1
|
Xi J, Zheng W, Chen M, Zou Q, Tang C, Zhou X. Genetically engineered pigs for xenotransplantation: Hopes and challenges. Front Cell Dev Biol 2023; 10:1093534. [PMID: 36712969 PMCID: PMC9878146 DOI: 10.3389/fcell.2022.1093534] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/31/2022] [Indexed: 01/14/2023] Open
Abstract
The shortage of donor resources has greatly limited the application of clinical xenotransplantation. As such, genetically engineered pigs are expected to be an ideal organ source for xenotransplantation. Most current studies mainly focus on genetically modifying organs or tissues from donor pigs to reduce or prevent attack by the human immune system. Another potential organ source is interspecies chimeras. In this paper, we reviewed the progress of the genetically engineered pigs from the view of immunologic barriers and strategies, and discussed the possibility and challenges of the interspecies chimeras.
Collapse
|
2
|
Chen JQ, Zhang MP, Tong XK, Li JQ, Zhang Z, Huang F, Du HP, Zhou M, Ai HS, Huang LS. Scan of the endogenous retrovirus sequences across the swine genome and survey of their copy number variation and sequence diversity among various Chinese and Western pig breeds. Zool Res 2022; 43:423-441. [PMID: 35437972 PMCID: PMC9113972 DOI: 10.24272/j.issn.2095-8137.2021.379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
In pig-to-human xenotransplantation, the transmission risk of porcine endogenous retroviruses (PERVs) is of great concern. However, the distribution of PERVs in pig genomes, their genetic variation among Eurasian pigs, and their evolutionary history remain unclear. We scanned PERVs in the current pig reference genome (assembly Build 11.1), and identified 36 long complete or near-complete PERVs (lcPERVs) and 23 short incomplete PERVs (siPERVs). Besides three known PERVs (PERV-A, -B, and -C), four novel types (PERV-JX1, -JX2, -JX3, and -JX4) were detected in this study. According to evolutionary analyses, the newly discovered PERVs were more ancient, and PERV-Bs probably experienced a bottleneck ~0.5 million years ago (Ma). By analyzing 63 high-quality porcine whole-genome resequencing data, we found that the PERV copy numbers in Chinese pigs were lower (32.0±4.0) than in Western pigs (49.1±6.5). Additionally, the PERV sequence diversity was lower in Chinese pigs than in Western pigs. Regarding the lcPERV copy numbers, PERV-A and -JX2 in Western pigs were higher than in Chinese pigs. Notably, Bama Xiang (BMX) pigs had the lowest PERV copy number (27.8±5.1), and a BMX individual had no PERV-C and the lowest PERV copy number (23), suggesting that BMX pigs were more suitable for screening and/or modification as xenograft donors. Furthermore, we identified 451 PERV transposon insertion polymorphisms (TIPs), of which 86 were shared by all 10 Chinese and Western pig breeds. Our findings provide systematic insights into the genomic distribution, variation, evolution, and possible biological function of PERVs.
Collapse
Affiliation(s)
- Jia-Qi Chen
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ming-Peng Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xin-Kai Tong
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jing-Quan Li
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhou Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Fei Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hui-Peng Du
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Meng Zhou
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hua-Shui Ai
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|
3
|
Li H, Ma B, Yang H, Qiao J, Tian W, Yu R. Xenogeneic dentin matrix as a scaffold for biomineralization and induced odontogenesis. Biomed Mater 2021; 16. [PMID: 33902010 DOI: 10.1088/1748-605x/abfbbe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/26/2021] [Indexed: 02/08/2023]
Abstract
Commonly recognized mechanisms of the xenogeneic-extracellular matrix-based regenerative medicine include timely degradation, release of bioactive molecules, induced differentiation of stem cells, and well-controlled inflammation. This process is most feasible for stromal tissue reconstruction, yet unsuitable for non-degradable scaffold and prefabricated-shaped tissue regeneration, like odontogenesis. Treated dentin matrix (TDM) has been identified as a bioactive scaffold for dentin regeneration. This study explored xenogeneic porcine TDM (pTDM) for induced odontogenesis. The biological characteristics of pTDM were compared with human TDM (hTDM). To investigate its bioinductive capacities on allogeneic dental follicle cells (DFCs) in the inflammation microenvironment, pTDM populated with human DFCs were co-cultured with human peripheral blood mononuclear cells (hPBMCs), and pTDM populated with rat DFCs were transplanted into rat subcutaneous model. The results showed pTDM possessed similar mineral phases and bioactive molecules with hTDM. hDFCs, under the induction of pTDM and hTDM, expressed similar col-I, osteopontin and alkaline phosphatase (ALP) (all expressed by odontoblasts). Whereas, the expression of col-I, dentin matrix protein-1 (DMP-1) and bone sialoprotein (BSP) were down-regulated when cocultured with hPBMCs. The xenogeneic implants inevitably initiated Th1 inflammation (up-regulated CD8, TNF-α, IL-1β, etc)in vivo. However, the biomineralization of pre-dentin and cementum were still processed, and collagen fibrils, odontoblast-like cells, fibroblasts contributed to odontogenesis. Although partially absorbed at 3 weeks, the implants were positively expressed odontogenesis-related-proteins like col-I and DMP-1. Taken together, xenogeneic TDM conserved ultrastructure and molecules for introducing allogeneic DFCs to odontogenic differentiation, and promoting odontogenesis and biomineralizationin vivo. Yet effective immunomodulation methods warrant further explorations.
Collapse
Affiliation(s)
- Hui Li
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Bo Ma
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hefeng Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jia Qiao
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, People's Republic of China
| | - Riyue Yu
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Yoon CH, Choi HJ, Kim MK. Corneal xenotransplantation: Where are we standing? Prog Retin Eye Res 2021; 80:100876. [PMID: 32755676 PMCID: PMC7396149 DOI: 10.1016/j.preteyeres.2020.100876] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
The search for alternatives to allotransplants is driven by the shortage of corneal donors and is demanding because of the limitations of the alternatives. Indeed, current progress in genetically engineered (GE) pigs, the introduction of gene-editing technology by clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, and advanced immunosuppressants have made xenotransplantation a possible option for a human trial. Porcine corneal xenotransplantation is considered applicable because the eye is regarded as an immune-privileged site. Furthermore, recent non-human primate studies have shown long-term survival of porcine xenotransplants in keratoplasty. Herein, corneal immune privilege is briefly introduced, and xenogeneic reactions are compared with allogeneic reactions in corneal transplantation. This review describes the current knowledge on special issues of xenotransplantation, xenogeneic rejection mechanisms, current immunosuppressive regimens of corneal xenotransplantation, preclinical efficacy and safety data of corneal xenotransplantation, and updates of the regulatory framework to conduct a clinical trial on corneal xenotransplantation. We also discuss barriers that might prevent xenotransplantation from becoming common practice, such as ethical dilemmas, public concerns on xenotransplantation, and the possible risk of xenozoonosis. Given that the legal definition of decellularized porcine cornea (DPC) lies somewhere between a medical device and a xenotransplant, the preclinical efficacy and clinical trial data using DPC are included. The review finally provides perspectives on the current standpoint of corneal xenotransplantation in the fields of regenerative medicine.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | - Hyuk Jin Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Li H, Sun J, Yang H, Han X, Luo X, Liao L, Yang B, Zhu T, Huo F, Guo W, Tian W. Recruited CD68 +CD206 + macrophages orchestrate graft immune tolerance to prompt xenogeneic-dentin matrix-based tooth root regeneration. Bioact Mater 2020; 6:1051-1072. [PMID: 33102946 PMCID: PMC7567936 DOI: 10.1016/j.bioactmat.2020.09.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023] Open
Abstract
Successful regenerative medicine strategies of xenogeneic extracellular matrix need a synergistic balance among inflammation, fibrosis, and remodeling process. Adaptive macrophage subsets have been identified to modulate inflammation and orchestrate the repair of neighboring parenchymal tissues. This study fabricated PPARγ-primed CD68+CD206+ M2 phenotype (M2γ), and firstly verified their anti-inflammatory and tissue-regenerating roles in xenogeneic bioengineered organ regeneration. Our results showed that Th1-type CD3+CD8+ T cell response to xenogeneic-dentin matrix-based bioengineered root complex (xeno-complex) was significantly inhibited by M2γ macrophage in vitro. PPARγ activation also timely recruited CD68+CD206+ tissue macrophage polarization to xeno-complex in vivo. These subsets alleviated proinflammatory cytokines (TNF-α, IFN-γ) at the inflammation site and decreased CD3+CD8+ T lymphocytes in the periphery system. When translated to an orthotopic nonhuman primate model, PPARγ-primed M2 macrophages immunosuppressed IL-1β, IL-6, TNF-α, MMPs to enable xeno-complex to effectively escape immune-mediated rejection and initiate graft-host synergistic integrity. These collective activities promoted the differentiation of odontoblast-like and periodontal-like cells to guide pulp-dentin and cementum-PDLs-bone regeneration and rescued partially injured odontogenesis such as DSPP and periostin expression. Finally, the regenerated root showed structure-biomechanical and functional equivalency to the native tooth. The timely conversion of M1-to-M2 macrophage mainly orchestrated odontogenesis, fibrogenesis, and osteogenesis, which represents a potential modulator for intact parenchymal-stromal tissue regeneration of targeted organs. Alternative polarized M2 macrophage could perform anti-inflammatory effects to inhibit xenogeneic host-to-graft rejection. A model of bioengineered tooth root regeneration was used to study parenchymal/hard and stromal/soft tissues regeneration. PPARγ-primed M2 macrophage orchestrated graft immune tolerance to prompt odontogenesis, fibrogenesis, and osteogenesis.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hefeng Yang
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - Xue Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiangyou Luo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - LiJun Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tian Zhu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weihua Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
|
7
|
Ock SA, Oh KB, Hwang S, Yun IJ, Ahn C, Chee HK, Kim H, Ullah I, Im GS, Park EW. Immune molecular profiling of whole blood drawn from a non-human primate cardiac xenograft model treated with anti-CD154 monoclonal antibodies. Xenotransplantation 2018; 25:e12392. [PMID: 29582477 DOI: 10.1111/xen.12392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 01/17/2018] [Accepted: 02/22/2018] [Indexed: 12/17/2022]
Abstract
Most studies of xenografts have been carried out with complex immunosuppressive regimens to prevent immune rejection; however, such treatments may be fatal owing to unknown causes. Here, we performed immune molecular profiling following anti-CD154 monoclonal antibody (mAb) treatment in heterotopic abdominal cardiac xenografts from α-1,3-galactosyltransferase-knockout pigs into cynomolgus monkeys to elucidate the mechanisms mediating the undesirable fatal side effects of immunosuppressive agents. Blood samples were collected from healthy monkeys as control and then at 2 days after xenograft transplantation and just before humane euthanasia; 94 genes related to the immune system were analyzed. The basic immunosuppressive regimen included cobra venom factor, anti-thymocyte globulin, and rituximab, with and without anti-CD154 mAbs. The maintenance therapy was followed with tacrolimus, MMF, and methylprednisolone. The number of upregulated genes was initially decreased on Day 2 (-/+ anti-CD154 mAb, 22/13) and then increased before euthanasia in recipients treated with anti-CD154 mAbs (-/+ anti-CD154 mAb, 30/37). The number of downregulated genes was not affected by anti-CD154 mAb treatment. Additionally, the number of upregulated genes increased over time for both groups. Interestingly, treatment with anti-CD154 mAbs upregulated coagulation inducers (CCL2/IL6) before euthanasia. In conclusion, immunosuppressive regimens used for cardiac xenografting affected upregulation of 6 inflammation genes (CXCL10, MPO, MYD88, NLRP3, TNFα, and TLR1) and downregulation of 8 genes (CCR4, CCR6, CD40, CXCR3, FOXP3, GATA3, STAT4, and TBX21).
