1
|
Tsukahara S, Bousios A, Perez-Roman E, Yamaguchi S, Leduque B, Nakano A, Naish M, Osakabe A, Toyoda A, Ito H, Edera A, Tominaga S, Juliarni, Kato K, Oda S, Inagaki S, Lorković Z, Nagaki K, Berger F, Kawabe A, Quadrana L, Henderson I, Kakutani T. Centrophilic retrotransposon integration via CENH3 chromatin in Arabidopsis. Nature 2025; 637:744-748. [PMID: 39743586 PMCID: PMC11735389 DOI: 10.1038/s41586-024-08319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025]
Abstract
In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3)1,2. Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres3-5. Despite the high impact of 'centrophilic' retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism. Here we show that both Ty3 and Ty1 long terminal repeat retrotransposons rapidly turnover within the centromeric TRs of Arabidopsis species. We demonstrate that the Ty1/Copia element Tal1 (Transposon of Arabidopsis lyrata 1) integrates de novo into regions occupied by CENH3 in Arabidopsis thaliana, and that ectopic expansion of the CENH3 region results in spread of Tal1 integration regions. The integration spectra of chimeric TEs reveal the key structural variations responsible for contrasting chromatin-targeting specificities to centromeres versus gene-rich regions, which have recurrently converted during the evolution of these TEs. Our findings show the impact of centromeric chromatin on TE-mediated rapid centromere evolution, with relevance across eukaryotic genomes.
Collapse
Affiliation(s)
- Sayuri Tsukahara
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | - Sota Yamaguchi
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Basile Leduque
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Aimi Nakano
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Akihisa Osakabe
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Center for Genetic Resource Information, National Institute of Genetics, Mishima, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Alejandro Edera
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Sayaka Tominaga
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Juliarni
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Kae Kato
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Shoko Oda
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Zdravko Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Akira Kawabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Leandro Quadrana
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Université Evry, Université Paris-Saclay, Gif sur Yvette, France
| | - Ian Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Suleman S, Payne A, Bowden J, Haque SA, Zahn M, Fawaz S, Khalifa MS, Jobling S, Hay D, Franco M, Fronza R, Wang W, Strobel-Freidekind O, Deichmann A, Takeuchi Y, Waddington SN, Gil-Farina I, Schmidt M, Themis M. HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival. Gene Ther 2022; 29:720-729. [PMID: 35513551 PMCID: PMC9750860 DOI: 10.1038/s41434-022-00335-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
Lentiviral vectors (LV) are attractive for permanent and effective gene therapy. However, integration into the host genome can cause insertional mutagenesis highlighting the importance of understanding of LV integration. Insertion site (IS) tethering is believed to involve cellular proteins such as PSIP1/LEDGF/p75, which binds to the virus pre-integration complexes (PICs) helping to target the virus genome. Transcription factors (TF) that bind both the vector LTR and host genome are also suspected influential to this. To determine the role of TF in the tethering process, we mapped predicted transcription factor binding sites (pTFBS) near to IS chosen by HIV-1 LV using a narrow 20 bp window in infected human induced pluripotent stem cells (iPSCs) and their hepatocyte-like cell (HLC) derivatives. We then aligned the pTFBS with these sequences found in the LTRs of native and self-inactivated LTRs. We found significant enrichment of these sequences for pTFBS essential to HIV-1 life cycle and virus survival. These same sites also appear in HIV-1 patient IS and in mice infected with HIV-1 based LV. This in silco data analysis suggests pTFBS present in the virus LTR and IS sites selected by HIV-1 LV are important to virus survival and propagation.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
- Testavec Ltd, Queensgate House, Maidenhead, UK
| | - Annette Payne
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Department of Computer Science, College of Engineering Design and Physical Sciences, Brunel University London, Uxbridge, UK
| | - Johnathan Bowden
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Sharmin Al Haque
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Marco Zahn
- Genewerk GmbH, Heidelberg, Germany
- University Heidelberg, Medical Faculty, Heidelberg, Germany
| | - Serena Fawaz
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Mohammad S Khalifa
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Susan Jobling
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Institute of Environment, Health and Societies, College of Business, Arts and Social Sciences, Brunel University London, Uxbridge, UK
| | - David Hay
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | - Wei Wang
- Genewerk GmbH, Heidelberg, Germany
| | | | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Simon N Waddington
- Gene Transfer Technology, EGA Institute for Women's Health, University College London, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | | | - Manfred Schmidt
- Genewerk GmbH, Heidelberg, Germany
- Department of Translational Oncology, NCT and DKFZ, Heidelberg, Germany
| | - Michael Themis
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK.
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Ballandras-Colas A, Chivukula V, Gruszka DT, Shan Z, Singh PK, Pye VE, McLean RK, Bedwell GJ, Li W, Nans A, Cook NJ, Fadel HJ, Poeschla EM, Griffiths DJ, Vargas J, Taylor IA, Lyumkis D, Yardimci H, Engelman AN, Cherepanov P. Multivalent interactions essential for lentiviral integrase function. Nat Commun 2022; 13:2416. [PMID: 35504909 PMCID: PMC9065133 DOI: 10.1038/s41467-022-29928-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.
Collapse
Affiliation(s)
- Allison Ballandras-Colas
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Institut de Biologie Structurale (IBS) CNRS, CEA, University Grenoble, Grenoble, France
| | - Vidya Chivukula
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Parmit K Singh
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Rebecca K McLean
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Gregory J Bedwell
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wen Li
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Nicola J Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Hind J Fadel
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Javier Vargas
- Departmento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK.
| | - Alan N Engelman
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.
| |
Collapse
|
4
|
Villarreal LP, Witzany G. Social Networking of Quasi-Species Consortia drive Virolution via Persistence. AIMS Microbiol 2021; 7:138-162. [PMID: 34250372 PMCID: PMC8255905 DOI: 10.3934/microbiol.2021010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of cooperative quasi-species consortia (QS-C) thinking from the more accepted quasispecies equations of Manfred Eigen, provides a conceptual foundation from which concerted action of RNA agents can now be understood. As group membership becomes a basic criteria for the emergence of living systems, we also start to understand why the history and context of social RNA networks become crucial for survival and function. History and context of social RNA networks also lead to the emergence of a natural genetic code. Indeed, this QS-C thinking can also provide us with a transition point between the chemical world of RNA replicators and the living world of RNA agents that actively differentiate self from non-self and generate group identity with membership roles. Importantly the social force of a consortia to solve complex, multilevel problems also depend on using opposing and minority functions. The consortial action of social networks of RNA stem-loops subsequently lead to the evolution of cellular organisms representing a tree of life.
Collapse
|
5
|
Bonnet A, Lesage P. Light and shadow on the mechanisms of integration site selection in yeast Ty retrotransposon families. Curr Genet 2021; 67:347-357. [PMID: 33590295 DOI: 10.1007/s00294-021-01154-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Transposable elements are ubiquitous in genomes. Their successful expansion depends in part on their sites of integration in their host genome. In Saccharomyces cerevisiae, evolution has selected various strategies to target the five Ty LTR-retrotransposon families into gene-poor regions in a genome, where coding sequences occupy 70% of the DNA. The integration of Ty1/Ty2/Ty4 and Ty3 occurs upstream and at the transcription start site of the genes transcribed by RNA polymerase III, respectively. Ty5 has completely different integration site preferences, targeting heterochromatin regions. Here, we review the history that led to the identification of the cellular tethering factors that play a major role in anchoring Ty retrotransposons to their preferred sites. We also question the involvement of additional factors in the fine-tuning of the integration site selection, with several studies converging towards an importance of the structure and organization of the chromatin.
