: 01/25/2023]
Abstract
The formation of olfactory maps in the olfactory bulb (OB) is crucial for the control of innate and learned mouse behaviors. Olfactory sensory neurons (OSNs) expressing a specific odorant receptor project axons into spatially conserved glomeruli within the OB and synapse onto mitral cell dendrites. Combinatorial expression of members of the Kirrel family of cell adhesion molecules has been proposed to regulate OSN axonal coalescence; however, loss-of-function experiments have yet to establish their requirement in this process. We examined projections of several OSN populations in mice that lacked either Kirrel2 alone, or both Kirrel2 and Kirrel3. Our results show that Kirrel2 and Kirrel3 are dispensable for the coalescence of MOR1-3-expressing OSN axons to the most dorsal region (DI) of the OB. In contrast, loss of Kirrel2 caused MOR174-9- and M72-expressing OSN axons, projecting to the DII region, to target ectopic glomeruli. Our loss-of-function approach demonstrates that Kirrel2 is required for axonal coalescence in subsets of OSNs that project axons to the DII region and reveals that Kirrel2/3-independent mechanisms also control OSN axonal coalescence in certain regions of the OB.
Collapse
Affiliation(s)
- Neelima Vaddadi
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Katrine Iversen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Reesha Raja
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada
| | - Alina Phen
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Alexandra Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| | - Emilie Dumontier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec H3A 2B4, Canada .,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec H3A 2B4, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec H3A 0C7, Canada
| |
Collapse
|
15
|
Nakashima A, Ihara N, Shigeta M, Kiyonari H, Ikegaya Y, Takeuchi H. Structured spike series specify gene expression patterns for olfactory circuit formation. Science 2019; 365:science.aaw5030. [PMID: 31171707 DOI: 10.1126/science.aaw5030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Neural circuits emerge through the interplay of genetic programming and activity-dependent processes. During the development of the mouse olfactory map, axons segregate into distinct glomeruli in an olfactory receptor (OR)-dependent manner. ORs generate a combinatorial code of axon-sorting molecules whose expression is regulated by neural activity. However, it remains unclear how neural activity induces OR-specific expression patterns of axon-sorting molecules. We found that the temporal patterns of spontaneous neuronal spikes were not spatially organized but were correlated with the OR types. Receptor substitution experiments demonstrated that ORs determine spontaneous activity patterns. Moreover, optogenetically differentiated patterns of neuronal activity induced specific expression of the corresponding axon-sorting molecules and regulated axonal segregation. Thus, OR-dependent temporal patterns of spontaneous activity play instructive roles in generating the combinatorial code of axon-sorting molecules during olfactory map formation.
Collapse
Affiliation(s)
- Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Naoki Ihara
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Mayo Shigeta
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resource Development, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan.,Laboratory for Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Haruki Takeuchi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan. .,Social Cooperation Program of Evolutional Chemical Safety Assessment System, LECSAS, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Olfactory marker protein (OMP) regulates formation and refinement of the olfactory glomerular map. Nat Commun 2018; 9:5073. [PMID: 30498219 PMCID: PMC6265328 DOI: 10.1038/s41467-018-07544-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022] Open
Abstract
Inputs from olfactory sensory neuron (OSN) axons expressing the same type of odorant receptor (OR) converge in the glomerulus of the main olfactory bulb. A key marker of mature OSNs is olfactory marker protein (OMP), whose deletion has been associated with deficits in OSN signal transduction and odor discrimination. Here, we investigate glomerular odor responses and anatomical architecture in mice in which one or both alleles of OMP are replaced by the fluorescent synaptic activity reporter, synaptopHluorin. Functionally heterogeneous glomeruli, that is, ones with microdomains with distinct odor responses, are rare in OMP+/– mice, but occur frequently in OMP–/– mice. Genetic targeting of single ORs reveals that these microdomains arise from co-innervation of individual glomeruli by OSNs expressing different ORs. This glomerular mistargeting is locally restricted to a few glomerular diameters. Our studies document functional heterogeneity in sensory input within individual glomeruli and uncover its anatomical correlate, revealing an unexpected role for OMP in the formation and refinement of the glomerular map. Olfactory marker protein (OMP) expressed in all olfactory sensory neurons (OSN) is required for proper signal transduction and odor discrimination. Here, the authors report that OMP deletion leads to formation of glomeruli with axons from heterogeneous OSNs due to local axonal mistargeting.
Collapse
|
17
|
Wu Y, Ma L, Duyck K, Long CC, Moran A, Scheerer H, Blanck J, Peak A, Box A, Perera A, Yu CR. A Population of Navigator Neurons Is Essential for Olfactory Map Formation during the Critical Period. Neuron 2018; 100:1066-1082.e6. [PMID: 30482691 DOI: 10.1016/j.neuron.2018.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/10/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
In the developing brain, heightened plasticity during the critical period enables the proper formation of neural circuits. Here, we identify the "navigator" neurons, a group of perinatally born olfactory sensory neurons, as playing an essential role in establishing the olfactory map during the critical period. The navigator axons project circuitously in the olfactory bulb and traverse multiple glomeruli before terminating in perspective glomeruli. These neurons undergo a phase of exuberant axon growth and exhibit a shortened lifespan. Single-cell transcriptome analyses reveal distinct molecular signatures for the navigators. Extending their lifespan prolongs the period of exuberant growth and perturbs axon convergence. Conversely, a genetic ablation experiment indicates that, despite postnatal neurogenesis, only the navigators are endowed with the ability to establish a convergent map. The presence and the proper removal of the navigator neurons are both required to establish tight axon convergence into the glomeruli.
