1
|
Xue F, Zhang J, Wu D, Sun S, Fu M, Wang J, Searle I, Gao H, Liang W. m 6A demethylase OsALKBH5 is required for double-strand break formation and repair by affecting mRNA stability in rice meiosis. THE NEW PHYTOLOGIST 2024; 244:2326-2342. [PMID: 39044689 DOI: 10.1111/nph.19976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 06/13/2024] [Indexed: 07/25/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is the most prevalent messenger RNA (mRNA) modification in eukaryotes and plays critical roles in the regulation of gene expression. m6A is a reversible RNA modification that is deposited by methyltransferases (writers) and removed by demethylases (erasers). The function of m6A erasers in plants is highly diversified and their roles in cereal crops, especially in reproductive development essential for crop yield, are largely unknown. Here, we demonstrate that rice OsALKBH5 acts as an m6A demethylase required for the normal progression of male meiosis. OsALKBH5 is a nucleo-cytoplasmic protein, highly enriched in rice anthers during meiosis, that associates with P-bodies and exon junction complexes, suggesting that it is involved in regulating mRNA processing and abundance. Mutations of OsALKBH5 cause reduced double-strand break (DSB) formation, severe defects in DSB repair, and delayed meiotic progression, leading to complete male sterility. Transcriptome analysis and m6A profiling indicate that OsALKBH5-mediated m6A demethylation stabilizes the mRNA level of multiple meiotic genes directly or indirectly, including several genes that regulate DSB formation and repair. Our study reveals the indispensable role of m6A metabolism in post-transcriptional regulation of meiotic progression in rice.
Collapse
Affiliation(s)
- Feiyang Xue
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Di Wu
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiyu Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Iain Searle
- Department of Molecular and Biomedical Sciences, School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Hongbo Gao
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, 572024, China
| |
Collapse
|
2
|
Tan Y, Tan T, Zhang S, Li B, Chen B, Zhou X, Wang Y, Yang X, Zhai B, Huang Q, Zhang L, Wang S. Temperature regulates negative supercoils to modulate meiotic crossovers and chromosome organization. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2426-2443. [PMID: 39048717 DOI: 10.1007/s11427-024-2671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Crossover recombination is a hallmark of meiosis that holds the paternal and maternal chromosomes (homologs) together for their faithful segregation, while promoting genetic diversity of the progeny. The pattern of crossover is mainly controlled by the architecture of the meiotic chromosomes. Environmental factors, especially temperature, also play an important role in modulating crossovers. However, it is unclear how temperature affects crossovers. Here, we examined the distribution of budding yeast axis components (Red1, Hop1, and Rec8) and the crossover-associated Zip3 foci in detail at different temperatures, and found that both increased and decreased temperatures result in shorter meiotic chromosome axes and more crossovers. Further investigations showed that temperature changes coordinately enhanced the hyperabundant accumulation of Hop1 and Red1 on chromosomes and the number of Zip3 foci. Most importantly, temperature-induced changes in the distribution of axis proteins and Zip3 foci depend on changes in DNA negative supercoils. These results suggest that yeast meiosis senses temperature changes by increasing the level of negative supercoils to increase crossovers and modulate chromosome organization. These findings provide a new perspective on understanding the effect and mechanism of temperature on meiotic recombination and chromosome organization, with important implications for evolution and breeding.
Collapse
Affiliation(s)
- Yingjin Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Taicong Tan
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Shuxian Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Beiyi Chen
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Xu Zhou
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China
| | - Ying Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Xiao Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Binyuan Zhai
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, 250012, China.
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Shunxin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, China.
- Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, Jinan, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, China.
| |
Collapse
|
3
|
Nozaki T, Weiner B, Kleckner N. Rapid homologue juxtaposition during meiotic chromosome pairing. Nature 2024; 634:1221-1228. [PMID: 39358508 DOI: 10.1038/s41586-024-07999-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
A central feature of meiosis is the pairing of homologous maternal and paternal chromosomes ('homologues') along their lengths1-3. Recognition between homologues and their juxtaposition in space is mediated by axis-associated recombination complexes. Also, pairing must occur without entanglements among unrelated chromosomes. Here we examine homologue juxtaposition in real time by four-dimensional fluorescence imaging of tagged chromosomal loci at high spatio-temporal resolution in budding yeast. We discover that corresponding loci come together from a substantial distance (1.8 µm) and complete pairing in a very short time, about 6 min (thus, rapid homologue juxtaposition or RHJ). Homologue loci first move rapidly together (in 30 s, at speeds of roughly 60 nm s-1) into an intermediate stage corresponding to canonical 400 nm axis coalignment. After a short pause, crossover/non-crossover differentiation (crossover interference) mediates a second short, rapid transition that ultimately gives close pairing of axes at 100 nm by means of synaptonemal complex formation. Furthermore, RHJ (1) occurs after chromosomes acquire prophase chromosome organization, (2) is nearly synchronous over thirds of chromosome lengths, but (3) is asynchronous throughout the genome. Finally, cytoskeleton-mediated movement is important for the timing and distance of RHJ onset and for ensuring its normal progression. General implications for local and global aspects of pairing are discussed.
Collapse
Affiliation(s)
- Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Beth Weiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Jones G, Kleckner N, Zickler D. Meiosis through three centuries. Chromosoma 2024; 133:93-115. [PMID: 38730132 PMCID: PMC11180163 DOI: 10.1007/s00412-024-00822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.
Collapse
Affiliation(s)
- Gareth Jones
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de La Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91198, Gif-Sur-Yvette, France
| |
Collapse
|
5
|
Nozaki T, Weiner B, Kleckner N. Rapid Homolog Juxtaposition During Meiotic Chromosome Pairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586418. [PMID: 38586034 PMCID: PMC10996542 DOI: 10.1101/2024.03.23.586418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A central basic feature of meiosis is pairing of homologous maternal and paternal chromosomes ("homologs") intimately along their lengths. Recognition between homologs and their juxtaposition in space are mediated by axis-associated DNA recombination complexes. Additional effects ensure that pairing occurs without ultimately giving entanglements among unrelated chromosomes. Here we examine the process of homolog juxtaposition in real time by 4D fluorescence imaging of tagged chromosomal loci at high spatio-temporal resolution in budding yeast. We discover that corresponding loci start coming together from a quite large distance (∼1.8 µm) and progress to completion of pairing in a very short time, usually less than six minutes (thus, "rapid homolog juxtaposition" or "RHJ"). Juxtaposition initiates by motion-mediated extension of a nascent interhomolog DNA linkage, raising the possibility of a tension-mediated trigger. In a first transition, homolog loci move rapidly together (in ∼30 sec, at speeds of up to ∼60 nm/sec) into a discrete intermediate state corresponding to canonical ∼400 nm axis distance coalignment. Then, after a short pause, crossover/noncrossover differentiation (crossover interference) mediates a second short, rapid transition that brings homologs even closer together. If synaptonemal complex (SC) component Zip1 is present, this transition concomitantly gives final close pairing by axis juxtaposition at ∼100 nm, the "SC distance". We also find that: (i) RHJ occurs after chromosomes acquire their prophase chromosome organization; (ii) is nearly synchronously over thirds (or more) of chromosome lengths; but (iii) is asynchronous throughout the genome. Furthermore, cytoskeleton-mediated movement is important for the timing and distance of RHJ onset and also for ensuring normal progression. Potential implications for local and global aspects of pairing are discussed.
Collapse
|
6
|
Zou M, Shabala S, Zhao C, Zhou M. Molecular mechanisms and regulation of recombination frequency and distribution in plants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:86. [PMID: 38512498 PMCID: PMC10957645 DOI: 10.1007/s00122-024-04590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
KEY MESSAGE Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.
Collapse
Affiliation(s)
- Meilin Zou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Perth, 6009, Australia
| | - Chenchen Zhao
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 1375, Prospect, TAS, 7250, Australia.
| |
Collapse
|
7
|
Näsvall K, Boman J, Höök L, Vila R, Wiklund C, Backström N. Nascent evolution of recombination rate differences as a consequence of chromosomal rearrangements. PLoS Genet 2023; 19:e1010717. [PMID: 37549188 PMCID: PMC10434929 DOI: 10.1371/journal.pgen.1010717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/17/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023] Open
Abstract
Reshuffling of genetic variation occurs both by independent assortment of chromosomes and by homologous recombination. Such reshuffling can generate novel allele combinations and break linkage between advantageous and deleterious variants which increases both the potential and the efficacy of natural selection. Here we used high-density linkage maps to characterize global and regional recombination rate variation in two populations of the wood white butterfly (Leptidea sinapis) that differ considerably in their karyotype as a consequence of at least 27 chromosome fissions and fusions. The recombination data were compared to estimates of genetic diversity and measures of selection to assess the relationship between chromosomal rearrangements, crossing over, maintenance of genetic diversity and adaptation. Our data show that the recombination rate is influenced by both chromosome size and number, but that the difference in the number of crossovers between karyotypes is reduced as a consequence of a higher frequency of double crossovers in larger chromosomes. As expected from effects of selection on linked sites, we observed an overall positive association between recombination rate and genetic diversity in both populations. Our results also revealed a significant effect of chromosomal rearrangements on the rate of intergenic diversity change between populations, but limited effects on polymorphisms in coding sequence. We conclude that chromosomal rearrangements can have considerable effects on the recombination landscape and consequently influence both maintenance of genetic diversity and efficiency of selection in natural populations.
