1
|
Xu X, Yang T, An J, Li B, Dou Z. Liver injury in sepsis: manifestations, mechanisms and emerging therapeutic strategies. Front Immunol 2025; 16:1575554. [PMID: 40226624 PMCID: PMC11985447 DOI: 10.3389/fimmu.2025.1575554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Sepsis is defined as a condition related to infection that manifests with multiorgan dysfunction, representing a life-threatening state. Consequently, severe complications frequently occur, with liver injury being one of the most prevalent serious complications of sepsis. Liver dysfunction during sepsis serves as an independent predictor of mortality. This review provides a comprehensive overview of current research on sepsis-induced liver injury (SILI), encompassing the clinical manifestations, diagnostic criteria, pathogenesis and therapeutic strategies associated with this condition. SILI may manifest as hypoxic hepatitis due to ischemia and shock, cholestasis resulting from abnormal bile metabolism, or bile duct sclerosis. The pathophysiology of sepsis involves intricate interactions among the inflammatory response, oxidative stress, and cell death. All of these factors complicate treatment and represent potential targets for therapeutic intervention. Furthermore, this review addresses the limitations inherent in conventional therapies currently employed for managing SILI and emphasizes the potential of novel targeted strategies aimed at addressing the fundamental mechanisms underlying this condition.
Collapse
Affiliation(s)
- Xinqi Xu
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Tingyu Yang
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jiapan An
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Bin Li
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhimin Dou
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Mehdi SF, Qureshi MH, Pervaiz S, Kumari K, Saji E, Shah M, Abdullah A, Zahoor K, Qadeer HA, Katari DK, Metz C, Mishra L, LeRoith D, Tracey K, Brownstein MJ, Roth J. Endocrine and metabolic alterations in response to systemic inflammation and sepsis: a review article. Mol Med 2025; 31:16. [PMID: 39838305 PMCID: PMC11752782 DOI: 10.1186/s10020-025-01074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025] Open
Abstract
Severe sepsis is cognate with life threatening multi-organ dysfunction. There is a disturbance in endocrine functions with alterations in several hormonal pathways. It has frequently been linked with dysfunction in the hypothalamic pituitary-adrenal axis (HPA). Increased cortisol or cortisolemia is evident throughout the acute phase, along with changes in the hypothalamic pituitary thyroid (HPT) axis, growth hormone-IGF-1 axis, insulin-glucose axis, leptin, catecholamines, renin angiotensin aldosterone axis, ghrelin, glucagon, hypothalamic pituitary gonadal (HGA) axis, and fibroblast growth factor-21. These changes and metabolic alterations constitute the overall response to infection in sepsis. Further research is essential to look into the hormonal changes that occur during sepsis, not only to understand their potential relevance in therapy but also because they may serve as prognostic indicators.
Collapse
Affiliation(s)
- Syed Faizan Mehdi
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Salman Pervaiz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Karishma Kumari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Edwin Saji
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Mahnoor Shah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Ahmad Abdullah
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Kamran Zahoor
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Hafiza Amna Qadeer
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Disha Kumari Katari
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Christine Metz
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Lopa Mishra
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes & Bone Disease, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Kevin Tracey
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA
| | | | - Jesse Roth
- The Feinstein Institutes for Medical Research/Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
3
|
Lee H, Kim MJ, Lee IK, Hong CW, Jeon JH. Impact of hyperglycemia on immune cell function: a comprehensive review. Diabetol Int 2024; 15:745-760. [PMID: 39469566 PMCID: PMC11512986 DOI: 10.1007/s13340-024-00741-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 10/30/2024]
Abstract
Hyperglycemia, a hallmark of diabetes and various metabolic disorders, has profound implications for immune cell function. The relationship between elevated blood glucose levels and immune cell function is a topic of significant medical interest. In this review, we aim to comprehensively review effects of hyperglycemia on various immune cell types and its clinical implications, particularly T cells, macrophages, natural killer cells, and neutrophils. It aims to consolidate current knowledge on the subject, with a focus on both type 1 and type 2 diabetes, as well as other pathological states where hyperglycemia is a concern. A comprehensive examination of recent studies and clinical data was conducted to assess effects of hyperglycemia on immune cell function. Evidence indicates that hyperglycemia can significantly alter immune cell function, with different diabetic conditions showing varied responses. Roles of key metabolic hormones in regulating T cell function highlight potential therapeutic targets for restoring immune balance. In addition, reprogramming of innate immune cells such as macrophages and natural killer cells under hyperglycemic conditions suggests a complex metabolic-immunological interface. This review will contribute to a better understanding of the link between diabetes, other metabolic disorders, and immune function. By examining recent research and clinical findings, this review will enhance our comprehension of the mechanisms at play and guide future medical strategies for managing and treating conditions associated with hyperglycemia.
Collapse
Affiliation(s)
- Hoyul Lee
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-Ro, Buk-Gu, Daegu, 41404 Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chang-Won Hong
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807 Hoguk-Ro, Buk-Gu, Daegu, 41404 Republic of Korea
| |
Collapse
|
4
|
Yuan X, Zhang Y, Wang S, Du Z. Protective effects of insulin on dry eye syndrome via TLR4/NF-κB pathway: based on network pharmacology and in vitro experiments validation. Front Pharmacol 2024; 15:1449985. [PMID: 39263577 PMCID: PMC11387165 DOI: 10.3389/fphar.2024.1449985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/14/2024] [Indexed: 09/13/2024] Open
Abstract
Dry eye syndrome (DES) is a multifactorial ocular surface disease and represents one of the most prevalent ophthalmic disorders. Insulin is an important metabolism-regulating hormone and a potential antioxidant with critical biological roles as anti-inflammatory and anti-apoptotic. However, its mechanism of action remains unknown. In this study, we used network pharmacology techniques and conducted cell experiments to investigate the protective effect of insulin on human corneal epithelial cells (HCECs). Eighty-seven common targets of insulin and DES were identified from the database. KEGG pathway enrichment analysis suggested that insulin may be crucial in regulating the toll-like receptor (TLR) signaling pathway by targeting key targets such as IL-6 and TNF. In cell experiments, insulin promoted HCECs proliferation, improved their ability to migrate, and inhibited apoptosis. Western blot and enzyme-linked immunosorbent assay (ELISA) also confirmed the upregulation of the expression of inflammatory factors such as IL-1β, IL-6, and proteins related to the TLR4/NF-κB signaling pathway. However, the expression of these proteins was inhibited by insulin administration. Our results preliminarily verified insulin may exert a protective role on HCECs under hyperosmotic condition, which offered a novel perspective for the clinical management of this condition.
Collapse
Affiliation(s)
- Xiuxiu Yuan
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of ophthalmology, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhang
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siyi Wang
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyu Du
- Ophthalmology Department, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Cham ED, Peng TI, Jou MJ. Pathological Role of High Sugar in Mitochondrial Respiratory Chain Defect-Augmented Mitochondrial Stress. BIOLOGY 2024; 13:639. [PMID: 39194577 DOI: 10.3390/biology13080639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
According to many research groups, high glucose induces the overproduction of superoxide anions, with reactive oxygen species (ROS) generally being considered the link between high glucose levels and the toxicity seen at cellular levels. Respiratory complex anomalies can lead to the production of ROS. Calcium [Ca2+] at physiological levels serves as a second messenger in many physiological functions. Accordingly, mitochondrial calcium [Ca2+]m overload leads to ROS production, which can be lethal to the mitochondria through various mechanisms. F1F0-ATPase (ATP synthase or complex V) is the enzyme responsible for catalyzing the final step of oxidative phosphorylation. This is achieved by F1F0-ATPase coupling the translocation of protons in the mitochondrial intermembrane space and shuttling them to the mitochondrial matrix for ATP synthesis to take place. Mitochondrial complex V T8993G mutation specifically blocks the translocation of protons across the intermembrane space, thereby blocking ATP synthesis and, in turn, leading to Neuropathy, Ataxia, and Retinitis Pigmentosa (NARP) syndrome. This study seeks to explore the possibility of [Ca2+]m overload mediating the pathological roles of high glucose in defective respiratory chain-mediated mitochondrial stress. NARP cybrids are the in vitro experimental models of cells with F1FO-ATPase defects, with these cells harboring 98% of mtDNA T8993G mutations. Their counterparts, 143B osteosarcoma cell lines, are the parental cell lines used for comparison. We observed that NARP cells mediated and enhanced the death of cells (apoptosis) when incubated with hydrogen peroxide (H2O2) and high glucose, as depicted using the MTT assay of cell viability. Furthermore, using fluorescence probe-coupled laser scanning confocal imaging microscopy, NARP cells were found to significantly enable mitochondrial reactive oxygen species (mROS) formation and enhance the depolarization of the mitochondrial membrane potential (ΔΨm). Elucidating the mechanisms of sugar-enhanced toxicity on the mitochondria may, in the future, help to alleviate the symptoms of patients with NARP syndromes and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ebrima D Cham
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan 333, Taiwan
| | - Tsung-I Peng
- Department of Neurology, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Mei-Jie Jou
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wenhua 1st Road, Kweishan, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
6
|
Rudokas MW, McKay M, Toksoy Z, Eisen JN, Bögner M, Young LH, Akar FG. Mitochondrial network remodeling of the diabetic heart: implications to ischemia related cardiac dysfunction. Cardiovasc Diabetol 2024; 23:261. [PMID: 39026280 PMCID: PMC11264840 DOI: 10.1186/s12933-024-02357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Mitochondria play a central role in cellular energy metabolism, and their dysfunction is increasingly recognized as a critical factor in the pathogenesis of diabetes-related cardiac pathophysiology, including vulnerability to ischemic events that culminate in myocardial infarction on the one hand and ventricular arrhythmias on the other. In diabetes, hyperglycemia and altered metabolic substrates lead to excessive production of reactive oxygen species (ROS) by mitochondria, initiating a cascade of oxidative stress that damages mitochondrial DNA, proteins, and lipids. This mitochondrial injury compromises the efficiency of oxidative phosphorylation, leading to impaired ATP production. The resulting energy deficit and oxidative damage contribute to functional abnormalities in cardiac cells, placing the heart at an increased risk of electromechanical dysfunction and irreversible cell death in response to ischemic insults. While cardiac mitochondria are often considered to be relatively autonomous entities in their capacity to produce energy and ROS, their highly dynamic nature within an elaborate network of closely-coupled organelles that occupies 30-40% of the cardiomyocyte volume is fundamental to their ability to exert intricate regulation over global cardiac function. In this article, we review evidence linking the dynamic properties of the mitochondrial network to overall cardiac function and its response to injury. We then highlight select studies linking mitochondrial ultrastructural alterations driven by changes in mitochondrial fission, fusion and mitophagy in promoting cardiac ischemic injury to the diabetic heart.