Collapse
Affiliation(s)
- Amandine Bonnet
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212, Genomes and Cell Biology of Disease Unit, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, Paris, France.
| |
Collapse
|
6
|
Nandety RS, Serrani‐Yarce JC, Gill US, Oh S, Lee H, Zhang X, Dai X, Zhang W, Krom N, Wen J, Zhao PX, Mysore KS. Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1924-1936. [PMID: 32410353 PMCID: PMC7496502 DOI: 10.1111/tpj.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Brachypodium distachyon is an annual C3 grass used as a monocot model system in functional genomics research. Insertional mutagenesis is a powerful tool for both forward and reverse genetics studies. In this study, we explored the possibility of using the tobacco retrotransposon Tnt1 to create a transposon-based insertion mutant population in B. distachyon. We developed transgenic B. distachyon plants expressing Tnt1 (R0) and in the subsequent regenerants (R1) we observed that Tnt1 actively transposed during somatic embryogenesis, generating an average of 6.37 insertions per line in a population of 19 independent R1 regenerant plants analyzed. In seed-derived progeny of R1 plants, Tnt1 segregated in a Mendelian ratio of 3:1 and no new Tnt1 transposition was observed. A total of 126 flanking sequence tags (FSTs) were recovered from the analyzed R0 and R1 lines. Analysis of the FSTs showed a uniform pattern of insertion in all the chromosomes (1-5) without any preference for a particular chromosome region. Considering the average length of a gene transcript to be 3.37 kb, we estimated that 29 613 lines are required to achieve a 90% possibility of tagging a given gene in the B. distachyon genome using the Tnt1-based mutagenesis approach. Our results show the possibility of using Tnt1 to achieve near-saturation mutagenesis in B. distachyon, which will aid in functional genomics studies of other C3 grasses.
Collapse
Affiliation(s)
| | - Juan C. Serrani‐Yarce
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
- Present address:
Department of Biological SciencesUniversity of North TexasDentonTX76203USA
| | - Upinder S. Gill
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
- Present address:
Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
| | - Sunhee Oh
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Hee‐Kyung Lee
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xinji Zhang
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Xinbin Dai
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Wenchao Zhang
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Nick Krom
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Jiangqi Wen
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | - Patrick X. Zhao
- Noble Research InstituteLLC.2510 Sam Noble ParkwayArdmoreOK73401USA
| | | |
Collapse
|
7
|
Bigildeev AE, Petinati NA, Drize NJ. How Methods of Molecular Biology Shape Our Understanding of the Hematopoietic System. Mol Biol 2019. [DOI: 10.1134/s0026893319050029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Tassetto M, Kunitomi M, Whitfield ZJ, Dolan PT, Sánchez-Vargas I, Garcia-Knight M, Ribiero I, Chen T, Olson KE, Andino R. Control of RNA viruses in mosquito cells through the acquisition of vDNA and endogenous viral elements. eLife 2019; 8:41244. [PMID: 31621580 PMCID: PMC6797480 DOI: 10.7554/elife.41244] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 09/10/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti transmit pathogenic arboviruses while the mosquito itself tolerates the infection. We examine a piRNA-based immunity that relies on the acquisition of viral derived cDNA (vDNA) and how this pathway discriminates between self and non-self. The piRNAs derived from these vDNAs are essential for virus control and Piwi4 has a central role in the pathway. Piwi4 binds preferentially to virus-derived piRNAs but not to transposon-targeting piRNAs. Analysis of episomal vDNA from infected cells reveals that vDNA molecules are acquired through a discriminatory process of reverse-transcription and recombination directed by endogenous retrotransposons. Using a high-resolution Ae. aegypti genomic sequence, we found that vDNAs integrated in the host genome as endogenous viral elements (EVEs), produce antisense piRNAs that are preferentially loaded onto Piwi4. Importantly, EVE-derived piRNAs are specifically loaded onto Piwi4 to inhibit virus replication. Thus, Ae. aegypti employs a sophisticated antiviral mechanism that promotes viral persistence and generates long-lasting adaptive immunity.
Collapse
Affiliation(s)
- Michel Tassetto
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Mark Kunitomi
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Zachary J Whitfield
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Patrick T Dolan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Irma Sánchez-Vargas
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, United States
| | - Miguel Garcia-Knight
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Isabel Ribiero
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Taotao Chen
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| | - Ken E Olson
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Fort Collins, United States
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
9
|
Chen L, Qiao D, Wang J, Tian G, Wang M. Cancer immunotherapy with lymphocytes genetically engineered with T cell receptors for solid cancers. Immunol Lett 2019; 216:51-62. [PMID: 31597088 DOI: 10.1016/j.imlet.2019.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Adoptive transfer of T cells genetically engineered with chimeric antigen receptors (CAR-T cells) have proven to be highly effective for treating CD19+ B cell-derived hematologic malignancies. However, due to the lack of ideal tumor surface antigens, CAR-T cell therapy has limited success in treating solid tumors. T cells genetically engineered with T cell receptors (TCR-T cells) recognize intracellular and cell-surface antigens in the context of major histocompatibility complex (MHC) presentation and thus have the potential to access much more target antigens than CAR-T cells, providing great promise in treating solid tumors. There is an increasing interest in the application of TCR-T cell therapy for solid tumors, and fifty-six clinical trials are undergoing worldwide to confirm its validity. In this review, we summarize the recent progress in clinical studies of TCR-T cell therapy, describe strategies in the preparation and characterization of TCR-T cells, focusing on antigen selection, TCR isolation and methods to further enhance the potency of adoptively transferred cells.
Collapse
Affiliation(s)
- Lei Chen
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Dongjuan Qiao
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Juntao Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China
| | - Geng Tian
- Department of Oncology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Mingjun Wang
- Department of Research and Development, Shenzhen Institute for Innovation and Translational Medicine, Shenzhen International Biological Valley-Life Science Industrial Park, Dapeng New District, Shenzhen, China.
| |
Collapse
|
10
|
Tang W, Mun S, Joshi A, Han K, Liang P. Mobile elements contribute to the uniqueness of human genome with 15,000 human-specific insertions and 14 Mbp sequence increase. DNA Res 2019; 25:521-533. [PMID: 30052927 PMCID: PMC6191304 DOI: 10.1093/dnares/dsy022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/20/2018] [Indexed: 02/02/2023] Open
Abstract
Mobile elements (MEs) collectively contribute to at least 50% of the human genome. Due to their past incremental accumulation and ongoing DNA transposition, MEs serve as a significant source for both inter- and intra-species genetic and phenotypic diversity during primate and human evolution. By making use of the most recent genome sequences for human and many other closely related primates and robust multi-way comparative genomic approach, we identified a total of 14,870 human-specific MEs (HS-MEs) with more than 8,000 being newly identified. Collectively, these HS-MEs contribute to a total of 14.2 Mbp net genome sequence increase. Several new observations were made based on these HS-MEs, including the finding of Y chromosome as a strikingly hot target for HS-MEs and a strong mutual preference for SINE-R/VNTR/Alu (SVAs). Furthermore, ∼8,000 of these HS-MEs were found to locate in the vicinity of ∼4,900 genes, and collectively they contribute to ∼84 kb sequences in the human reference transcriptome in association with over 300 genes, including protein-coding sequences for 40 genes. In conclusion, our results demonstrate that MEs made a significant contribution to the evolution of human genome by participating in gene function in a human-specific fashion.
Collapse
Affiliation(s)
- Wanxiangfu Tang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Aditya Joshi
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
11
|
Adrion JR, Begun DJ, Hahn MW. Patterns of transposable element variation and clinality in
Drosophila. Mol Ecol 2019; 28:1523-1536. [DOI: 10.1111/mec.14961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jeffrey R. Adrion
- Department of Biology University of Oregon Eugene Oregon
- Department of Biology Indiana University Bloomington Indiana
| | - David J. Begun
- Department of Evolution and Ecology University of California Davis, Davis California
| | - Matthew W. Hahn
- Department of Biology Indiana University Bloomington Indiana
- Department of Computer Science Indiana University Bloomington Indiana
| |
Collapse
|
12
|
Nakashima K, Abe J, Kanazawa A. Chromosomal distribution of soybean retrotransposon SORE-1 suggests its recent preferential insertion into euchromatic regions. Chromosome Res 2018; 26:199-210. [PMID: 29789973 DOI: 10.1007/s10577-018-9579-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
Retrotransposons constitute a large portion of plant genomes. The chromosomal distribution of a wide variety of retrotransposons has been analyzed using genome sequencing data in several plants, but the evolutionary profile of transposition has been characterized for a limited number of retrotransposon families. Here, we characterized 96 elements of the SORE-1 family of soybean retrotransposons using genome sequencing data. Insertion time of each SORE-1 element into the genome was estimated on the basis of sequence differences between the 5' and 3' long terminal repeats (LTRs). Combining this estimation with information on the chromosomal location of these elements, we found that the insertion of the existing SORE-1 into gene-rich chromosome arms occurred on average more recently than that into gene-poor pericentromeric regions. In addition, both the number of insertions and the proportion of insertions into chromosome arms profoundly increased after 1 million years ago. Solo LTRs were detected in these regions at a similar frequency, suggesting that elimination of SORE-1 via unequal homologous recombination was unbiased. Taken together, these results suggest the preference of a recent insertion of SORE-1 into chromosome arms comprising euchromatic regions. This notion is contrary to an earlier view deduced from an overall profiling of soybean retrotransposons and suggests that the pattern of chromosomal distribution can be more diverse than previously thought between different families of retrotransposons.