Collapse
Affiliation(s)
- Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Jesper Boman
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| | - Roger Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Christer Wiklund
- Department of Zoology: Division of Ecology, Stockholm University, Stockholm, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, Uppsala, Sweden
| |
Collapse
|
8
|
Shinohara M, Shinohara A. The Msh5 complex shows homeostatic localization in response to DNA double-strand breaks in yeast meiosis. Front Cell Dev Biol 2023; 11:1170689. [PMID: 37274743 PMCID: PMC10232913 DOI: 10.3389/fcell.2023.1170689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Meiotic crossing over is essential for the segregation of homologous chromosomes. The formation and distribution of meiotic crossovers (COs), which are initiated by the formation of double-strand break (DSB), are tightly regulated to ensure at least one CO per bivalent. One type of CO control, CO homeostasis, maintains a consistent level of COs despite fluctuations in DSB numbers. Here, we analyzed the localization of proteins involved in meiotic recombination in budding yeast xrs2 hypomorphic mutants which show different levels of DSBs. The number of cytological foci with recombinases, Rad51 and Dmc1, which mark single-stranded DNAs at DSB sites is proportional to the DSB numbers. Among the pro-CO factor, ZMM/SIC proteins, the focus number of Zip3, Mer3, or Spo22/Zip4, was linearly proportional to reduced DSBs in the xrs2 mutant. In contrast, foci of Msh5, a component of the MutSγ complex, showed a non-linear response to reduced DSBs. We also confirmed the homeostatic response of COs by genetic analysis of meiotic recombination in the xrs2 mutants and found a chromosome-specific homeostatic response of COs. Our study suggests that the homeostatic response of the Msh5 assembly to reduced DSBs was genetically distinct from that of the Zip3 assembly for CO control.
Collapse
Affiliation(s)
- Miki Shinohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Komluski J, Habig M, Stukenbrock EH. Repeat-Induced Point Mutation and Gene Conversion Coinciding with Heterochromatin Shape the Genome of a Plant-Pathogenic Fungus. mBio 2023:e0329022. [PMID: 37093087 DOI: 10.1128/mbio.03290-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Meiosis is associated with genetic changes in the genome-via recombination, gene conversion, and mutations. The occurrence of gene conversion and mutations during meiosis may further be influenced by the chromatin conformation, similar to the effect of the chromatin conformation on the mitotic mutation rate. To date, however, the exact distribution and type of meiosis-associated changes and the role of the chromatin conformation in this context are largely unexplored. Here, we determine recombination, gene conversion, and de novo mutations using whole-genome sequencing of all meiotic products of 23 individual meioses in Zymoseptoria tritici, an important pathogen of wheat. We confirm a high genome-wide recombination rate of 65 centimorgan (cM)/Mb and see higher recombination rates on the accessory compared to core chromosomes. A substantial fraction of 0.16% of all polymorphic markers was affected by gene conversions, showing a weak GC-bias and occurring at higher frequency in regions of constitutive heterochromatin, indicated by the histone modification H3K9me3. The de novo mutation rate associated with meiosis was approximately three orders of magnitude higher than the corresponding mitotic mutation rate. Importantly, repeat-induced point mutation (RIP), a fungal defense mechanism against duplicated sequences, is active in Z. tritici and responsible for the majority of these de novo meiotic mutations. Our results indicate that the genetic changes associated with meiosis are a major source of variability in the genome of an important plant pathogen and shape its evolutionary trajectory. IMPORTANCE The impact of meiosis on the genome composition via gene conversion and mutations is mostly poorly understood, in particular, for non-model species. Here, we sequenced all four meiotic products for 23 individual meioses and determined the genetic changes caused by meiosis for the important fungal wheat pathogen Zymoseptoria tritici. We found a high rate of gene conversions and an effect of the chromatin conformation on gene conversion rates. Higher conversion rates were found in regions enriched with the H3K9me3-a mark for constitutive heterochromatin. Most importantly, meiosis was associated with a much higher frequency of de novo mutations than mitosis; 78% of the meiotic mutations were caused by repeat-induced point mutations-a fungal defense mechanism against duplicated sequences. In conclusion, the genetic changes associated with meiosis are therefore a major factor shaping the genome of this fungal pathogen.
Collapse
Affiliation(s)
- Jovan Komluski
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Michael Habig
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
10
|
Kudryavtseva N, Ermolaev A, Pivovarov A, Simanovsky S, Odintsov S, Khrustaleva L. The Control of the Crossover Localization in Allium. Int J Mol Sci 2023; 24:ijms24087066. [PMID: 37108228 PMCID: PMC10138942 DOI: 10.3390/ijms24087066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Meiotic crossovers/chiasmata are not randomly distributed and strictly controlled. The mechanisms behind crossover (CO) patterning remain largely unknown. In Allium cepa, as in the vast majority of plants and animals, COs predominantly occur in the distal 2/3 of the chromosome arm, while in Allium fistulosum they are strictly localized in the proximal region. We investigated the factors that may contribute to the pattern of COs in A. cepa, A. fistulosum and their F1 diploid (2n = 2x = 8C + 8F) and F1 triploid (2n = 3x = 16F + 8C) hybrids. The genome structure of F1 hybrids was confirmed using genomic in situ hybridization (GISH). The analysis of bivalents in the pollen mother cells (PMCs) of the F1 triploid hybrid showed a significant shift in the localization of COs to the distal and interstitial regions. In F1 diploid hybrid, the COs localization was predominantly the same as that of the A. cepa parent. We found no differences in the assembly and disassembly of ASY1 and ZYP1 in PMCs between A. cepa and A. fistulosum, while F1 diploid hybrid showed a delay in chromosome pairing and a partial absence of synapsis in paired chromosomes. Immunolabeling of MLH1 (class I COs) and MUS81 (class II COs) proteins showed a significant difference in the class I/II CO ratio between A. fistulosum (50%:50%) and A. cepa (73%:27%). The MLH1:MUS81 ratio at the homeologous synapsis of F1 diploid hybrid (70%:30%) was the most similar to that of the A. cepa parent. F1 triploid hybrid at the A. fistulosum homologous synapsis showed a significant increase in MLH1:MUS81 ratio (60%:40%) compared to the A. fistulosum parent. The results suggest possible genetic control of CO localization. Other factors affecting the distribution of COs are discussed.
Collapse
Affiliation(s)
- Natalia Kudryavtseva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Aleksey Ermolaev
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Anton Pivovarov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Sergey Simanovsky
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prosp., Moscow 119071, Russia
| | - Sergey Odintsov
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Ludmila Khrustaleva
- All-Russian Research Institute of Agricultural Biotechnology, 42 Timiryazevskaya Str., Moscow 127550, Russia
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| |
Collapse
|
11
|
Strelnikova SR, Komakhin RA. Control of meiotic crossing over in plant breeding. Vavilovskii Zhurnal Genet Selektsii 2023; 27:99-110. [PMID: 37063511 PMCID: PMC10090103 DOI: 10.18699/vjgb-23-15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 04/18/2023] Open
Abstract
Meiotic crossing over is the main mechanism for constructing a new allelic composition of individual chromosomes and is necessary for the proper distribution of homologous chromosomes between gametes. The parameters of meiotic crossing over that have developed in the course of evolution are determined by natural selection and do not fully suit the tasks of selective breeding research. This review summarizes the results of experimental studies aimed at increasing the frequency of crossovers and redistributing their positions along chromosomes using genetic manipulations at different stages of meiotic recombination. The consequences of inactivation and/or overexpression of the SPO11 genes, the products of which generate meiotic double-strand breaks in DNA, for the redistribution of crossover positions in the genome of various organisms are discussed. The results of studies concerning the effect of inactivation or overexpression of genes encoding RecA-like recombinases on meiotic crossing over, including those in cultivated tomato (Solanum lycopersicum L.) and its interspecific hybrids, are summarized. The consequences of inactivation of key genes of the mismatch repair system are discussed. Their suppression made it possible to significantly increase the frequency of meiotic recombination between homeologues in the interspecific hybrid yeast Saccharomyces cerevisiae × S. paradoxus and between homologues in arabidopsis plants (Arabidopsis thaliana L.). Also discussed are attempts to extrapolate these results to other plant species, in which a decrease in reproductive properties and microsatellite instability in the genome have been noted. The most significant results on the meiotic recombination frequency increase upon inactivation of the FANCM, TOP3α, RECQ4, FIGL1 crossover repressor genes and upon overexpression of the HEI10 crossover enhancer gene are separately described. In some experiments, the increase of meiotic recombination frequency by almost an order of magnitude and partial redistribution of the crossover positions along chromosomes were achieved in arabidopsis while fully preserving fecundity. Similar results have been obtained for some crops.
Collapse
Affiliation(s)
- S R Strelnikova
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - R A Komakhin
- All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
12
|
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. PLANT REPRODUCTION 2023; 36:107-124. [PMID: 36149479 PMCID: PMC9957869 DOI: 10.1007/s00497-022-00448-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/10/2022] [Indexed: 05/29/2023]
Abstract
Polyploidy, which arises from genome duplication, has occurred throughout the history of eukaryotes, though it is especially common in plants. The resulting increased size, heterozygosity, and complexity of the genome can be an evolutionary opportunity, facilitating diversification, adaptation and the evolution of functional novelty. On the other hand, when they first arise, polyploids face a number of challenges, one of the biggest being the meiotic pairing, recombination and segregation of the suddenly more than two copies of each chromosome, which can limit their fertility. Both for developing polyploidy as a crop improvement tool (which holds great promise due to the high and lasting multi-stress resilience of polyploids), as well as for our basic understanding of meiosis and plant evolution, we need to know both the specific nature of the challenges polyploids face, as well as how they can be overcome in evolution. In recent years there has been a dramatic uptick in our understanding of the molecular basis of polyploid adaptations to meiotic challenges, and that is the focus of this review.