Collapse
Affiliation(s)
- Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Curie Ahn
- Division of Nephrology, Seoul National University College of Medicine, Seoul, Korea.,Designed Animal & Transplantation Research institute, Institute of Green BioScience & Technology, Seoul National University, Pyeongchang, Gangwon-do, Korea
| | - Hyun Ken Chee
- Department of Cardiothoracic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Hwajung Kim
- Division of Nephrology, Seoul National University College of Medicine, Seoul, Korea
| | - Imran Ullah
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Eung Woo Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| |
Collapse
|
8
|
Ock SA, Lee J, Oh KB, Hwang S, Yun IJ, Ahn C, Chee HK, Kim H, Park JB, Kim SJ, Kim Y, Im GS, Park E. Molecular immunology profiles of monkeys following xenografting with the islets and heart of α-1,3-galactosyltransferase knockout pigs. Xenotransplantation 2016; 23:357-69. [PMID: 27511303 DOI: 10.1111/xen.12249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
Effective immunosuppression strategies and genetically modified animals have been used to prevent hyperacute and acute xenograft rejection; however, the underlying mechanisms remain unknown. In this study, we evaluated the expression of a comprehensive set of immune system-related genes (89 genes, including five housekeeping genes) in the blood of cynomolgus monkeys (~5 yr old) used as graft recipients, before and after the xenografting of the islets and heart from single and double α-1,3-galactosyltransferase (GalT) knockout (KO) pigs (<6 weeks old). The immunosuppressive regimen included administration of cobra venom factor, anti-thymocyte globulin, rituximab, and anti-CD154 monoclonal antibodies to recipients before and after grafting. Islets were xenografted into the portal vein in type 1 diabetic monkeys, and the heart was xenografted by heterotopic abdominal heart transplantation. Genes from recipient blood were analyzed using RT(2) profiler PCR arrays and the web-based RT(2) profiler PCR array software v.3.5. Recipients treated with immunosuppressive agents without grafting showed significant downregulation of CCL5, CCR4, CCR6, CD4, CD40LG, CXCR3, FASLG, CXCR3, FOXP3, GATA3, IGNG, L10, IL23A, TRAF6, MAPK8, MIF, STAT4, TBX21, TLR3, TLR7, and TYK2 and upregulation of IFNGR1; thus, genes involved in protection against viral and bacterial infection were downregulated, confirming the risk of infection. Notably, C3-level control resulted in xenograft failure within 2 days because of a 7- to 11-fold increase in all xenotransplanted models. Islet grafting using single GalT-KO pigs resulted in upregulation of CXCL10 and MX1, early inflammation, and acute rejection-associated signals at 2 days after xenografting. We observed at least 5-fold upregulation in recipients transplanted with islets grafts from single (MX1) or double (C3, CCR8, IL6, IL13, IRF6, CXCL10, and MX1) GalT-KO pigs after 77 days; single GalT-KO incurred early losses owing to immune attacks. Our results suggest that this novel, simple, non-invasive, and time-efficient procedure (requiring only 1.5 ml blood) for evaluating graft success, minimizing immune rejection, and blocking infection.
Collapse
Affiliation(s)
- Sun A Ock
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea. ,
| | - Jungkyu Lee
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Ik Jin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Curie Ahn
- Transplantation Center, Seoul National University Hospital, Seoul, Korea.,Designed Animal & Transplantation Research Institute, Institute of Green BioScience & Technology, Seoul National University, Pyeongchang, Gangwon-do, Korea
| | - Hyun Keun Chee
- Department of Cardiothoracic Surgery, Konkuk University School of Medicine, Seoul, Korea
| | - Hwajung Kim
- Transplantation Center, Seoul National University Hospital, Seoul, Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngim Kim
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - Gi-Sun Im
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| | - EungWoo Park
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Korea
| |
Collapse
|
9
|
Zuo H, Song G, Shi W, Jia J, Zhang Y. Observation of viable alloskin vs xenoskin grafted onto subcutaneous tissue wounds after tangential excision in massive burns. BURNS & TRAUMA 2016; 4:23. [PMID: 27574692 PMCID: PMC4964051 DOI: 10.1186/s41038-016-0045-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022]
Abstract
Background Staged excision and grafting with viable cryopreserved alloskin or fresh pigskin at an early stage is a main strategy for wound management in massive burns. Alloskin is the gold standard of a biological temporary skin substitute, and the main drawback to its wider use is the limited number of donors. In this paper, we compare the use of fresh pigskins to cryopreserved alloskins as temporary skin substitutes on subcutaneous tissue wounds after tangential excision by observing the clinical performances of these grafts in cases of a massive burn. Methods We selected six adult massive burn patients undergoing tangential excision and skin grafting on subcutaneous tissue wounds (TESGSTW) at our burn center from January 1, 2003 to December 31, 2013. The general clinical data and survival percentage of skins at postoperative weeks (POWs) 1, 2, and 3 were analyzed. In our clinical practice, we also observed the phenomenon that several viable cryopreserved alloskin or fresh pigskin grafts used as temporary coverage on subcutaneous tissue wounds had long-term survival after repeated desquamation. The macroscopic and histological results of one typical case were also analyzed. Results In this study, the first three TESGSTW operations were performed at 2–3, 5–8, and 11–16 days post-injury. The operation areas were 30.3 ± 7.9 % total body surface area (TBSA), 19.0 ± 6.0 % TBSA, and 12.0 ± 1.7 % TBSA, respectively. The survival percentage of the cryopreserved alloskins or fresh pigskins at POWs 1, 2, and 3 were 80.0 ± 10.0 % vs 75.7 ± 5.3 % (t = 1.01, P = 0.16), 71.2 ± 10.6 % vs 66.4 ± 6.2 % (t = 1.09, P = 0.30), and 48.7 ± 2.5 % vs 35.0 ± 7.0 % (t = 3.83, P = 0.03), respectively. The microscopic observation of the survival of alloskins or pigskins in one typical case showed rete ridges and a basilar membrane at the joint of the epidermis and dermis at an early stage; these structures disappeared with extended time post-operation. Conclusions From the clinical observations, fresh pigskin and cryopreserved alloskins could be used with equal effectiveness at an early stage (within 2 weeks post-operation) as temporary coverage on massive burns after TESGSTW. After engraftment, several cryopreserved alloskins or fresh pigskins could co-survive in a massive burn patient for an extended amount of time. The co-survival of alloskin and pigskin will provide clues for further research into skin transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s41038-016-0045-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haibin Zuo
- Department of Burns, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, Shandong 250013 PR China
| | - Guodong Song
- Department of Burns, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, Shandong 250013 PR China
| | - Wen Shi
- Department of Burns, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, Shandong 250013 PR China
| | - Jun Jia
- Department of Burns, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, Shandong 250013 PR China
| | - Yonghu Zhang
- Department of Burns, Jinan Central Hospital Affiliated to Shandong University, 105 Jiefang Road, Jinan, Shandong 250013 PR China
| |
Collapse
|
10
|
Denner J, Graham M. Xenotransplantation of islet cells: what can the non-human primate model bring for the evaluation of efficacy and safety? Xenotransplantation 2015; 22:231-5. [DOI: 10.1111/xen.12169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Melanie Graham
- Department of Surgery; Preclinical Research Center; University of Minnesota; Saint Paul MN USA
| |
Collapse
|
11
|
Choi HJ, Lee JJ, Kim DH, Kim MK, Lee HJ, Ko AY, Kang HJ, Park C, Wee WR. Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation. Am J Transplant 2015; 15:628-41. [PMID: 25676390 DOI: 10.1111/ajt.13057] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 01/25/2023]
Abstract
The porcine cornea may be a good solution for the shortage of human donor corneas because its size and refractive properties are comparable to those of the human cornea. However, antigenic differences need to be overcome to apply xenocorneal transplantation in actual clinical practice. We aimed to investigate the feasibility of full-thickness porcine corneas as human corneal substitutes using a CD40-CD154 costimulatory pathway blocking strategy in a clinically applicable pig-to-nonhuman primate corneal transplantation model. As a result, the mean survival time of the xenocorneal grafts in recipients who received anti-CD154 antibody-based immunosuppressants (POD318 (n = 4); >933, >243, 318 and >192) was significantly longer than that in controls (POD28 (n = 3); 21, 28 and 29; p = 0.010, log-rank test). Administration of anti-CD154 antibodies markedly reduced inflammatory cellular infiltrations (predominantly CD8 T cells and macrophages) into the xenocorneal grafts and almost completely blocked xenoantigen-triggered increases in Th1-associated cytokines, chemokines and C3a in the aqueous humor. Moreover, systemic expansion of memory T cells was effectively controlled and responses of anti-Gal/donor pig-specific antibodies were considerably diminished by programmed injection of anti-CD154 antibodies. Consequently, porcine corneas might be promising human corneal substitutes when the transplantation is accompanied by potent immunosuppression such as a CD40-CD154 costimulatory pathway blockade.