Collapse
Affiliation(s)
- Kenta Nakashima
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
13
|
Villarreal LP, Witzany G. Editorial: Genome Invading RNA Networks. Front Microbiol 2018; 9:581. [PMID: 29651278 PMCID: PMC5885774 DOI: 10.3389/fmicb.2018.00581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Luis P Villarreal
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
14
|
Catarino RR, Stark A. Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes Dev 2018; 32:202-223. [PMID: 29491135 PMCID: PMC5859963 DOI: 10.1101/gad.310367.117] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Enhancers are important genomic regulatory elements directing cell type-specific transcription. They assume a key role during development and disease, and their identification and functional characterization have long been the focus of scientific interest. The advent of next-generation sequencing and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-based genome editing has revolutionized the means by which we study enhancer biology. In this review, we cover recent developments in the prediction of enhancers based on chromatin characteristics and their identification by functional reporter assays and endogenous DNA perturbations. We discuss that the two latter approaches provide different and complementary insights, especially in assessing enhancer sufficiency and necessity for transcription activation. Furthermore, we discuss recent insights into mechanistic aspects of enhancer function, including findings about cofactor requirements and the role of post-translational histone modifications such as monomethylation of histone H3 Lys4 (H3K4me1). Finally, we survey how these approaches advance our understanding of transcription regulation with respect to promoter specificity and transcriptional bursting and provide an outlook covering open questions and promising developments.
Collapse
Affiliation(s)
- Rui R Catarino
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
15
|
Adrion JR, Song MJ, Schrider DR, Hahn MW, Schaack S. Genome-Wide Estimates of Transposable Element Insertion and Deletion Rates in Drosophila Melanogaster. Genome Biol Evol 2017; 9:1329-1340. [PMID: 28338986 PMCID: PMC5447328 DOI: 10.1093/gbe/evx050] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 02/06/2023] Open
Abstract
Knowing the rate at which transposable elements (TEs) insert and delete is critical for understanding their role in genome evolution. We estimated spontaneous rates of insertion and deletion for all known, active TE superfamilies present in a set of Drosophila melanogaster mutation-accumulation (MA) lines using whole genome sequence data. Our results demonstrate that TE insertions far outpace TE deletions in D. melanogaster. We found a significant effect of background genotype on TE activity, with higher rates of insertions in one MA line. We also found significant rate heterogeneity between the chromosomes, with both insertion and deletion rates elevated on the X relative to the autosomes. Further, we identified significant associations between TE activity and chromatin state, and tested for associations between TE activity and other features of the local genomic environment such as TE content, exon content, GC content, and recombination rate. Our results provide the most detailed assessment of TE mobility in any organism to date, and provide a useful benchmark for both addressing theoretical predictions of TE dynamics and for exploring large-scale patterns of TE movement in D. melanogaster and other species.
Collapse
Affiliation(s)
| | - Michael J. Song
- Department of Integrative Biology, University of California, Berkeley, CA
| | - Daniel R. Schrider
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Matthew W. Hahn
- Department of Biology, Indiana University, Bloomington, IN
- School of Informatics and Computing, Indiana University, Bloomington, IN
| | | |
Collapse
|
16
|
Cross-Regulation between Transposable Elements and Host DNA Replication. Viruses 2017; 9:v9030057. [PMID: 28335567 PMCID: PMC5371812 DOI: 10.3390/v9030057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022] Open
Abstract
Transposable elements subvert host cellular functions to ensure their survival. Their interaction with the host DNA replication machinery indicates that selective pressures lead them to develop ancestral and convergent evolutionary adaptations aimed at conserved features of this fundamental process. These interactions can shape the co-evolution of the transposons and their hosts.
Collapse
|
17
|
Witzany G. Two genetic codes: Repetitive syntax for active non-coding RNAs; non-repetitive syntax for the DNA archives. Commun Integr Biol 2017; 10:e1297352. [PMID: 29149223 PMCID: PMC5398208 DOI: 10.1080/19420889.2017.1297352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 02/16/2017] [Indexed: 02/06/2023] Open
Abstract
Current knowledge of the RNA world indicates 2 different genetic codes being present throughout the living world. In contrast to non-coding RNAs that are built of repetitive nucleotide syntax, the sequences that serve as templates for proteins share-as main characteristics-a non-repetitive syntax. Whereas non-coding RNAs build groups that serve as regulatory tools in nearly all genetic processes, the coding sections represent the evolutionarily successful function of the genetic information storage medium. This indicates that the differences in their syntax structure are coherent with the differences of the functions they represent. Interestingly, these 2 genetic codes resemble the function of all natural languages, i.e., the repetitive non-coding sequences serve as appropriate tool for organization, coordination and regulation of group behavior, and the non-repetitive coding sequences are for conservation of instrumental constructions, plans, blueprints for complex protein-body architecture. This differentiation may help to better understand RNA group behavioral motifs.
Collapse
|
18
|
Broecker F, Horton R, Heinrich J, Franz A, Schweiger MR, Lehrach H, Moelling K. The intron-enriched HERV-K(HML-10) family suppresses apoptosis, an indicator of malignant transformation. Mob DNA 2016; 7:25. [PMID: 27980690 PMCID: PMC5142424 DOI: 10.1186/s13100-016-0081-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/19/2016] [Indexed: 02/06/2023] Open
Abstract
Background Human endogenous retroviruses (HERVs) constitute 8% of the human genome and contribute substantially to the transcriptome. HERVs have been shown to generate RNAs that modulate host gene expression. However, experimental evidence for an impact of these regulatory transcripts on the cellular phenotype has been lacking. Results We characterized the previously little described HERV-K(HML-10) endogenous retrovirus family on a genome-wide scale. HML-10 invaded the ancestral genome of Old World monkeys about 35 Million years ago and is enriched within introns of human genes when compared to other HERV families. We show that long terminal repeats (LTRs) of HML-10 exhibit variable promoter activity in human cancer cell lines. One identified HML-10 LTR-primed RNA was in opposite orientation to the pro-apoptotic Death-associated protein 3 (DAP3). In HeLa cells, experimental inactivation of HML-10 LTR-primed transcripts induced DAP3 expression levels, which led to apoptosis. Conclusions Its enrichment within introns suggests that HML-10 may have been evolutionary co-opted for gene regulation more than other HERV families. We demonstrated such a regulatory activity for an HML-10 RNA that suppressed DAP3-mediated apoptosis in HeLa cells. Since HML-10 RNA appears to be upregulated in various tumor cell lines and primary tumor samples, it may contribute to evasion of apoptosis in malignant cells. However, the overall weak expression of HML-10 transcripts described here raises the question whether our result described for HeLa represent a rare event in cancer. A possible function in other cells or tissues requires further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0081-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland ; Current affiliation: Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Roger Horton
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Jochen Heinrich
- Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland
| | - Alexandra Franz
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Current affiliation: University of Zurich, Institute of Molecular Life Sciences, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Michal-Ruth Schweiger
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Current affiliation: Functional Epigenomics, CCG, Cologne University Hospital, University of Cologne, Weyertal 115b, 50931 Cologne, Germany
| | - Hans Lehrach
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Dahlem Centre for Genome Research and Medical Systems Biology, Fabeckstr. 60-62, 14195 Berlin, Germany
| | - Karin Moelling
- Max Planck Institute for molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany ; Institute of Medical Microbiology, University of Zurich, Gloriastr. 32, 8006 Zurich, Switzerland
| |
Collapse
|
19
|
Mason AS, Fulton JE, Hocking PM, Burt DW. A new look at the LTR retrotransposon content of the chicken genome. BMC Genomics 2016; 17:688. [PMID: 27577548 PMCID: PMC5006616 DOI: 10.1186/s12864-016-3043-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/24/2016] [Indexed: 11/23/2022] Open
Abstract