Collapse
Affiliation(s)
- Kirsten Bomblies
- Plant Evolutionary Genetics, Institute of Plant Molecular Biology, Department of Biology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
13
|
Abstract
KEY MESSAGE Chromatin state, and dynamic loading of pro-crossover protein HEI10 at recombination intermediates shape meiotic chromosome patterning in plants. Meiosis is the basis of sexual reproduction, and its basic progression is conserved across eukaryote kingdoms. A key feature of meiosis is the formation of crossovers which result in the reciprocal exchange of segments of maternal and paternal chromosomes. This exchange generates chromosomes with new combinations of alleles, increasing the efficiency of both natural and artificial selection. Crossovers also form a physical link between homologous chromosomes at metaphase I which is critical for accurate chromosome segregation and fertility. The patterning of crossovers along the length of chromosomes is a highly regulated process, and our current understanding of its regulation forms the focus of this review. At the global scale, crossover patterning in plants is largely governed by the classically observed phenomena of crossover interference, crossover homeostasis and the obligatory crossover which regulate the total number of crossovers and their relative spacing. The molecular actors behind these phenomena have long remained obscure, but recent studies in plants implicate HEI10 and ZYP1 as key players in their coordination. In addition to these broad forces, a wealth of recent studies has highlighted how genomic and epigenomic features shape crossover formation at both chromosomal and local scales, revealing that crossovers are primarily located in open chromatin associated with gene promoters and terminators with low nucleosome occupancy.
Collapse
Affiliation(s)
- Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, Ceredigion, UK.
| |
Collapse
|
14
|
Shodhan A, Xaver M, Wheeler D, Lichten M. Turning coldspots into hotspots: targeted recruitment of axis protein Hop1 stimulates meiotic recombination in Saccharomyces cerevisiae. Genetics 2022; 222:iyac106. [PMID: 35876814 PMCID: PMC9434160 DOI: 10.1093/genetics/iyac106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022] Open
Abstract
The DNA double-strand breaks that initiate meiotic recombination are formed in the context of the meiotic chromosome axis, which in Saccharomyces cerevisiae contains a meiosis-specific cohesin isoform and the meiosis-specific proteins Hop1 and Red1. Hop1 and Red1 are important for double-strand break formation; double-strand break levels are reduced in their absence and their levels, which vary along the lengths of chromosomes, are positively correlated with double-strand break levels. How axis protein levels influence double-strand break formation and recombination remains unclear. To address this question, we developed a novel approach that uses a bacterial ParB-parS partition system to recruit axis proteins at high levels to inserts at recombination coldspots where Hop1 and Red1 levels are normally low. Recruiting Hop1 markedly increased double-strand breaks and homologous recombination at target loci, to levels equivalent to those observed at endogenous recombination hotspots. This local increase in double-strand breaks did not require Red1 or the meiosis-specific cohesin component Rec8, indicating that, of the axis proteins, Hop1 is sufficient to promote double-strand break formation. However, while most crossovers at endogenous recombination hotspots are formed by the meiosis-specific MutLγ resolvase, crossovers that formed at an insert locus were only modestly reduced in the absence of MutLγ, regardless of whether or not Hop1 was recruited to that locus. Thus, while local Hop1 levels determine local double-strand break levels, the recombination pathways that repair these breaks can be determined by other factors, raising the intriguing possibility that different recombination pathways operate in different parts of the genome.
Collapse
Affiliation(s)
- Anura Shodhan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Martin Xaver
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Ruiz-Herrera A, Waters PD. Fragile, unfaithful and persistent Ys-on how meiosis can shape sex chromosome evolution. Heredity (Edinb) 2022; 129:22-30. [PMID: 35459933 PMCID: PMC9273583 DOI: 10.1038/s41437-022-00532-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Sex-linked inheritance is a stark exception to Mendel's Laws of Heredity. Here we discuss how the evolution of heteromorphic sex chromosomes (mainly the Y) has been shaped by the intricacies of the meiotic programme. We propose that persistence of Y chromosomes in distantly related mammalian phylogroups can be explained in the context of pseudoautosomal region (PAR) size, meiotic pairing strategies, and the presence of Y-borne executioner genes that regulate meiotic sex chromosome inactivation. We hypothesise that variation in PAR size can be an important driver for the evolution of recombination frequencies genome wide, imposing constraints on Y fate. If small PAR size compromises XY segregation during male meiosis, the stress of producing aneuploid gametes could drive function away from the Y (i.e., a fragile Y). The Y chromosome can avoid fragility either by acquiring an achiasmatic meiotic XY pairing strategy to reduce aneuploid gamete production, or gain meiotic executioner protection (a persistent Y). Persistent Ys will then be under strong pressure to maintain high recombination rates in the PAR (and subsequently genome wide), as improper segregation has fatal consequences for germ cells. In the event that executioner protection is lost, the Y chromosome can be maintained in the population by either PAR rejuvenation (extension by addition of autosome material) or gaining achiasmatic meiotic pairing, the alternative is Y loss. Under this dynamic cyclic evolutionary scenario, understanding the meiotic programme in vertebrate and invertebrate species will be crucial to further understand the plasticity of the rise and fall of heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Rzeszutek I, Swart EC, Pabian-Jewuła S, Russo A, Nowacki M. Early developmental, meiosis-specific proteins - Spo11, Msh4-1, and Msh5 - Affect subsequent genome reorganization in Paramecium tetraurelia. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119239. [PMID: 35181406 DOI: 10.1016/j.bbamcr.2022.119239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Developmental DNA elimination in Paramecium tetraurelia occurs through a trans-nuclear comparison of the genomes of two distinct types of nuclei: the germline micronucleus (MIC) and the somatic macronucleus (MAC). During sexual reproduction, which starts with meiosis of the germline nuclei, MIC-limited sequences including Internal Eliminated Sequences (IESs) and transposons are eliminated from the developing MAC in a process guided by noncoding RNAs (scnRNAs and iesRNAs). However, our current understanding of this mechanism is still very limited. Therefore, studying both genetic and epigenetic aspects of these processes is a crucial step to understand this phenomenon in more detail. Here, we describe the involvement of homologs of classical meiotic proteins, Spo11, Msh4-1, and Msh5 in this phenomenon. Based on our analyses, we propose that proper functioning of Spo11, Msh4-1, and Msh5 during Paramecium sexual reproduction are necessary for genome reorganization and viable progeny. Also, we show that double-strand breaks (DSBs) in DNA induced during meiosis by Spo11 are crucial for proper IESs excision. In summary, our investigations show that early sexual reproduction processes may significantly influence later somatic genome integrity.
Collapse
Affiliation(s)
- Iwona Rzeszutek
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland; Institute of Biology and Biotechnology, Department of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Estienne C Swart
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tuebingen, Germany
| | - Sylwia Pabian-Jewuła
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Centre of Postgraduate Medical Education, Department of Clinical Cytology, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Antonietta Russo
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland; Medical Biochemistry and Molecular Biology Department, UKS, Saarland Medical Center, Kirrberger Str. 100, 66421 Homburg, Germany
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland.
| |
Collapse
|
17
|
Gasic S, Mihola O, Trachtulec Z. Prdm9 deficiency of rat oocytes causes synapsis among non-homologous chromosomes and aneuploidy. Mamm Genome 2022; 33:590-605. [PMID: 35596034 DOI: 10.1007/s00335-022-09954-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Aneuploidy (abnormal chromosome number) accompanies reduced ovarian function in humans and mice, but the reasons behind this concomitance remain underexplored. Some variants in the human gene encoding histone-3-lysine-4,36-trimethyltransferase PRDM9 are associated with aneuploidy, and other variants with ovarian function reduced by premature ovarian failure (POF), but no link between POF and aneuploidy has been revealed. SHR/OlaIpcv rat females lacking PRDM9 manifest POF-a reduced follicle number, litter size, and reproductive age. Here, we explored this model to test how POF relates to oocyte euploidy. The mutant rat females displayed increased oocyte aneuploidy and embryonic death of their offspring compared to controls. Because rat PRDM9 positions meiotic DNA breaks, we investigated the repair of these breaks. Fertile control rodents carry pachytene oocytes with synapsed homologous chromosomes and repaired breaks, while sterile Prdm9-deficient mice carry pachytene-like oocytes with many persisting breaks and asynapsed chromosomes. However, most PRDM9-lacking rat oocytes displayed a few persisting breaks and non-homologous synapsis (NHS). HORMAD2 protein serves as a barrier to sister-chromatid repair and a signal for the synapsis and DNA repair checkpoints. NHS but not asynapsis was associated with HORMAD2 levels similar to the levels on rat pachytene chromosomes with homologous synapsis. NHS was accompanied by crossing-over decreased below the minimum that is essential for euploidy. We argue that the increased mutant rat aneuploidy is due to NHS, which allows some oocytes to pass meiotic checkpoints without one crossing-over per chromosomal pair, leading to segregation errors, and thereby NHS links POF to aneuploidy.