Collapse
Affiliation(s)
- Michael W Rudokas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Margaret McKay
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University Schools of Engineering and Applied Sciences, New Haven, CT, USA
| | - Zeren Toksoy
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Julia N Eisen
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Markus Bögner
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Lawrence H Young
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Fadi G Akar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University Schools of Engineering and Applied Sciences, New Haven, CT, USA.
- Department of Biomedical Engineering, Electro-biology and Arrhythmia Therapeutics Laboratory, Yale University Schools of Medicine, Engineering and Applied Sciences, 300 George Street, 793 - 748C, New Haven, CT, 06511, USA.
| |
Collapse
|
7
|
Van den Berghe G, Vanhorebeek I, Langouche L, Gunst J. Our Scientific Journey through the Ups and Downs of Blood Glucose Control in the ICU. Am J Respir Crit Care Med 2024; 209:497-506. [PMID: 37991900 DOI: 10.1164/rccm.202309-1696so] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023] Open
Abstract
This article tells the story of our long search for the answer to one question: Is stress hyperglycemia in critically ill patients adaptive or maladaptive? Our earlier work had suggested the lack of hepatic insulin effect and hyperglycemia as jointly predicting poor outcome. Therefore, we hypothesized that insulin infusion to reach normoglycemia, tight glucose control, improves outcome. In three randomized controlled trials (RCTs), we found morbidity and mortality benefit with tight glucose control. Moving from the bed to the bench, we attributed benefits to the prevention of glucose toxicity in cells taking up glucose in an insulin-independent, glucose concentration gradient-dependent manner, counteracted rather than synergized by insulin. Several subsequent RCTs did not confirm benefit, and the large Normoglycemia in Intensive Care Evaluation-Survival Using Glucose Algorithm Regulation, or "NICE-SUGAR," trial found increased mortality with tight glucose control associated with severe hypoglycemia. Our subsequent clinical and mechanistic research revealed that early use of parenteral nutrition, the context of our initial RCTs, had been a confounder. Early parenteral nutrition (early-PN) aggravated hyperglycemia, suppressed vital cell damage removal, and hampered recovery. Therefore, in our next and largest "TGC-fast" RCT, we retested our hypothesis, without the use of early-PN and with a computer algorithm for tight glucose control that avoided severe hypoglycemia. In this trial, tight glucose control prevented kidney and liver damage, though with much smaller effect sizes than in our initial RCTs without affecting mortality. Our quest ends with the strong recommendation to omit early-PN for patients in the ICU, as this reduces need of blood glucose control and allows cellular housekeeping systems to play evolutionary selected roles in the recovery process. Once again, less is more in critical care.
Collapse
Affiliation(s)
- Greet Van den Berghe
- Clinical Division of Intensive Care Medicine, UZ Leuven, Leuven, Belgium; and
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ilse Vanhorebeek
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lies Langouche
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jan Gunst
- Clinical Division of Intensive Care Medicine, UZ Leuven, Leuven, Belgium; and
- Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Lei M, Feng T, Zhang M, Chang F, Liu J, Sun B, Chen M, Li Y, Zhang L, Tang P, Yin P. CHRONIC CRITICAL ILLNESS-INDUCED MUSCLE ATROPHY: INSIGHTS FROM A TRAUMA MOUSE MODEL AND POTENTIAL MECHANISM MEDIATED VIA SERUM AMYLOID A. Shock 2024; 61:465-476. [PMID: 38517246 DOI: 10.1097/shk.0000000000002322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Background: Chronic critical illness (CCI), which was characterized by persistent inflammation, immunosuppression, and catabolism syndrome (PICS), often leads to muscle atrophy. Serum amyloid A (SAA), a protein upregulated in critical illness myopathy, may play a crucial role in these processes. However, the effects of SAA on muscle atrophy in PICS require further investigation. This study aims to develop a mouse model of PICS combined with bone trauma to investigate the mechanisms underlying muscle weakness, with a focus on SAA. Methods: Mice were used to examine the effects of PICS after bone trauma on immune response, muscle atrophy, and bone healing. The mice were divided into two groups: a bone trauma group and a bone trauma with cecal ligation and puncture group. Tibia fracture surgery was performed on all mice, and PICS was induced through cecal ligation and puncture surgery in the PICS group. Various assessments were conducted, including weight change analysis, cytokine analysis, hematological analysis, grip strength analysis, histochemical staining, and immunofluorescence staining for SAA. In vitro experiments using C2C12 cells (myoblasts) were also conducted to investigate the role of SAA in muscle atrophy. The effects of inhibiting receptor for advanced glycation endproducts (RAGE) or JAK2 on SAA-induced muscle atrophy were examined. Bioinformatic analysis was conducted using a dataset from the GEO database to identify differentially expressed genes and construct a coexpression network. Results: Bioinformatic analysis confirmed that SAA was significantly upregulated in muscle tissue of patients with intensive care unit-induced muscle atrophy. The PICS animal models exhibited significant weight loss, spleen enlargement, elevated levels of proinflammatory cytokines, and altered hematological profiles. Evaluation of muscle atrophy in the animal models demonstrated decreased muscle mass, grip strength loss, decreased diameter of muscle fibers, and significantly increased expression of SAA. In vitro experiment demonstrated that SAA decreased myotube formation, reduced myotube diameter, and increased the expression of muscle atrophy-related genes. Furthermore, SAA expression was associated with activation of the FOXO signaling pathway, and inhibition of RAGE or JAK2/STAT3-FOXO signaling partially reversed SAA-induced muscle atrophy. Conclusions: This study successfully develops a mouse model that mimics PICS in CCI patients with bone trauma. Serum amyloid A plays a crucial role in muscle atrophy through the JAK2/STAT3-FOXO signaling pathway, and targeting RAGE or JAK2 may hold therapeutic potential in mitigating SAA-induced muscle atrophy.
Collapse
|
9
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
10
|
Schicht M, Farger J, Wedel S, Sisignano M, Scholich K, Geisslinger G, Perumal N, Grus FH, Singh S, Sahin A, Paulsen F, Lütjen-Drecoll E. Ocular surface changes in mice with streptozotocin-induced diabetes and diabetic polyneuropathy. Ocul Surf 2024; 31:43-55. [PMID: 38141818 DOI: 10.1016/j.jtos.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Diabetes mellitus (DM) is a leading risk factor for corneal neuropathy and dry eye disease (DED). Another common consequence of DM is diabetic peripheral polyneuropathy (DPN). Both complications affect around 50 % of the DM patients but the relationship between DM, DED and DPN remains unclear. METHODS In this study, we examined mice with early onset of DM and PN after streptozotocin (STZ)-induced diabetes (DPN). We compared the early morphological changes of the sciatic nerve, dorsal root and trigeminal ganglia with the changes in the ocular surface, including tear proteomic and we also investigated respective changes in the gene expressions and morphological alterations in the eye tissues involved in tear production. RESULTS The lacrimal gland, conjunctival goblet cells and cornea showed morphological changes along with alterations in tear proteins without any obvious signs of ocular surface inflammation. The gene expression for respectively altered tear proteins i.e., of Clusterin in cornea, Car6, Adh3a1, and Eef1a1 in eyelids, and Pigr in the lacrimal gland also showed significant changes compared to control mice. In the trigeminal ganglia like in the dorsal root ganglia neuronal cells showed swollen mitochondria and, in the latter, there was a significant increase of NADPH oxidases and MMP9 suggestive of oxidative and neuronal stress. In the dorsal root ganglia and the sciatic nerve, there was an upregulation of a number of pro-inflammatory cytokines and pain-mediating chemokines. CONCLUSION The early ocular changes in DM Mice only affect the lacrimal gland. Which, is reflected in the tear film composition of DPN mice. Due to the high protein concentration in tear fluid in humans, proteomic analysis in addition to noninvasive investigation of goblet cells and cornea can serve as a tools for the early diagnosis of DPN, DED in clinical practice. Early treatment could delay or even prevent the ocular complications of DM such as DED and PN.