Background LTR retrotransposons contribute approximately 10 % of the mammalian genome, but it has been previously reported that there is a deficit of these elements in the chicken relative to both mammals and other birds. A novel LTR retrotransposon classification pipeline, LocaTR, was developed and subsequently utilised to re-examine the chicken LTR retrotransposon annotation, and determine if the proposed chicken deficit is biologically accurate or simply a technical artefact. Results Using LocaTR 3.01 % of the chicken galGal4 genome assembly was annotated as LTR retrotransposon-derived elements (nearly double the previous annotation), including 1,073 that were structurally intact. Element distribution is significantly correlated with chromosome size and is non-random within each chromosome. Elements are significantly depleted within coding regions and enriched in gene sparse areas of the genome. Over 40 % of intact elements are found in clusters, unrelated by age or genera, generally in poorly recombining regions. The transcription of most LTR retrotransposons were suppressed or incomplete, but individual domain and full length retroviral transcripts were produced in some cases, although mostly with regularly interspersed stop codons in all reading frames. Furthermore, RNAseq data from 23 diverse tissues enabled greater characterisation of the co-opted endogenous retrovirus Ovex1. This gene was shown to be expressed ubiquitously but at variable levels across different tissues. LTR retrotransposon content was found to be very variable across the avian lineage and did not correlate with either genome size or phylogenetic position. However, the extent of previous, species-specific LTR retrotransposon annotation appears to be a confounding factor. Conclusions Use of the novel LocaTR pipeline has nearly doubled the annotated LTR retrotransposon content of the chicken genome compared to previous estimates. Further analysis has described element distribution, clustering patterns and degree of expression in a variety of adult tissues, as well as in three embryonic stages. This study also enabled better characterisation of the co-opted gamma retroviral envelope gene Ovex1. Additionally, this work suggests that there is no deficit of LTR retrotransposons within the Galliformes relative to other birds, or to mammalian genomes when scaled for the three-fold difference in genome size. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3043-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew S Mason
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Janet E Fulton
- Hy-Line International, 1915 Sugar Grove Avenue, Dallas Grove, IA, 50063, USA
| | - Paul M Hocking
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
20
|
Capsid-CPSF6 Interaction Is Dispensable for HIV-1 Replication in Primary Cells but Is Selected during Virus Passage In Vivo. J Virol 2016; 90:6918-6935. [PMID: 27307565 DOI: 10.1128/jvi.00019-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/08/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a host factor that interacts with the HIV-1 capsid (CA) protein, is implicated in diverse functions during the early part of the HIV-1 life cycle, including uncoating, nuclear entry, and integration targeting. Preservation of CA binding to CPSF6 in vivo suggests that this interaction is fine-tuned for efficient HIV-1 replication in physiologically relevant settings. Nevertheless, this possibility has not been formally examined. To assess the requirement for optimal CPSF6-CA binding during infection of primary cells and in vivo, we utilized a novel CA mutation, A77V, that significantly reduced CA binding to CPSF6. The A77V mutation rendered HIV-1 largely independent from TNPO3, NUP358, and NUP153 for infection and altered the integration site preference of HIV-1 without any discernible effects during the late steps of the virus life cycle. Surprisingly, the A77V mutant virus maintained the ability to replicate in monocyte-derived macrophages, primary CD4(+) T cells, and humanized mice at a level comparable to that for the wild-type (WT) virus. Nonetheless, revertant viruses that restored the WT CA sequence and hence CA binding to CPSF6 emerged in three out of four A77V-infected animals. These results suggest that the optimal interaction of CA with CPSF6, though not absolutely essential for HIV-1 replication in physiologically relevant settings, confers a significant fitness advantage to the virus and thus is strictly conserved among naturally circulating HIV-1 strains. IMPORTANCE CPSF6 interacts with the HIV-1 capsid (CA) protein and has been implicated in nuclear entry and integration targeting. Preservation of CPSF6-CA binding across various HIV-1 strains suggested that the optimal interaction between CA and CPSF6 is critical during HIV-1 replication in vivo Here, we identified a novel HIV-1 capsid mutant that reduces binding to CPSF6, is largely independent from the known cofactors for nuclear entry, and alters integration site preference. Despite these changes, virus carrying this mutation replicated in humanized mice at levels indistinguishable from those of the wild-type virus. However, in the majority of the animals, the mutant virus reverted back to the wild-type sequence, hence restoring the wild-type level of CA-CPSF6 interactions. These results suggest that optimal binding of CA to CPSF6 is not absolutely essential for HIV-1 replication in vivo but provides a fitness advantage that leads to the widespread usage of CPSF6 by HIV-1 in vivo.
Collapse
|
21
|
Gilbert C, Peccoud J, Chateigner A, Moumen B, Cordaux R, Herniou EA. Continuous Influx of Genetic Material from Host to Virus Populations. PLoS Genet 2016; 12:e1005838. [PMID: 26829124 PMCID: PMC4735498 DOI: 10.1371/journal.pgen.1005838] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
Many genes of large double-stranded DNA viruses have a cellular origin, suggesting that host-to-virus horizontal transfer (HT) of DNA is recurrent. Yet, the frequency of these transfers has never been assessed in viral populations. Here we used ultra-deep DNA sequencing of 21 baculovirus populations extracted from two moth species to show that a large diversity of moth DNA sequences (n = 86) can integrate into viral genomes during the course of a viral infection. The majority of the 86 different moth DNA sequences are transposable elements (TEs, n = 69) belonging to 10 superfamilies of DNA transposons and three superfamilies of retrotransposons. The remaining 17 sequences are moth sequences of unknown nature. In addition to bona fide DNA transposition, we uncover microhomology-mediated recombination as a mechanism explaining integration of moth sequences into viral genomes. Many sequences integrated multiple times at multiple positions along the viral genome. We detected a total of 27,504 insertions of moth sequences in the 21 viral populations and we calculate that on average, 4.8% of viruses harbor at least one moth sequence in these populations. Despite this substantial proportion, no insertion of moth DNA was maintained in any viral population after 10 successive infection cycles. Hence, there is a constant turnover of host DNA inserted into viral genomes each time the virus infects a moth. Finally, we found that at least 21 of the moth TEs integrated into viral genomes underwent repeated horizontal transfers between various insect species, including some lepidopterans susceptible to baculoviruses. Our results identify host DNA influx as a potent source of genetic diversity in viral populations. They also support a role for baculoviruses as vectors of DNA HT between insects, and call for an evaluation of possible gene or TE spread when using viruses as biopesticides or gene delivery vectors. While gene exchange is known to occur between viruses and their hosts, this phenomenon has never been studied at the level of the viral population. Here we report that each time a virus from the Baculoviridae family infects a moth, a large number (dozens to hundreds) and high diversity of moth DNA sequences (86 different sequences) can integrate into replicating viral genomes. These findings show that viral populations carry a measurable load of host DNA sequences, further supporting the role of viruses as vectors of horizontal transfer of DNA between insect species. The potential uncontrolled gene spread associated with the use of viruses produced in insect cells as gene delivery vectors and/or biopesticides should therefore be evaluated.
Collapse
Affiliation(s)
- Clément Gilbert
- UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, Poitiers, France
- * E-mail:
| | - Jean Peccoud
- UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, Poitiers, France
| | - Aurélien Chateigner
- Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université François-Rabelais, Tours, France
| | - Bouziane Moumen
- UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, Poitiers, France
| | - Richard Cordaux
- UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, Poitiers, France
| | - Elisabeth A. Herniou
- Institut de Recherche sur la Biologie de l’Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université François-Rabelais, Tours, France
| |
Collapse
|
22
|
Crucial steps to life: From chemical reactions to code using agents. Biosystems 2016; 140:49-57. [DOI: 10.1016/j.biosystems.2015.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/05/2015] [Accepted: 12/07/2015] [Indexed: 01/21/2023]
|
23
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
24
|
Jacobs JZ, Rosado-Lugo JD, Cranz-Mileva S, Ciccaglione KM, Tournier V, Zaratiegui M. Arrested replication forks guide retrotransposon integration. Science 2015; 349:1549-53. [PMID: 26404838 DOI: 10.1126/science.aaa3810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are an abundant class of genomic parasites that replicate by insertion of new copies into the host genome. Fungal LTR retrotransposons prevent mutagenic insertions through diverse targeting mechanisms that avoid coding sequences, but conserved principles guiding their target site selection have not been established. Here, we show that insertion of the fission yeast LTR retrotransposon Tf1 is guided by the DNA binding protein Sap1 and that the efficiency and location of the targeting depend on the activity of Sap1 as a replication fork barrier. We propose that Sap1 and the fork arrest it causes guide insertion of Tf1 by tethering the integration complex to target sites.