Collapse
Affiliation(s)
- Srdjan Gasic
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Mihola
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Trachtulec
- Laboratory of Germ Cell Development, Division BIOCEV, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
18
|
Morgan C, White MA, Franklin FCH, Zickler D, Kleckner N, Bomblies K. Evolution of crossover interference enables stable autopolyploidy by ensuring pairwise partner connections in Arabidopsis arenosa. Curr Biol 2021; 31:4713-4726.e4. [PMID: 34480856 PMCID: PMC8585506 DOI: 10.1016/j.cub.2021.08.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
Polyploidy is a major driver of evolutionary change. Autopolyploids, which arise by within-species whole-genome duplication, carry multiple nearly identical copies of each chromosome. This presents an existential challenge to sexual reproduction. Meiotic chromosome segregation requires formation of DNA crossovers (COs) between two homologous chromosomes. How can this outcome be achieved when more than two essentially equivalent partners are available? We addressed this question by comparing diploid, neo-autotetraploid, and established autotetraploid Arabidopsis arenosa using new approaches for analysis of meiotic CO patterns in polyploids. We discover that crossover interference, the classical process responsible for patterning of COs in diploid meiosis, is defective in the neo-autotetraploid but robust in the established autotetraploid. The presented findings suggest that, initially, diploid-like interference fails to act effectively on multivalent pairing and accompanying pre-CO recombination interactions and that stable autopolyploid meiosis can emerge by evolution of a “supercharged” interference process, which can now act effectively on such configurations. Thus, the basic interference mechanism responsible for simplifying CO patterns along chromosomes in diploid meiosis has evolved the capability to also simplify CO patterns among chromosomes in autopolyploids, thereby promoting bivalent formation. We further show that evolution of stable autotetraploidy preadapts meiosis to higher ploidy, which in turn has interesting mechanistic and evolutionary implications. In a neo-autotetraploid, aberrant crossover interference confers aberrant meiosis In a stable autotetraploid, regular crossover interference confers regular meiosis Crossover and synaptic patterns point to evolution of “supercharged” interference Accordingly, evolution of stable autotetraploidy preadapts to higher ploidies
Collapse
Affiliation(s)
- Chris Morgan
- John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Martin A White
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
| | | | - Denise Zickler
- University Paris-Saclay, Commissariat à l'Energie Atomique at aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institute for Integrative Biology of the Cell (I2BC), 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
19
|
Liu C, Cao Y, Hua Y, Du G, Liu Q, Wei X, Sun T, Lin J, Wu M, Cheng Z, Wang K. Concurrent Disruption of Genetic Interference and Increase of Genetic Recombination Frequency in Hybrid Rice Using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2021; 12:757152. [PMID: 34675957 PMCID: PMC8523357 DOI: 10.3389/fpls.2021.757152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 05/24/2023]
Abstract
Manipulation of the distribution and frequency of meiotic recombination events to increase genetic diversity and disrupting genetic interference are long-standing goals in crop breeding. However, attenuation of genetic interference is usually accompanied by a reduction in recombination frequency and subsequent loss of plant fertility. In the present study, we generated null mutants of the ZEP1 gene, which encodes the central component of the meiotic synaptonemal complex (SC), in a hybrid rice using CRISPR/Cas9. The null mutants exhibited absolute male sterility but maintained nearly unaffected female fertility. By pollinating the zep1 null mutants with pollen from indica rice variety 93-11, we successfully conducted genetic analysis and found that genetic recombination frequency was greatly increased and genetic interference was completely eliminated in the absence of ZEP1. The findings provided direct evidence to support the controversial hypothesis that SC is involved in mediating interference. Additionally, the remained female fertility of the null mutants makes it possible to break linkage drag. Our study provides a potential approach to increase genetic diversity and fully eliminate genetic interference in rice breeding.
Collapse
Affiliation(s)
- Chaolei Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yiwei Cao
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yufeng Hua
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Guijie Du
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xin Wei
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Tingting Sun
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jianrong Lin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Mingguo Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Kejian Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
20
|
The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2023613118. [PMID: 33723072 PMCID: PMC8000504 DOI: 10.1073/pnas.2023613118] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Meiotic recombination promotes genetic diversity by shuffling parental chromosomes. As observed by the very first geneticists, crossovers inhibit the formation of another crossover nearby, an elusive phenomenon called crossover interference. Another intriguing observation is heterochiasmy, the marked difference in male and female crossover rates observed in many species. Here, we show that the synaptonemal complex, a structure that zips homologous chromosomes together during meiosis, is essential for crossover interference in Arabidopsis. This suggests that a signal that inhibits crossover formation nearby a first crossover propagates along this specific structure. Furthermore, in the absence of the synaptonemal complex, crossover frequencies become identical in both sexes, suggesting that heterochiasmy is due to variation of crossover interference imposed by the synaptonemal complex. Meiotic crossovers (COs) have intriguing patterning properties, including CO interference, the tendency of COs to be well-spaced along chromosomes, and heterochiasmy, the marked difference in male and female CO rates. During meiosis, transverse filaments transiently associate the axes of homologous chromosomes, a process called synapsis that is essential for CO formation in many eukaryotes. Here, we describe the spatial organization of the transverse filaments in Arabidopsis (ZYP1) and show it to be evolutionary conserved. We show that in the absence of ZYP1 (zyp1a zyp1b null mutants), chromosomes associate in pairs but do not synapse. Unexpectedly, in absence of ZYP1, CO formation is not prevented but increased. Furthermore, genome-wide analysis of recombination revealed that CO interference is abolished, with the frequent observation of close COs. In addition, heterochiasmy was erased, with identical CO rates in males and females. This shows that the tripartite synaptonemal complex is dispensable for CO formation and has a key role in regulating their number and distribution, imposing CO interference and heterochiasmy.
Collapse
|
21
|
Lenykó-Thegze A, Fábián A, Mihók E, Makai D, Cseh A, Sepsi A. Pericentromeric chromatin reorganisation follows the initiation of recombination and coincides with early events of synapsis in cereals. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1585-1602. [PMID: 34171148 DOI: 10.1111/tpj.15391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.
Collapse
Affiliation(s)
- Andrea Lenykó-Thegze
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Attila Fábián
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Edit Mihók
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Diána Makai
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - András Cseh
- Department of Molecular Breeding, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Adél Sepsi
- Department of Biological Resources, Eötvös Loránd Research Network, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Department of Applied Biotechnology and Food Science (ABÉT), BME, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, Budapest, 1111, Hungary
| |
Collapse
|
22
|
OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice. J Genet Genomics 2021; 48:485-496. [PMID: 34257043 DOI: 10.1016/j.jgg.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the MutL-homolog family, which are required for normal level of crossovers (COs) in some eukaryotes. However, their functions in plants need to be further elucidated. Here, we report the identification of OsMLH1 and reveal its functions during meiosis in rice. Using CRISPR-Cas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, OsMLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution, indicating that OsMLH1 is essential for the formation of interference-sensitive COs (class I COs). OsMLH1 interacts with OsMLH3 through their C-terminal domains. Mutation in OsMLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer MutLγ (OsMLH1-OsMLH3) is essential for the formation of class I COs in rice.
Collapse
|
23
|
ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021671118. [PMID: 33782125 PMCID: PMC8040812 DOI: 10.1073/pnas.2021671118] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous ultrastructure required to ensure cross-over (CO) formation in the majority of sexually reproducing eukaryotes. It is composed of two lateral elements adjoined by transverse filaments. Even though the general structure of the SC is conserved throughout kingdoms, phenotypic differences between mutants perpetuate the enigmatic role of the SC. Here, we have used genetic and cytogenetic approaches to show that the transverse filament protein, ZYP1, acts on multiple pathways of meiotic recombination in Arabidopsis. ZYP1 is required for CO assurance, thus ensuring that every chromosome pair receives at least one CO. ZYP1 limits the number of COs and mediates CO interference, the phenomenon that reduces the probability of multiple COs forming close together. The synaptonemal complex is a tripartite proteinaceous ultrastructure that forms between homologous chromosomes during prophase I of meiosis in the majority of eukaryotes. It is characterized by the coordinated installation of transverse filament proteins between two lateral elements and is required for wild-type levels of crossing over and meiotic progression. We have generated null mutants of the duplicated Arabidopsis transverse filament genes zyp1a and zyp1b using a combination of T-DNA insertional mutants and targeted CRISPR/Cas mutagenesis. Cytological and genetic analysis of the zyp1 null mutants reveals loss of the obligate chiasma, an increase in recombination map length by 1.3- to 1.7-fold and a virtual absence of cross-over (CO) interference, determined by a significant increase in the number of double COs. At diplotene, the numbers of HEI10 foci, a marker for Class I interference-sensitive COs, are twofold greater in the zyp1 mutant compared to wild type. The increase in recombination in zyp1 does not appear to be due to the Class II interference-insensitive COs as chiasmata were reduced by ∼52% in msh5/zyp1 compared to msh5. These data suggest that ZYP1 limits the formation of closely spaced Class I COs in Arabidopsis. Our data indicate that installation of ZYP1 occurs at ASY1-labeled axial bridges and that loss of the protein disrupts progressive coalignment of the chromosome axes.
Collapse
|
24
|
Usui T, Shinohara A. Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Front Cell Dev Biol 2021; 9:635383. [PMID: 33842461 PMCID: PMC8027355 DOI: 10.3389/fcell.2021.635383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/04/2022] Open
Abstract
Exogenous double-strand breaks (DSBs) induce a DNA damage response during mitosis as well as meiosis. The DNA damage response is mediated by a cascade involving Mec1/Tel1 (ATR/ATM) and Rad53 (Chk2) kinases. Meiotic cells are programmed to form DSBs for the initiation of meiotic recombination. In budding yeast, Spo11-mediated meiotic DSBs activate Mec1/Tel1, but not Rad53; however, the mechanism underlying the insensitivity of Rad53 to meiotic DSBs remains largely unknown. In this study, we found that meiotic cells activate Rad53 in response to exogenous DSBs and that this activation is dependent on an epigenetic marker, Dot1-dependent histone H3K79 methylation, which becomes a scaffold of an Rad53 mediator, Rad9, an ortholog of 53BP1. In contrast, Rad9 is insensitive to meiotic programmed DSBs. This insensitiveness of Rad9 derives from its inability to bind to the DSBs. Indeed, artificial tethering of Rad9 to the meiotic DSBs activated Rad53. The artificial activation of Rad53 kinase in meiosis decreases the repair of meiotic DSBs. These results suggest that the suppression of Rad53 activation is a key event in initiating a meiotic program that repairs programmed DSBs.