Collapse
Affiliation(s)
- Yunming Wu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Limei Ma
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Kyle Duyck
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Carter C Long
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Andrea Moran
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Hayley Scheerer
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Jillian Blanck
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Allison Peak
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Andrew Box
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - C Ron Yu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
18
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
19
|
Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 2018; 14:e1007164. [PMID: 29385124 PMCID: PMC5809090 DOI: 10.1371/journal.pgen.1007164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 12/25/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensory neurons choose to express a single odorant receptor (OR) from a large gene repertoire and extend axons to reproducible, OR-specific locations within the olfactory bulb. This developmental process produces a topographically organized map of odorant experience in the brain. The axon guidance mechanisms that generate this pattern of connectivity, as well as those that coordinate OR choice and axonal guidance receptor expression, are incompletely understood. We applied the powerful approach of single-cell RNA-seq on newly born olfactory sensory neurons (OSNs) in young zebrafish larvae to address these issues. Expression profiles were generated for 56 individual Olfactory Marker Protein (OMP) positive sensory neurons by single-cell (SC) RNA-seq. We show that just as in mouse OSNs, mature zebrafish OSNs typically express a single predominant OR transcript. Our previous work suggests that OSN targeting is related to the OR clade from which a sensory neuron chooses to express its odorant receptor. We categorized each of the mature cells based on the clade of their predominantly expressed OR. Transcripts expressed at higher levels in each of three clade-related categories were identified using Penalized Linear Discriminant Analysis (PLDA). A genome-wide approach was used to identify membrane-associated proteins that are most likely to have guidance-related activity. We found that OSNs that choose to express an OR from a particular clade also express specific subsets of potential axon guidance genes and transcription factors. We validated our identification of candidate axon guidance genes for one clade of OSNs using bulk RNA-seq from a subset of transgene-labeled neurons that project to a single protoglomerulus. The differential expression patterns of selected candidate guidance genes were confirmed using fluorescent in situ hybridization. Most importantly, we observed axonal mistargeting in knockouts of three candidate axonal guidance genes identified in this analysis: nrp1a, nrp1b, and robo2. In each case, targeting errors were detected in the subset of axons that normally express these transcripts at high levels, and not in the axons that express them at low levels. Our findings demonstrate that specific, functional, axonal guidance related genes are expressed in subsets of OSNs that that can be categorized by their patterns of OR expression.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
| | - Stephen A. Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derek J. Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jonathan A. Raper
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Taku AA, Marcaccio CL, Ye W, Krause GJ, Raper JA. Attractant and repellent cues cooperate in guiding a subset of olfactory sensory axons to a well-defined protoglomerular target. Development 2016; 143:123-32. [PMID: 26732841 DOI: 10.1242/dev.127985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Olfactory sensory axons target well-defined intermediate targets in the zebrafish olfactory bulb called protoglomeruli well before they form odorant receptor-specific glomeruli. A subset of olfactory sensory neurons are labeled by expression of the or111-7:IRES:GAL4 transgene whose axons terminate in the central zone (CZ) protoglomerulus. Previous work has shown that some of these axons misproject to the more dorsal and anterior dorsal zone (DZ) protoglomerulus in the absence of Netrin 1/Dcc signaling. In search of additional cues that guide these axons to the CZ, we found that Semaphorin 3D (Sema3D) is expressed in the anterior bulb and acts as a repellent that pushes them towards the CZ. Further analysis indicates that Sema3D signaling is mediated through Nrp1a, while Nrp2b also promotes CZ targeting but in a Sema3D-independent manner. nrp1a, nrp2b and dcc transcripts are detected in or111-7 transgene-expressing neurons early in development and both Nrp1a and Dcc act cell-autonomously in sensory neurons to promote accurate targeting to the CZ. dcc and nrp1a double mutants have significantly more DZ misprojections than either single mutant, suggesting that the two signaling systems act independently and in parallel to direct a specific subset of sensory axons to their initial protoglomerular target.
Collapse
Affiliation(s)
- Alemji A Taku
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Wenda Ye
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Gregory J Krause
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Regeneration and rewiring of rodent olfactory sensory neurons. Exp Neurol 2016; 287:395-408. [PMID: 27264358 DOI: 10.1016/j.expneurol.2016.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/27/2016] [Accepted: 06/01/2016] [Indexed: 12/24/2022]
Abstract
The olfactory sensory neurons are the only neurons in the mammalian nervous system that not only regenerate naturally and in response to injury, but also project to specific targets in the brain. The stem cells in the olfactory epithelium commit to both neuronal and non-neuronal lineages depending on the environmental conditions. They provide a continuous supply of new neurons. A newly generated neuron must express a specific odorant receptor gene and project to a central target consist of axons expressing the same receptor type. Recent studies have provided insights into this highly regulated, complex process. However, the molecular mechanisms that determine the regenerative capacity of stem cells, and the ability of newly generated neurons in directing their axons toward specific targets, remain elusive. Here we review progresses and controversies in the field and offer testable models.
Collapse
|
22
|
Inverse Expression Levels of EphrinA3 and EphrinA5 Contribute to Dopaminergic Differentiation of Human SH-SY5Y Cells. J Mol Neurosci 2016; 59:483-92. [PMID: 27217159 DOI: 10.1007/s12031-016-0759-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Two key principles underlying successful cellular therapies for Parkinson's disease (PD) are appropriate differentiation of dopaminergic (DA) neurons from transplanted cells and precise axon growth. EphrinAs, a subclass of ephrins, act as axon guidance molecules and are highly expressed in DA brain regions. Existing evidences indicate that they act as either repulsion or attraction signals to guide axon growth. This study investigated whether ephrinAs are involved in DA neuron differentiation. Data from miRCURY™ LNA mRNAs/microRNAs microarrays and quantitative real-time polymerase chain reaction (qRT-PCR) showed upregulated ephrinA3 mRNA (EFNA3) and downregulated ephrinA5 mRNA (EFNA5) during DA neuron differentiation. In addition, hsa-miR-4271 was downregulated, which could influence EFNA3 translation. Furthermore, immunofluorescence (IF) and western blotting confirmed the mRNA results and showed increased ephrinA3 and decreased ephrinA5 protein levels in differentiating DA neurons. Taken together, our results indicate that inverse expression levels of ephrinA3 and ephrinA5, which are possibly influenced by microRNAs, contribute to DA neuron differentiation by guiding axon growth.
Collapse
|
23
|
Aguillon R, Blader P, Batut J. Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes. Methods Cell Biol 2016; 134:33-67. [PMID: 27312490 DOI: 10.1016/bs.mcb.2016.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peripheral sensory organs and ganglia found in the vertebrate head arise during embryonic development from distinct ectodermal thickenings, called cranial sensory placodes (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, and otic). A series of patterning events leads to the establishment of these placodes. Subsequently, these placodes undergo specific morphogenetic movements and cell-type specification in order to shape the final placodal derivatives and to produce differentiated cell types necessary for their function. In this chapter, we will focus on recent studies in the zebrafish that have advanced our understanding of cranial sensory placode development. We will summarize the signaling events and their molecular effectors guiding the formation of the so-called preplacodal region, and the subsequent subdivision of this region along the anteroposterior axis that gives rise to specific placode identities as well as those controlling morphogenesis and neurogenesis. Finally, we will highlight the approaches used in zebrafish that have been established to precisely label cell populations, to follow their development, and/or to characterize cell fates within a specific placode.
Collapse
Affiliation(s)
- R Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - P Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - J Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
24
|
Sheleg M, Yochum CL, Richardson JR, Wagner GC, Zhou R. Ephrin-A5 regulates inter-male aggression in mice. Behav Brain Res 2015; 286:300-7. [PMID: 25746458 PMCID: PMC4390541 DOI: 10.1016/j.bbr.2015.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
The Eph family of receptor tyrosine kinases play key roles in both the patterning of the developing nervous system and neural plasticity in the mature brain. To determine functions of ephrin-A5, a GPI-linked ligand to the Eph receptors, in animal behavior regulations, we examined effects of its inactivation on male mouse aggression. When tested in the resident-intruder paradigm for offensive aggression, ephrin-A5-mutant animals (ephrin-A5(-/-)) exhibited severe reduction in conspecific aggression compared to wild-type controls. On the contrary, defensive aggression in the form of target biting was higher in ephrin-A5(-/-) mice, indicating that the mutant mice are capable of attacking behavior. In addition, given the critical role of olfaction in aggressive behavior, we examined the ability of the ephrin-A5(-/-) mice to smell and found no differences between the mutant and control animals. Testosterone levels in the mutant mice were also found to be within the normal range. Taken together, our data reveal a new role of ephrin-A5 in the regulation of aggressive behavior in mice.