Collapse
Affiliation(s)
- Jake Z Jacobs
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Jesus D Rosado-Lugo
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Susanne Cranz-Mileva
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Keith M Ciccaglione
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Vincent Tournier
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA
| | - Mikel Zaratiegui
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Nelson A133, 604 Allison Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
25
|
A systemic approach for modeling biological evolution using Parallel DEVS. Biosystems 2015; 134:56-70. [DOI: 10.1016/j.biosystems.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
|
26
|
Geisinger JM, Calos MP. Using phage integrases in a site-specific dual integrase cassette exchange strategy. Methods Mol Biol 2015; 1239:29-38. [PMID: 25408400 DOI: 10.1007/978-1-4939-1862-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
ΦC31 integrase, a site-specific large serine recombinase, is a useful tool for genome engineering in a variety of eukaryotic species and cell types. ΦC31 integrase performs efficient recombination between its attB site and either its own placed attP site or a partially mismatched genomic pseudo attP site. Bxb1 integrase, another large serine recombinase, has a similar level of recombinational activity, but recognizes only its own attB and attP sites. Previously, we have used these integrases sequentially to integrate plasmid DNA into the genome. This approach relied on placing a landing pad attP for Bxb1 integrase in the genome by using phiC31 integrase-mediated recombination at a genomic pseudo attP site. In this chapter, we present a protocol for using these integrases simultaneously to facilitate cassette exchange at a predefined location. This approach permits greater control and accuracy over integration. We also present a general method for using polymerase chain reaction assays to verify that the desired cassette exchange occurred successfully.
Collapse
Affiliation(s)
- Jonathan M Geisinger
- Department of Genetics, Stanford University School of Medicine, Alway Building, M316 & M318, 300 Pasteur Drive, Stanford, CA, 94305-5120, USA
| | | |
Collapse
|
27
|
Selvaraj C, Singh P, Singh SK. Molecular insights on analogs of HIV PR inhibitors toward HTLV-1 PR through QM/MM interactions and molecular dynamics studies: comparative structure analysis of wild and mutant HTLV-1 PR. J Mol Recognit 2015; 27:696-706. [PMID: 25319617 DOI: 10.1002/jmr.2395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 05/03/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
Retroviruses HTLV-1 and HIV-1 are the primary causative agents of fatal adult T-cell leukemia and acquired immune deficiency syndrome (AIDS) disease. Both retroviruses are similar in characteristics mechanism, and it encodes for protease that mainly involved in the viral replication process. On the basis of the therapeutic success of HIV-1 PR inhibitors, the protease of HTLV-1 is mainly considered as a potential target for chemotherapy. At the same time, structural similarities in both enzymes that originate HIV PR inhibitors can also be an HTLV-1 PR inhibitor. But the expectations failed because of rejection of HIV PR inhibitors from the HTLV-1 PR binding pocket. In this present study, the reason for the HIV PR inhibitor rejection from the HTLV-1 binding site was identified through sequence analysis and molecular dynamics simulation method. Functional analysis of M37A mutation in HTLV PR clearly shows that the MET37 specificity and screening of potential inhibitors targeting MET37 is performed by using approved 90% similar HIV PR inhibitor compounds. From this approach, we report few compounds with a tendency to accept/donate electron specifically to an important site residue MET37 in HTLV-1 PR binding pocket.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, 630004, Tamilnadu, India
| | | | | |
Collapse
|
28
|
von Kalle C, Deichmann A, Schmidt M. Vector integration and tumorigenesis. Hum Gene Ther 2015; 25:475-81. [PMID: 24950086 DOI: 10.1089/hum.2014.2525] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
29
|
Abstract
The demonstrated presence in adult tissues of cells with sustained tissue regenerative potential has given rise to the concept of tissue stem cells. Assays to detect and measure such cells indicate that they have enormous proliferative potential and usually an ability to produce all or many of the mature cell types that define the specialized functionality of the tissue. In the hematopoietic system, one or only a few cells can restore lifelong hematopoiesis of the whole organism. To what extent is the maintenance of hematopoietic stem cells required during normal hematopoiesis? How does the constant maintenance of hematopoiesis occur and what is the behavior of the hematopoietic stem cells in the normal organism? How many of the hematopoietic stem cells are created during the development of the organism? How many hematopoietic stem cells are generating more mature progeny at any given moment? What happens to the population of hematopoietic stem cells in aging? This review will attempt to describe the results of recent research which contradict some of the ideas established over the past 30 years about how hematopoiesis is regulated.
Collapse
Affiliation(s)
- Nina Drize
- Federal Government Budget Institution National Research Center for Hematology, Ministry of Health, Moscow, Russian Federation
| | - Nataliya Petinati
- Federal Government Budget Institution National Research Center for Hematology, Ministry of Health, Moscow, Russian Federation
| |
Collapse
|
30
|
Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, Elste JE, Gregoire NS, Kim JA, Koehler WW, Lengerich JC, Medema AA, Nguyen MA, Ower GD, Rarick MA, Strong BN, Tardi NJ, Tasker NM, Wozniak DJ, Gatto C, Larson ED. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitive-element origins. Mob Genet Elements 2014; 1:8-17. [PMID: 22016841 DOI: 10.4161/mge.1.1.15766] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that generally function as negative regulators of target messenger RNAs (mRNAs) at the posttranscriptional level. MiRs bind to the 3'UTR of target mRNAs through complementary base pairing, resulting in target mRNA cleavage or translation repression. To date, over 15,000 distinct miRs have been identified in organisms ranging from viruses to man and interest in miR research continues to intensify. Of note, the most enlightening aspect of miR function-the mRNAs they target-continues to be elusive. Descriptions of the molecular origins of independent miR molecules currently support the hypothesis that miR hairpin generation is based on the adjacent insertion of two related transposable elements (TEs) at one genomic locus. Thus transcription across such TE interfaces establishes many, if not the majority of functional miRs. The implications of these findings are substantial for understanding how TEs confer increased genomic fitness, describing miR transcriptional regulations and making accurate miR target predictions. In this work, we have performed a comprehensive analysis of the genomic events responsible for the formation of all currently annotated miR loci. We find that the connection between miRs and transposable elements is more significant than previously appreciated, and more broadly, supports an important role for repetitive elements in miR origin, expression and regulatory network formation. Further, we demonstrate the utility of these findings in miR target prediction. Our results greatly expand the existing repertoire of defined miR origins, detailing the formation of 2,392 of 15,176 currently recognized miR genomic loci and supporting a mobile genetic element model for the genomic establishment of functional miRs.
Collapse
Affiliation(s)
- Glen M Borchert
- School of Biological Sciences; Illinois State University; Normal, IL USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Noack S, Seiffart V, Willbold E, Laggies S, Winkel A, Shahab-Osterloh S, Flörkemeier T, Hertwig F, Steinhoff C, Nuber UA, Gross G, Hoffmann A. Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model. Stem Cells Dev 2014; 23:1844-57. [PMID: 24809660 DOI: 10.1089/scd.2014.0124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
True tendon regeneration in human patients remains a vision of musculoskeletal therapies. In comparison to other mesenchymal lineages the biology of tenogenic differentiation is barely understood. Specifically, easy and efficient protocols are lacking that might enable tendon cell and tissue differentiation based on adult (stem) cell sources. In the murine mesenchymal progenitor cell line C3H10T½, overexpression of the growth factor bone morphogenetic protein 2 (BMP2) and a constitutively active transcription factor, Smad8 L+MH2, mediates tendon cell differentiation in vitro and the formation of tendon-like tissue in vivo. We hypothesized that during this differentiation secreted factors involved in extracellular matrix formation exert a major impact on tendon development. Gene expression analyses revealed four genes encoding secreted factors that are notably upregulated: periostin, C-type lectin domain family 3 (member b), RNase A4, and follistatin-like 1. These factors have not previously been implicated in tendon biology. Among these, periostin showed a specific expression in tenocytes of adult mouse Achilles tendon and in chondrocytes within the nonmineralized fibrocartilage zone of the enthesis with the calcaneus. Overexpression of periostin alone or in combination with constitutively active BMP receptor type in human mesenchymal stem cells and subsequent implantation into ectopic sites in mice demonstrated a reproducible moderate tenogenic capacity that has not been described before. Therefore, periostin may belong to the factors contributing to the development of tenogenic tissue.