Collapse
Affiliation(s)
- Takehiko Usui
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
25
|
Yadav VK, Claeys Bouuaert C. Mechanism and Control of Meiotic DNA Double-Strand Break Formation in S. cerevisiae. Front Cell Dev Biol 2021; 9:642737. [PMID: 33748134 PMCID: PMC7968521 DOI: 10.3389/fcell.2021.642737] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Developmentally programmed formation of DNA double-strand breaks (DSBs) by Spo11 initiates a recombination mechanism that promotes synapsis and the subsequent segregation of homologous chromosomes during meiosis. Although DSBs are induced to high levels in meiosis, their formation and repair are tightly regulated to minimize potentially dangerous consequences for genomic integrity. In S. cerevisiae, nine proteins participate with Spo11 in DSB formation, but their molecular functions have been challenging to define. Here, we describe our current view of the mechanism of meiotic DSB formation based on recent advances in the characterization of the structure and function of DSB proteins and discuss regulatory pathways in the light of recent models.
Collapse
Affiliation(s)
| | - Corentin Claeys Bouuaert
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-La-Neuve, Belgium
| |
Collapse
|
26
|
Lei WL, Qian WP, Sun QY. Critical Functions of PP2A-Like Protein Phosphotases in Regulating Meiotic Progression. Front Cell Dev Biol 2021; 9:638559. [PMID: 33718377 PMCID: PMC7947259 DOI: 10.3389/fcell.2021.638559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 01/31/2023] Open
Abstract
Meiosis is essential to the continuity of life in sexually-reproducing organisms through the formation of haploid gametes. Unlike somatic cells, the germ cells undergo two successive rounds of meiotic divisions after a single cycle of DNA replication, resulting in the decrease in ploidy. In humans, errors in meiotic progression can cause infertility and birth defects. Post-translational modifications, such as phosphorylation, ubiquitylation and sumoylation have emerged as important regulatory events in meiosis. There are dynamic equilibrium of protein phosphorylation and protein dephosphorylation in meiotic cell cycle process, regulated by a conservative series of protein kinases and protein phosphatases. Among these protein phosphatases, PP2A, PP4, and PP6 constitute the PP2A-like subfamily within the serine/threonine protein phosphatase family. Herein, we review recent discoveries and explore the role of PP2A-like protein phosphatases during meiotic progression.
Collapse
Affiliation(s)
- Wen-Long Lei
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei-Ping Qian
- Department of Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
27
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 DOI: 10.33892/ffpls.2021.631323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/25/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
28
|
Osman K, Algopishi U, Higgins JD, Henderson IR, Edwards KJ, Franklin FCH, Sanchez-Moran E. Distal Bias of Meiotic Crossovers in Hexaploid Bread Wheat Reflects Spatio-Temporal Asymmetry of the Meiotic Program. FRONTIERS IN PLANT SCIENCE 2021; 12:631323. [PMID: 33679846 PMCID: PMC7928317 DOI: 10.3389/fpls.2021.631323] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 05/09/2023]
Abstract
Meiotic recombination generates genetic variation and provides physical links between homologous chromosomes (crossovers) essential for accurate segregation. In cereals the distribution of crossovers, cytologically evident as chiasmata, is biased toward the distal regions of chromosomes. This creates a bottleneck for plant breeders in the development of varieties with improved agronomic traits, as genes situated in the interstitial and centromere proximal regions of chromosomes rarely recombine. Recent advances in wheat genomics and genome engineering combined with well-developed wheat cytogenetics offer new opportunities to manipulate recombination and unlock genetic variation. As a basis for these investigations we have carried out a detailed analysis of meiotic progression in hexaploid wheat (Triticum aestivum) using immunolocalization of chromosome axis, synaptonemal complex and recombination proteins. 5-Bromo-2'-deoxyuridine (BrdU) labeling was used to determine the chronology of key events in relation to DNA replication. Axis morphogenesis, synapsis and recombination initiation were found to be spatio-temporally coordinated, beginning in the gene-dense distal chromosomal regions and later occurring in the interstitial/proximal regions. Moreover, meiotic progression in the distal regions was coordinated with the conserved chromatin cycles that are a feature of meiosis. This mirroring of the chiasma bias was also evident in the distribution of the gene-associated histone marks, H3K4me3 and H3K27me3; the repeat-associated mark, H3K27me1; and H3K9me3. We believe that this study provides a cytogenetic framework for functional studies and ongoing initiatives to manipulate recombination in the wheat genome.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Kim Osman
| | - Uthman Algopishi
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ian R. Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Keith J. Edwards
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Eugenio Sanchez-Moran
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Eugenio Sanchez-Moran
| |
Collapse
|
29
|
Abstract
Meiosis is the basis of the generative reproduction of eukaryotes. The crucial first step is homologous chromosome pairing. In higher eukaryotes, micrometer-scale chromosomes, micrometer distances apart, are brought together by nanometer DNA sequences, at least a factor of 1000 size difference. Models of homology search, homologue movement, and pairing at the DNA level in higher eukaryotes are primarily based on studies with yeast where the emphasis is on the induction and repair of DNA double-strand breaks (DSB). For such a model, the very large nuclei of most plants and animals present serious problems. Homology search without DSBs cannot be explained by models based on DSB repair. The movement of homologues to meet each other and make contact at the molecular level is not understood. These problems are discussed and the conclusion is that at present practically nothing is known of meiotic homologue pairing in higher eukaryotes up to the formation of the synaptonemal complex, and that new, necessarily speculative models must be developed. Arguments are given that RNA plays a central role in homology search and a tentative model involving RNA in homology search is presented. A role of actin in homologue movement is proposed. The primary role of DSBs in higher eukaryotes is concluded to not be in paring but in the preparation of Holliday junctions, ultimately leading to chromatid exchange.
Collapse
Affiliation(s)
- J Sybenga
- Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands.,Laboratory of Genetics, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
30
|
Hinch AG, Becker PW, Li T, Moralli D, Zhang G, Bycroft C, Green C, Keeney S, Shi Q, Davies B, Donnelly P. The Configuration of RPA, RAD51, and DMC1 Binding in Meiosis Reveals the Nature of Critical Recombination Intermediates. Mol Cell 2020; 79:689-701.e10. [PMID: 32610038 PMCID: PMC7447979 DOI: 10.1016/j.molcel.2020.06.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 01/05/2023]
Abstract
Meiotic recombination proceeds via binding of RPA, RAD51, and DMC1 to single-stranded DNA (ssDNA) substrates created after formation of programmed DNA double-strand breaks. Here we report high-resolution in vivo maps of RPA and RAD51 in meiosis, mapping their binding locations and lifespans to individual homologous chromosomes using a genetically engineered hybrid mouse. Together with high-resolution microscopy and DMC1 binding maps, we show that DMC1 and RAD51 have distinct spatial localization on ssDNA: DMC1 binds near the break site, and RAD51 binds away from it. We characterize inter-homolog recombination intermediates bound by RPA in vivo, with properties expected for the critical displacement loop (D-loop) intermediates. These data support the hypothesis that DMC1, not RAD51, performs strand exchange in mammalian meiosis. RPA-bound D-loops can be resolved as crossovers or non-crossovers, but crossover-destined D-loops may have longer lifespans. D-loops resemble crossover gene conversions in size, but their extent is similar in both repair pathways.
Collapse
Affiliation(s)
| | - Philipp W Becker
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Tao Li
- Howard Hughes Medical Institute, Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Hefei National Laboratory for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gang Zhang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Clare Bycroft
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Catherine Green
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Scott Keeney
- Howard Hughes Medical Institute, Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qinghua Shi
- Hefei National Laboratory for Physical Sciences at the Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Statistics, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Sepsi A, Schwarzacher T. Chromosome-nuclear envelope tethering - a process that orchestrates homologue pairing during plant meiosis? J Cell Sci 2020; 133:jcs243667. [PMID: 32788229 PMCID: PMC7438012 DOI: 10.1242/jcs.243667] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During prophase I of meiosis, homologous chromosomes pair, synapse and exchange their genetic material through reciprocal homologous recombination, a phenomenon essential for faithful chromosome segregation. Partial sequence identity between non-homologous and heterologous chromosomes can also lead to recombination (ectopic recombination), a highly deleterious process that rapidly compromises genome integrity. To avoid ectopic exchange, homology recognition must be extended from the narrow position of a crossover-competent double-strand break to the entire chromosome. Here, we review advances on chromosome behaviour during meiotic prophase I in higher plants, by integrating centromere- and telomere dynamics driven by cytoskeletal motor proteins, into the processes of homologue pairing, synapsis and recombination. Centromere-centromere associations and the gathering of telomeres at the onset of meiosis at opposite nuclear poles create a spatially organised and restricted nuclear state in which homologous DNA interactions are favoured but ectopic interactions also occur. The release and dispersion of centromeres from the nuclear periphery increases the motility of chromosome arms, allowing meiosis-specific movements that disrupt ectopic interactions. Subsequent expansion of interstitial synapsis from numerous homologous interactions further corrects ectopic interactions. Movement and organisation of chromosomes, thus, evolved to facilitate the pairing process, and can be modulated by distinct stages of chromatin associations at the nuclear envelope and their collective release.