Collapse
Affiliation(s)
- Michal Sheleg
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Carrie L Yochum
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA
| | - Jason R Richardson
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA
| | - George C Wagner
- Environmental & Occupational Health Sciences Institute, UMDNJ/RWJMS, Piscataway, NJ 08854, USA; Department of Psychology, Rutgers University, New Brunswick, NJ 08854, USA.
| | - Renping Zhou
- Departments of Chemical Biology, Susan Lehman-Cullman Laboratory for Cancer Research, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
Wang Z, Liu Z, Liu B, Liu G, Wu S. Dissecting the roles of Ephrin-A3 in malignant peripheral nerve sheath tumor by TALENs. Oncol Rep 2015; 34:391-8. [PMID: 25955218 DOI: 10.3892/or.2015.3966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/30/2015] [Indexed: 11/05/2022] Open
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare and aggressive soft tissue sarcoma for which effective treatments have not yet been established due to poor understanding of its pathogenesis. Our previous study indicated that miR-210-mediated Ephrin-A3 (EFNA3) promotion of proliferation and invasion of MPNST cells plays an important role in MPNST tumorigenesis and progression. The purpose of the present study was to further investigate the roles of EFNA3 in MPNST. Constructed transcription activator-like effector nucleases (TALENs) and lentiviral vectors were transfected into MPNST ST88-14 (NF1 wild-type) and sNF96.2 (NF1 mutant type) cell lines to obtain gain- and loss-of-function cell lines for the EFNA3 function study. The results showed that the knockout of ENFA3 increased cellular viability and invasiveness of the MPNST cells. However, the adhesion ability of MPNST cells was enhanced or inhibited when EFNA3 was overexpressed or knocked out, respectively. It was also observed that knockout of EFNA3 significantly decreased the expression of phosphorylated FAK (p-FAK) and the tumor necrosis factor α (TNF-α) compared to that in the control cells, yet the expression of phosphatidylinositol 3-kinase (PI3K), GTPase, integrins, vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-α) increased significantly. Inversely, overexpression of EFNA3 significantly increased the expression of p-FAK and TNF-α compared to that in the control cells, yet the expression of PI3K, GTPase, integrins, VEGF and HIF-α decreased significantly. The results indicated that EFNA3 serves as a tumor suppressor in MPNST cells and it may play a critical role in the focal adhesion kinase (FAK) signaling and VEGF-associated tumor angiogenesis pathway. These findings may not only facilitate the better understanding of MPNST pathogenesis, but also suggest EFNA3 as a promising target for MPNST treatment.
Collapse
Affiliation(s)
- Zhengguang Wang
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhendong Liu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Bo Liu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Gengyan Liu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Song Wu
- Department of Orthopaedic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
26
|
Takeuchi S, Katoh H, Negishi M. Eph/ephrin reverse signalling induces axonal retraction through RhoA/ROCK pathway. J Biochem 2015; 158:245-52. [PMID: 25922200 DOI: 10.1093/jb/mvv042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023] Open
Abstract
Eph/ephrin signalling plays essential roles in various tissue developments, such as axon guidance, angiogenesis and tissue separation. Interaction between Ephs and ephrins upon cell-cell contact results in forward (towards Eph-expressing cells) and reverse (towards ephrin-expressing cells) signalling. Although the molecular mechanisms downstream of Eph/ephrin forward signalling have been extensively studied, the functions and intracellular molecular mechanisms of Eph/ephrin reverse signalling are not fully understood. Rho GTPases are key regulators of the actin cytoskeleton to regulate cell morphology. In this study, we revealed that stimulation with the extracellular domain of EphB2 to activate Eph/ephrin reverse signalling induced axonal retraction in hippocampal neurons. The reduction of axonal length and branching by Eph/ephrin reverse signalling was blocked by inhibition of RhoA or Rho-associated coiled-coil-containing protein kinase (ROCK). These results suggest that Eph/ephrin reverse signalling negatively regulates axonal outgrowth and branching through RhoA/ROCK pathway in hippocampal neurons.
Collapse
Affiliation(s)
- Shingo Takeuchi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Manabu Negishi
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Wurzman R, Forcelli PA, Griffey CJ, Kromer LF. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders. Behav Brain Res 2014; 278:115-28. [PMID: 25281279 DOI: 10.1016/j.bbr.2014.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/02/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
Abstract
EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms.
Collapse
Affiliation(s)
- Rachel Wurzman
- Georgetown University, Department of Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Department of Pharmacology and Physiology, Washington, DC 20057, United States of America.
| | - Patrick A Forcelli
- Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Department of Pharmacology and Physiology, Washington, DC 20057, United States of America
| | - Christopher J Griffey
- Georgetown University, Department of Biology, Washington, DC 20057, United States of America
| | - Lawrence F Kromer
- Georgetown University, Department of Neuroscience, Washington, DC 20057, United States of America; Georgetown University, Interdisciplinary Program in Neuroscience, Washington, DC 20057, United States of America
| |
Collapse
|
28
|
Stanic K, Vera A, González M, Recabal A, Astuya A, Torrejón M, Montecinos H, Caprile T. Complementary expression of EphA7 and SCO-spondin during posterior commissure development. Front Neuroanat 2014; 8:49. [PMID: 25009468 PMCID: PMC4068196 DOI: 10.3389/fnana.2014.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/02/2014] [Indexed: 12/05/2022] Open
Abstract
Bilaterally symmetric organisms need to exchange information between the two sides of their bodies in order to integrate sensory inputs and coordinate motor control. This exchange occurs through commissures formed by neurons that project axons across the midline to the contralateral side of the central nervous system. The posterior commissure is the first transversal axonal tract of the embryonic vertebrate brain. It is located in the dorsal portion of the prosomere 1, at the caudal diencephalon. The axons of the posterior commissure principally come from neurons of ventrolateral and dorsolateral pretectal nuclei (parvocellular and magnocellular nucleus of the posterior commissure, respectively) that extend their axons toward the dorsal region. The trajectory of these axons can be divided into the following three stages: (1) dorsal axon extension towards the lateral roof plate; (2) fasciculation in the lateral roof plate; and (3) midline decision of turning to the ipsilateral side or continuing to the opposite side. The mechanisms and molecules that guide the axons during these steps are unknown. In the present work, immunohistochemical and in situ hybridization analyses were performed, with results suggesting the participation of EphA7 in guiding axons from the ventral to the dorsal region of the prosomere 1 through the generation of an axonal corridor limited by repulsive EphA7 walls. At the lateral roof plate, the axons became fasciculated in presence of SCO-spondin until reaching the midline. Finally, EphA7 expression was observed in the diencephalic midline roof plate, specifically in the region where some axons turn to the ipsilateral side, suggesting its participation in this decision. In summary, the present work proposes a mechanism of posterior commissure formation orchestrated by the complementary expression of the axon guidance cues SCO-spondin and EphA7.