Collapse
Affiliation(s)
- Sandra Noack
- 1 Department of Orthopaedic Trauma, Hannover Medical School (MHH), Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Integrase as a Novel Target for the Inhibition of Human Immunodeficiency Virus Type 1 Infection: Current Status and Future Perspectives. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Genomic localization of AtRE1 and AtRE2, copia-type retrotransposons, in natural variants of Arabidopsis thaliana. Mol Genet Genomics 2014; 289:821-35. [PMID: 24770782 DOI: 10.1007/s00438-014-0855-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/10/2014] [Indexed: 12/24/2022]
Abstract
Retrotransposons are ubiquitous components of plant genomes. They affect genome organization, and can also affect the expression patterns of neighboring genes. Retrotransposons are therefore important elements for changing genomic information. To understand the evolution of the Arabidopsis genome, we examined the distribution of certain retrotransposons, AtRE1s and AtRE2s, in the genomes of 12 natural variants (accessions) of Arabidopsis thaliana. AtRE1 and AtRE2 are copia-type retrotransposons that are potentially active. Their copy numbers are low, and they are absent from the genomes of some accessions. We detected four loci with AtRE1s inserted in six accessions, and one locus with an insertion of a solo-LTR-like sequence derived from AtRE1 in two accessions. Seven loci with AtRE2s inserted were detected on eight accessions. These loci were distributed in euchromatic regions of chromosomes 1, 2, 3, and 4. The AtRE1 and AtRE2 sequences at some loci identified in this study have not been recorded in the database of the 1001 Genome project. The sequences of AtRE1s and those of AtRE2s in different accessions and at different loci were highly conserved. There was a complete or almost complete conservation of sequences of both long terminal repeats in each AtRE1 and in each AtRE2. These results suggest that AtRE1 and AtRE2 appeared quite recently in the Arabidopsis genome. Furthermore, sequence comparisons of AtRE1 and AtRE2 loci among accessions revealed the possibility that large deletions containing entire sequences of AtRE1 and AtRE2 have occurred in some accessions.
Collapse
|
34
|
Huser CA, Gilroy KL, de Ridder J, Kilbey A, Borland G, Mackay N, Jenkins A, Bell M, Herzyk P, van der Weyden L, Adams DJ, Rust AG, Cameron E, Neil JC. Insertional mutagenesis and deep profiling reveals gene hierarchies and a Myc/p53-dependent bottleneck in lymphomagenesis. PLoS Genet 2014; 10:e1004167. [PMID: 24586197 PMCID: PMC3937229 DOI: 10.1371/journal.pgen.1004167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/23/2013] [Indexed: 01/22/2023] Open
Abstract
Retroviral insertional mutagenesis (RIM) is a powerful tool for cancer genomics that was combined in this study with deep sequencing (RIM/DS) to facilitate a comprehensive analysis of lymphoma progression. Transgenic mice expressing two potent collaborating oncogenes in the germ line (CD2-MYC, -Runx2) develop rapid onset tumours that can be accelerated and rendered polyclonal by neonatal Moloney murine leukaemia virus (MoMLV) infection. RIM/DS analysis of 28 polyclonal lymphomas identified 771 common insertion sites (CISs) defining a 'progression network' that encompassed a remarkably large fraction of known MoMLV target genes, with further strong indications of oncogenic selection above the background of MoMLV integration preference. Progression driven by RIM was characterised as a Darwinian process of clonal competition engaging proliferation control networks downstream of cytokine and T-cell receptor signalling. Enhancer mode activation accounted for the most efficiently selected CIS target genes, including Ccr7 as the most prominent of a set of chemokine receptors driving paracrine growth stimulation and lymphoma dissemination. Another large target gene subset including candidate tumour suppressors was disrupted by intragenic insertions. A second RIM/DS screen comparing lymphomas of wild-type and parental transgenics showed that CD2-MYC tumours are virtually dependent on activation of Runx family genes in strong preference to other potent Myc collaborating genes (Gfi1, Notch1). Ikzf1 was identified as a novel collaborating gene for Runx2 and illustrated the interface between integration preference and oncogenic selection. Lymphoma target genes for MoMLV can be classified into (a) a small set of master regulators that confer self-renewal; overcoming p53 and other failsafe pathways and (b) a large group of progression genes that control autonomous proliferation in transformed cells. These findings provide insights into retroviral biology, human cancer genetics and the safety of vector-mediated gene therapy.
Collapse
Affiliation(s)
- Camille A. Huser
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kathryn L. Gilroy
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jeroen de Ridder
- Delft Bioinformatics Lab, Faculty of EEMCS, TU Delft, Delft, The Netherlands
| | - Anna Kilbey
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gillian Borland
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Nancy Mackay
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alma Jenkins
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Margaret Bell
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pawel Herzyk
- Glasgow Polyomics, Institute of Molecular, Cell & Systems Biology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Alistair G. Rust
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Ewan Cameron
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James C. Neil
- Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
35
|
Roberts JT, Cooper EA, Favreau CJ, Howell JS, Lane LG, Mills JE, Newman DC, Perry TJ, Russell ME, Wallace BM, Borchert GM. Continuing analysis of microRNA origins: Formation from transposable element insertions and noncoding RNA mutations. Mob Genet Elements 2014; 3:e27755. [PMID: 24475369 DOI: 10.4161/mge.27755] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are small noncoding RNAs that typically act as regulators of gene expression by base pairing with the 3' UTR of messenger RNAs (mRNAs) and either repressing their translation or initiating degradation. As of this writing over 24,500 distinct miRs have been identified, but the functions of the vast majority of these remain undescribed. This paper represents a summary of our in depth analysis of the genomic origins of miR loci, detailing the formation of 1,213 of the 7,321 recently identified miRs and thereby bringing the total number of miR loci with defined molecular origin to 3,605. Interestingly, our analyses also identify evidence for a second, novel mechanism of miR locus generation through describing the formation of 273 miR loci from mutations to other forms of noncoding RNAs. Importantly, several independent investigations of the genomic origins of miR loci have now supported the hypothesis that miR hairpins are formed by the adjacent genomic insertion of two complementary transposable elements (TEs) into opposing strands. While our results agree that subsequent transcription over such TE interfaces leads to the formation of the majority of functional miR loci, we now also find evidence suggesting that a subset of miR loci were actually formed by an alternative mechanism-point mutations in other structurally complex, noncoding RNAs (e.g., tRNAs and snoRNAs).
Collapse
Affiliation(s)
- Justin T Roberts
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Elvera A Cooper
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Connor J Favreau
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Jacob S Howell
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Lee G Lane
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - James E Mills
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Derrick C Newman
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Tabitha J Perry
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Meaghan E Russell
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Brittany M Wallace
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| | - Glen M Borchert
- Department of Biological Sciences, University of South Alabama; Mobile, AL USA
| |
Collapse
|
36
|
Influence of long terminal repeat retrotransposons in the genomes of fission yeasts. Biochem Soc Trans 2013; 41:1629-33. [DOI: 10.1042/bst20130207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
LTR (long terminal repeat) RTs (retrotransposons) are almost ubiquitous in eukaryotic genomes. Their abundance and selfish properties make them a major influence in the regulation and evolution of their host genome. Recently, several striking properties of the LTR RTs of fission yeast have been uncovered, affecting important cellular processes such as gene regulation, nuclear architecture and genome integrity. The present review summarizes the current information and puts it in the context of the wider search for understanding the influence of transposable elements on the host genome.