Collapse
Affiliation(s)
- Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jessica Farger
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Lütjen-Drecoll
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
11
|
Ye J, Li Y, Wang X, Yu M, Liu X, Zhang H, Meng Q, Majeed U, Jian L, Song W, Xue W, Luo Y, Yue T. Positive interactions among Corynebacterium glutamicum and keystone bacteria producing SCFAs benefited T2D mice to rebuild gut eubiosis. Food Res Int 2023; 172:113163. [PMID: 37689914 DOI: 10.1016/j.foodres.2023.113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 09/11/2023]
Abstract
Accumulating evidences strongly support the correlations between the compositions of gut microbiome and therapeutic effects on Type 2 diabetes (T2D). Notably, gut microbes such as Akkermansia muciniphila are found able to regulate microecological balance and alleviate dysmetabolism of mice bearing T2D. In order to search out similarly functional bacteria, bacteriophage MS2 with a good specificity to bacteria carrying fertility (F) factor were used to treat T2D mice. Based on multi-omics analysis of microbiome and global metabolism of mice, we observed that gavage of bacteriophage MS2 and metformin led to a significant increase in the abundance of Corynebacterium glutamicum and A. muciniphila, respectively. Consequently, the gut microbiota were remodeled, leading to variations in metabolites and a substantial increase in short-chain fatty acids (SCFAs). In which, the amount of acetate, propionate, and butyrate presented negative correlations to that of proinflammatory cytokines, which was beneficial to repairing the intestinal barriers and improving their functions. Moreover, main short fatty acid (SCFA) producers exhibited positive interactions, further facilitating the restoration of gut eubiosis. These findings revealed that C. glutamicum and its metabolites may be potential dietary supplements for the treatment of T2D. Moreover, our research contributes to a novel understanding of the underlying mechanism by which functional foods exert their anti-diabetic effects.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yihua Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xuehua Liu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huaxin Zhang
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Qiang Meng
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lijuan Jian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China
| | - Weiming Xue
- College of Chemical Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Shaanxi Xi'an 710069, China; Research Center of Food Safety Risk Assessment and Control, Shaanxi, Xi'an 710069, China.
| |
Collapse
|
12
|
Gunst J, Debaveye Y, Güiza F, Dubois J, De Bruyn A, Dauwe D, De Troy E, Casaer MP, De Vlieger G, Haghedooren R, Jacobs B, Meyfroidt G, Ingels C, Muller J, Vlasselaers D, Desmet L, Mebis L, Wouters PJ, Stessel B, Geebelen L, Vandenbrande J, Brands M, Gruyters I, Geerts E, De Pauw I, Vermassen J, Peperstraete H, Hoste E, De Waele JJ, Herck I, Depuydt P, Wilmer A, Hermans G, Benoit DD, Van den Berghe G. Tight Blood-Glucose Control without Early Parenteral Nutrition in the ICU. N Engl J Med 2023; 389:1180-1190. [PMID: 37754283 DOI: 10.1056/nejmoa2304855] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
BACKGROUND Randomized, controlled trials have shown both benefit and harm from tight blood-glucose control in patients in the intensive care unit (ICU). Variation in the use of early parenteral nutrition and in insulin-induced severe hypoglycemia might explain this inconsistency. METHODS We randomly assigned patients, on ICU admission, to liberal glucose control (insulin initiated only when the blood-glucose level was >215 mg per deciliter [>11.9 mmol per liter]) or to tight glucose control (blood-glucose level targeted with the use of the LOGIC-Insulin algorithm at 80 to 110 mg per deciliter [4.4 to 6.1 mmol per liter]); parenteral nutrition was withheld in both groups for 1 week. Protocol adherence was determined according to glucose metrics. The primary outcome was the length of time that ICU care was needed, calculated on the basis of time to discharge alive from the ICU, with death accounted for as a competing risk; 90-day mortality was the safety outcome. RESULTS Of 9230 patients who underwent randomization, 4622 were assigned to liberal glucose control and 4608 to tight glucose control. The median morning blood-glucose level was 140 mg per deciliter (interquartile range, 122 to 161) with liberal glucose control and 107 mg per deciliter (interquartile range, 98 to 117) with tight glucose control. Severe hypoglycemia occurred in 31 patients (0.7%) in the liberal-control group and 47 patients (1.0%) in the tight-control group. The length of time that ICU care was needed was similar in the two groups (hazard ratio for earlier discharge alive with tight glucose control, 1.00; 95% confidence interval, 0.96 to 1.04; P = 0.94). Mortality at 90 days was also similar (10.1% with liberal glucose control and 10.5% with tight glucose control, P = 0.51). Analyses of eight prespecified secondary outcomes suggested that the incidence of new infections, the duration of respiratory and hemodynamic support, the time to discharge alive from the hospital, and mortality in the ICU and hospital were similar in the two groups, whereas severe acute kidney injury and cholestatic liver dysfunction appeared less prevalent with tight glucose control. CONCLUSIONS In critically ill patients who were not receiving early parenteral nutrition, tight glucose control did not affect the length of time that ICU care was needed or mortality. (Funded by the Research Foundation-Flanders and others; TGC-Fast ClinicalTrials.gov number, NCT03665207.).
Collapse
Affiliation(s)
- Jan Gunst
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Yves Debaveye
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Fabian Güiza
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Jasperina Dubois
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Astrid De Bruyn
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Dieter Dauwe
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Erwin De Troy
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Michael P Casaer
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Greet De Vlieger
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Renata Haghedooren
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Bart Jacobs
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Geert Meyfroidt
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Catherine Ingels
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Jan Muller
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Dirk Vlasselaers
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Lars Desmet
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Liese Mebis
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Pieter J Wouters
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Björn Stessel
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Laurien Geebelen
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Jeroen Vandenbrande
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Michiel Brands
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Ine Gruyters
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Ester Geerts
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Ilse De Pauw
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Joris Vermassen
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Harlinde Peperstraete
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Eric Hoste
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Jan J De Waele
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Ingrid Herck
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Pieter Depuydt
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Alexander Wilmer
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Greet Hermans
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Dominique D Benoit
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| | - Greet Van den Berghe
- From the Clinical Department of Intensive Care Medicine (J.G., Y.D., F.G., A.D.B., D.D., E.D.T., M.P.C., G.D.V., R.H., B.J., G.M., C.I., J.M., D.V., L.D., L.M., P.J.W., G.V.B.) and the Medical Intensive Care Unit (A.W., G.H.), University Hospitals of KU Leuven, Leuven, the Department of Anesthesiology and Intensive Care Medicine, Jessa Hospital, Hasselt (J.D., B.S., L.G., J. Vandenbrande, M.B., I.G., E.G., I.D.P.), and the Department of Intensive Care Medicine, Ghent University Hospital, Ghent (J. Vermassen, H.P., E.H., J.J.D.W., I.H., P.D., D.D.B.) - all in Belgium
| |
Collapse
|
13
|
Vankrunkelsven W, Thiessen S, Derde S, Vervoort E, Derese I, Pintelon I, Matheussen H, Jans A, Goossens C, Langouche L, Van den Berghe G, Vanhorebeek I. Development of muscle weakness in a mouse model of critical illness: does fibroblast growth factor 21 play a role? Skelet Muscle 2023; 13:12. [PMID: 37537627 PMCID: PMC10401744 DOI: 10.1186/s13395-023-00320-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/09/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive responses to tissue injury and repair in various chronic pathological conditions. Animal studies have suggested that the critical illness-induced rise in FGF21 may to a certain extent protect against acute lung, liver, kidney and brain injury. However, FGF21 has also been shown to mediate fasting-induced loss of muscle mass and force. Such loss of muscle mass and force is a frequent problem of critically ill patients, associated with adverse outcome. In the present study, we therefore investigated whether the critical illness-induced acute rise in FGF21 is muscle-protective or rather contributes to the pathophysiology of critical illness-induced muscle weakness. METHODS In a catheterised mouse model of critical illness induced by surgery and sepsis, we first assessed the effects of genetic FGF21 inactivation, and hence the inability to acutely increase FGF21, on survival, body weight, muscle wasting and weakness, and markers of muscle cellular stress and dysfunction in acute (30 h) and prolonged (5 days) critical illness. Secondly, we assessed whether any effects were mirrored by supplementing an FGF21 analogue (LY2405319) in prolonged critical illness. RESULTS FGF21 was not required for survival of sepsis. Genetic FGF21 inactivation aggravated the critical illness-induced body weight loss (p = 0.0003), loss of muscle force (p = 0.03) and shift to smaller myofibers. This was accompanied by a more pronounced rise in markers of endoplasmic reticulum stress in muscle, without effects on impairments in mitochondrial respiratory chain enzyme activities or autophagy activation. Supplementing critically ill mice with LY2405319 did not affect survival, muscle force or weight, or markers of muscle cellular stress/dysfunction. CONCLUSIONS Endogenous FGF21 is not required for sepsis survival, but may partially protect muscle force and may reduce cellular stress in muscle. Exogenous FGF21 supplementation failed to improve muscle force or cellular stress, not supporting the clinical applicability of FGF21 supplementation to protect against muscle weakness during critical illness.