Collapse
Affiliation(s)
- Karen Stanic
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - América Vera
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Melissa González
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Antonia Recabal
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Allison Astuya
- Laboratory of Cell Culture and Marine Genomics, Marine Biotechnology Unit, Faculty of Natural and Oceanographic Sciences and Program COPAS Sur-Austral, University of Concepción, Concepción , Chile
| | - Marcela Torrejón
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Hernán Montecinos
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| | - Teresa Caprile
- Axon Guidance Laboratory, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción , Chile
| |
Collapse
|
29
|
Liu M, Wang L, Cang J. Different roles of axon guidance cues and patterned spontaneous activity in establishing receptive fields in the mouse superior colliculus. Front Neural Circuits 2014; 8:23. [PMID: 24723853 PMCID: PMC3972457 DOI: 10.3389/fncir.2014.00023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/03/2014] [Indexed: 11/13/2022] Open
Abstract
Visual neurons in the superior colliculus (SC) respond to both bright (On) and dark (Off) stimuli in their receptive fields. This receptive field property is due to proper convergence of On- and Off-centered retinal ganglion cells to their target cells in the SC. In this study, we have compared the receptive field structure of individual SC neurons in two lines of mutant mice that are deficient in retinotopic mapping: the ephrin-A knockouts that lack important retinocollicular axonal guidance cues and the nAChR-β2 knockouts that have altered activity-dependent refinement of retinocollicular projections. We find that even though the receptive fields are much larger in the ephrin-A knockouts, their On-Off overlap remains unchanged. These neurons also display normal level of selectivity for stimulus direction and orientation. In contrast, the On-Off overlap is disrupted in the β2 knockouts. Together with the previous finding of disrupted direction and orientation selectivity in the β2 knockout mice, our results indicate that molecular guidance cues and activity-dependent processes play different roles in the development of receptive field properties in the SC.
Collapse
Affiliation(s)
- Mingna Liu
- Department of Neurobiology, Northwestern UniversityEvanston, IL, USA
| | - Lupeng Wang
- Department of Neurobiology, Northwestern UniversityEvanston, IL, USA
- Interdepartmental Neuroscience Program, Northwestern UniversityEvanston, IL, USA
| | - Jianhua Cang
- Department of Neurobiology, Northwestern UniversityEvanston, IL, USA
| |
Collapse
|
30
|
MeCP2 is required for activity-dependent refinement of olfactory circuits. Mol Cell Neurosci 2014; 59:63-75. [PMID: 24472844 DOI: 10.1016/j.mcn.2014.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 01/06/2023] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) is a structural chromosomal protein involved in the regulation of gene expression. Alterations in the levels of MeCP2 have been related to neurodevelopmental disorders. Studies in mouse models of MeCP2 deficiency have demonstrated that this protein is important for neuronal maturation, neurite complexity, synaptogenesis, and synaptic plasticity. However, the mechanisms by which MeCP2 dysfunction leads to neurodevelopmental defects, and the role of activity, remain unclear, as most studies examine the adult nervous system, which may obfuscate the primary consequences of MeCP2 mutation. We hypothesize that MeCP2 plays a role during the formation and activity-driven maturation of neural circuits at early postnatal stages. To test this hypothesis, we use the olfactory system as a neurodevelopmental model. This system undergoes postnatal neurogenesis; axons from olfactory neurons form highly stereotyped projections to higher-order neurons, facilitating the detection of possible defects in the establishment of connectivity. In vivo olfactory stimulation paradigms were used to produce physiological synaptic activity in gene-targeted mice in which specific olfactory circuits are visualized. Our results reveal defective postnatal refinement of olfactory circuits in Mecp2 knock out (KO) mice after sensory (odorant) stimulation. This failure in refinement was associated with deficits in the normal responses to odorants, including brain-derived neurotrophic factor (BDNF) production, as well as changes in adhesion molecules known to regulate axonal convergence. The defective refinement observed in Mecp2 KO mice was prevented by daily treatment with ampakine beginning after the first postnatal week. These observations indicate that increasing synaptic activity at early postnatal stage might circumvent the detrimental effect of MeCP2 deficiency on circuitry maturation. The present results provide in vivo evidence in real time for the role of MeCP2 in activity-dependent maturation of olfactory circuitry, with implications for understanding the mechanism of MeCP2 mutations in the development of neural connectivity.
Collapse
|
31
|
Yu X, Wang G, Gilmore A, Yee AX, Li X, Xu T, Smith SJ, Chen L, Zuo Y. Accelerated experience-dependent pruning of cortical synapses in ephrin-A2 knockout mice. Neuron 2013; 80:64-71. [PMID: 24094103 DOI: 10.1016/j.neuron.2013.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 10/26/2022]
Abstract
Refinement of mammalian neural circuits involves substantial experience-dependent synapse elimination. Using in vivo two-photon imaging, we found that experience-dependent elimination of postsynaptic dendritic spines in the cortex was accelerated in ephrin-A2 knockout (KO) mice, resulting in fewer adolescent spines integrated into adult circuits. Such increased spine removal in ephrin-A2 KOs depended on activation of glutamate receptors, as blockade of the N-methyl-D-aspartate (NMDA) receptors eliminated the difference in spine loss between wild-type and KO mice. We also showed that ephrin-A2 in the cortex colocalized with glial glutamate transporters, which were significantly downregulated in ephrin-A2 KOs. Consistently, glial glutamate transport was reduced in ephrin-A2 KOs, resulting in an accumulation of synaptic glutamate. Finally, inhibition of glial glutamate uptake promoted spine elimination in wild-type mice, resembling the phenotype of ephrin-A2 KOs. Together, our results suggest that ephrin-A2 regulates experience-dependent, NMDA receptor-mediated synaptic pruning through glial glutamate transport during maturation of the mouse cortex.