Collapse
Affiliation(s)
- H J Choi
- Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Republic of Korea; Department of Ophthalmology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea; Translational Xenotransplantation Research Center, Seoul National University College of Medicine and Seoul National University Hospital Biomedical Research Institute, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Li ZG, Liu GB, Pan MX, Wu QS, Ge M, Du J, Wang Y, Gao Y. Knockdown of porcine endogenous retroviruses by RNA interference in Chinese experimental miniature pig fibroblasts. Transplant Proc 2013; 45:748-55. [PMID: 23498816 DOI: 10.1016/j.transproceed.2012.03.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/30/2012] [Accepted: 03/06/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND The clinical application of porcine-derived xenotransplants is limited by the potential risk of infection due to the presence of porcine endogenous retrovirus (PERV) in tissues, organs, and cells. The establishment of pig fibroblasts with low PERV expression and without PERV-C can provide a nuclear donor to generate a safer transgenic pig. METHODS In this study, we obtained Chinese Experimental Miniature Pig fibroblasts (CEMPF) with low expression of PERV and none of PERV-C. We designed small interfering RNA (siRNA) expressed as short hairpin RNAs (shRNA) based on the highly conserved gag and pol regions of PERV and screened for the most effective siRNA to inhibit PERV expression. The selected shRNA-pol3 fragment was introduced into the CEMPF to obtain an engineered CEMPF stably expressing shRNA-pol3. RESULTS The PERV mRNA expression level in the engineered CEMPF was only 7.9% of that observed in fibroblasts from wild-type CEMPF, PERV P15E protein expression was significantly reduced. HEK293 cells cocultured with the supernate of the engineered CEMPF showed no PERV infection. CONCLUSIONS Engineered CEMPF, which possess no risk of PERV-A/C infection, can serve as a nuclear donor to generate xenograft donor pigs.
Collapse
Affiliation(s)
- Z-G Li
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lin X, Qi L, Li Z, Chi H, Lin W, Wang Y, Jiang Z, Pan M, Gao Y. Susceptibility of human liver cells to porcine endogenous retrovirus. EXP CLIN TRANSPLANT 2013; 11:541-5. [PMID: 23901808 DOI: 10.6002/ect.2012.0213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The risk of porcine endogenous retrovirus infection is a major barrier for pig-to-human xenotransplant. Porcine endogenous retrovirus, present in porcine cells, can infect many human and nonhuman primate cells in vitro, but there is no evidence available about in vitro infection of human liver cells. We investigated the susceptibility of different human liver cells to porcine endogenous retrovirus. MATERIALS AND METHODS The supernatant from a porcine kidney cell line was added to human liver cells, including a normal hepatocyte cell line (HL-7702 cells), primary hepatocytes (Phh cells), and a liver stellate cell line (Lx-2 cells), and to human embryonic kidney cells as a reference control. Expression of the porcine endogenous retrovirus antigen p15E in the human cells was evaluated with polymerase chain reaction, reverse transcription-polymerase chain reaction, and Western blot. RESULTS The porcine endogenous retrovirus antigen p15E was not expressed in any human liver cells (HL-7702, Phh, or Lx-2 cells) that had been exposed to supernatants from porcine kidney cell lines. Porcine endogenous retrovirus-specific fragments were amplified in human kidney cells. CONCLUSIONS Human liver cells tested were not susceptible to infection by porcine endogenous retrovirus. Therefore, not all human cells are susceptible to porcine endogenous retrovirus.
Collapse
Affiliation(s)
- Xinzi Lin
- Department of Hepatobiliary Surgery, Zhujiang Hospital, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Post ICJH, Weenink RP, van Wijk ACWA, Heger M, Böing AN, van Hulst RA, van Gulik TM. Characterization and quantification of porcine circulating endothelial cells. Xenotransplantation 2013; 20:18-26. [DOI: 10.1111/xen.12018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/13/2012] [Indexed: 11/27/2022]
Affiliation(s)
- Ivo C. J. H. Post
- Department of Surgery (Surgical Laboratory); Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | | | - Albert C. W. A. van Wijk
- Department of Surgery (Surgical Laboratory); Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | - Michal Heger
- Department of Surgery (Surgical Laboratory); Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | - Anita N. Böing
- Laboratory of Experimental Clinical Chemistry; Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| | | | - Thomas M. van Gulik
- Department of Surgery (Surgical Laboratory); Academic Medical Center; University of Amsterdam; Amsterdam; The Netherlands
| |
Collapse
|
15
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ivanović Z. Xenotransplantation today. SCRIPTA MEDICA 2012. [DOI: 10.5937/scriptamed1201008i] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
17
|
Tan WS, Carlson DF, Walton MW, Fahrenkrug SC, Hackett PB. Precision editing of large animal genomes. ADVANCES IN GENETICS 2012; 80:37-97. [PMID: 23084873 PMCID: PMC3683964 DOI: 10.1016/b978-0-12-404742-6.00002-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transgenic animals are an important source of protein and nutrition for most humans and will play key roles in satisfying the increasing demand for food in an ever-increasing world population. The past decade has experienced a revolution in the development of methods that permit the introduction of specific alterations to complex genomes. This precision will enhance genome-based improvement of farm animals for food production. Precision genetics also will enhance the development of therapeutic biomaterials and models of human disease as resources for the development of advanced patient therapies.
Collapse
Affiliation(s)
- Wenfang Spring Tan
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
18
|
[Progress and application prospect of pig induced pluripotent stem cells]. YI CHUAN = HEREDITAS 2011; 33:307-13. [PMID: 21482519 DOI: 10.3724/sp.j.1005.2011.00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pig has always been the focus of establishing a big ungulate animal ES cell lines because of its convenient source, genetic similarity with humans, and their importance in animal husbandry, but little development is achieved. Induced pluripotent stem cells technology creates a new method of reprogramming somatic cells to pluripotent state. As the pig iPS cells is established and perfected, pig ES cells will be established in the coming years. The pig iPS cells will give a hint on other livestock ES cells. On the other hand, pig iPS cells can be used to improve the efficiency of transgenic cloning pigs to conduct effective breeding and conservation of breeds. It is particularly important that the pig iPS cells can provide new model for human medical research, a new donor cells for human tissue and organ engineering, and have extensive and far-reaching impact on the biomedical field. Here, we briefly review the major progress of iPS cells, and emphasize current state of pig iPS cells and its application prospect in biomedicine and animal husbandry in order to provide a useful reference for researchers working in this area.
Collapse
|
19
|
Qiao AY, Zhang WH, Chen XJ, Zhang J, Xiao GH, Hu YX, Tang DC. Isolation and purification of islet cells from adult pigs. Transplant Proc 2010; 42:1830-4. [PMID: 20620533 DOI: 10.1016/j.transproceed.2009.12.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 12/07/2009] [Indexed: 10/19/2022]
Abstract
We used in situ perfusion and a multiple-organ harvesting technique to collect islets from adult pig pancreata. The tissues were digested with collagenase P followed by purification in a lympholyte discontinuous gradient using a COBE2991 cell separator. The yield and purity of isolated islets were evaluated with a light microscope after dithizone (DTZ) staining. Islet function was assessed using an in vitro insulin release assay. The results showed that before purification 275,000 +/- 20,895 islet equivalents (IEQ) were obtained from 1 digested pancreas. After purification with gradient centrifugation, the islet yield was 230,350 +/- 26,679 IEQ/pancreas. Each gram of the purified pancreatic tissues yielded 2710 +/- 229 IEQ with an average purity of 50.2 +/- 2.0%. The purified islet cells responded to stimulation with high glucose concentrations (16.7 mmol/L), namely, 4.74-fold greater than the insulin secretion with exposure to the basal level of glucose (3.3 mmol/L; P < .001). These results suggested that the established isolation method can be applied to large-scale purification of fully functional islets from pig pancreata.