Collapse
Affiliation(s)
- Wouter Vankrunkelsven
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Steven Thiessen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Ellen Vervoort
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Hanne Matheussen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Alexander Jans
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chloë Goossens
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|
14
|
Melis MJ, Miller M, Peters VBM, Singer M. The role of hormones in sepsis: an integrated overview with a focus on mitochondrial and immune cell dysfunction. Clin Sci (Lond) 2023; 137:707-725. [PMID: 37144447 PMCID: PMC10167421 DOI: 10.1042/cs20220709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Sepsis is a dysregulated host response to infection that results in life-threatening organ dysfunction. Virtually every body system can be affected by this syndrome to greater or lesser extents. Gene transcription and downstream pathways are either up- or downregulated, albeit with considerable fluctuation over the course of the patient's illness. This multi-system complexity contributes to a pathophysiology that remains to be fully elucidated. Consequentially, little progress has been made to date in developing new outcome-improving therapeutics. Endocrine alterations are well characterised in sepsis with variations in circulating blood levels and/or receptor resistance. However, little attention has been paid to an integrated view of how these hormonal changes impact upon the development of organ dysfunction and recovery. Here, we present a narrative review describing the impact of the altered endocrine system on mitochondrial dysfunction and immune suppression, two interlinked and key aspects of sepsis pathophysiology.
Collapse
Affiliation(s)
- Miranda J Melis
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Muska Miller
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Vera B M Peters
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
15
|
Van Huynh T, Rethi L, Rethi L, Chen CH, Chen YJ, Kao YH. The Complex Interplay between Imbalanced Mitochondrial Dynamics and Metabolic Disorders in Type 2 Diabetes. Cells 2023; 12:1223. [PMID: 37174622 PMCID: PMC10177489 DOI: 10.3390/cells12091223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/15/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global burden, with an increasing number of people affected and increasing treatment costs. The advances in research and guidelines improve the management of blood glucose and related diseases, but T2DM and its complications are still a big challenge in clinical practice. T2DM is a metabolic disorder in which insulin signaling is impaired from reaching its effectors. Mitochondria are the "powerhouses" that not only generate the energy as adenosine triphosphate (ATP) using pyruvate supplied from glucose, free fatty acid (FFA), and amino acids (AA) but also regulate multiple cellular processes such as calcium homeostasis, redox balance, and apoptosis. Mitochondrial dysfunction leads to various diseases, including cardiovascular diseases, metabolic disorders, and cancer. The mitochondria are highly dynamic in adjusting their functions according to cellular conditions. The shape, morphology, distribution, and number of mitochondria reflect their function through various processes, collectively known as mitochondrial dynamics, including mitochondrial fusion, fission, biogenesis, transport, and mitophagy. These processes determine the overall mitochondrial health and vitality. More evidence supports the idea that dysregulated mitochondrial dynamics play essential roles in the pathophysiology of insulin resistance, obesity, and T2DM, as well as imbalanced mitochondrial dynamics found in T2DM. This review updates and discusses mitochondrial dynamics and the complex interactions between it and metabolic disorders.
Collapse
Affiliation(s)
- Tin Van Huynh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Interventional Cardiology, Thong Nhat Hospital, Ho Chi Minh City 700000, Vietnam
| | - Lekha Rethi
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Hwa Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Department of Orthopedics, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
16
|
Vidyadharan VA, Blesson CS, Tanchico D, Betancourt A, Smith C, Yallampalli C. Low Protein Programming Causes Increased Mitochondrial Fusion and Decreased Oxygen Consumption in the Hepatocytes of Female Rats. Nutrients 2023; 15:1568. [PMID: 37049409 PMCID: PMC10097083 DOI: 10.3390/nu15071568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The liver is one of the major organs involved in the regulation of glucose and lipid homeostasis. The effectiveness of metabolic activity in hepatocytes is determined by the quality and quantity of its mitochondria. Mitochondrial function is complex, and they act via various dynamic networks, which rapidly adapt to changes in the cellular milieu. Our present study aims to investigate the effects of low protein programming on the structure and function of mitochondria in the hepatocytes of adult females. Pregnant rats were fed with a control or isocaloric low-protein diet from gestational day 4 until delivery. A normal laboratory chow was given to all dams after delivery and to pups after weaning. The rats were euthanized at 4 months of age and the livers were collected from female offspring for investigating the mitochondrial structure, mtDNA copy number, mRNA, and proteins expression of genes associated with mitochondrial function. Primary hepatocytes were isolated and used for the analysis of the mitochondrial bioenergetics profiles. The mitochondrial ultrastructure showed that the in utero low-protein diet exposure led to increased mitochondrial fusion. Accordingly, there was an increase in the mRNA and protein levels of the mitochondrial fusion gene Opa1 and mitochondrial biogenesis genes Pgc1a and Essra, but Fis1, a fission gene, was downregulated. Low protein programming also impaired the mitochondrial function of the hepatocytes with a decrease in basal respiration ATP-linked respiration and proton leak. In summary, the present study suggests that the hepatic mitochondrial dysfunction induced by an in utero low protein diet might be a potential mechanism linking glucose intolerance and insulin resistance in adult offspring.
Collapse
Affiliation(s)
- Vipin A. Vidyadharan
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chellakkan S. Blesson
- Reproductive Endocrinology and Infertility Division, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
- Family Fertility Center, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Daren Tanchico
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ancizar Betancourt
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Craig Smith
- Agilent Technologies Inc., Santa Clara, CA 95051, USA
| | - Chandra Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Klawitter F, Ehler J, Bajorat R, Patejdl R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int J Mol Sci 2023; 24:5516. [PMID: 36982590 PMCID: PMC10052131 DOI: 10.3390/ijms24065516] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Mitochondria are key structures providing most of the energy needed to maintain homeostasis. They are the main source of adenosine triphosphate (ATP), participate in glucose, lipid and amino acid metabolism, store calcium and are integral components in various intracellular signaling cascades. However, due to their crucial role in cellular integrity, mitochondrial damage and dysregulation in the context of critical illness can severely impair organ function, leading to energetic crisis and organ failure. Skeletal muscle tissue is rich in mitochondria and, therefore, particularly vulnerable to mitochondrial dysfunction. Intensive care unit-acquired weakness (ICUAW) and critical illness myopathy (CIM) are phenomena of generalized weakness and atrophying skeletal muscle wasting, including preferential myosin breakdown in critical illness, which has also been linked to mitochondrial failure. Hence, imbalanced mitochondrial dynamics, dysregulation of the respiratory chain complexes, alterations in gene expression, disturbed signal transduction as well as impaired nutrient utilization have been proposed as underlying mechanisms. This narrative review aims to highlight the current known molecular mechanisms immanent in mitochondrial dysfunction of patients suffering from ICUAW and CIM, as well as to discuss possible implications for muscle phenotype, function and therapeutic approaches.
Collapse
Affiliation(s)
- Felix Klawitter
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Johannes Ehler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07747 Jena, Germany
| | - Rika Bajorat
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Robert Patejdl
- Oscar Langendorff Institute of Physiology, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
18
|
Choi YW, Han S, Ko JS, Lee SN, Gwak MS, Kim GS. Improvement of compliance to the Portland intensive insulin therapy during liver transplantation after introducing an application software: a retrospective single center cohort study. Anesth Pain Med (Seoul) 2022; 17:312-319. [PMID: 35918865 PMCID: PMC9346209 DOI: 10.17085/apm.22136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background The Portland intensive insulin therapy effectively controls acute hyperglycemic change after graft reperfusion during liver transplantation. However, the time-consuming sophistication acts as a barrier leading to misinterpretation and decreasing compliance to the protocol; thus, we newly introduced an application software “Insulin protocol calculator” which automatically calculates therapeutic bolus/continuous insulin doses based on the Portland protocol. Methods Of 144 patients who underwent liver transplantation, 74 patients were treated before the introduction of "Insulin protocol calculator" by using a paper manual, and 70 patients were treated by using the application. Compliance was defined as the proportion of patients treated with exact bolus/continuous insulin dose according to the Portland protocol. Results Compliance was significantly greater in app group than in paper group regarding bolus dose (94.5% and 86.9%, P < 0.001), continuous dose (88.9% and 77.3%, P = 0.001), and both doses (86.6% and 73.8%, P < 0.001). Blood glucose concentration was significantly lower in app group at 3 h (125 ± 17 mg/dl vs. 136 ± 19 mg/dl, P = 0.014) and 4 h (135 ± 22 mg/dl vs. 115 ± 15 mg/dl, P = 0.029) after graft reperfusion. Acute hyperglycemic change during 30 min was more prominent in app group while hyperglycemia incidence was 71.4% vs. 54.1% (P = 0.031). However, hyperglycemia risk was comparable at 2 h (31.4% vs. 31.1%, P = 0.964), and even insignificantly lower in app group at 3 h (7.1% vs. 19.5%, P = 0.184). Conclusions Compliance to the Portland protocol was significantly improved after introducing the application software; post-reperfusion hyperglycemia was better controlled. “Insulin protocol calculator” is cost-effective and time-saving with potential clinical benefits.