Collapse
Affiliation(s)
- Xinzhu Yu
- Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kempf A, Montani L, Petrinovic MM, Schroeter A, Weinmann O, Patrignani A, Schwab ME. Upregulation of axon guidance molecules in the adult central nervous system of Nogo-A knockout mice restricts neuronal growth and regeneration. Eur J Neurosci 2013; 38:3567-79. [DOI: 10.1111/ejn.12357] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/02/2023]
Affiliation(s)
- Anissa Kempf
- Department of Health Sciences and Technology; Brain Research Institute; University of Zurich; Swiss Federal Institute of Technology (ETH) Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Laura Montani
- Department of Health Sciences and Technology; Brain Research Institute; University of Zurich; Swiss Federal Institute of Technology (ETH) Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Marija M. Petrinovic
- Department of Health Sciences and Technology; Brain Research Institute; University of Zurich; Swiss Federal Institute of Technology (ETH) Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Aileen Schroeter
- Department of Health Sciences and Technology; Brain Research Institute; University of Zurich; Swiss Federal Institute of Technology (ETH) Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Oliver Weinmann
- Department of Health Sciences and Technology; Brain Research Institute; University of Zurich; Swiss Federal Institute of Technology (ETH) Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Andrea Patrignani
- Functional Genomics Center; University of Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Martin E. Schwab
- Department of Health Sciences and Technology; Brain Research Institute; University of Zurich; Swiss Federal Institute of Technology (ETH) Zurich; Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| |
Collapse
|
33
|
Wallace MM, Kavianpour SM, Gabriele ML. Ephrin-B2 reverse signaling is required for topography but not pattern formation of lateral superior olivary inputs to the inferior colliculus. J Comp Neurol 2013; 521:1585-97. [PMID: 23042409 DOI: 10.1002/cne.23243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/05/2012] [Accepted: 10/03/2012] [Indexed: 12/19/2022]
Abstract
Graded and modular expressions of Eph-ephrins are known to provide positional information for the formation of topographic maps and patterning in the developing nervous system. Previously we have shown that ephrin-B2 is expressed in a continuous gradient across the tonotopic axis of the central nucleus of the inferior colliculus (CNIC), whereas patterns are discontinuous and modular in the lateral cortex of the IC (LCIC). The present study explores the involvement of ephrin-B2 signaling in the development of projections to the CNIC and LCIC arising from the lateral superior olivary nuclei (LSO) prior to hearing onset. Anterograde and retrograde fluorescent tracing methods in neonatal fixed tissue preparations were used to compare topographic mapping and the establishment of LSO layers/modules in wild-type and ephrin-B2(lacZ/+) mice (severely compromised reverse signaling). At birth, pioneer LSO axons occupy the ipsilateral IC in both groups but are delayed contralaterally in ephrin-B2(lacZ/+) mutants. By the onset of hearing, both wild-type and mutant projections form discernible layers bilaterally in the CNIC and modular arrangements within the ipsilateral LCIC. In contrast, ephrin-B2(lacZ/+) mice lack a reliable topography in LSO-IC projections, suggesting that fully functional ephrin-B2 reverse signaling is required for normal projection mapping. Taken together, these ephrin-B2 findings paired with known coexpression of EphA4 suggest the importance of these signaling proteins in establishing functional auditory circuits prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- Department of Biology, MSC 7801, James Madison University, Harrisonburg, Virginia 22807, USA
| | | | | |
Collapse
|
34
|
What axons tell each other: axon-axon signaling in nerve and circuit assembly. Curr Opin Neurobiol 2013; 23:974-82. [PMID: 23973157 DOI: 10.1016/j.conb.2013.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 01/29/2023]
Abstract
A remarkable feature of nervous system development is the ability of axons emerging from newly formed neurons to traverse, by cellular scale, colossal distances to appropriate targets. The earliest axons achieve this in an essentially axon-free environment, but the vast majority of axons eventually grow along a scaffold of nerve tracts created by earlier extending axons. Signal exchange between sequentially or simultaneously extending axons may well represent the predominant mode of axonal navigation, but proportionally few efforts have so far been directed at deciphering the underlying mechanisms. This review intends to provide a conceptual update on the cellular and molecular principles driving axon-axon interactions, with emphasis on those contributing to the fidelity of axonal navigation, sorting and connectivity during nerve and circuit assembly.
Collapse
|
35
|
Khan M, Vaes E, Mombaerts P. Temporal patterns of odorant receptor gene expression in adult and aged mice. Mol Cell Neurosci 2013; 57:120-9. [PMID: 23962816 DOI: 10.1016/j.mcn.2013.08.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 08/05/2013] [Accepted: 08/09/2013] [Indexed: 01/27/2023] Open
Abstract
In the mouse, the sense of smell relies predominantly on the expression of ~1200 odorant receptor (OR) genes in the main olfactory epithelium (MOE). Each mature olfactory sensory neuron (OSN) in the MOE is thought to express just one of these OR genes; conversely, an OR gene is expressed in thousands to tens of thousands of OSNs per mouse. Here, we have characterized temporal patterns of OR gene expression in a cohort of inbred C57BL6/N mice from the Aged Rodent Colonies of the National Institute on Aging. We applied the NanoString multiplex platform to quantify RNA abundance for 531 OR genes in whole olfactory mucosa (WOM) tissue samples. The five study groups were females aged 2, 6, 12, 18, and 31 months (mo). We classified the 531 temporal patterns using a step-down quadratic regression method for time course analysis. The majority of OR genes (58.4%) are classified as flat: there is no significant difference from a horizontal line within this time window. There are 32.8% of OR genes with a downward profile, 7.2% with an upward profile, and 1.7% with a convex or concave profile. But the magnitude of these decreases and increases tends to be small: only 4.3% of OR genes are differentially expressed (DE) at 31 mo compared to 2 mo. Interestingly, the variances of NanoString counts for individual OR genes are homogeneous among the age groups. Our analyses of these 15,930 OR gene expression data of C57BL6/N mice that were raised and housed under well-controlled conditions indicate that OR gene expression at the MOE level is intrinsically stable.
Collapse
Affiliation(s)
- Mona Khan
- Max Planck Research Unit for Molecular Neurogenetics, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
36
|
Cang J, Feldheim DA. Developmental mechanisms of topographic map formation and alignment. Annu Rev Neurosci 2013; 36:51-77. [PMID: 23642132 DOI: 10.1146/annurev-neuro-062012-170341] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain connections are organized into topographic maps that are precisely aligned both within and across modalities. This alignment facilitates coherent integration of different categories of sensory inputs and allows for proper sensorimotor transformations. Topographic maps are established and aligned by multistep processes during development, including interactions of molecular guidance cues expressed in gradients; spontaneous activity-dependent axonal and dendritic remodeling; and sensory-evoked plasticity driven by experience. By focusing on the superior colliculus, a major site of topographic map alignment for different sensory modalities, this review summarizes current understanding of topographic map development in the mammalian visual system and highlights recent advances in map alignment studies. A major goal looking forward is to reveal the molecular and synaptic mechanisms underlying map alignment and to understand the physiological and behavioral consequences when these mechanisms are disrupted at various scales.
Collapse
Affiliation(s)
- Jianhua Cang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| | | |
Collapse
|
37
|
Sekine SU, Haraguchi S, Chao K, Kato T, Luo L, Miura M, Chihara T. Meigo governs dendrite targeting specificity by modulating ephrin level and N-glycosylation. Nat Neurosci 2013; 16:683-91. [PMID: 23624514 DOI: 10.1038/nn.3389] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/01/2013] [Indexed: 11/09/2022]
Abstract
Neural circuit assembly requires precise dendrite and axon targeting. We identified an evolutionarily conserved endoplasmic reticulum (ER) protein, Meigo, from a mosaic genetic screen in Drosophila melanogaster. Meigo was cell-autonomously required in olfactory receptor neurons and projection neurons to target their axons and dendrites to the lateral antennal lobe and to refine projection neuron dendrites into individual glomeruli. Loss of Meigo induced an unfolded protein response and reduced the amount of neuronal cell surface proteins, including Ephrin. Ephrin overexpression specifically suppressed the projection neuron dendrite refinement defect present in meigo mutant flies, and ephrin knockdown caused a similar projection neuron dendrite refinement defect. Meigo positively regulated the level of Ephrin N-glycosylation, which was required for its optimal function in vivo. Thus, Meigo, an ER-resident protein, governs neuronal targeting specificity by regulating ER folding capacity and protein N-glycosylation. Furthermore, Ephrin appears to be an important substrate that mediates Meigo's function in refinement of glomerular targeting.