Collapse
Affiliation(s)
- A-Y Qiao
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Guangzhou Medical College, Guangzhou, Guangdong, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Nakaya Y, Shojima T, Yasuda J, Imakawa K, Miyazawa T. Epigenetic regulation on the 5'-proximal CpG island of human porcine endogenous retrovirus subgroup A receptor 2/GPR172B. Microbes Infect 2010; 13:49-57. [PMID: 20951222 DOI: 10.1016/j.micinf.2010.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 09/27/2010] [Accepted: 09/30/2010] [Indexed: 11/19/2022]
Abstract
Porcine endogenous retroviruses (PERVs) have been considered one of the major risks of xenotransplantation from pigs to humans. PERV-A efficiently utilizes human PERV-A receptor 2 (HuPAR-2)/GPR172B to infect human cells; however, there has been no study on the regulation mechanisms of HuPAR-2/GPR172B expression. In this study, we examined the expression of HuPAR-2/GPR172B from the standpoint of epigenetic regulation and discussed the risks of PERV-A infection in xenotransplantation. Quantitative real-time RT-PCR revealed that HuPAR-2 mRNA was preferentially expressed in placental tissue, whereas it was highly suppressed in BeWo cells (a human choriocarcinoma cell line) and HEK293 cells. A CpG island containing the HuPAR-2 transcription starting site was identified by in silico analysis. The DNA methylation ratio (the relative quantity of methylcytosine to total cytosine) and histone modification (H3K9me3) levels in the CpG island measured by bisulfite genomic sequencing and ChIP assay, respectively, were inversely correlated with the mRNA levels. Both HuPAR-2 mRNA and HuPAR-2 protein were up-regulated in HEK293 cells by inhibiting DNA methylation and histone deacetylation. Additionally, promoter/enhancer activities within the CpG island were suppressed by in vitro DNA methylation. Our results demonstrated that epigenetic modification regulates HuPAR-2 expression.
Collapse
Affiliation(s)
- Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
21
|
|
22
|
Lohse S, Peipp M, Beyer T, Valerius T, Dechant M. Impact of human IgA antibodies on complement-dependent cytotoxicity mediated by combinations of EGF-R-directed antibodies. Arch Immunol Ther Exp (Warsz) 2010; 58:303-12. [PMID: 20508996 DOI: 10.1007/s00005-010-0081-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/11/2010] [Indexed: 01/29/2023]
Abstract
Dual combinations of non-crossblocking epidermal growth factor receptor (EGF-R)-directed monoclonal antibodies were demonstrated to effectively induce complement-dependent cytotoxicity (CDC) of tumor cells, whereas individual antibodies were ineffective. Here the modulating effects of different antibody isotypes on CDC were studied by adding them as a third antibody. Two different combinations of non-crossblocking EGF-R antibodies of human IgG1 isotype, 018/003 and 425/005, were investigated against the A431 and A1207 cell lines. As a third antibody, human IgG1, IgA1, and IgA2 isotype variants of the therapeutic EGF-R antibody 225 were employed that bind to an EGF-R epitope distinct from the other EGF-R antibodies. In this model, the human IgG1 antibody proved to further enhance CDC, whereas both IgA antibodies significantly blocked CDC. The IgG1 and IgA variants increased target opsonization at similar levels, but the isotypes differed in their effects on C1q fixation. Addition of IgG1 significantly enhanced complement factor binding on the target surface, whereas both IgA antibodies reduced complement binding. Control experiments revealed this blocking effect to be not specific to IgA antibodies, but to antibody constructs incapable of activating the complement system. Interestingly, the effects caused by the IgA2 isotype were consistently stronger than those by IgA1, which may be caused by stronger steric hindrance due to its reduced hinge flexibility. These results demonstrate that monoclonal IgA antibodies inhibit IgG-mediated complement activation in vitro and suggest that the appearance of IgA antibodies within a polyclonal immune response might inhibit complement activation in vivo.
Collapse
Affiliation(s)
- Stefan Lohse
- Department of Internal Medicine IV, Nephrology and Hypertension, Christian-Albrechts-University, Schittenhelmstr. 12, 24105, Kiel, Germany
| | | | | | | | | |
Collapse
|
23
|
Yamamoto A, Kobayashi C, Yamashita S, Miyazawa T, Okabe M, Fukuzawa M, Miyagawa S. Expression of complement regulatory protein on porcine endogenous retrovirus (PERV) depends on molecular size. Transpl Immunol 2010; 23:71-6. [DOI: 10.1016/j.trim.2010.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Accepted: 03/01/2010] [Indexed: 10/19/2022]
|
24
|
Rocha H, Eliziário LFE, Wafae GC, Silva NC, Ruiz CR, Wafae N. Anatomy of the septomarginal trabecula in Landrace pig hearts. Morphologie 2010; 94:26-29. [PMID: 20359929 DOI: 10.1016/j.morpho.2010.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The limitations on the availability of organs for transplantation have aroused interest in research on xenotransplantation of whole organs or certain parts of them. Thus, studies that confirm or reject similarities between the organs of different animals have started to have important clinical applications. In the present study, we investigated the septomarginal trabecula in 34 hearts from Landrace pigs with the aim of observing their similarities with the septomarginal trabecula in humans. In pigs, the muscle bundle of the septomarginal trabecula and the right branch of the stimulating complex are dissociated. The right branch is a narrow bridge that, after going out from the upper part of the interventricular septum, is attached to the upper part of the anterior papillary muscle. On the other hand, the muscle bundle of the septomarginal trabecula is generally a resistant crest that goes from the lower part of the septum to the lower part of the anterior papillary muscle. The septomarginal trabecula presents marked anatomical differences between humans and pigs.
Collapse
Affiliation(s)
- H Rocha
- FAMEPLAC, Faculdade de Medicina do Planalto Central Brasília, Brasília, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Oh JY, Kim MK, Lee HJ, Ko JH, Wee WR, Lee JH. Processing porcine cornea for biomedical applications. Tissue Eng Part C Methods 2010; 15:635-45. [PMID: 19249963 DOI: 10.1089/ten.tec.2009.0022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To investigate the propriety of decellularized porcine corneas as a source of lamellar corneal xenografts, we treated porcine corneas with (1) freezing, (2) three freezing-thawing, (3) hypertonic saline, (4) hyperosmolar glycerol, (5) trypsin/sodium dodecyl sulfate/Dispase, and (6) DNase/RNase. After processing, we examined the cells and collagen structures of the decellularized corneas using hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) assay, and transmission electron microscopy. Cell viability was also assessed via organ culture. In addition, the outcomes of porcine anterior lamellar corneal xenografting were evaluated in rabbits. Graft integration and corneal thickness were assessed using anterior optical coherence tomography, and the corneas were histologically examined sequentially after transplantation. We found that porcine corneas treated with hypertonic saline-based decellularization had little immunogenicity with intact collagen structures. The porcine corneal xenografts decellularized with the hypertonic saline-based method were well integrated into the adjacent host tissues and remained clear in rabbit eyes for more than 6 months.
Collapse
Affiliation(s)
- Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine , Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Toki D, Ishida H, Horita S, Yamaguchi Y, Tanabe K. Blood group O recipients associated with early graft deterioration in living ABO-incompatible kidney transplantation. Transplantation 2010; 88:1186-93. [PMID: 19935372 DOI: 10.1097/tp.0b013e3181ba07ec] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Blood group O individuals are known to have larger amounts of anti-ABO blood group (anti-A/B) IgG antibodies than A or B individuals. Therefore, in ABO-incompatible (ABOI) kidney transplantation (KTX), it is expected that blood group O recipients are more likely to suffer graft damage, because anti-A/B IgG antibodies are believed to be responsible for worse graft outcomes. METHODS This study assessed the graft outcomes between blood group O and non-O recipients in ABOI-KTX. A total of 164 consecutive recipients who underwent ABOI-KTX between 1990 and 2007 under three different immunosuppressive protocols were enrolled in this study. The study population was divided into two groups: (i) recipients with blood group O (n=87) and (ii) recipients with blood group A or B (non-O) (n=77). RESULTS High anti-A/B IgG titers were predominant in the O group (P<0.001), whereas no significant difference was observed in the IgM titers. The overall graft survival rate did not differ between the two groups; however, the 6-month graft survival rate was significantly lower in the O group (86% vs. 97%, P=0.011). Among 14 recipients who suffered graft loss within 6 months after transplantation, 12 (86%) were O recipients. The cumulative incidence of acute antibody-mediated rejection was significantly higher in the O group (60 days, 31 vs. 14%, P=0.013). CONCLUSION Our results may indicate that being a blood group O recipient is at great risk for experiencing early allograft deterioration, probably caused by anti-A/B IgG antibodies in ABOI-KTX.