Collapse
Affiliation(s)
- Young Woong Choi
- Department of Anesthesiology and Pain Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Sangbin Han
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Correspondence: Sangbin Han, M.D., Ph.D. Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Korea Tel: 82-2-3410-2470; Fax: 82-2-3410-0361, E-mail:
| | - Justin S. Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Su Nam Lee
- Department of Anesthesiology and Pain Medicine, Korea Cancer Center Hospital, Seoul, Korea
| | - Mi Sook Gwak
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gaab Soo Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Carbon NM, Engelhardt LJ, Wollersheim T, Grunow JJ, Spies CD, Märdian S, Mai K, Spranger J, Weber-Carstens S. Impact of protocol-based physiotherapy on insulin sensitivity and peripheral glucose metabolism in critically ill patients. J Cachexia Sarcopenia Muscle 2022; 13:1045-1053. [PMID: 35075782 PMCID: PMC8978012 DOI: 10.1002/jcsm.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The impact of physiotherapy on insulin sensitivity and peripheral glucose metabolism in critically ill patients is not well understood. METHODS This pooled analysis investigates the impact of different physiotherapeutic strategies on insulin sensitivity in critically ill patients. We pooled data from two previous trials in adult patients with sequential organ failure assessment score (SOFA)≥ 9 within 72 h of intensive care unit (ICU) admission, who received hyperinsulinaemic euglycaemic (HE) clamps. Patients were divided into three groups: standard physiotherapy (sPT, n = 22), protocol-based physiotherapy (pPT, n = 8), and pPT with added muscle activating measures (pPT+, n = 20). Insulin sensitivity index (ISI) was determined by HE clamp. Muscle metabolites lactate, pyruvate, and glycerol were measured in the M. vastus lateralis via microdialysis during the HE clamp. Histochemical visualization of glucose transporter-4 (GLUT4) translocation was performed in surgically extracted muscle biopsies. All data are reported as median (25th/75th percentile) (trial registry: ISRCTN77569430 and ISRCTN19392591/ethics approval: Charité-EA2/061/06 and Charité-EA2/041/10). RESULTS Fifty critically ill patients (admission SOFA 13) showed markedly decreased ISIs on Day 17 (interquartile range) 0.029 (0.022/0.048) (mg/min/kg)/(mU/L) compared with healthy controls 0.103 (0.087/0.111), P < 0.001. ISI correlated with muscle strength measured by medical research council (MRC) score at first awakening (r = 0.383, P = 0.026) and at ICU discharge (r = 0.503, P = 0.002). Different physiotherapeutic strategies showed no effect on the ISI [sPT 0.029 (0.019/0.053) (mg/min/kg)/(mU/L) vs. pPT 0.026 (0.023/0.041) (mg/min/kg)/(mU/L) vs. pPT+ 0.029 (0.023/0.042) (mg/min/kg)/(mU/L); P = 0.919]. Regardless of the physiotherapeutic strategy metabolic flexibility was reduced. Relative change of lactate/pyruvate ratio during HE clamp is as follows: sPT 0.09 (-0.13/0.27) vs. pPT 0.07 (-0.16/0.31) vs. pPT+ -0.06 (-0.19/0.16), P = 0.729, and relative change of glycerol concentration: sPT -0.39 (-0.8/-0.12) vs. pPT -0.21 (-0.33/0.07) vs. pPT+ -0.21 (-0.44/-0.03), P = 0.257. The majority of ICU patients showed abnormal localization of GLUT4 with membranous GLUT4 distribution in 37.5% (3 of 8) of ICU patients receiving sPT, in 42.9% (3 of 7) of ICU patients receiving pPT, and in 53.8% (7 of 13) of ICU patients receiving pPT+ (no statistical testing possible). CONCLUSIONS Our data suggest that a higher duration of muscle activating measures had no impact on insulin sensitivity or metabolic flexibility in critically ill patients with sepsis-related multiple organ failure.
Collapse
Affiliation(s)
- Niklas M Carbon
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lilian J Engelhardt
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tobias Wollersheim
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julius J Grunow
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sven Märdian
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Knut Mai
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM/CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Shan Z, Fa WH, Tian CR, Yuan CS, Jie N. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment. Aging (Albany NY) 2022; 14:2902-2919. [PMID: 35332108 PMCID: PMC9004550 DOI: 10.18632/aging.203969] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023]
Abstract
The prevalence of type 2 diabetes is associated with inflammatory bowels diseases, nonalcoholic steatohepatitis and even a spectrum of cancer such as colon cancer and liver cancer, resulting in a substantial healthcare burden on our society. Autophagy is a key regulator in metabolic homeostasis such as lipid metabolism, energy management and the balance of cellular mineral substances. Mitophagy is selective autophagy for clearing the damaged mitochondria and dysfunctional mitochondria. A myriad of evidence has demonstrated a major role of mitophagy in the regulation of type 2 diabetes and metabolic homeostasis. It is well established that defective mitophagy has been linked to the development of insulin resistance. Moreover, insulin resistance is further progressed to various diseases such as nephropathy, retinopathy and cardiovascular diseases. Concordantly, restoration of mitophagy will be a reliable and therapeutic target for type 2 diabetes. Recently, various phytochemicals have been proved to prevent dysfunctions of β-cells by mitophagy inductions during diabetes developments. In agreement with the above phenomenon, mitophagy inducers should be warranted as potential and novel therapeutic agents for treating diabetes. This review focuses on the role of mitophagy in type 2 diabetes relevant diseases and the pharmacological basis and therapeutic potential of autophagy regulators in type 2 diabetes.
Collapse
Affiliation(s)
- Zhao Shan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Wei Hong Fa
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Run Tian
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Chen Shi Yuan
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| | - Ning Jie
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Afliated Longhua Central Hospital, Shenzhen 518110, Guangdong, China
| |
Collapse
|
21
|
Jiang J, Li S, Zhao Y, Zhou Z, Zhang J, Sun R, Luo A. Intensive glucose control during the perioperative period for diabetic patients undergoing surgery: An updated systematic review and meta-analysis. J Clin Anesth 2021; 75:110504. [PMID: 34509960 DOI: 10.1016/j.jclinane.2021.110504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 12/29/2022]
Abstract
STUDY OBJECTIVE To evaluate the impact of intensive glucose control on diabetic patients undergoing surgery. DESIGN A systematic review and meta-analysis of randomized controlled trials. PubMed, CENTRAL, EMBASE, ISI Web of Science, and CINAHL databases were searched from inception to 13 December 2020. SETTING Operating room, postoperative recovery area and ward, up to 30 days after surgery. PATIENTS Diabetic patients undergoing surgery. INTERVENTIONS We used Review Manager 5.4 to pool the data with a random-effects model. The quality of evidence was rated using the Grading of Recommendations, Assessment, Development and Evaluation system. MEASUREMENTS The primary outcomes were infectious complications, postoperative mortality, and hypoglycaemia. The secondary outcomes included atrial fibrillation, myocardial infarction, stroke, delirium, renal failure, postoperative mechanical ventilation time, length of intensive care unit (ICU) stay, and hospital stay. MAIN RESULTS Thirteen studies involving 1582 participants were included. Compared with conventional glucose control, intensive glucose control was associated with a lower risk of infectious complications (risk ratio [RR], 0.35; 95% confidence interval [CI], 0.19-0.63; low-quality evidence), atrial fibrillation (RR, 0.55; 95% CI, 0.42-0.71; high-quality evidence), and renal failure (RR, 0.38; 95% CI, 0.15-0.95; moderate-quality evidence), as well as a shorter length of stay in the ICU (mean difference (MD), -0.55 day; 95% CI, -1.05 to -0.05 days; very-low-quality evidence) and hospital (MD, -1.61 days; 95% CI, -2.78 to -0.44 days; very-low-quality evidence). However, intensive glucose control was associated with a higher risk of hypoglycaemia (RR, 3.00; 95% CI, 1.97-4.55; high-quality evidence). There were no significant differences in postoperative mortality, myocardial infarction, stroke, delirium, or postoperative mechanical ventilation time. CONCLUSIONS Intensive glucose control in diabetic patients is associated with a reduction in some adverse postoperative outcomes including infectious complications, but also appears to increase the risk of hypoglycaemia. Further well-designed studies may be needed to determine appropriate regimens to reduce hypoglycaemia incidence. PROSPERO REGISTRATION NUMBER CRD42021226138.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rao Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
22
|
Preau S, Vodovar D, Jung B, Lancel S, Zafrani L, Flatres A, Oualha M, Voiriot G, Jouan Y, Joffre J, Huel F, De Prost N, Silva S, Azabou E, Radermacher P. Energetic dysfunction in sepsis: a narrative review. Ann Intensive Care 2021; 11:104. [PMID: 34216304 PMCID: PMC8254847 DOI: 10.1186/s13613-021-00893-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Background Growing evidence associates organ dysfunction(s) with impaired metabolism in sepsis. Recent research has increased our understanding of the role of substrate utilization and mitochondrial dysfunction in the pathophysiology of sepsis-related organ dysfunction. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions. Main text Sepsis is characterized by systemic and organ-specific changes in metabolism. Alterations of oxygen consumption, increased levels of circulating substrates, impaired glucose and lipid oxidation, and mitochondrial dysfunction are all associated with organ dysfunction and poor outcomes in both animal models and patients. The pathophysiological relevance of bioenergetics and metabolism in the specific examples of sepsis-related immunodeficiency, cerebral dysfunction, cardiomyopathy, acute kidney injury and diaphragmatic failure is also described. Conclusions Recent understandings in substrate utilization and mitochondrial dysfunction may pave the way for new diagnostic and therapeutic approaches. These findings could help physicians to identify distinct subgroups of sepsis and to develop personalized treatment strategies. Implications for their use as bioenergetic targets to identify metabolism- and mitochondria-targeted treatments need to be evaluated in future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-021-00893-7.