Collapse
|
37
|
Bala Tannan N, Brahmachary M, Garg P, Borel C, Alnefaie R, Watson CT, Thomas NS, Sharp AJ. DNA methylation profiling in X;autosome translocations supports a role for L1 repeats in the spread of X chromosome inactivation. Hum Mol Genet 2013; 23:1224-36. [PMID: 24186870 DOI: 10.1093/hmg/ddt553] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
X chromosome inactivation (XCI) is an epigenetic mechanism that silences the majority of genes on one X chromosome in females. Previous studies have suggested that the spread of XCI might be facilitated in part by common repeats such as long interspersed nuclear elements (LINEs). However, owing to the unusual sequence content of the X and the nonrandom distribution of genes that escape XCI, it has been unclear whether the correlation between repeat elements and XCI is a functional one. To test the hypothesis that the spread of XCI shows sequence specificity, we have analyzed the pattern of XCI in autosomal chromatin by performing DNA methylation profiling in six unbalanced X;autosome translocations. Using promoter hypermethylation as an epigenetic signature of XCI, we have determined the inactivation status of 1050 autosomal genes after translocation onto an inactive derivative X. By performing a comparative sequence analysis of autosomal genes that are either subject to or escape the X inactivation signal, we identified a number of common repetitive elements, including L1 and L2 LINEs, and DNA motifs that are significantly enriched around inactive autosomal genes. We show that these same motifs predominantly map to L1P repeat elements, are significantly enriched on the X chromosome versus the autosomes and also occur at higher densities around X-linked genes that are subject to X inactivation compared with those that escape X inactivation. These results are consistent with a potential causal relationship between DNA sequence features such as L1s and the spread of XCI, lending strong support to Mary Lyon's 'repeat hypothesis'.
Collapse
Affiliation(s)
- Neeta Bala Tannan
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Recombination can lead to spurious results in retroviral transduction with dually fluorescent reporter genes. J Virol 2013; 87:13900-3. [PMID: 24067983 DOI: 10.1128/jvi.02524-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fluorescent proteins are routinely employed as reporters in retroviral vectors. Here, we demonstrate that transduction with retroviral vectors carrying a tandem-dimer Tomato (TdTom) reporter produces two distinct fluorescent cell populations following template jumping due to a single nucleotide polymorphism between the first and second Tomato genes. Template jumping also occurs between repeated sequences in the Tomato and green fluorescent protein (GFP) genes. Thus, proper interpretation of the fluorescence intensity of transduced cells requires caution.
Collapse
|
39
|
Abstract
Gene transfer vectors derived from oncoretroviruses or lentiviruses are the most robust and reliable tools to stably integrate therapeutic transgenes in human cells for clinical applications. Integration of these vectors in the genome may, however, have undesired effects caused by insertional deregulation of gene expression at the transcriptional or post-transcriptional level. The occurrence of severe adverse events in several clinical trials involving the transplantation of stem cells genetically corrected with retroviral vectors showed that insertional mutagenesis is not just a theoretical event, and that retroviral transgenesis is associated with a finite risk of genotoxicity. In addressing these issues, the gene therapy community offered a spectacular example of how scientific knowledge and technology can be put to work to understand the causes of unpredicted side effects, design new vectors, and develop tools and models to predict their safety and efficacy. As an added benefit, these efforts brought new basic knowledge on virus-host interactions and on the biology and dynamics of human somatic stem cells. This review summarizes the current knowledge on the interactions between retroviruses and the human genome and addresses the impact of target site selection on the safety of retroviral vector-mediated gene therapy.
Collapse
Affiliation(s)
- Alessia Cavazza
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | |
Collapse
|
40
|
Gowetski DB, Kodis EJ, Kahn JD. Rationally designed coiled-coil DNA looping peptides control DNA topology. Nucleic Acids Res 2013; 41:8253-65. [PMID: 23825092 PMCID: PMC3783159 DOI: 10.1093/nar/gkt553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Artificial DNA looping peptides were engineered to study the roles of protein and DNA flexibility in controlling the geometry and stability of protein-mediated DNA loops. These LZD (leucine zipper dual-binding) peptides were derived by fusing a second, C-terminal, DNA-binding region onto the GCN4 bZip peptide. Two variants with different coiled-coil lengths were designed to control the relative orientations of DNA bound at each end. Electrophoretic mobility shift assays verified formation of a sandwich complex containing two DNAs and one peptide. Ring closure experiments demonstrated that looping requires a DNA-binding site separation of 310 bp, much longer than the length needed for natural loops. Systematic variation of binding site separation over a series of 10 constructs that cyclize to form 862-bp minicircles yielded positive and negative topoisomers because of two possible writhed geometries. Periodic variation in topoisomer abundance could be modeled using canonical DNA persistence length and torsional modulus values. The results confirm that the LZD peptides are stiffer than natural DNA looping proteins, and they suggest that formation of short DNA loops requires protein flexibility, not unusual DNA bendability. Small, stable, tunable looping peptides may be useful as synthetic transcriptional regulators or components of protein–DNA nanostructures.
Collapse
Affiliation(s)
- Daniel B Gowetski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742-2021, USA
| | | | | |
Collapse
|
41
|
Abrusán G, Szilágyi A, Zhang Y, Papp B. Turning gold into 'junk': transposable elements utilize central proteins of cellular networks. Nucleic Acids Res 2013; 41:3190-200. [PMID: 23341038 PMCID: PMC3597677 DOI: 10.1093/nar/gkt011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The numerous discovered cases of domesticated transposable element (TE) proteins led to the recognition that TEs are a significant source of evolutionary innovation. However, much less is known about the reverse process, whether and to what degree the evolution of TEs is influenced by the genome of their hosts. We addressed this issue by searching for cases of incorporation of host genes into the sequence of TEs and examined the systems-level properties of these genes using the Saccharomyces cerevisiae and Drosophila melanogaster genomes. We identified 51 cases where the evolutionary scenario was the incorporation of a host gene fragment into a TE consensus sequence, and we show that both the yeast and fly homologues of the incorporated protein sequences have central positions in the cellular networks. An analysis of selective pressure (Ka/Ks ratio) detected significant selection in 37% of the cases. Recent research on retrovirus-host interactions shows that virus proteins preferentially target hubs of the host interaction networks enabling them to take over the host cell using only a few proteins. We propose that TEs face a similar evolutionary pressure to evolve proteins with high interacting capacities and take some of the necessary protein domains directly from their hosts.
Collapse
Affiliation(s)
- György Abrusán
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Temesváry krt. 62. Szeged H-6701, Hungary.
| | | | | | | |
Collapse
|
42
|
Abstract
Transposable elements possess specific patterns of integration. The biological impact of these integration profiles is not well understood. Tf1, a long-terminal repeat retrotransposon in Schizosaccharomyces pombe, integrates into promoters with a preference for the promoters of stress response genes. To determine the biological significance of Tf1 integration, we took advantage of saturated maps of insertion activity and studied how integration at hot spots affected the expression of the adjacent genes. Our study revealed that Tf1 integration did not reduce gene expression. Importantly, the insertions activated the expression of 6 of 32 genes tested. We found that Tf1 increased gene expression by inserting enhancer activity. Interestingly, the enhancer activity of Tf1 could be limited by Abp1, a host surveillance factor that sequesters transposon sequences into structures containing histone deacetylases. We found the Tf1 promoter was activated by heat treatment and, remarkably, only genes that themselves were induced by heat could be activated by Tf1 integration, suggesting a synergy of Tf1 enhancer sequence with the stress response elements of target promoters. We propose that the integration preference of Tf1 for the promoters of stress response genes and the ability of Tf1 to enhance the expression of these genes co-evolved to promote the survival of cells under stress.