Collapse
Affiliation(s)
- Sayaka U Sekine
- Department of Genetics, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Dishevelled proteins are associated with olfactory sensory neuron presynaptic terminals. PLoS One 2013; 8:e56561. [PMID: 23437169 PMCID: PMC3577874 DOI: 10.1371/journal.pone.0056561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 01/11/2013] [Indexed: 11/28/2022] Open
Abstract
Olfactory sensory neurons (OSNs) project their axons from the olfactory epithelium toward the olfactory bulb (OB) in a heterogeneous and unsorted arrangement. However, as the axons approach the glomerular layer of the OB, axons from OSNs expressing the same odorant receptor (OR) sort and converge to form molecularly homogeneous glomeruli. Axon guidance cues, cell adhesion molecules, and OR induced activity have been implicated in the final targeting of OSN axons to specific glomeruli. Less understood, and often controversial, are the mechanisms used by OSN axons to initially navigate from the OE toward the OB. We previously demonstrated a role for Wnt and Frizzled (Fz) molecules in OSN axon extension and organization within the olfactory nerve. Building on that we now turned our attention to the downstream signaling cascades from Wnt-Fz interactions. Dishevelled (Dvl) is a key molecule downstream of Fz receptors. Three isoforms of Dvl with specific as well as overlapping functions are found in mammals. Here, we show that Dvl-1 expression is restricted to OSNs in the dorsal recess of the nasal cavity, and labels a unique subpopulation of glomeruli. Dvl-2 and Dvl-3 have a widespread distribution in both the OE and OB. Both Dvl-1 and Dvl-2 are associated with intra-glomerular pre-synaptic OSN terminals, suggesting a role in synapse formation/stabilization. Moreover, because Dvl proteins were observed in all OSN axons, we hypothesize that they are important determinants of OSN cell differentiation and axon extension.
Collapse
|
39
|
Lodovichi C, Belluscio L. Odorant receptors in the formation of the olfactory bulb circuitry. Physiology (Bethesda) 2012; 27:200-12. [PMID: 22875451 DOI: 10.1152/physiol.00015.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In mammals, smell is mediated by odorant receptors expressed by sensory neurons in the nose. These specialized receptors are found both on olfactory sensory neurons' cilia and axon terminals. Although the primary function of ciliary odorant receptors is to detect odorants, their axonal role remains unclear but is thought to involve axon guidance. This review discusses findings that show axonal odorant receptors are indeed functional and capable of modulating neural connectivity.
Collapse
Affiliation(s)
- Claudia Lodovichi
- Venetian Institute of Molecular Medicine, and Institute of Neuroscience-CNR, Padua, Italy
| | | |
Collapse
|
40
|
Hasegawa S, Hirabayashi T, Kondo T, Inoue K, Esumi S, Okayama A, Hamada S, Yagi T. Constitutively expressed Protocadherin-α regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region. Front Mol Neurosci 2012; 5:97. [PMID: 23087612 PMCID: PMC3472330 DOI: 10.3389/fnmol.2012.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/27/2012] [Indexed: 11/29/2022] Open
Abstract
Olfactory sensory neuron (OSN) axons coalesce into specific glomeruli in the olfactory bulb (OB) according to their odorant receptor (OR) expression. Several guidance molecules enhance the coalescence of homotypic OSN projections, in an OR-specific- and neural-activity-dependent manner. However, the mechanism by which homotypic OSN axons are organized into glomeruli is unsolved. We previously reported that the clustered protocadherin-α (Pcdh-α) family of diverse cadherin-related molecules plays roles in the coalescence and elimination of homotypic OSN axons throughout development. Here we showed that the elimination of small ectopic homotypic glomeruli required the constitutive expression of a Pcdh-α isoform and Pcdh-α's cytoplasmic region, but not OR specificity or neural activity. These results suggest that Pcdh-α proteins provide a cytoplasmic signal to regulate repulsive activity for homotypic OSN axons independently of OR expression and neural activity. The counterbalancing effect of Pcdh-α proteins for the axonal coalescence mechanisms mediated by other olfactory guidance molecules indicate a possible mechanism for the organization of homotypic OSN axons into glomeruli during development.
Collapse
Affiliation(s)
- Sonoko Hasegawa
- KOKORO-Biology Group and CREST-JST, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Cho JH, Kam JWK, Cloutier JF. Slits and Robo-2 regulate the coalescence of subsets of olfactory sensory neuron axons within the ventral region of the olfactory bulb. Dev Biol 2012; 371:269-79. [PMID: 22981605 DOI: 10.1016/j.ydbio.2012.08.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/16/2022]
Abstract
Olfactory sensory neurons (OSNs) project their axons to second-order neurons in the olfactory bulb (OB) to form a precise glomerular map and these stereotypic connections are crucial for accurate odorant information processing by animals. To form these connections, olfactory sensory neuron (OSN) axons respond to axon guidance molecules that direct their growth and coalescence. We have previously implicated the axon guidance receptor Robo-2 in the accurate coalescence of OSN axons within the dorsal region of the OB (Cho et al., 2011). Herein, we have examined whether Robo-2 and its ligands, the Slits, contribute to the formation of an accurate glomerular map within more ventral regions of the OB. We have ablated expression of Robo-2 in OSNs and assessed the targeting accuracy of axons expressing either the P2 or MOR28 olfactory receptors, which innervate two different regions of the ventral OB. We show that P2-positive axons, which express Robo-2, coalesce into glomeruli more ventrally and form additional glomeruli in the OB of robo-2(lox/lox);OMP-Cre mice. We also demonstrate that Robo-2-mediated targeting of P2 axons along the dorsoventral axis of the OB is controlled by Slit-1 and Slit-3 expression. Interestingly, although MOR28-positive OSNs only express low levels of Robo-2, a reduced number of MOR28-positive glomeruli is observed in the OB of robo-2(lox/lox);OMP-Cre mice. Taken together, our results demonstrate that Slits and Robo-2 are required for the formation of an accurate glomerular map in the ventral region of the OB.