Collapse
Affiliation(s)
- Sebastien Preau
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France.
| | - Dominique Vodovar
- Centre AntiPoison de Paris, Hôpital Fernand Widal, APHP, 75010, Paris, France.,Faculté de pharmacie, UMRS 1144, 75006, Paris, France.,Université de Paris, UFR de Médecine, 75010, Paris, France
| | - Boris Jung
- Medical Intensive Care Unit, Lapeyronie Teaching Hospital, Montpellier University Hospital and PhyMedExp, University of Montpellier, Montpellier, France
| | - Steve Lancel
- U1167 - RID-AGE - Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, University Lille, Inserm, CHU Lille, Institut Pasteur de Lille, F-59000, Lille, France
| | - Lara Zafrani
- Médecine Intensive Réanimation, Hôpital Saint-Louis, AP-HP, Université de Paris, Paris, France.,INSERM UMR 976, Hôpital Saint Louis, Université de Paris, Paris, France
| | | | - Mehdi Oualha
- Pediatric Intensive Care Unit, Necker Hospital, APHP, Centre - Paris University, Paris, France
| | - Guillaume Voiriot
- Service de Médecine Intensive Réanimation, Sorbonne Université, Assistance Publique - Hôpitaux de Paris, Hôpital Tenon, Paris, France
| | - Youenn Jouan
- Service de Médecine Intensive Réanimation, CHRU Tours, Tours, France.,Faculté de Médecine de Tours, INSERM U1100 Centre d'Etudes des Pathologies Respiratoires, Tours, France
| | - Jeremie Joffre
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, 94143, USA
| | - Fabrice Huel
- Réanimation médico-chirurgicale, Université de Paris, Assistance Publique - Hôpitaux de Paris, Hôpital Louis Mourier, Paris, France
| | - Nicolas De Prost
- Service de Réanimation Médicale, Hôpital Henri Mondor, Assistance Publique-Hôpitaux de Paris, Cedex 94010, Créteil, France
| | - Stein Silva
- Réanimation URM CHU Purpan, Cedex 31300, Toulouse, France.,Toulouse NeuroImaging Center INSERM1214, Cedex 31300, Toulouse, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, Departments of Physiology and Critical Care Medicine, Raymond Poincaré Hospital, AP-HP, Inserm UMR 1173, Infection and Inflammation (2I), University of Versailles (UVSQ), Paris-Saclay University, Paris, France
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
23
|
Nakanishi N, Takashima T, Oto J. Muscle atrophy in critically ill patients : a review of its cause, evaluation, and prevention. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 67:1-10. [PMID: 32378591 DOI: 10.2152/jmi.67.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Critically ill patients exhibit prominent muscle atrophy, which occurs rapidly after ICU admission and leads to poor clinical outcomes. The extent of atrophy differs among muscles as follows: upper limb: 0.7%-2.4% per day, lower limb: 1.2%-3.0% per day, and diaphragm 1.1%-10.9% per day. This atrophy is caused by numerous risk factors such as inflammation, immobilization, nutrition, hyperglycemia, medication, and mechanical ventilation. Muscle atrophy should be monitored noninvasively by ultrasound at the bedside. Ultrasound can assess muscle mass in most patients, although physical assessment is limited to almost half of all critically ill patients due to impaired consciousness. Important strategies to prevent muscle atrophy are physical therapy and electrical muscular stimulation. Electrical muscular stimulation is especially effective for patients with limited physical therapy. Regarding diaphragm atrophy, mechanical ventilation should be adjusted to maintain spontaneous breathing and titrate inspiratory pressure. However, the sufficient timing and amount of nutritional intervention remain unclear. Further investigation is necessary to prevent muscle atrophy and improve long-term outcomes. J. Med. Invest. 67 : 1-10, February, 2020.
Collapse
Affiliation(s)
- Nobuto Nakanishi
- Emergency and Critical Care Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima 770-8503, Japan
| | - Takuya Takashima
- Emergency and Critical Care Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima 770-8503, Japan
| | - Jun Oto
- Emergency and Disaster Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima 770-8503, Japan
| |
Collapse
|
24
|
Flower L, Page A, Puthucheary Z. Should nutritional therapy be modified to account for mitochondrial dysfunction in critical illness? JPEN J Parenter Enteral Nutr 2021; 45:60-65. [PMID: 34115880 DOI: 10.1002/jpen.2190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Metabolic dysfunction, and its associated muscle atrophy, remains the most common complication of critical care. At the centre of this is mitochondrial dysfunction, secondary to hypoxia and systemic inflammation. This leads to a bioenergetic crisis, with decreased intramuscular adenosine tri-phosphate content and a reduction in the highly energy dependent process of protein synthesis. Numerous methods have been studied to try and reduce these effects, with only limited success. Trials investigating the use of increased calorie and protein administration have instead found a decrease in relative lean body mass, and a potential increase in morbidity and mortality. Ketone bodies have been proposed as alternative substrates for metabolism in critical illness, with promising results seen in animal models. They are currently being investigated in critical care patients in the Alternative Substrates in the Critically Ill Subjects trial. The evidence to date suggests that individualised feeding regimens may be key in the nutritional approach to critical illness. Consideration of individual patient factors will need to be combined with personalised protein content, total energy load received, and the timings of such feeds. This review covers mitochondrial dysfunction in critical illness, and how it contributes to muscle wasting and the resultant morbidity and mortality and the scientific basis of why current nutritional approaches to date have not been successful in negating this effect. These two factors underpin the need for consideration of alternative nutritional strategies in the critically ill patient. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Luke Flower
- William Harvey Research Institute, Queen Mary University of London, London.,Department of Anaesthesia, University College Hospital, 235 Euston Road, London, UK
| | - Alexandria Page
- William Harvey Research Institute, Queen Mary University of London, London.,Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London, UK
| | - Zudin Puthucheary
- William Harvey Research Institute, Queen Mary University of London, London.,Adult Critical Care Unit, The Royal London Hospital, Barts Health NHS Trust, Whitechapel Road, London, UK
| |
Collapse
|
25
|
Early prediction of extubation failure in patients with severe pneumonia: a retrospective cohort study. Biosci Rep 2021; 40:221958. [PMID: 31990295 PMCID: PMC7007404 DOI: 10.1042/bsr20192435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/03/2020] [Accepted: 01/28/2020] [Indexed: 02/05/2023] Open
Abstract
Backgroud: Severe pneumonia is one of the most common causes for mechanical ventilation. We aimed to early identify severe pneumonia patients with high risk of extubation failure in order to improve prognosis. Methods: From April 2014 to December 2015, medical records of intubated patients with severe pneumonia in intensive care unit were retrieved from database. Patients were divided into extubation success and failure groups, and multivariate logistic regressions were performed to identify independent predictors for extubation failure. Results: A total of 125 eligible patients were included, of which 82 and 43 patients had extubation success and failure, respectively. APACHE II score (odds ratio (OR) 1.141, 95% confident interval (CI) 1.022–1.273, P = 0.019, cutoff at 17.5), blood glucose (OR 1.122, 95%CI 1.008–1.249, P = 0.035, cutoff at 9.87 mmol/l), dose of fentanyl (OR 3.010, 95%CI 1.100–8.237, P = 0.032, cutoff at 1.135 mg/d), and the need for red blood cell (RBC) transfusion (OR 2.774, 95%CI 1.062–7.252, P = 0.037) were independent risk factors for extubation failure. Conclusion: In patients with severe pneumonia, APACHE II score > 17.5, blood glucose > 9.87 mmol/l, fentanyl usage > 1.135 mg/d, and the need for RBC transfusion might be associated with higher risk of extubation failure.
Collapse
|
26
|
Lewandowski Ł, Urbanowicz I, Kepinska M, Milnerowicz H. Concentration/activity of superoxide dismutase isozymes and the pro-/antioxidative status, in context of type 2 diabetes and selected single nucleotide polymorphisms (genes: INS, SOD1, SOD2, SOD3) - Preliminary findings. Biomed Pharmacother 2021; 137:111396. [PMID: 33761612 DOI: 10.1016/j.biopha.2021.111396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/29/2022] Open
Abstract
The alterations in concentration/activity of superoxide dismutase isozymes in the context of type 2 diabetes or obesity are well-described. Moreover, many hereditary factors, including single-nucleotide polymorphisms (SNPs) of genes for coding insulin, insulin receptors, or insulin receptor substrates (INS, INSR, IRS1, IRS2) or superoxide dismutase isozymes (SOD1, SOD2, SOD3), have been linked with the incidence of obesity and diabetes. However, the underlying changes in the plasma concentration/activity of superoxide dismutase isozymes and their potential connection with the said hereditary factors remain unexplored. Previously, we have observed that the plasma concentration/activity of superoxide dismutase isozymes differs in the context of obesity and/or rs2234694 (SOD1) and rs4880 (SOD2) and that the concentrations of SOD1, SOD2, SOD3 are correlated with each other. Intersexual variability of SOD1 concentration was detected regardless of obesity. In this study, the variability of concentration/activity of superoxide dismutase isozymes in plasma is considered in the context of type 2 diabetes and/or SNPs: rs2234694 (SOD1), rs5746105 (SOD2), rs4880 (SOD2), rs927450 (SOD2), rs8192287 (SOD3). Genotypic variability of SNP rs3842729 (INS), previously studied in the context of insulin-dependent diabetes, is investigated in terms of selected clinical parameters associated with type 2 diabetes. This study revealed higher SOD1 concentration in diabetic men compared to women, and extremely high SOD1 concentration, higher total superoxide dismutase, and copper-zinc superoxide dismutase activity, and lower superoxide dismutase and copper-zinc superoxide dismutase activity (when adjusted for the concentration of SODs) in the diabetic group regardless of sex. Multiple logistic regression, applied to explore possible links between the studied SNPs and other factors with the odds of type 2 diabetes or obesity, revealed that the genotypic variability of rs4880 (SOD2) could affect these odds, supporting the findings of several other studies.