Collapse
Affiliation(s)
- Daisuke Toki
- Department of Urology, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
27
|
NAKAYA Y, SHOJIMA T, YASUDA J, MIYAZAWA T. Unusual Permeability of Porcine Endogenous Retrovirus Subgroup A Through Membrane Filters. J Vet Med Sci 2010; 72:67-71. [DOI: 10.1292/jvms.09-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yuki NAKAYA
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University
| | - Takayuki SHOJIMA
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University
| | - Jiro YASUDA
- First Department of Forensic Science, National Research Institute of Police Science
- CREST, Japan Science and Technology Agency
| | - Takayuki MIYAZAWA
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University
| |
Collapse
|
28
|
Miyagawa S, Takeishi S, Yamamoto A, Ikeda K, Matsunari H, Yamada M, Okabe M, Miyoshi E, Fukuzawa M, Nagashima H. Survey of glycoantigens in cells from alpha1-3galactosyltransferase knockout pig using a lectin microarray. Xenotransplantation 2010; 17:61-70. [PMID: 20149189 DOI: 10.1111/j.1399-3089.2009.00565.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Glycoantigens represent major obstacles to successful xenotransplantation. Even after the alpha1-3galactosyltransferase (GalT) gene knockout (GalT-KO) pigs were produced, non-Gal antigens continue to be present. This study reports on lectin blot analyses for endothelial cells (EC) and fibroblasts from GalT-KO pigs. METHODS Differences in glycoantigens that are produced on cell surfaces in humans and pigs were surveyed. Differences between ECs and fibroblasts from wild-type and GalT-KO pigs were also examined. EC and fibroblasts from GalT-KO pigs (heterozygous and homozygous) with N-acetylglucosaminyltransferase-III (GnT-III), a wild-type EC from the sibling, human EC lines, HUVEC (human EC from umbilical veins), & HAOEC (human EC from aortas), and human fibroblast line were used. EC and fibroblasts were cultured in gelatin-coated dishes for several days. After sonication and centrifugation, the supernatant protein from each cell was labeled with Cy3, applied to a lectin array and scanned with an SC Profiler, and analyzed using an Array Pro Analyzer. RESULTS The pig EC showed higher signals in Euonymus Europaeus (EEL) & Griffonia simplicifolia I-B(4) (GSI-B4), binds alpha-Gal, and in Wisteria Floribunda (WFA), Helix pomatia (HPA), Glycine max (SBA), & Griffonia simplicifolia I-A(4) (GSI-A4), binds GalNAc including the Thomsen-Friedenreich precursor (Tn)-antigen, while the human EC showed strong signals in Ulex europaeus I (UEA-I), Maackia amurensis (MAL), Erythrina cristagalli (ECA), & Trichosanthes japonica I (TJA-I) instead. The EC from the GalT-KO pig signals for EEL & GSI-B4 disappeared and those for Bauhinia purpurea alba (BPL), HPA, SBA, & GSI-A4 were greatly diminished as well, while it up-regulated signals for Sambucus Nigra (SNA), Sambucus sieboldiana (SSA), & TJA-I, bind alpha2-6 sialic acid, compared to the wild-type pig EC. Concerning fibroblasts, the signals for HPA, SBA, & GSI-A4 were the most intense in the wild-type, and the intensities for homozygous-KO were less, approaching those of humans. In addition, the order of the intensities, as detected by Arachis hypogaea (PNA) & Maclura pomifera (MPA), binding Galbeta1-2GalNAc, indicates that the Thomsen-Friedenreich (T)-antigen is likely present on pig fibroblasts. CONCLUSION It is possible that the T-antigen and Tn-antigen related to GalNAc are non-Gal antigens, but, fortunately, not only alpha-Gal but also GalNAc were found to be decreased in the KO-pig.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Department of Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Yamamoto A, Nakatsu S, Kondo A, Asato T, Okabe M, Fukuzawa M, Miyagawa S. A newly cloned pig dolichyl-phosphate mannosyl-transferase for preventing the transmission of porcine endogenous retrovirus to human cells. Transpl Int 2009; 23:424-31. [PMID: 19912589 DOI: 10.1111/j.1432-2277.2009.00999.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Porcine endogenous retrovirus (PERV) is a major problem associated with successful clinical xenotransplantation. In our previous study, reducing the high mannose type of N-glycan content proved to be very effective in downregulating PERV infectivity. In this study, dolichyl-phosphate mannosyltransferase (D-P-M), an enzyme related to the early stages of N-linked sugar synthesis was studied. The pig cDNA of the encoding D-P-M was newly isolated. The RNA interference (siRNA) for the D-P-M was applied and transfected to PEC(Z)/PB cells, a pig endothelial cell line with the Lac Z gene and PERV-B, to reduce the levels of high mannose type N-glycans. Compared with the mock line, the temporary PEC(Z)/PB lines showed a decreased mRNA expression for pig D-P-M, and each line then showed a clear destruction of PERV infectivity to human cells in the Lac Z pseudotype assay. The PEC(Z)/PB was next transfected with pSXGH-siRNA, H1-RNA gene promoter. The established PEC(Z)/PB clones with pSXGH-siRNA clearly led to the downregulation of PERV infectivity, as evidenced by the decreased levels of the mRNA for pig D-P-M. Reducing D-P-M enzyme activity represents a potentially useful approach to address the problem of PERV infections in clinical xenotransplantations.
Collapse
Affiliation(s)
- Aki Yamamoto
- Division of Organ Transplantation, Department of Surgery, and Osaka University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Okura E, Ishimaru A, Yamamoto A, Nakatsu S, Shirakura R, Okabe M, Sawa Y, Fukuzawa M, Okumura M, Miyagawa S. Differential human serum-mediated neutralization of PERV released from pig cells transfected with variants of hDAF. Xenotransplantation 2009; 15:365-73. [PMID: 19152664 DOI: 10.1111/j.1399-3089.2008.00496.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Expression of complement regulatory proteins (CRP) on pig endothelial cells (PEC) is an effective means of avoiding induction of hyperacute rejection by human sera. However, pig endogenous retrovirus (PERV) from PEC transfected with CRP may acquire resistance to human sera. This study investigated a form of transfected CRP that is easily expressed on PERV particles. METHODS The PEC line was transfected with the Lac Z gene and PERV-B to investigate PERV infectivity using a Lac Z pseudo-type assay. The cDNAs of several modified DAF (CD55) were then transfected into the PEC(Lac Z)/P-B lines using lipofection. DAF expression was verified by FACS analysis. Complement-dependent PEC lysis was tested to verify the complement regulatory function of the expressed DAF. HEK293 cells were incubated with PEC culture supernatants with or without human sera. The inoculated 293 cells were histochemically stained and Lac Z-positive blue foci were counted. The rate of reduction in Lac Z-positive cells resulting from the addition of human serum was then calculated. In addition, to assess the localization of the expressed DAF, flotation sucrose density analysis was performed. RESULTS While PERV released from PEC expressing delta-short consensus repeat 2 (delta-SCR2) DAF (lacking CRP function) showed no change in resistance to human serum compared to control cells, PERV from cells expressing delta-SCR1 DAF (with CRP function) showed a significant increase in resistance. The DAF-blocking antibody assay indicated that PERV from the DAF transfectants expressed DAF molecules on the surface of the retrovirus. While delta-SCR1 DAF (PI-anchor form) significantly inhibited the reduction of Lac Z-positive cells by human serum, the reduction of Lac Z-positive cells by human serum was less inhibited in the case of transmembrane (TM)-types of DAF-HLA-G, modified influenza hemagglutinin (HA) and MCP (delta-CYT form). However, the reduction in each TM-type DAF was slightly less than that observed in naive and mock cells. The flotation sucrose density analysis of these transfectants indicated that the PI-anchor form of DAF is a raft-associated protein, and most TM-types of DAF are non-raft proteins. CONCLUSION Induction of resistance to human serum in PERV, depends on the form of the CRP tail. The CRP/TM hybrid that does not associate with lipid rafts, is a suitable form of CRP for gene transduction.
Collapse
Affiliation(s)
- Eiji Okura
- Division of Organ Transplantation, Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li SZ, Qu YC, Liu BQ, Wang GY, Zhang Y, Ma ZF, Ma TX, Qiu M, Han RF. Synergistic effects of alpha-1,2-fucosyltransferase, DAF, and CD59 in suppression of xenogenic immunological responses. Xenotransplantation 2009; 16:27-33. [PMID: 19243558 DOI: 10.1111/j.1399-3089.2009.00509.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies showed that alpha-1,2-fucosyltransferase (HT), decay accelerating factor (DAF), and CD59 have an inhibitory effect on the immunological rejection of xenogenic transplantation. METHODS To investigate their possible synergistic effects in suppression of heterogeneic transplantation, we produced transgenic mouse lines expressing human HT, DAF, and/or CD59 by the standard pronuclear injection approach. PCR and Southern blot were used to identify the transgenic founder lines. Flow cytometry confirmed the high-level expression of HT, DAF, or CD59 in the transgenic mice. RESULTS The deposition of IgM, C3c, or C9 in the cardiac vascular endothelial cells of the HT, HT/CD59, and/or DAF multiple positive transgenic mice was markedly decreased. The survival time and function of the hearts of the co-transgenic mice were significantly longer and higher than that of the single HT-positive transgenic mice (P < 0.05). CONCLUSION The mice co-expressing HT/DAF or HT/CD59 could resist the hyperacute rejection better than those expressing HT alone. It is feasible to use HT and C-reactive proteins co-transgenic tissues to resist hyperacute rejection and xenograft rejection.