Collapse
Affiliation(s)
- Jin H Cho
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Montréal, Québec, Canada H3A 2B4
| | | | | |
Collapse
|
42
|
Ephrin-A5 deficiency alters sensorimotor and monoaminergic development. Behav Brain Res 2012; 236:139-147. [PMID: 22954718 DOI: 10.1016/j.bbr.2012.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/17/2012] [Accepted: 08/20/2012] [Indexed: 12/26/2022]
Abstract
The Eph receptors and their ligands, the ephrins, play an important role during neural development. In particular, ephrin-A5 is highly expressed in the developing nervous system in several brain regions including the olfactory bulb, frontal cortex, striatum and hypothalamus. Although a number of studies have characterized the expression of ephrin-A5 in these regions, very little is known about the functional consequences that might follow alterations in the expression of this ligand. Previously, we demonstrated that ephrin-A5 acts as a guidance molecule regulating the trajectory of the ascending midbrain dopaminergic pathways. In light of this finding and the critical role of dopamine in modulating a number of behaviors, we sought to determine whether loss of ephrin-A5 altered neurobehavioral development. Our results indicate that ephrin-A5-null mice exhibit delays in reaching developmental milestones and in the maturation of motor skills. In addition, they exhibit increased locomotor activity and reduced levels of brain monoamines. Therefore, we conclude that ephrin-A5 expression appears to be critical for proper development of central monoaminergic pathways and that its loss results in a number of neurodevelopmental abnormalities. Because alterations in monoamine function are associated with a variety of neurodevelopmental disorders, these data suggest that further study on the potential role of ephrin-A5 in such disorders is warranted.
Collapse
|
43
|
Sadrian B, Cheng TW, Shull O, Gong Q. Rap1gap2 regulates axon outgrowth in olfactory sensory neurons. Mol Cell Neurosci 2012; 50:272-82. [PMID: 22732430 DOI: 10.1016/j.mcn.2012.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/30/2022] Open
Abstract
Olfactory sensory neurons (OSNs) extend their axons from the nasal epithelium to their odorant receptor-dependent locations in the olfactory bulb. Previous studies have identified several membrane proteins along the projection pathway, and on OSN axons themselves, which regulate this process; however, little is known about the signaling mechanisms through which these factors act. We have identified and characterized Rap1gap2, a novel small GTPase regulator, in OSNs during early postnatal mouse development. Rap1gap2 overexpression limits neurite outgrowth and branching in Neuro-2a cells, and counteracts Rap1-induced augmentation of neurite outgrowth. Rap1gap2 expression is developmentally regulated within OSNs, with high expression in early postnatal stages that ultimately drops to undetectable levels by adulthood. This temporal pattern coincides with an early postnatal plastic period of OSN innervation refinement at the OB glomerular layer. Rap1gap2 stunts OSN axon outgrowth when overexpressed in vitro, while knock-down of Rap1gap2 transcript results in a significant increase in axon length. These results indicate an important role of Rap1gap2 in OSN axon growth dynamics during early postnatal development.
Collapse
Affiliation(s)
- Benjamin Sadrian
- Department of Cell Biology and Human Anatomy, University of California, Davis, School of Medicine, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
44
|
Genetic evidence for a contribution of EphA:ephrinA reverse signaling to motor axon guidance. J Neurosci 2012; 32:5209-15. [PMID: 22496566 DOI: 10.1523/jneurosci.5707-11.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repulsive Eph forward signaling from limb-derived ephrins guides the axons of lateral motor column (LMC) motor neurons. LMC axons also express ephrinAs, while their EphA receptors are expressed in the limb mesenchyme. In vitro studies have suggested that reverse signaling from limb-derived EphA4 to axonal ephrinAs might result in attraction of LMC axons. However, genetic evidence for this function is lacking. Here we use the Dunn chamber turning assay to show that EphA proteins are chemoattractants and elicit fast turning responses in LMC neurons in vitro. Moreover, ectopic expression of EphA4 in chick hindlimb changes the limb trajectory of LMC axons. Nervous system-specific deletion of EphA4 in mice resulted in fewer LMC axon projection errors than the ubiquitous deletion of EphA4. Additionally, a signaling-incompetent EphA4 mutant partially rescued guidance errors in the hindlimb, suggesting that limb-derived EphA4 contributes to the establishment of LMC projections. In summary, we provide evidence for a role of EphA:ephrinA attractive reverse signaling in motor axon guidance and in vivo evidence of in-parallel forward Eph and reverse ephrin signaling function in the same neuronal population.
Collapse
|
45
|
Netrin/DCC signaling guides olfactory sensory axons to their correct location in the olfactory bulb. J Neurosci 2012; 32:4440-56. [PMID: 22457493 DOI: 10.1523/jneurosci.4442-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Olfactory sensory neurons expressing particular olfactory receptors project to specific reproducible locations within the bulb. The axonal guidance cues that organize this precise projection pattern are only beginning to be identified. To aid in their identification and characterization, we generated a transgenic zebrafish line, OR111-7:IRES:Gal4, in which a small subset of olfactory sensory neurons is labeled. Most sensory neurons expressing the OR111-7 transgene project to a specific location within the bulb, the central zone protoglomerulus, while a smaller number project to the lateral glomerulus 1 protoglomerulus. Inhibiting Netrin/DCC (deleted in colorectal cancer) signaling perturbs the ability of OR111-7-expressing axons to enter the olfactory bulb and alters their patterns of termination within the bulb. The Netrin receptor DCC is expressed in olfactory sensory neurons around the time that they elaborate their axons, netrin1a is expressed near the medial-most margin of the olfactory bulb, and netrin1b is expressed within the ventral region of the bulb. Loss of Netrin/DCC signaling components causes some OR111-7-expressing sensory axons to wander posteriorly after exiting the olfactory pit, away from netrin-expressing areas in the bulb. OR111-7-expressing axons that enter the bulb target the central zone less precisely than normal, spreading away from netrin-expressing regions. These pathfinding errors can be corrected by the reexpression of DCC within OR111-7 transgene-expressing neurons in DCC morphant embryos. These findings implicate Netrins as the only known attractants for olfactory sensory neurons, first drawing OR111-7-expressing axons into the bulb and then into the ventromedially positioned central zone protoglomerulus.
Collapse
|
46
|
Schwarting GA, Henion TR. Regulation and function of axon guidance and adhesion molecules during olfactory map formation. J Cell Biochem 2012; 112:2663-71. [PMID: 21618591 DOI: 10.1002/jcb.23203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The olfactory system presents a practical model for investigating basic mechanisms involved in patterning connections between peripheral sensory neurons and central targets. Our understanding of olfactory map formation was advanced greatly by the discovery of cAMP signaling as an important determinant of glomerular positioning in the olfactory bulb. Additionally, several cell adhesion molecules have been identified recently that are proposed to regulate homotypic interactions among projecting axons. From these studies a model has emerged to partially explain the wiring of axons from widely dispersed neuron populations in the nasal cavity to relatively stereotyped glomerular positions. These advances have revitalized interest in axon guidance molecules in establishing olfactory topography, but also open new questions regarding how these patterns of guidance cues are established and function, and what other pathways, such as glycosylation, might be involved. This review summarizes the current state of this field and the important molecules that impact on cAMP-dependent mechanism in olfactory axon guidance.