Collapse
Affiliation(s)
- Łukasz Lewandowski
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland.
| | - Iwona Urbanowicz
- Department of Clinical Chemistry and Laboratory Hematology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wrocław, Poland
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wrocław, Poland
| |
Collapse
|
27
|
Jurcau A. The Role of Natural Antioxidants in the Prevention of Dementia-Where Do We Stand and Future Perspectives. Nutrients 2021; 13:282. [PMID: 33498262 PMCID: PMC7909256 DOI: 10.3390/nu13020282] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Dementia, and especially Alzheimer's disease (AD), puts significant burden on global healthcare expenditure through its increasing prevalence. Research has convincingly demonstrated the implication of oxidative stress in the pathogenesis of dementia as well as of the conditions which increase the risk of developing dementia. However, drugs which target single pathways have so far failed in providing significant neuroprotection. Natural antioxidants, due to their effects in multiple pathways through which oxidative stress leads to neurodegeneration and triggers neuroinflammation, could prove valuable weapons in our fight against dementia. Although efficient in vitro and in animal models of AD, natural antioxidants in human trials have many drawbacks related to the limited bioavailability, unknown optimal dose, or proper timing of the treatment. Nonetheless, trials evaluating several of these natural compounds are ongoing, as are attempts to modify these compounds to achieve improved bioavailability.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, nr 1 Universitatii Street, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “Dr. G. Curteanu”, nr 12 Corneliu Coposu Street, 410469 Oradea, Romania
| |
Collapse
|
28
|
Ngo ATP, Parra-Izquierdo I, Aslan JE, McCarty OJT. Rho GTPase regulation of reactive oxygen species generation and signalling in platelet function and disease. Small GTPases 2021; 12:440-457. [PMID: 33459160 DOI: 10.1080/21541248.2021.1878001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Platelets are master regulators and effectors of haemostasis with increasingly recognized functions as mediators of inflammation and immune responses. The Rho family of GTPase members Rac1, Cdc42 and RhoA are known to be major components of the intracellular signalling network critical to platelet shape change and morphological dynamics, thus playing a major role in platelet spreading, secretion and thrombus formation. Initially linked to the regulation of actomyosin contraction and lamellipodia formation, recent reports have uncovered non-canonical functions of platelet RhoGTPases in the regulation of reactive oxygen species (ROS), where intrinsically generated ROS modulate platelet function and contribute to thrombus formation. Platelet RhoGTPases orchestrate oxidative processes and cytoskeletal rearrangement in an interconnected manner to regulate intracellular signalling networks underlying platelet activity and thrombus formation. Herein we review our current knowledge of the regulation of platelet ROS generation by RhoGTPases and their relationship with platelet cytoskeletal reorganization, activation and function.
Collapse
Affiliation(s)
- Anh T P Ngo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Ivan Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Joseph E Aslan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
29
|
Beardsall K. Hyperglycaemia in the Newborn Infant. Physiology Verses Pathology. Front Pediatr 2021; 9:641306. [PMID: 34368024 PMCID: PMC8333866 DOI: 10.3389/fped.2021.641306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 12/25/2022] Open
Abstract
Hyperglycemia is common in newborns requiring intensive care, particularly in preterm infants, in sepsis and following perinatal hypoxia. The clinical significance, and optimal intervention strategy varies with context, but hyperglycaemia is associated with increased mortality and morbidity. The limited evidence for optimal clinical targets mean controversy remains regarding thresholds for intervention, and management strategies. The first consideration in the management of hyperglycaemia must be to ascertain potentially treatable causes. Calculation of the glucose infusion rate (GIR) to insure this is not excessive, is critical but the use of insulin is often helpful in the extremely preterm infant, but is associated with an increased risk of hypoglycaemia. The use of continuous glucose monitoring (CGM) has recently been demonstrated to be helpful in targeting glucose control, and reducing the risk from hypoglycaemia in the preterm infant. Its use in other at risk infants remains to be explored, and further studies are needed to provide a better understanding of the optimal glucose targets for different clinical conditions. In the future the combination of CGM and advances in computer algorithms, to provide intelligent closed loop systems, could allow a safer and more personalized approached to management.
Collapse
Affiliation(s)
- Kathryn Beardsall
- Department of Paediatrics, University of Cambridge, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom.,Neonatal Unit, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
30
|
Knopp JL, Chase JG, Shaw GM. Increased insulin resistance in intensive care: longitudinal retrospective analysis of glycaemic control patients in a New Zealand ICU. Ther Adv Endocrinol Metab 2021; 12:20420188211012144. [PMID: 34123348 PMCID: PMC8173630 DOI: 10.1177/20420188211012144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/02/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Critical care populations experience demographic shifts in response to trends in population and healthcare, with increasing severity and/or complexity of illness a common observation worldwide. Inflammation in critical illness impacts glucose-insulin metabolism, and hyperglycaemia is associated with mortality and morbidity. This study examines longitudinal trends in insulin sensitivity across almost a decade of glycaemic control in a single unit. METHODS A clinically validated model of glucose-insulin dynamics is used to assess hour-hour insulin sensitivity over the first 72 h of insulin therapy. Insulin sensitivity and its hour-hour percent variability are examined over 8 calendar years alongside severity scores and diagnostics. RESULTS Insulin sensitivity was found to decrease by 50-55% from 2011 to 2015, and remain low from 2015 to 2018, with no concomitant trends in age, severity scores or risk of death, or diagnostic category. Insulin sensitivity variability was found to remain largely unchanged year to year and was clinically equivalent (95% confidence interval) at the median and interquartile range. Insulin resistance was associated with greater incidence of high insulin doses in the effect saturation range (6-8 U/h), with the 75th percentile of hourly insulin doses rising from 4-4.5 U/h in 2011-2014 to 6 U/h in 2015-2018. CONCLUSIONS Increasing insulin resistance was observed alongside no change in insulin sensitivity variability, implying greater insulin needs but equivalent (variability) challenge to glycaemic control. Increasing insulin resistance may imply greater inflammation and severity of illness not captured by existing severity scores. Insulin resistance reduces glucose tolerance, and can cause greater incidence of insulin saturation and resultant hyperglycaemia. Overall, these results have significant clinical implications for glycaemic control and nutrition management.
Collapse
Affiliation(s)
| | - J. Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Geoffrey M. Shaw
- Department of Intensive Care, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
31
|
Rivas AM, Nugent K. Hyperglycemia, Insulin, and Insulin Resistance in Sepsis. Am J Med Sci 2020; 361:297-302. [PMID: 33500122 DOI: 10.1016/j.amjms.2020.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/18/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Critically ill patients frequently have hyperglycemia. This event may reflect severe stress with an imbalance between anabolic hormones and catabolic hormones. Alternatively, it may reflect alterations in either insulin levels or insulin function. Insulin is a pleiotropic hormone with multiple important metabolic effects. In patients with sepsis, insulin levels are increased but insulin sensitivity is decreased. However, there is variability in insulin sensitivity, and this creates variability in glucose levels and insulin requirements and increases the frequency of hypo- and hyperglycemia. The factors that influence insulin sensitivity are complex and include inhibition of tyrosine kinase activity of the beta subunit, increased proteolytic activity resulting in loss of receptors from the plasma membrane, and possibly the transfer of insulin receptors into the nucleus where they bind to gene promoters. Better understanding of the role of insulin in critically ill patients requires prospective studies measuring insulin levels in various patient groups and the development of a simple measure of insulin sensitivity.
Collapse
Affiliation(s)
- Ana Marcella Rivas
- The Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - Kenneth Nugent
- The Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
32
|
Chian CW, Lee YS, Lee YJ, Chen YH, Wang CP, Lee WC, Lee HJ. Cilostazol ameliorates diabetic nephropathy by inhibiting highglucose- induced apoptosis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:403-412. [PMID: 32830147 PMCID: PMC7445481 DOI: 10.4196/kjpp.2020.24.5.403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels.
Collapse
Affiliation(s)
- Chien-Wen Chian
- Division of Nephrology, Department of Paediatrics, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yung-Shu Lee
- Department of Urology, Taipei City Hospital, Taipei 10341, Taiwan
| | - Yi-Ju Lee
- Department of Pathology, Chung Shan Medical University Hospital, Taichung 40221, Taiwan
| | - Ya-Hui Chen
- Department of Medical Research, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chi-Ping Wang
- Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung 40221, Taiwan
| | - Wen-Chin Lee
- Division of Nephropathy, Department of Internal Medicine, Chang Bing Show-Chwan Memborial Hospital, Changhua 505, Taiwan
| | - Huei-Jane Lee
- Department of Clinical Biochemistry, Chung Shan Medical University Hospital, Taichung 40221, Taiwan
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung Shan Medical University, Taichung 40221, Taiwan
- Department of Biochemistry, School of Medicine, College of Medicine, Chung Shan Medical University, Taichung 40221, Taiwan
| |
Collapse
|
33
|
Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. Mitochondria-What to Target? Front Med (Lausanne) 2020; 7:416. [PMID: 32903633 PMCID: PMC7438707 DOI: 10.3389/fmed.2020.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Circulatory shock is associated with marked disturbances of the macro- and microcirculation and flow heterogeneities. Furthermore, a lack of tissue adenosine trisphosphate (ATP) and mitochondrial dysfunction are directly associated with organ failure and poor patient outcome. While it remains unclear if microcirculation-targeted resuscitation strategies can even abolish shock-induced flow heterogeneity, mitochondrial dysfunction and subsequently diminished ATP production could still lead to organ dysfunction and failure even if microcirculatory function is restored or maintained. Preserved mitochondrial function is clearly associated with better patient outcome. This review elucidates the role of the microcirculation and mitochondria during circulatory shock and patient management and will give a viewpoint on the advantages and disadvantages of tailoring resuscitation to microvascular or mitochondrial targets.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
34
|
Mise K, Galvan DL, Danesh FR. Shaping Up Mitochondria in Diabetic Nephropathy. ACTA ACUST UNITED AC 2020; 1:982-992. [PMID: 34189465 DOI: 10.34067/kid.0002352020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitochondrial medicine has experienced significant progress in recent years and is expected to grow significantly in the near future, yielding many opportunities to translate novel bench discoveries into clinical medicine. Multiple lines of evidence have linked mitochondrial dysfunction to a variety of metabolic diseases, including diabetic nephropathy (DN). Mitochondrial dysfunction presumably precedes the emergence of key histologic and biochemical features of DN, which provides the rationale to explore mitochondrial fitness as a novel therapeutic target in patients with DN. Ultimately, the success of mitochondrial medicine is dependent on a better understanding of the underlying biology of mitochondrial fitness and function. To this end, recent advances in mitochondrial biology have led to new understandings of the potential effect of mitochondrial dysfunction in a myriad of human pathologies. We have proposed that molecular mechanisms that modulate mitochondrial dynamics contribute to the alterations of mitochondrial fitness and progression of DN. In this comprehensive review, we highlight the possible effects of mitochondrial dysfunction in DN, with the hope that targeting specific mitochondrial signaling pathways may lead to the development of new drugs that mitigate DN progression. We will outline potential tools to improve mitochondrial fitness in DN as a novel therapeutic strategy. These emerging views suggest that the modulation of mitochondrial fitness could serve as a key target in ameliorating progression of kidney disease in patients with diabetes.