Collapse
Affiliation(s)
- Sheng-Zhi Li
- Tianjin Institute of Urology and Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Embryonic pig pancreatic tissue for the treatment of diabetes in a nonhuman primate model. Proc Natl Acad Sci U S A 2009; 106:8659-64. [PMID: 19433788 DOI: 10.1073/pnas.0812253106] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xenotransplantation of pig tissues has great potential to overcome the shortage of organ donors. One approach to address the vigorous immune rejection associated with xenotransplants is the use of embryonic precursor tissue, which induces and utilizes host vasculature upon its growth and development. Recently, we showed in mice that embryonic pig pancreatic tissue from embryonic day 42 (E42) exhibits optimal properties as a beta cell replacement therapy. We now demonstrate the proof of concept in 2 diabetic Cynomolgus monkeys, followed for 393 and 280 days, respectively. A marked reduction of exogenous insulin requirement was noted by the fourth month after transplantation, reaching complete independence from exogenous insulin during the fifth month after transplantation, with full physiological control of blood glucose levels. The porcine origin of insulin was documented by a radioimmunoassay specific for porcine C-peptide. Furthermore, the growing tissue was found to be predominantly vascularized with host blood vessels, thereby evading hyperacute or acute rejection, which could potentially be mediated by preexisting anti-pig antibodies. Durable graft protection was achieved, and most of the late complications could be attributed to the immunosuppressive protocol. While fine tuning of immune suppression, tissue dose, and implantation techniques are still required, our results demonstrate that porcine E-42 embryonic pancreatic tissue can normalize blood glucose levels in primates. Its long-term proliferative capacity, its revascularization by host endothelium, and its reduced immunogenicity, strongly suggest that this approach could offer an attractive replacement therapy for diabetes.
Collapse
|
33
|
Ramsoondar J, Vaught T, Ball S, Mendicino M, Monahan J, Jobst P, Vance A, Duncan J, Wells K, Ayares D. Production of transgenic pigs that express porcine endogenous retrovirus small interfering RNAs. Xenotransplantation 2009; 16:164-80. [DOI: 10.1111/j.1399-3089.2009.00525.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Oh JY, Kim MK, Ko JH, Lee HJ, Kim Y, Park CS, Park CG, Kim SJ, Wee WR, Lee JH. Acute cell-mediated rejection in orthotopic pig-to-mouse corneal xenotransplantation. Xenotransplantation 2009; 16:74-82. [DOI: 10.1111/j.1399-3089.2009.00514.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Galvão FHF, Pompeu E, de Mello ES, da Costa Lino Costa A, Mory E, Dos Santos RM, Santos VR, Machado MC, Bacchella T. Experimental multivisceral xenotransplantation. Xenotransplantation 2009; 15:184-90. [PMID: 18611226 DOI: 10.1111/j.1399-3089.2008.00470.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Organ shortage impairs the proposition of multivisceral transplantation to treat multiple organ failure. Interspecies (xeno) transplantation is a valid solution for organ shortage; however, suitable models of this advance are lacking. We describe an effective model of multivisceral xenotransplantation to study hyperacute rejection. METHODS Under general anesthesia, we in block recovered the distal esophagus, stomach, small bowel, colon, liver, pancreas, spleen, and kidneys from donors and implanted heterotopically in the lower abdomen of recipients. Animals were divided into four groups: I-canine donor, swine recipient (n = 6); II - swine donor, canine recipient (n = 5); III-canine donor, canine recipient (n = 4); and IV-swine donor, swine recipient (n = 5). Groups I and II comprised experimental (xenotransplantation) and III and IV control groups (allotransplantation). During the experiment, we appraised recipient evolution and graft modification by sequential biopsy up to 3 h. At this time, we killed animals for autopsy (experimental end point). RESULTS We accomplished all experiments successfully. Every grafts attained customary appearance and convenient urine output immediately after unclamp. Around 15 min after reperfusion, xenografts achieved signs of progressive hyperacute rejection and absence of urine output. At the end of experiments we observed moderate to severe hyperacute rejection at small bowel, colon, mesenteric lymph node, liver, spleen, pancreas, and kidney, while stomach and esophagus achieved mild lesions. In contrast, allograft achieved normal or minimum ischemia/reperfusion injury and constant urine output. CONCLUSION The present procedure assembles a simple and effective model to study multivisceral xenotransplantation and may ultimately spread researches toward hyperacute rejection.
Collapse
Affiliation(s)
- Flávio Henrique Ferreira Galvão
- Department of Gastroenterology, Service of Liver Transplantation, Faculdade de Medicinada Universidade de São Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Suppressive efficacy and proliferative capacity of human regulatory T cells in allogeneic and xenogeneic responses. Transplantation 2008; 86:1452-62. [PMID: 19034017 DOI: 10.1097/tp.0b013e318188acb0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND An understanding of the mechanisms that suppress the human anti-pig cellular response is key for xenotransplantation. We have compared the ability of human regulatory T cells (Tregs) to suppress xenogeneic and allogeneic responses in vitro. METHODS Human peripheral blood mononuclear cells (PBMC), CD4+ T cells, or CD4+ CD25- T cells were stimulated with irradiated human or wild type (WT) or alpha1,3-galactosyltransferase gene-knockout (GT-KO) pig PBMC in the presence or absence of human CD4+ CD25 high Tregs. In separate experiments, 5- (and 6)-carboxyfluorescein diacetate succinimidyl ester-labeled human CD4+ T cells were stimulated with human or pig PBMC. The expansion and precursor frequencies of allo- and xenoreactive Tregs were assessed by labeling with FoxP3 mAb and flow cytometric analysis. RESULTS The responses of human PBMC, CD4+ T cells, and CD4+ CD25- T cells to pig PBMC were stronger than to human PBMC (P<0.05). Human anti-GT-KO responses were weaker than anti-WT responses (P<0.05). Human CD4+ CD25 high Tregs suppressed proliferation of CD4+ CD25- T cells to both human and pig PBMC stimulator cells with the same efficiency. Alloreactive CD4+ CD25+ FoxP3 high responder T cells proliferated more than their xenoreactive counterparts (P<0.05), although xenoreactive CD4+ CD25+ T cells proliferated more than alloreactive cells (P<0.05). There was no difference in precursor frequency between allo- and xeno-reactive CD4+ CD25+ FoxP3 high cells. CONCLUSIONS Human T-cell responses to pig cells are stronger than to allogeneic cells. The human response to GT-KO PBMC is weaker than to WT PBMC. Although human Tregs can suppress both responses, expansion of CD4+ CD25+ FoxP3 high cells against pig PBMC is weaker than against human PBMC. More human Tregs may be required to suppress the stronger xenogeneic response.
Collapse
|
37
|
Hisashi Y, Yamada K, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Colvin RB, Shimizu A. Rejection of cardiac xenografts transplanted from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) pigs to baboons. Am J Transplant 2008; 8:2516-26. [PMID: 19032222 PMCID: PMC2836186 DOI: 10.1111/j.1600-6143.2008.02444.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The use of alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine donors in discordant xenotransplantation has extended the survival of cardiac xenografts in baboons following transplantation. Eight baboons received heterotopic cardiac xenografts from GalT-KO swine and were treated with a chronic immunosuppressive regimen. The pathologic features of acute humoral xenograft rejection (AHXR), acute cellular xenograft rejection (ACXR) and chronic rejection were assessed in the grafts. No hyperacute rejection developed and one graft survived up to 6 months after transplantation. However, all GalT-KO heart grafts underwent graft failure with AHXR, ACXR and/or chronic rejection. AHXR was characterized by interstitial hemorrhage and multiple thrombi in vessels of various sizes. ACXR was characterized by TUNEL(+) graft cell injury with the infiltration of T cells (including CD3 and TIA-1(+) cytotoxic T cells), CD4(+) cells, CD8(+) cells, macrophages and a small number of B and NK cells. Chronic xenograft vasculopathy, a manifestation of chronic rejection, was characterized by arterial intimal thickening with TUNEL(+) dead cells, antibody and complement deposition, and/or cytotoxic T-cell infiltration. In conclusion, despite the absence of the Gal epitope, acute and chronic antibody and cell-mediated rejection developed in grafts, maintained by chronic immunosupression, presumably due to de novo responses to non-Gal antigens.
Collapse
Affiliation(s)
- Y. Hisashi
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Kuwaki
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Y.-L Tseng
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - F. J. M. F. Dor
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. L Houser
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. C. Robson
- Department of Medicine, Transplant Center, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | | | - D. K. C. Cooper
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - D. H. Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - R. B. Colvin
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, Immerge BioTherapeutics Inc., Cambridge, MA, Department of Pathology, Nippon Medical School, Tokyo, Japan,Corresponding author: Akira Shimizu,
| |
Collapse
|
38
|
Kawamoto K, Tanemura M, Ito T, Deguchi T, Machida T, Nishida T, Doki Y, Mori M, Sawa Y. Prolonged survival of pig islets xenograft by adenovirus-mediated expression of either the membrane-bound human FasL or the human decoy Fas antigen gene. Xenotransplantation 2008; 15:333-43. [DOI: 10.1111/j.1399-3089.2008.00490.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJMF, Houser SL, Robson SC, Schuurman HJ, Cooper DKC, Sachs DH, Yamada K, Colvin RB. Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1471-81. [PMID: 18467706 DOI: 10.2353/ajpath.2008.070672] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Heterotopic cardiac xenotransplantation from alpha1,3-galactosyltransferase gene-knockout (GalT-KO) swine to baboons was performed to characterize immunological reaction to the xenograft in the absence of anti-Gal antibody-mediated rejection. Eight baboons received heterotopic cardiac xenografts from GalT-KO porcine donors. All baboons were treated with chronic immunosuppressive therapy. Both histological and immunohistochemical studies were performed on biopsy and graftectomy samples. No hyperacute rejection was observed. Three baboons were euthanized or died 16 to 56 days after transplantation. The other five grafts ceased beating between days 59 and 179 (median, 78 days). All failing grafts exhibited thrombotic microangiopathy (TM) with platelet-rich fibrin thrombi in the microvasculature, myocardial ischemia and necrosis, and focal interstitial hemorrhage. TM developed in parallel with increases in immunoglobulin (IgM and IgG) and complement (C3, C4d, and C5b-9) deposition, as well as with subsequent increases in both TUNEL(+) endothelial cell death and procoagulant activation (increased expression of both tissue factor and von Willebrand factor and decreased expression of CD39). CD3(+) T-cell infiltration occurred in all grafts and weakly correlated with the development of TM. In conclusion, although the use of GalT-KO swine donors prevented hyperacute rejection and prolonged graft survival, slowly progressive humoral rejection--probably associated with non-Gal antibodies to the xenograft--and disordered thromboregulation represent major immunological barriers to long-term xenograft survival.