Collapse
Affiliation(s)
- Gerald A Schwarting
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | |
Collapse
|
47
|
Imai T, Sakano H. Axon-axon interactions in neuronal circuit assembly: lessons from olfactory map formation. Eur J Neurosci 2012; 34:1647-54. [PMID: 22103421 DOI: 10.1111/j.1460-9568.2011.07817.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
During the development of the nervous system, neurons often connect axons and dendrites over long distances, which are navigated by chemical cues. During the past few decades, studies on axon guidance have focused on chemical cues provided by the axonal target or intermediate target. However, recent studies have shed light on the roles and mechanisms underlying axon-axon interactions during neuronal circuit assembly. The roles of axon-axon interactions are best exemplified in recent studies on olfactory map formation in vertebrates. Pioneer-follower interaction is essential for the axonal pathfinding process. Pre-target axon sorting establishes the anterior-posterior map order. The temporal order of axonal projection is converted to dorsal-ventral topography with the aid of secreted molecules provided by early-arriving axons. An activity-dependent process to form a discrete map also depends on axon sorting. Thus, an emerging principle of olfactory map formation is the 'self-organisation' of axons rather than the 'lock and key' matching between axons and targets. In this review, we discuss how axon-axon interactions contribute to neuronal circuit assembly.
Collapse
Affiliation(s)
- Takeshi Imai
- Laboratory for Sensory Circuit Formation, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | |
Collapse
|
48
|
Brennaman LH, Zhang X, Guan H, Triplett JW, Brown A, Demyanenko GP, Manis PB, Landmesser L, Maness PF. Polysialylated NCAM and ephrinA/EphA regulate synaptic development of GABAergic interneurons in prefrontal cortex. ACTA ACUST UNITED AC 2012; 23:162-77. [PMID: 22275477 DOI: 10.1093/cercor/bhr392] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel function for the neural cell adhesion molecule (NCAM) was identified in ephrinA/EphA-mediated repulsion as an important regulatory mechanism for development of GABAergic inhibitory synaptic connections in mouse prefrontal cortex. Deletion of NCAM, EphA3, or ephrinA2/3/5 in null mutant mice increased the numbers and size of perisomatic synapses between GABAergic basket interneurons and pyramidal cells in the developing cingulate cortex (layers II/III). A functional consequence of NCAM loss was increased amplitudes and faster kinetics of miniature inhibitory postsynaptic currents in NCAM null cingulate cortex. NCAM and EphA3 formed a molecular complex and colocalized with the inhibitory presynaptic marker vesicular GABA transporter (VGAT) in perisomatic puncta and neuropil in the cingulate cortex. EphrinA5 treatment promoted axon remodeling of enhanced green fluorescent protein-labeled basket interneurons in cortical slice cultures and induced growth cone collapse in wild-type but not NCAM null mutant neurons. NCAM modified with polysialic acid (PSA) was required to promote ephrinA5-induced axon remodeling of basket interneurons in cortical slices, likely by providing a permissive environment for ephrinA5/EphA3 signaling. These results reveal a new mechanism in which NCAM and ephrinAs/EphA3 coordinate to constrain GABAergic interneuronal arborization and perisomatic innervation, potentially contributing to excitatory/inhibitory balance in prefrontal cortical circuitry.
Collapse
Affiliation(s)
- Leann H Brennaman
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Cao L, Rickenbacher GT, Rodriguez S, Moulia TW, Albers MW. The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep 2012; 2:231. [PMID: 22355745 PMCID: PMC3262176 DOI: 10.1038/srep00231] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/05/2012] [Indexed: 11/09/2022] Open
Abstract
The β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is necessary to generate the Aβ peptide, which is implicated in Alzheimer's disease pathology. Studies show that the expression of BACE1 and its protease activity are tightly regulated, but the physiological function of BACE1 remains poorly understood. Recently, numerous axon guidance proteins were identified as potential substrates of BACE1. Here, we examined the consequences of loss of BACE1 function in a well-defined in vivo model system of axon guidance, mouse olfactory sensory neurons (OSNs). The BACE1 protein resides predominantly in proximal segment and the termini of OSN axons, and the expression of BACE1 inversely correlates with odor-evoked neural activity. The precision of targeting of OSN axons is disturbed in both BACE1 null and, surprisingly, in BACE1 heterozygous mice. We propose that BACE1 cleavage of axon guidance proteins is essential to maintain the connectivity of OSNs in vivo.
Collapse
Affiliation(s)
- Luxiang Cao
- MassGeneral Institute of Neurodegenerative Disease, Dept. of Neurology, Harvard Medical School, Boston, MA 02129
| | - Gregory T. Rickenbacher
- MassGeneral Institute of Neurodegenerative Disease, Dept. of Neurology, Harvard Medical School, Boston, MA 02129
| | - Steve Rodriguez
- MassGeneral Institute of Neurodegenerative Disease, Dept. of Neurology, Harvard Medical School, Boston, MA 02129
| | - Thomas W. Moulia
- MassGeneral Institute of Neurodegenerative Disease, Dept. of Neurology, Harvard Medical School, Boston, MA 02129
| | - Mark W. Albers
- MassGeneral Institute of Neurodegenerative Disease, Dept. of Neurology, Harvard Medical School, Boston, MA 02129
| |
Collapse
|
50
|
Kenmuir CL, Chiaia NL, Lane RD, Mooney RD. Laminar expression of ephrin-A2 in primary somatosensory cortex of postnatal rats. Anat Rec (Hoboken) 2011; 295:105-12. [PMID: 22147308 DOI: 10.1002/ar.21485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 08/18/2011] [Indexed: 11/10/2022]
Abstract
Several Eph receptors, prominently EphA4 and EphA7, and their corresponding ligands are known to influence neocortical development, including topographic sorting of thalamocortical axons within primary somatosensory cortex (SI). This study investigated postnatal expression of a ligand that can bind to these receptors, ephrin-A2. Quantitative methods revealed that expression of ephrin-A2 mRNA in SI reached maximum levels on postnatal day (P) 4 and dropped thereafter to background by P18. Ephrin-A2 mRNA expression assessed by in situ hybridization qualitatively revealed a similar time course and localized the expression pattern primarily in two broad laminae in SI, comprising the supragranular and infragranular layers, and with additional expression in the subplate. This expression pattern was investigated in greater detail using immunohistochemistry for ephrin-A2 protein. Immunoreactivity generally showed the same laminar distribution as seen with in situ hybridization, except that it persisted longer, lasting to approximately P14. Expression in the cortical plate was low or absent within presumptive layer IV, and it remained so as cortical lamination progressed. Double-labeling immunohistochemistry with confocal microscopy revealed that cortical neurons were the principal elements expressing ephrin-A2 protein. These findings are consistent with possible involvement of ephrin-A2, in concert with one or more Eph receptors, in influencing arbor development of thalamocortical axons at cortical layer IV boundaries.
Collapse
Affiliation(s)
- Cynthia L Kenmuir
- Department of Neurosciences, College of Medicine, University of Toledo, Ohio, USA
| | | | | | | |
Collapse
|