Collapse
Affiliation(s)
- Adél Sepsi
- Department of Plant Cell Biology, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- BME Budapest University of Technology and Economics, Department of Applied Biotechnology and Food Science (ABÉT), 1111, Budapest, Mu˝ egyetem rkp. 3-9., Hungary
| | - Trude Schwarzacher
- University of Leicester, Department of Genetics and Genome Biology, University Road, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
32
|
Grigaitis R, Ranjha L, Wild P, Kasaciunaite K, Ceppi I, Kissling V, Henggeler A, Susperregui A, Peter M, Seidel R, Cejka P, Matos J. Phosphorylation of the RecQ Helicase Sgs1/BLM Controls Its DNA Unwinding Activity during Meiosis and Mitosis. Dev Cell 2020; 53:706-723.e5. [DOI: 10.1016/j.devcel.2020.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/18/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
|
33
|
Chen Y, Lyu R, Rong B, Zheng Y, Lin Z, Dai R, Zhang X, Xie N, Wang S, Tang F, Lan F, Tong MH. Refined spatial temporal epigenomic profiling reveals intrinsic connection between PRDM9-mediated H3K4me3 and the fate of double-stranded breaks. Cell Res 2020; 30:256-268. [PMID: 32047271 PMCID: PMC7054334 DOI: 10.1038/s41422-020-0281-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/19/2020] [Indexed: 12/18/2022] Open
Abstract
Meiotic recombination is initiated by the formation of double-strand breaks (DSBs), which are repaired as either crossovers (COs) or noncrossovers (NCOs). In most mammals, PRDM9-mediated H3K4me3 controls the nonrandom distribution of DSBs; however, both the timing and mechanism of DSB fate control remain largely undetermined. Here, we generated comprehensive epigenomic profiles of synchronized mouse spermatogenic cells during meiotic prophase I, revealing spatiotemporal and functional relationships between epigenetic factors and meiotic recombination. We find that PRDM9-mediated H3K4me3 at DSB hotspots, coinciding with H3K27ac and H3K36me3, is intimately connected with the fate of the DSB. Our data suggest that the fate decision is likely made at the time of DSB formation: earlier formed DSBs occupy more open chromatins and are much more competent to proceed to a CO fate. Our work highlights an intrinsic connection between PRDM9-mediated H3K4me3 and the fate decision of DSBs, and provides new insight into the control of CO homeostasis.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruitu Lyu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bowen Rong
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Zhen Lin
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruofei Dai
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nannan Xie
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Siqing Wang
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Institute for Pioneering Investigation via Convergence, College of Life Sciences, Peking University, Beijing, 100871, China.
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Fei Lan
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ming-Han Tong
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
34
|
Bogdanov YF, Grishaeva TM. Meiotic Recombination. The Metabolic Pathways from DNA Double-Strand Breaks to Crossing Over and Chiasmata. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Shinohara M, Bishop DK, Shinohara A. Distinct Functions in Regulation of Meiotic Crossovers for DNA Damage Response Clamp Loader Rad24(Rad17) and Mec1(ATR) Kinase. Genetics 2019; 213:1255-1269. [PMID: 31597673 PMCID: PMC6893372 DOI: 10.1534/genetics.119.302427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/02/2019] [Indexed: 11/18/2022] Open
Abstract
The number and distribution of meiotic crossovers (COs) are highly regulated, reflecting the requirement for COs during the first round of meiotic chromosome segregation. CO control includes CO assurance and CO interference, which promote at least one CO per chromosome bivalent and evenly-spaced COs, respectively. Previous studies revealed a role for the DNA damage response (DDR) clamp and the clamp loader in CO formation by promoting interfering COs and interhomolog recombination, and also by suppressing ectopic recombination. In this study, we use classical tetrad analysis of Saccharomyces cerevisiae to show that a mutant defective in RAD24, which encodes the DDR clamp loader (RAD17 in other organisms), displayed reduced CO frequencies on two shorter chromosomes (III and V), but not on a long chromosome (chromosome VII). The residual COs in the rad24 mutant do not show interference. In contrast to rad24, mutants defective in the ATR kinase homolog Mec1, including a mec1 null and a mec1 kinase-dead mutant, show slight or few defects in CO frequency. On the other hand, mec1 COs show defects in interference, similar to the rad24 mutant. Our results support a model in which the DDR clamp and clamp-loader proteins promote interfering COs by recruiting pro-CO Zip, Mer, and Msh proteins to recombination sites, while the Mec1 kinase regulates CO distribution by a distinct mechanism. Moreover, CO formation and its control are implemented in a chromosome-specific manner, which may reflect a role for chromosome size in regulation.
Collapse
Affiliation(s)
- Miki Shinohara
- Institute for Protein Research, Osaka University, 565-0871, Japan
- Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
- Department of Radiation Oncology, University of Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Douglas K Bishop
- Department of Radiation Oncology, University of Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, 565-0871, Japan
| |
Collapse
|
36
|
Wang S, Liu Y, Shang Y, Zhai B, Yang X, Kleckner N, Zhang L. Crossover Interference, Crossover Maturation, and Human Aneuploidy. Bioessays 2019; 41:e1800221. [PMID: 31424607 PMCID: PMC6756933 DOI: 10.1002/bies.201800221] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 07/23/2019] [Indexed: 12/12/2022]
Abstract
A striking feature of human female sexual reproduction is the high level of gametes that exhibit an aberrant number of chromosomes (aneuploidy). A high baseline observed in women of prime reproductive age is followed by a dramatic increase in older women. Proper chromosome segregation requires one or more DNA crossovers (COs) between homologous maternal and paternal chromosomes, in combination with cohesion between sister chromatid arms. In human females, CO designations occur normally, according to the dictates of CO interference, giving early CO-fated intermediates. However, ≈25% of these intermediates fail to mature to final CO products. This effect explains the high baseline of aneuploidy and is predicted to synergize with age-dependent cohesion loss to explain the maternal age effect. Here, modern advances in the understanding of crossing over and CO interference are reviewed, the implications of human female CO maturation inefficiency are further discussed, and areas of interest for future studies are suggested.
Collapse
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Yanlei Liu
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Yongliang Shang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Xiao Yang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Liangran Zhang
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China
- Advanced Medical Research Institute, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
37
|
A first genetic portrait of synaptonemal complex variation. PLoS Genet 2019; 15:e1008337. [PMID: 31449519 PMCID: PMC6730954 DOI: 10.1371/journal.pgen.1008337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/06/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold required for synapsis and recombination between homologous chromosomes during meiosis. Although the SC has been linked to differences in genome-wide crossover rates, the genetic basis of standing variation in SC structure remains unknown. To investigate the possibility that recombination evolves through changes to the SC, we characterized the genetic architecture of SC divergence on two evolutionary timescales. Applying a novel digital image analysis technique to spermatocyte spreads, we measured total SC length in 9,532 spermatocytes from recombinant offspring of wild-derived mouse strains with differences in this fundamental meiotic trait. Using this large dataset, we identified the first known genomic regions involved in the evolution of SC length. Distinct loci affect total SC length divergence between and within subspecies, with the X chromosome contributing to both. Joint genetic analysis of MLH1 foci—immunofluorescent markers of crossovers—from the same spermatocytes revealed that two of the identified loci also confer differences in the genome-wide recombination rate. Causal mediation analysis suggested that one pleiotropic locus acts early in meiosis to designate crossovers prior to SC assembly, whereas a second locus primarily shapes crossover number through its effect on SC length. One genomic interval shapes the relationship between SC length and recombination rate, likely modulating the strength of crossover interference. Our findings pinpoint SC formation as a key step in the evolution of recombination and demonstrate the power of genetic mapping on standing variation in the context of the recombination pathway. During the first stages of meiosis, the chromosome axes are organized along a protein scaffold in preparation for recombination and their subsequent segregation. This scaffold, known as the synaptonemal complex (SC), is critical for the regular progression of recombination. A complex relationship exists between the organization of the SC, the frequency of recombination, and the likelihood of improper chromosome segregation. In this study, we investigate the genetics of synaptonemal complex variation in the house mouse and connect it with variation in the rate of recombination. We found five loci and several compelling candidate genes responsible for the evolution of synaptonemal complex length within and between mouse subspecies. Several of these loci also affect recombination rate, and our joint analyses of the phenotypes suggest an order by which their effects manifest within the recombination pathway. Our results show that evolution of SC length is crucial to recombination rate divergence. Our work here also demonstrates that genetic analysis of additional meiotic phenotypes can help explain the evolution of recombination, a fundamental evolutionary force.
Collapse
|
38
|
Kawakami T, Wallberg A, Olsson A, Wintermantel D, de Miranda JR, Allsopp M, Rundlöf M, Webster MT. Substantial Heritable Variation in Recombination Rate on Multiple Scales in Honeybees and Bumblebees. Genetics 2019; 212:1101-1119. [PMID: 31152071 PMCID: PMC6707477 DOI: 10.1534/genetics.119.302008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/30/2019] [Indexed: 12/30/2022] Open
Abstract
Meiotic recombination shuffles genetic variation and promotes correct segregation of chromosomes. Rates of recombination vary on several scales, both within genomes and between individuals, and this variation is affected by both genetic and environmental factors. Social insects have extremely high rates of recombination, although the evolutionary causes of this are not known. Here, we estimate rates of crossovers and gene conversions in 22 colonies of the honeybee, Apis mellifera, and 9 colonies of the bumblebee, Bombus terrestris, using direct sequencing of 299 haploid drone offspring. We confirm that both species have extremely elevated crossover rates, with higher rates measured in the highly eusocial honeybee than the primitively social bumblebee. There are also significant differences in recombination rate between subspecies of honeybee. There is substantial variation in genome-wide recombination rate between individuals of both A. mellifera and B. terrestris and the distribution of these rates overlap between species. A large proportion of interindividual variation in recombination rate is heritable, which indicates the presence of variation in trans-acting factors that influence recombination genome-wide. We infer that levels of crossover interference are significantly lower in honeybees compared to bumblebees, which may be one mechanism that contributes to higher recombination rates in honeybees. We also find a significant increase in recombination rate with distance from the centromere, mirrored by methylation differences. We detect a strong transmission bias due to GC-biased gene conversion associated with noncrossover gene conversions. Our results shed light on the mechanistic causes of extreme rates of recombination in social insects and the genetic architecture of recombination rate variation.