Collapse
Affiliation(s)
- Akira Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
In vitro culturing of porcine tracheal mucosa as an ideal model for investigating the influence of drugs on human respiratory mucosa. Eur Arch Otorhinolaryngol 2008; 265:1075-81. [PMID: 18458926 PMCID: PMC2491430 DOI: 10.1007/s00405-008-0661-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 03/25/2008] [Indexed: 11/14/2022]
Abstract
It has been previously shown that fresh mucosa from different mammals could serve as raw material for in vitro culturing with the differentiation of cilia, which are the most important morphological structures for the function of the mucociliary system. Increasing legal restrictions on the removal of human tissue and changing surgical techniques have led to a lack of fresh human mucosa for culturing. Most of the animals that have been used as donors up to now are genetically not very close to human beings and must all be sacrificed for such studies. We, therefore, established a modified system of culturing mucosa cells from the trachea of pigs, which is available as a regular by-product after slaughtering. With respect to the possibility of developing “beating” cilia, it could be shown that the speed of cell proliferation until adhesion to the coated culture dishes, the formation of conjunctions of cell clusters and the proliferation of cilia were comparable for porcine and human mucosa. Moreover, it could be demonstrated that the porcine cilia beat frequency of 7.57 ± 1.39 Hz was comparable to the human mucosa cells beat frequency of 7.3 ± 1.4 Hz and that this beat frequency was absolutely constant over the investigation time of 360 min. In order to prove whether the reaction to different drugs is comparable between the porcine and human cilia, we initially tested benzalkonium chloride, which is known to be toxic for human cells, followed by naphazoline, which we found in previous studies on human mucosa to be non-toxic. The results clearly showed that the functional and morphological reactions of the porcine ciliated cells to these substances were similar to the reaction we found in the in vitro cultured human mucosa.
Collapse
|
41
|
Liu B, Cheng C, Wu Y, Wei J, Li G, Ma T. Transgenic mice designed to express human alpha-1,2-fucosyltransferase in combination of human DAF and CD59 to avoid xenograft rejection. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 51:199-204. [PMID: 18246307 DOI: 10.1007/s11427-008-0019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 11/29/2007] [Indexed: 11/24/2022]
Abstract
The expression of human alpha-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation. In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules. Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression significantly reduced expression of the major xenoepitope galactose-alpha-1,3-galactose (alpha-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their resistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover, the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolysis, avoided hyperacute rejection and reduced expression of adhesion molecules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.
Collapse
Affiliation(s)
- BingQian Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | | | | | | | | | | |
Collapse
|
42
|
Dieckhoff B, Petersen B, Kues WA, Kurth R, Niemann H, Denner J. Knockdown of porcine endogenous retrovirus (PERV) expression by PERV-specific shRNA in transgenic pigs. Xenotransplantation 2008; 15:36-45. [DOI: 10.1111/j.1399-3089.2008.00442.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Siepe M, Martin J, Sarai K, Ihling C, Sommer P, Beyersdorf F. Anatomical study on the surgical technique used for xenotransplantation: porcine hearts into humans. J Surg Res 2007; 143:211-5. [PMID: 17644115 DOI: 10.1016/j.jss.2006.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 01/09/2006] [Accepted: 01/10/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND The pig heart is an ideal graft for orthotopic cardiac xenotransplantation regarding its physiological attributes and ready availability. Although single clinical attempts have been performed since the 1960s, details concerning the surgical technique of pig-to-human transplantation have never been reported. The present investigation should verify which anatomical differences between humans and pigs require special care in cardiac xenotransplantation. MATERIAL AND METHODS We transplanted four pig hearts into human thoraces after autopsy. Implantation was performed using both the biatrial (modified Shumway) and bicaval techniques. The implanted hearts were not perfused. RESULTS The four-legged walk of the pig implies a more transverse heart position and therefore a different outflow-angle of the great vessels. Accordingly, the thin-walled pulmonary artery and the superior vena cava (in bicaval technique) tend to kink and narrow. A special feature of porcine anatomy is the left azygous vein that empties into the coronary sinus. It must be ligated before the implantation. CONCLUSIONS Keeping the porcine anatomical particularities in mind, technical problems in pig-to-human heart transplantation can be avoided. The anastomosis of the pulmonary artery requires special care. By using the biatrial technique surgeons can prevent imminent stenoses of the caval vein anastomoses.
Collapse
Affiliation(s)
- Matthias Siepe
- Clinic for Cardiovascular Surgery, University Hospital, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Tanaka H, Kobayashi E. Education and research using experimental pigs in a medical school. J Artif Organs 2006; 9:136-43. [PMID: 16998697 DOI: 10.1007/s10047-006-0343-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 06/07/2006] [Indexed: 01/20/2023]
Abstract
Medium-sized animals such as miniature pigs are considered to be important for education and training in medical schools to master the skills required in surgical treatment. Much still remains to be done to establish total management for animal experiments using pigs. Improvement of the effective utilization of pigs is also required from the economical and ethical points of view. We have been providing a support system at a facility for experimental animals in a medical school for 3 years, and herein we introduce our personal experiments as an instructional lecture. Before starting surgical training using live pigs, sufficient education concerning animal ethics and dry laboratory training was completed. Four kinds of miniature pigs have been used as experimental animals; porcine rearing pens have been improved and a postoperative care system has been implemented. Moreover, staff at the center offer a preoperative service of anesthesia for surgical education, training, and research. Chronic experiments have increased to represent 35% and 48% of experiments using pigs in 2003 and 2004, respectively. Experimental pigs have undergone secondary use after being killed to reduce the number of animals used in experiments. Sharing and reuse have allowed effective use of miniature pig tissues and cells for research, and have reduced the number of animals used. We recommend that researchers consider use of our total systems because they can improve the quality of medical education and research and facilitate effective use of tissues and cells by sharing and reuse among different departments.
Collapse
Affiliation(s)
- Hozumi Tanaka
- Center for Experimental Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotuke, Tochigi 329-0498, Japan
| | | |
Collapse
|
45
|
Miyagawa S, Fukuta D, Kitano E, Kobayashi C, Fumimoto Y, Shirasu A, Hattori H, Shirakura R, Fukuzawa M. Effect of tandem forms of DAF(CD55) on complement-mediated xenogeneic cell lysis. Xenotransplantation 2006; 13:433-9. [PMID: 16925667 DOI: 10.1111/j.1399-3089.2006.00331.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND It is difficult to produce a transgenic animal with high expression of decay-accelerating factor (CD55: DAF) or other molecules. The purpose of this study was to assess the effect of tandem forms of DAF on a xenogeneic cell membrane against human complement. METHODS cDNAs of the delta-Short Consensus Repeat (SCR) 1-DAF, the double-DAF, the triple-DAF, and the tetra-DAF with a FLAG-tag were established. Chinese hamster ovary (CHO) cell lines and a pig endothelial cell (PEC) line expressing these molecules were established. The amelioration of complement-mediated lysis by the transfectant molecules on these cells was examined. The CHO cell transfectants were also incubated with normal human serum, and the amount of C3 deposited was determined by FACS analysis. RESULTS Stable CHO cells and PEC transfectants, in which each molecule was clearly expressed, and Western blots showed that each band corresponded to the expected molecular weight. The extent of amelioration of complement-mediated lysis by these four molecules was then examined. A clear tendency was found, as follows: The higher the tandem number of DAF, the greater was the effect on cytotoxicity. Additional experiments focusing on triple-DAF and tetra-DAF did not indicate any significant difference in complement-mediated lysis. Consistent with the complement-regulatory ability, the inhibitory effect of the deposition of C3 fragments by these molecules was closely related to the degree of amelioration. CONCLUSION These data indicate that tandem DAF, especially a triple-DAF, is a very effective form for protecting against complement activation.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Division of Organ Transplantation, Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Omori T, Nishida T, Komoda H, Fumimoto Y, Ito T, Sawa Y, Gao C, Nakatsu S, Shirakura R, Miyagawa S. A study of the xenoantigenicity of neonatal porcine islet-like cell clusters (NPCC) and the efficiency of adenovirus-mediated DAF (CD55) expression. Xenotransplantation 2006; 13:455-64. [PMID: 16925670 DOI: 10.1111/j.1399-3089.2006.00335.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The pig pancreas is considered to be the most suitable source of islets for xenotransplantation in patients with type I diabetes. The objective of this study was to assess the antigenicity of neonatal porcine islet-like cell clusters (NPCC), including the Galalpha1-3Galbeta1-4GlcNAc-R (alpha-Gal) and Hanganutziu-Deicher (H-D) antigens, and the pathway involved in human complement activation. The efficiency of expression of human decay-accelerating factor (DAF: CD55) on NPCC by adenoviral transduction was also examined, and the functional capacity of DAF was also estimated. METHODS The deposition of human natural antibodies, immunoglobulin (Ig)G and IgM, and the expression of alpha-Gal and H-D antigens on NPCC were investigated by FACS analysis. The downregulation in the antigenicity to human natural antibodies, including the alpha-Gal and H-D antigens on NPCC by treatment with tunicamycin, PDMP and neuraminidase were also examined. In addition, complement-mediated islet lysis was examined using factor D-deficient and C1-deficient sera. An adenovirus encoding DAF under the control of the cytomegalovirus promoter, Ad.pCMV-DAF, was then constructed, and used for transducing NPCC. The amelioration of complement-dependent cytotoxicity of the NPCC by the transduced DAF was assessed as an in vitro hyperacute rejection model of a pig to human xenograft. RESULTS The NPCC clearly expressed the alpha-Gal epitope, and the human natural antibodies, IgG and IgM, and the anti-H-D antibody also reacted with the NPCC. Treatment of NPCC with tunicamycin led to a drastic reduction in the extent of deposition of IgG, indicating the importance of N-linked sugars on the islets, presumably related to alpha-Gal expression on N-linked sugars. Neuraminidase treatment indicated the presence of, not only the H-D antigen, but also other sialic acid antigens which reacted with the human natural antibody, especially IgG. The complement deposition of factor B on NPCC was clear, and the alternative pathway-mediated NPCC killing accounted for approximately 30% of that by the total complement pathway. On the other hand, approximately 90% of the NPCC could be transduced to express DAF by the adenovector, Ad.pCMV-DAF. The expressed DAF showed an approximately 50-62% suppression in complement-dependent NPCC lysis. CONCLUSION The origin of the antigenicity of NPCC is mainly N-linked sugars including alpha-Gal and sialic acid antigens, and NPCC expressed the transduced molecule in high efficiency by the adenovector.