Collapse
Affiliation(s)
- Gang Feng
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
43
|
Gao D, Jimenez-Lopez JC, Iwata A, Gill N, Jackson SA. Functional and structural divergence of an unusual LTR retrotransposon family in plants. PLoS One 2012; 7:e48595. [PMID: 23119066 PMCID: PMC3485330 DOI: 10.1371/journal.pone.0048595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/28/2012] [Indexed: 12/24/2022] Open
Abstract
Retrotransposons with long terminal repeats (LTRs) more than 3 kb are not frequent in most eukaryotic genomes. Rice LTR retrotransposon, Retrosat2, has LTRs greater than 3.2 kb and two open reading frames (ORF): ORF1 encodes enzymes for retrotransposition whereas no function can be assigned to ORF0 as it is not found in any other organism. A variety of experimental and in silico approaches were used to determine the origin of Retrosat2 and putative function of ORF0. Our data show that not only is Retrosat2 highly abundant in the Oryza genus, it may yet be active in rice. Homologs of Retrosat2 were identified in maize, sorghum, Arabidopsis and other plant genomes suggesting that the Retrosat2 family is of ancient origin. Several putatively cis-acting elements, some multicopy, that regulate retrotransposon replication or responsiveness to environmental factors were found in the LTRs of Retrosat2. Unlike the ORF1, the ORF0 sequences from Retrosat2 and homologs are divergent at the sequence level, 3D-structures and predicted biological functions. In contrast to other retrotransposon families, Retrosat2 and its homologs are dispersed throughout genomes and not concentrated in the specific chromosomal regions, such as centromeres. The genomic distribution of Retrosat2 homologs varies across species which likely reflects the differing evolutionary trajectories of this retrotransposon family across diverse species.
Collapse
Affiliation(s)
- Dongying Gao
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| | - Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell & Molecular Biology of Plants, Estacion Experimental del Zaidin, High Council for Scientific Research, Granada, Spain
| | - Aiko Iwata
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| | - Navdeep Gill
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
44
|
Leung DC, Lorincz MC. Silencing of endogenous retroviruses: when and why do histone marks predominate? Trends Biochem Sci 2012; 37:127-33. [DOI: 10.1016/j.tibs.2011.11.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 11/11/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
|
45
|
Tsukahara S, Kawabe A, Kobayashi A, Ito T, Aizu T, Shin-i T, Toyoda A, Fujiyama A, Tarutani Y, Kakutani T. Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata. Genes Dev 2012; 26:705-13. [PMID: 22431508 DOI: 10.1101/gad.183871.111] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The plant genome evolves with rapid proliferation of LTR-type retrotransposons, which is associated with their clustered accumulation in gene-poor regions, such as centromeres. Despite their major role for plant genome evolution, no mobile LTR element with targeted integration into gene-poor regions has been identified in plants. Here, we report such targeted integrations de novo. We and others have previously shown that an ATCOPIA93 family retrotransposon in Arabidopsis thaliana is mobilized when the DNA methylation machinery is compromised. Although ATCOPIA93 family elements are low copy number in the wild-type A. thaliana genome, high-copy-number related elements are found in the wild-type Arabidopsis lyrata genome, and they show centromere-specific localization. To understand the mechanisms for the clustered accumulation of the A. lyrata elements directly, we introduced one of them, named Tal1 (Transposon of Arabidopsis lyrata 1), into A. thaliana by transformation. The introduced Tal1 was retrotransposed in A. thaliana, and most of the retrotransposed copies were found in centromeric repeats of A. thaliana, suggesting targeted integration. The targeted integration is especially surprising because the centromeric repeat sequences differ considerably between A. lyrata and A. thaliana. Our results revealed unexpectedly dynamic controls for evolution of the transposon-rich heterochromatic regions.
Collapse
Affiliation(s)
- Sayuri Tsukahara
- Department of Integrated Genetics, National Institute of Genetics, Shizuoka 411-8540, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fukai E, Soyano T, Umehara Y, Nakayama S, Hirakawa H, Tabata S, Sato S, Hayashi M. Establishment of a Lotus japonicus gene tagging population using the exon-targeting endogenous retrotransposon LORE1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:720-30. [PMID: 22014259 DOI: 10.1111/j.1365-313x.2011.04826.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We established a gene tagging population of the model legume Lotus japonicus using an endogenous long terminal repeat (LTR) retrotransposon Lotus Retrotransposon 1 (LORE1). The population was composed of 2450 plant lines, from which a total of 4532 flanking sequence tags of LORE1 were recovered by pyrosequencing. The two-dimensional arrangement of the plant population, together with the use of multiple identifier sequences in the primers used to amplify the flanking regions, made it possible to trace insertions back to the original plant lines. The large-scale detection of new LORE1 insertion sites revealed a preference for genic regions, especially in exons of protein-coding genes, which is an interesting feature to consider in the interaction between host genomes and chromoviruses, to which LORE1 belongs, a class of retrotransposon widely distributed among plants. Forward screening of the symbiotic mutants from the population succeeded to identify five symbiotic mutants of known genes. These data suggest that LORE1 is robust as a genetic tool.
Collapse
Affiliation(s)
- Eigo Fukai
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ivics Z, Izsvák Z. Nonviral gene delivery with the sleeping beauty transposon system. Hum Gene Ther 2012; 22:1043-51. [PMID: 21867398 DOI: 10.1089/hum.2011.143] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Effective gene therapy requires robust delivery of therapeutic genes into relevant target cells, long-term gene expression, and minimal risks of secondary effects. Nonviral gene transfer approaches typically result in only short-lived transgene expression in primary cells, because of the lack of nuclear maintenance of the vector over several rounds of cell division. The development of efficient and safe nonviral vectors armed with an integrating feature would thus greatly facilitate clinical gene therapy studies. The latest generation transposon technology based on the Sleeping Beauty (SB) transposon may potentially overcome some of these limitations. SB was shown to provide efficient stable gene transfer and sustained transgene expression in primary cell types, including human hematopoietic progenitors, mesenchymal stem cells, muscle stem/progenitor cells (myoblasts), induced pluripotent stem cells, and T cells. These cells are relevant targets for stem cell biology, regenerative medicine, and gene- and cell-based therapies of complex genetic diseases. Moreover, the first-in-human clinical trial has been launched to use redirected T cells engineered with SB for gene therapy of B cell lymphoma. We discuss aspects of cellular delivery of the SB transposon system, transgene expression provided by integrated transposon vectors, target site selection of the transposon vectors, and potential risks associated with random genomic insertion.
Collapse
Affiliation(s)
- Zoltán Ivics
- Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany.
| | | |
Collapse
|
48
|
Baller JA, Gao J, Stamenova R, Curcio MJ, Voytas DF. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon. Genome Res 2012; 22:704-13. [PMID: 22219511 DOI: 10.1101/gr.129585.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ty1, the most abundant retrotransposon in Saccharomyces cerevisiae, integrates preferentially upstream of genes transcribed by RNA polymerase III (Pol III). Targeting is likely due to interactions between the Ty1 integration complex and a feature of chromatin characteristic of sites of Pol III transcription. To better understand Ty1 targeting determinants, >150,000 Ty1 insertions were mapped onto the S. cerevisiae genome sequence. Logistic regression was used to assess relationships between patterns of Ty1 integration and various genomic features, including genome-wide data sets of histone modifications and transcription-factor binding sites. Nucleosomes were positively associated with Ty1 insertions, and fine-scale mapping of insertions upstream of genes transcribed by Pol III indicated that Ty1 preferentially integrates into nucleosome-bound DNA near the H2A/H2B interface. Outside of genes transcribed by Pol III, Ty1 avoids coding sequences, a pattern that is not due to selection, but rather reflects a preference for nucleosome-rich sites flanking genes. Ty1 insertion sites were also mapped in four mutant lines that affect Ty1 transposition frequency or integration specificity (rrm3Δ, hos2Δ, rtt109Δ, and rad6Δ). Patterns of integration were largely preserved in the mutants, although significantly more insertions into coding sequences were observed in the rad6Δ strain, suggesting a loosening of target specificity in this mutant that lacks an enzyme involved in ubiquitinating H2A. Overall, our data suggest that nucleosomes are necessary for Ty1 integration, and that a secondary factor, likely a histone modification or nucleosome-bound factor enriched at sites of Pol III transcription, determines preferred target sites.
Collapse
Affiliation(s)
- Joshua A Baller
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
49
|
Williams DS, Lopes VS. Gene Therapy Strategies for Usher Syndrome Type 1B. RETINAL DEGENERATIVE DISEASES 2012; 723:235-42. [DOI: 10.1007/978-1-4614-0631-0_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
50
|
|