Collapse
Affiliation(s)
- Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 752 36, Sweden
- Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, United Kingdom
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Anna Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| | - Dimitry Wintermantel
- INRA, UE 1255 APIS, Le Magneraud, 17700 Surgères, France
- Centre d'Etudes Biologiques de Chizé, UMR 7372, CNRS and Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | - Mike Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, 7608, South Africa
| | - Maj Rundlöf
- Department of Biology, Lund University, 223 62, Sweden
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 05. Sweden
| |
Collapse
|
39
|
Wild P, Susperregui A, Piazza I, Dörig C, Oke A, Arter M, Yamaguchi M, Hilditch AT, Vuina K, Chan KC, Gromova T, Haber JE, Fung JC, Picotti P, Matos J. Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis. Mol Cell 2019; 75:859-874.e4. [PMID: 31351878 PMCID: PMC6715774 DOI: 10.1016/j.molcel.2019.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.
Collapse
Affiliation(s)
- Philipp Wild
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Aitor Susperregui
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ilaria Piazza
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Christian Dörig
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Meret Arter
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Miyuki Yamaguchi
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Alexander T Hilditch
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Karla Vuina
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Ki Choi Chan
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Tatiana Gromova
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA, USA
| | - Jennifer C Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Paola Picotti
- Institute of Molecular Systems Biology, HPM-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Joao Matos
- Institute of Biochemistry, HPM D6.5-ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
40
|
Pyatnitskaya A, Borde V, De Muyt A. Crossing and zipping: molecular duties of the ZMM proteins in meiosis. Chromosoma 2019; 128:181-198. [PMID: 31236671 DOI: 10.1007/s00412-019-00714-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 11/25/2022]
Abstract
Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France
- Paris Sorbonne Université, Paris, France
| | - Valérie Borde
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| | - Arnaud De Muyt
- Institut Curie, PSL Research University, CNRS, UMR3244, Paris, France.
- Paris Sorbonne Université, Paris, France.
| |
Collapse
|
41
|
Noncanonical Contributions of MutLγ to VDE-Initiated Crossovers During Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2019; 9:1647-1654. [PMID: 30902890 PMCID: PMC6505156 DOI: 10.1534/g3.119.400150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In Saccharomyces cerevisiae, the meiosis-specific axis proteins Hop1 and Red1 are present nonuniformly across the genome. In a previous study, the meiosis-specific VMA1-derived endonuclease (VDE) was used to examine Spo11-independent recombination in a recombination reporter inserted in a Hop1/Red1-enriched region (HIS4) and in a Hop1/Red1-poor region (URA3). VDE-initiated crossovers at HIS4 were mostly dependent on Mlh3, a component of the MutLγ meiotic recombination intermediate resolvase, while VDE-initiated crossovers at URA3 were mostly Mlh3-independent. These differences were abolished in the absence of the chromosome axis remodeler Pch2, and crossovers at both loci became partly Mlh3-dependent. To test the generality of these observations, we examined inserts at six additional loci that differed in terms of Hop1/Red1 enrichment, chromosome size, and distance from centromeres and telomeres. All six loci behaved similarly to URA3: the vast majority of VDE-initiated crossovers were Mlh3-independent. This indicates that, counter to previous suggestions, levels of meiotic chromosome axis protein enrichment alone do not determine which recombination pathway gives rise to crossovers during VDE-initiated meiotic recombination. In pch2∆ mutants, the fraction of VDE-induced crossovers that were Mlh3-dependent increased to levels previously observed for Spo11-initiated crossovers in pch2∆, indicating that Pch2-dependent processes play an important role in controlling the balance between MutLγ-dependent and MutLγ-independent crossovers.
Collapse
|
42
|
Ren Y, Chen D, Li W, Zhou D, Luo T, Yuan G, Zeng J, Cao Y, He Z, Zou T, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Liu H, Wang L, Li P, Li S. OsSHOC1 and OsPTD1 are essential for crossover formation during rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:315-328. [PMID: 30589140 DOI: 10.1111/tpj.14214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction and plant fertility, and crossovers (COs) are essential for meiosis and the formation of new allelic combinations in gametes. In this study, we report the isolation of a meiotic gene, OsSHOC1, and the identification of its partner, OsPTD1. Osshoc1 was sterile both in male and female gametophytes, and it showed a striking reduction in the number of meiotic COs, indicating that OsSHOC1 was required for normal CO formation. Further investigations showed that OsSHOC1 physically interacted with OsPTD1 and that the latter was also required for normal CO formation and plant fertility. Additionally, the expression profiles of both genes were consistent with their functions. Our results suggest that OsSHOC1 and OsPTD1 are essential for rice fertility and CO formation, possibly by stabilizing the recombinant intermediates during meiosis.
Collapse
Affiliation(s)
- Yun Ren
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- Chongqing Key Laboratory of Economic Plant Biotechnology/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Wenjie Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Dan Zhou
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Tao Luo
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Jing Zeng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Ye Cao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Zhongshan He
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Huainian Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| |
Collapse
|
43
|
Hong S, Joo JH, Yun H, Kim K. The nature of meiotic chromosome dynamics and recombination in budding yeast. J Microbiol 2019; 57:221-231. [PMID: 30671743 DOI: 10.1007/s12275-019-8541-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/28/2022]
Abstract
During meiosis, crossing over allows for the exchange of genes between homologous chromosomes, enabling their segregation and leading to genetic variation in the resulting gametes. Spo11, a topoisomerase-like protein expressed in eukaryotes, and diverse accessory factors induce programmed double-strand breaks (DSBs) to initiate meiotic recombination during the early phase of meiosis after DNA replication. DSBs are further repaired via meiosis-specific homologous recombination. Studies on budding yeast have provided insights into meiosis and genetic recombination and have improved our understanding of higher eukaryotic systems. Cohesin, a chromosome-associated multiprotein complex, mediates sister chromatid cohesion (SCC), and is conserved from yeast to humans. Diverse cohesin subunits in budding yeast have been identified in DNA metabolic pathways, such as DNA replication, chromosome segregation, recombination, DNA repair, and gene regulation. During cell cycle, SCC is established by multiple cohesin subunits, which physically bind sister chromatids together and modulate proteins that involve in the capturing and separation of sister chromatids. Cohesin components include at least four core subunits that establish and maintain SCC: two structural maintenance chromosome subunits (Smc1 and Smc3), an α-kleisin subunit (Mcd1/Scc1 during mitosis and Rec8 during meiosis), and Scc3/Irr1 (SA1 and SA2). In addition, the cohesin-associated factors Pds5 and Rad61 regulate structural modifications and cell cyclespecific dynamics of chromatin to ensure accurate chromosome segregation. In this review, we discuss SCC and the recombination pathway, as well as the relationship between the two processes in budding yeast, and we suggest a possible conserved mechanism for meiotic chromosome dynamics from yeast to humans.
Collapse
Affiliation(s)
- Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong Hwan Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeseon Yun
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keunpil Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
44
|
Hong Y, Velkova M, Silva N, Jagut M, Scheidt V, Labib K, Jantsch V, Gartner A. The conserved LEM-3/Ankle1 nuclease is involved in the combinatorial regulation of meiotic recombination repair and chromosome segregation in Caenorhabditis elegans. PLoS Genet 2018; 14:e1007453. [PMID: 29879106 PMCID: PMC6007928 DOI: 10.1371/journal.pgen.1007453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 06/19/2018] [Accepted: 05/29/2018] [Indexed: 11/23/2022] Open
Abstract
Homologous recombination is essential for crossover (CO) formation and accurate chromosome segregation during meiosis. It is of considerable importance to work out how recombination intermediates are processed, leading to CO and non-crossover (NCO) outcome. Genetic analysis in budding yeast and Caenorhabditis elegans indicates that the processing of meiotic recombination intermediates involves a combination of nucleases and DNA repair enzymes. We previously reported that in C. elegans meiotic joint molecule resolution is mediated by two redundant pathways, conferred by the SLX-1 and MUS-81 nucleases, and by the HIM-6 Bloom helicase in conjunction with the XPF-1 endonuclease, respectively. Both pathways require the scaffold protein SLX-4. However, in the absence of all these enzymes, residual processing of meiotic recombination intermediates still occurs and CO formation is reduced but not abolished. Here we show that the LEM-3 nuclease, mutation of which by itself does not have an overt meiotic phenotype, genetically interacts with slx-1 and mus-81 mutants, the respective double mutants displaying 100% embryonic lethality. The combined loss of LEM-3 and MUS-81 leads to altered processing of recombination intermediates, a delayed disassembly of foci associated with CO designated sites, and the formation of univalents linked by SPO-11 dependent chromatin bridges (dissociated bivalents). However, LEM-3 foci do not colocalize with ZHP-3, a marker that congresses into CO designated sites. In addition, neither CO frequency nor distribution is altered in lem-3 single mutants or in combination with mus-81 or slx-4 mutations. Finally, we found persistent chromatin bridges during meiotic divisions in lem-3; slx-4 double mutants. Supported by the localization of LEM-3 between dividing meiotic nuclei, this data suggest that LEM-3 is able to process erroneous recombination intermediates that persist into the second meiotic division.