Collapse
Affiliation(s)
- Takeshi Omori
- Division of Organ Transplantation, Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Díaz-Román TM, Mañez R, López-Pelaez E, Centeno A, Moscoso I, Pértegaz S, Doménech N. Human DAF on pig cells protects against human and non-human primate sera cytotoxicity mediated by exogenous or endogenous complement, as determined by flow cytometry. Transpl Immunol 2006; 16:125-30. [PMID: 16860716 DOI: 10.1016/j.trim.2006.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 03/09/2006] [Indexed: 11/16/2022]
Abstract
Expression of human complement regulatory proteins (CRP) in pig cells through transgenesis was proposed to prevent complement activation and the ensuing rejection of pig tissues and organs following pig-to-primate transplantation. Transplantation in non-human primates of organs from transgenic pigs for human decay accelerating factor (hDAF) did not undergo hyperacute rejection, but hDAF could not prevent humoral xenograft rejection (AHXR). A possible explanation for the lack of efficacy of the expression of human complement regulatory proteins in pig cells to prevent AHXR may be interspecies differences between human and non-human complement regulatory system. We assayed the efficacy of transgenic hDAF expressed on porcine cells to inhibit the in vitro complement activity of primate sera. The individual cytotoxicity of sera from seven untreated baboons and of pools of normal human and baboon sera was assayed with endogenous and exogenous complement using a flow-cytometry complement-mediated cytotoxicity assay (FCCA) against peripheral blood lymphocytes (PBL) from hDAF and non-transgenic pigs. We also analyzed the anti-Galalpha1-3Gal (alphaGal) antibody titre of the baboon sera by ELISA and the expression of hDAF on the PBL surface by immunofluorescence. Transgenic hDAF expression was capable of protecting pig cells against injury produced by both baboon and human serum. Cellular expression of hDAF reduced cytotoxicity mediated by endogenous and exogenous complement, although the former was slightly higher. Humoral cytotoxicity was not related to a particular antibody but was inversely related to hDAF expression. The presence of hDAF protected pig cells against lysis by NHS more effectively than against NBS. These results confirm in vitro the protective role of hDAF in pig cells to heterologous complement mediated damage, but they also suggest that the extent of hDAF protection decreases, however, if cells express low levels of hDAF.
Collapse
Affiliation(s)
- Tomás M Díaz-Román
- Unidad de Investigación, C.H.U Juan Canalejo, Xubias de Arriba, 84, 15006, La Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Miyagawa S, Nakatsu S, Hazama K, Nakagawa T, Kondo A, Matsunami K, Yamamoto A, Yamada J, Miyazawa T, Shirakura R. A novel strategy for preventing PERV transmission to human cells by remodeling the viral envelope glycoprotein. Xenotransplantation 2006; 13:258-63. [PMID: 16756569 DOI: 10.1111/j.1399-3089.2006.00313.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Porcine endogenous retrovirus (PERV) released from pig cells is a main problem associated with clinical xenotransplantation. In a previous study, we demonstrated that the high mannose type of N-glycan of the envelope glycoprotein is closely related to PERV infectivity with respect to human cells. In this study, we addressed the effects of reducing the high mannose type of N-glycan on PERV infectivity. METHODS Pig endothelial cells (PEC) were transduced with the LacZ gene by a pseudotype infection to produce PEC(Z). The PEC(Z)s were then further infected with PERV subtype B (PERV-B) to produce PEC(Z)/PB. The PEC(Z)/PBs were next transfected with the alpha 1,2 mannosidase Ib (Man Ib), N-acetylglucosaminyltransferase I (GnT-I) or alpha-mannosidase II (Man II) gene in order to reduce the levels of high mannose type of N-glycan. HEK293 cells were inoculated with the PERV in each of the culture supernatants. The inoculated cells were histochemically stained and the LacZ-positive cells were counted. RESULTS In experiment I, PERV transmission from the PEC(Z)/PB with GnT-I or Man II to HEK 293 cells was significantly reduced in comparison with control PEC(Z)/PB, while the PEC(Z)/PB with Man Ib was not. However, in experiment II, PERV transmission from the PEC(Z)/PB with ManIb to HEK 293 cells was also significantly reduced in comparison with control PEC(Z)/PB. CONCLUSION The transfection of these genes to pig cells is effective in reducing the susceptibility of human cells to PERV infection. The results suggest that this represents a potentially useful strategy for further decreasing the likelihood of PERV infections.
Collapse
Affiliation(s)
- Shuji Miyagawa
- Division of Organ Transplantation, Department of Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kawahigashi H, Hirose S, Ozawa K, Ido Y, Kojima M, Ohkawa H, Ohkawa Y. Analysis of substrate specificity of pig CYP2B22 and CYP2C49 towards herbicides by transgenic rice plants. Transgenic Res 2006; 14:907-17. [PMID: 16315095 DOI: 10.1007/s11248-005-0199-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 06/26/2005] [Indexed: 01/08/2023]
Abstract
We introduced two novel types of pig (Sus scrofa) cytochrome P450, CYP2B22 and CYP2C49, into rice plants (Oryza sativa L. cv. 'Nipponbare') to produce herbicide-tolerant plants and to confirm the metabolic activities of the cytochrome P450 species. In germination tests, both types of transgenic plants showed tolerance to various herbicides with different modes of action. CYP2B22 rice plants showed tolerance towards 12 herbicides including chlortoluron (100 microM), amiprofos-methyl (2.5 microM), pendimethalin (10 microM), metolachlor (2.5 microM), and esprocarb (20 microM). CYP2C49 rice plants showed tolerance towards 13 herbicides, including chlortoluron (100 microM), norflurazon (0.5 microM), amiprofos-methyl (2.5 microM), alachlor (0.8 microM), and isoxaben (1 microM). The herbicide tolerance was considered to reflect the substrate specificity of the introduced P450 species. We used (14)C-labeled metolachlor and norflurazon to confirm the P450 activity in the transgenic rice plants. The herbicides were metabolized more quickly in the transgenic rice plants than in the nontransgenic rice plants. Therefore, CYP2B22 and CYP2C49 rice plants became more tolerant to various herbicides than nontransgenic control plants because of accelerated metabolism of the herbicides by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, these transgenic rice plants may become useful tools for the breeding of herbicide-tolerant crops.
Collapse
Affiliation(s)
- Hiroyuki Kawahigashi
- Plant Biotechnology Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Thoma G, Streiff MB, Katopodis AG, Duthaler RO, Voelcker NH, Ehrhardt C, Masson C. Non-Covalent Polyvalent Ligands by Self-Assembly of Small Glycodendrimers: A Novel Concept for the Inhibition of Polyvalent Carbohydrate-Protein Interactions In Vitro and In Vivo. Chemistry 2006; 12:99-117. [PMID: 16231293 DOI: 10.1002/chem.200500901] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polyvalent carbohydrate-protein interactions occur frequently in biology, particularly in recognition events on cellular membranes. Collectively, they can be much stronger than corresponding monovalent interactions, rendering it difficult to control them with individual small molecules. Artificial macromolecules have been used as polyvalent ligands to inhibit polyvalent processes; however, both reproducible synthesis and appropriate characterization of such complex entities is demanding. Herein, we present an alternative concept avoiding conventional macromolecules. Small glycodendrimers which fulfill single molecule entity criteria self-assemble to form non-covalent nanoparticles. These particles-not the individual molecules-function as polyvalent ligands, efficiently inhibiting polyvalent processes both in vitro and in vivo. The synthesis and characterization of these glycodendrimers is described in detail. Furthermore, we report on the characterization of the non-covalent nanoparticles formed and on their biological evaluation.
Collapse
Affiliation(s)
- Gebhard Thoma
- Novartis Institutes for BioMedical Research, Lichtstrasse 35, 4056 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|