Collapse
Affiliation(s)
- Ye Hong
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maria Velkova
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Nicola Silva
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Marlène Jagut
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Viktor Scheidt
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Austria
| | - Anton Gartner
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
45
|
Guiraldelli MF, Felberg A, Almeida LP, Parikh A, de Castro RO, Pezza RJ. SHOC1 is a ERCC4-(HhH)2-like protein, integral to the formation of crossover recombination intermediates during mammalian meiosis. PLoS Genet 2018; 14:e1007381. [PMID: 29742103 PMCID: PMC5962103 DOI: 10.1371/journal.pgen.1007381] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/21/2018] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Chromosome segregation errors during meiosis result in the formation of aneuploid gametes and are the leading cause of pregnancy loss and birth defects in humans. Proper chromosome segregation requires pairwise associations of maternal and paternal homologous chromosomes. Chiasmata, which are the cytological manifestations of crossovers (COs), provide a physical link that holds the homologs together as a pair, facilitating their orientation on the spindle at meiosis I. Although CO-promoting activities ensure a balanced number and position of COs, their identity and mechanism of action in mammals remain understudied. Previous work in yeast and Arabidopsis has shown that Zip2 and Shoc1 are ortholog proteins with an important role in promoting the formation of COs. Our work is the first study in mammals showing the in vivo and in vitro function of mouse and human SHOC1. We show that purified recombinant human SHOC1, an XPF/MUS81 family member, preferentially binds branched DNA molecules but apparently lacks in vitro endonuclease activity, despite its conserved ERCC4-(HhH)2 core structure. Cytological observations suggest that initial steps of recombination are normal in a majority of spermatocytes from SHOC1 hypomorphic mice. However, late stages of recombination appear abnormal, as chromosomal localization of MLH1 is reduced. In agreement, chiasma formation is reduced, and cells arrest at metaphase I with a few lagging chromosomes and subsequent apoptosis. This analysis of SHOC1-deficient mice and the selective localization of SHOC1 to a subset of recombination sites show that SHOC1 acts at key mid-stage steps of the CO formation process. The formation of chromosome axial elements and homologous pairing are apparently normal, but synapsis is altered with SYCP1 frequently failing to extend the full length of the chromosome axes. Finally, we describe that SHOC1 interacts with TEX11, another protein important for the formation of COs, connecting SHOC1 to chromosome axis and structure.
Collapse
Affiliation(s)
- Michel F. Guiraldelli
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Anna Felberg
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Luciana P. Almeida
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Aniruddha Parikh
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Rodrigo O. de Castro
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Roberto J. Pezza
- Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
46
|
Zhang J, Yan G, Tian M, Ma Y, Xiong J, Miao W. A DP-like transcription factor protein interacts with E2fl1 to regulate meiosis in Tetrahymena thermophila. Cell Cycle 2018; 17:634-642. [PMID: 29417875 DOI: 10.1080/15384101.2018.1431595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evolutionarily conserved E2F family transcription factors regulate the cell cycle via controlling gene expression in a wide range of eukaryotes. We previously demonstrated that the meiosis-specific transcription factor E2fl1 had an important role in meiosis in the model ciliate Tetrahymena thermophila. Here, we report that expression of another E2F family transcription factor gene DPL2 correlates highly with that of E2FL1. Similar to e2fl1Δ cells, dpl2Δ cells undergo meiotic arrest prior to anaphase I, with the five chromosomes adopting an abnormal tandem arrangement. Immunofluorescence staining and immunoprecipitation experiments demonstrate that Dpl2 and E2fl1 form a complex during meiosis. We previously identified several meiotic regulatory proteins in T. thermophila. Cyc2 and Tcdk3 may cooperate to initiate meiosis and Cyc17 is essential for initiating meiotic anaphase. We investigate the relationship of these regulators with Dpl2 and E2fl1, and then construct a meiotic regulatory network by measuring changes in meiotic genes expression in knockout cells. We conclude that the E2fl1/Dpl2 complex plays a central role in meiosis in T. thermophila.
Collapse
Affiliation(s)
- Jing Zhang
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Guanxiong Yan
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Miao Tian
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Yang Ma
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Jie Xiong
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China
| | - Wei Miao
- a Key Laboratory of Aquatic Biodiversity and Conservation , Institute of Hydrobiology , Chinese Academy of Sciences , Wuhan , People's Republic of China
| |
Collapse
|
47
|
De Muyt A, Pyatnitskaya A, Andréani J, Ranjha L, Ramus C, Laureau R, Fernandez-Vega A, Holoch D, Girard E, Govin J, Margueron R, Couté Y, Cejka P, Guérois R, Borde V. A meiotic XPF-ERCC1-like complex recognizes joint molecule recombination intermediates to promote crossover formation. Genes Dev 2018; 32:283-296. [PMID: 29440262 PMCID: PMC5859969 DOI: 10.1101/gad.308510.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/24/2018] [Indexed: 11/24/2022]
Abstract
De Muyt et al. identified the ZZS (Zip2–Zip4–Spo16) complex, required for crossover formation, which carries two distinct activities: one provided by Zip4, which acts as hub through physical interactions with components of the chromosome axis and the crossover machinery, and the other carried by Zip2 and Spo16, which preferentially bind branched DNA molecules in vitro. Meiotic crossover formation requires the stabilization of early recombination intermediates by a set of proteins and occurs within the environment of the chromosome axis, a structure important for the regulation of meiotic recombination events. The molecular mechanisms underlying and connecting crossover recombination and axis localization are elusive. Here, we identified the ZZS (Zip2–Zip4–Spo16) complex, required for crossover formation, which carries two distinct activities: one provided by Zip4, which acts as hub through physical interactions with components of the chromosome axis and the crossover machinery, and the other carried by Zip2 and Spo16, which preferentially bind branched DNA molecules in vitro. We found that Zip2 and Spo16 share structural similarities to the structure-specific XPF–ERCC1 nuclease, although it lacks endonuclease activity. The XPF domain of Zip2 is required for crossover formation, suggesting that, together with Spo16, it has a noncatalytic DNA recognition function. Our results suggest that the ZZS complex shepherds recombination intermediates toward crossovers as a dynamic structural module that connects recombination events to the chromosome axis. The identification of the ZZS complex improves our understanding of the various activities required for crossover implementation and is likely applicable to other organisms, including mammals.
Collapse
Affiliation(s)
- Arnaud De Muyt
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Alexandra Pyatnitskaya
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Jessica Andréani
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut de biologie et de technologies de Saclay (iBiTec-S), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), UMR9198, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France.,Université Paris Sud, 91400 Orsay, France
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Claire Ramus
- University of Grenoble Alpes, CEA, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biosciences et Biotechnologies de Grenoble (BIG-BGE), 38000 Grenoble, France
| | - Raphaëlle Laureau
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Ambra Fernandez-Vega
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| | - Daniel Holoch
- Université Pierre et Marie Curie (UPMC), 75005 Paris, France.,Institut Curie, PSL Research University, UMR934, CNRS, 75005 Paris, France
| | - Elodie Girard
- Institut Curie, PSL Research University, Mines ParisTech, U900, INSERM, 75005 Paris, France
| | - Jérome Govin
- University of Grenoble Alpes, CEA, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biosciences et Biotechnologies de Grenoble (BIG-BGE), 38000 Grenoble, France
| | - Raphaël Margueron
- Université Pierre et Marie Curie (UPMC), 75005 Paris, France.,Institut Curie, PSL Research University, UMR934, CNRS, 75005 Paris, France
| | - Yohann Couté
- University of Grenoble Alpes, CEA, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de Biosciences et Biotechnologies de Grenoble (BIG-BGE), 38000 Grenoble, France
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland
| | - Raphaël Guérois
- Institut de Biologie Intégrative de la Cellule (I2BC), Institut de biologie et de technologies de Saclay (iBiTec-S), Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), UMR9198, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France.,Université Paris Sud, 91400 Orsay, France
| | - Valérie Borde
- UMR3244, Centre Nationnal de la Recherche Scientifique (CNRS), Institut Curie, PSL (Paris Sciences and Letters) Research University, 75005 Paris, France.,Université Pierre et Marie Curie (UPMC), 75005 Paris, France
| |
Collapse
|
48
|
Ranjha L, Howard SM, Cejka P. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 2018; 127:187-214. [PMID: 29327130 DOI: 10.1007/s00412-017-0658-1] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.
Collapse
Affiliation(s)
- Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Sean M Howard
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland. .,Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
49
|
Bogdanov YF. Noncanonical meiosis in the nematode Caenorhabditis elegans as a model for studying the molecular bases of the homologous chromosome synapsis, crossing over, and segregation. RUSS J GENET+ 2017. [DOI: 10.1134/s102279541712002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Wang J, Sun L, Jiang L, Sang M, Ye M, Cheng T, Zhang Q, Wu R. A high-dimensional linkage analysis model for characterizing crossover interference. Brief Bioinform 2017; 18:382-393. [PMID: 27113727 DOI: 10.1093/bib/bbw033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 12/19/2022] Open
Abstract
Linkage analysis has played an important role in understanding genome structure and evolution. However, two-point linkage analysis widely used for genetic map construction can rarely chart a detailed picture of genome organization because it fails to identify the dependence of crossovers distributed along the length of a chromosome, a phenomenon known as crossover interference. Multi-point analysis, proven to be more advantageous in gene ordering and genetic distance estimation for dominant markers than two-point analysis, is equipped with a capacity to discern and quantify crossover interference. Here, we review a statistical model for four-point analysis, which, beyond three-point analysis, can characterize crossover interference that takes place not only between two adjacent chromosomal intervals, but also over multiple successive intervals. This procedure provides an analytical tool to elucidate the detailed landscape of crossover interference over the genome and further infer the evolution of genome structure and organization.
Collapse
|