Collapse
Affiliation(s)
- Koki Mise
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel L Galvan
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Kyoung KH, Lee SG, Hwang S, Kim KH, Hong SK. Liver Steatosis in Brain-Dead Donors: Progression Pattern and Affecting Factors. Transplant Proc 2020; 52:1318-1324. [PMID: 32439332 DOI: 10.1016/j.transproceed.2020.02.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/05/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVES No study has investigated the short-term effect of acute insulin resistance on liver steatosis in critically ill condition. We analyzed the effects of critically ill conditions of brain-dead donors (BDDs) on the development and progression of liver steatosis to investigate the influencing factors. METHODS This study was conducted retrospectively between January 2003 and December 2017. BDDs were for organ procurement. BDDs with body mass indexes (BMIs) < 18.5 kg/m2 and ≥ 30 kg/m2 were excluded. Liver steatosis was defined as ≥5% of the fat vacuole. The serum glucose level (SGL) was used to reflect insulin resistance. RESULTS Of the 179 BDDs, 87 (48.6%) had liver steatosis. BMI (r = 0.176, P = .019) and SGL (r = 0.267, P < .001) were correlated with steatosis. The length of the predonation period (LPDP) was negatively correlated with steatosis (r = -0.379, P < .001). BMI (odds ratio 1.266, P = .002), SGL ≥180 mg/dL (odds ratio 2.825, P = .003), and LPDP (odds ratio 0.885, P = .001) were independent risk factors for liver steatosis. CONCLUSION Liver steatosis is related to the SGL and BMI. Liver steatosis develops acutely in the early phase of critical illness and patients recover gradually.
Collapse
Affiliation(s)
- Kyu-Hyouck Kyoung
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sung-Gyu Lee
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Shin Hwang
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ki-Hun Kim
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Suk-Kyung Hong
- Division of Trauma and Surgical Critical Care, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
36
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
37
|
Heme Oxygenase-1 Protects the Liver from Septic Injury by Modulating TLR4-Mediated Mitochondrial Quality Control in Mice. Shock 2019; 50:209-218. [PMID: 29028772 DOI: 10.1097/shk.0000000000001020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mitochondrial dysfunction is involved in the pathogenesis of sepsis-induced multiple organ dysfunction syndrome (MODS). Mitochondrial quality control (QC) is characterized by self-recovering mitochondrial damage through mitochondrial biogenesis, mitophagy, and fission/fusion. Heme oxygenase (HO)-1 acts as a signaling molecule to modulate inflammation. The present study elucidated the cytoprotective mechanisms of HO-1 in sepsis, particularly focusing on toll-like receptor (TLR)4-mediated mitochondrial QC. Mice were subjected to sepsis by cecal ligation and puncture (CLP). The mice were injected intraperitoneally with hemin (10 mg/kg) at 12 h before CLP or zinc protoporphyrin IX (ZnPP; 30 mg/kg) at 2 h before CLP. The serum and tissues were collected 6 h after CLP. Mortality, MODS, and proinflammatory cytokines increased in septic mice. These increases were augmented by ZnPP but attenuated by hemin. Hemin decreased mitochondrial lipid peroxidation and mitochondrial dysfunction. Hemin enhanced mitochondrial biogenesis, as indicated by increased levels of peroxisome proliferator-activated receptor-γ coactivator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor A (TFAM). Hemin also enhanced mitophagy, as indicated by decreased PTEN-induced putative kinase 1 (PINK1) level and increased Parkin level. Hemin decreased fission-related protein, dynamin-related protein 1 (DRP1), and increased fusion-related protein, mitofusin 2. Hemin attenuated the increased TLR4 expression. TAK-242, a TLR4 antagonist, attenuated mortality, inflammatory response, and impaired mitochondrial QC. Our findings suggest that HO-1 attenuates septic injury by modulating TLR4-mediated mitochondrial QC.
Collapse
|
38
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
39
|
Shapey IM, Summers A, Yiannoullou P, Bannard-Smith J, Augustine T, Rutter MK, van Dellen D. Insulin therapy in organ donation and transplantation. Diabetes Obes Metab 2019; 21:1521-1528. [PMID: 30924574 DOI: 10.1111/dom.13728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/12/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Hyperglycaemia is common in hospitalized individuals, and is often caused by physiological stress associated with critical illness or major surgery. Insulin therapy is an established treatment for hyperglycaemia and acute hyperkalaemia, and has also been used for myocardial dysfunction resistant to inotropic support. Insulin is commonly used in both organ donors and transplant recipients for hyperglycaemia, but the underlying knowledge base supporting its use remains limited. Insulin therapy plays an important yet poorly understood role in both organ donation and transplantation. Tight glycaemic control has been extensively studied in critical care over the past 15 years; however, this has not yet translated into the field of transplantation, where patients are more unwell and where improved outcomes remain an ongoing challenge. Insulin therapy and optimization of glycaemic control represent important areas for future hypothesis-driven research into organ donation and transplantation, such as amelioration of ischaemia-reperfusion injury, rejection and infection.
Collapse
Affiliation(s)
- Iestyn M Shapey
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Angela Summers
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Petros Yiannoullou
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Jonathan Bannard-Smith
- Department of Critical Care, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Titus Augustine
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - David van Dellen
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Renal and Pancreatic Transplantation, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
40
|
Chemoprotective effects of butanol fraction of Buchholzia coriacea (Capparidaceae) against type 2 diabetes and oxidative stress in male Wistar rats. Biosci Rep 2019; 39:BSR20170665. [PMID: 28790167 PMCID: PMC6379225 DOI: 10.1042/bsr20170665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/26/2017] [Accepted: 08/02/2017] [Indexed: 12/29/2022] Open
Abstract
Recent studies have shown that Type 2 diabetes (T2D) in rats can result through a synergy that links obesity to insulin resistance and β-cell dysfunction. The present study achieved T2D via high fructose (20%w/v, p.o.), streptozotocin single dose (40 mg/kg, i.p.) (HFSTZ) in rats. Also, chemoprotective potential of butanol fraction of Buchholzia coriacea (BFBC) was demonstrated. Control normal and diabetic untreated (HFSTZ-induced T2D) rats received CM-cellulose (1 mg/kg, p.o.). Diabetic rats received intragastric BFBC (20, 200, 400 mg/kg), glibenclamide (0.07 mg/kg), and BFBC (200 mg/kg) plus glibenclamide treatments, respectively. 2,2-Diphenyl-1-picrylhydrazyl, nitric oxide radical, hydroxyl radical scavenging activities, and α-amylase inhibition were assessed. After 2 weeks of treatments, blood glucose levels, lipid profiles, renal and liver function, serum insulin as well as in vivo oxidative stress biomarkers were assessed. BFBC shows highest antioxidants and α-amylase inhibitory activities in vitro HFSTZ-induced T2D produced hyperglycemia (P<0.05-0.001; F = 5.26-26.47), serum hyperinsulinemia (six-folds) plus elevated lipid peroxidation levels. Similarly, there were altered lipid profiles, liver and renal biomarker enzymes plus weight loss. BFBC administration alone or in combination with glibenclamide reversed T2D symptomatologies in treated animals, and improved body weights against control diabetic rats. In vivo antioxidant activities also improved while histological sections in treated rats show reduced tissue damage in pancreas, kidneys, liver, and heart, respectively. Oleic, stearic, 2-methyl-pyrrolidine-2-carboxylic, and n-hexadecanoic acids were present in BFBC in large quantities given GC-MS analysis. Overall, data from the present study suggest chemoprotective potentials of BFBC against HFSTZ-induced T2D rats.
Collapse
|
41
|
Herminghaus A, Papenbrock H, Eberhardt R, Vollmer C, Truse R, Schulz J, Bauer I, Weidinger A, Kozlov AV, Stiban J, Picker O. Time-related changes in hepatic and colonic mitochondrial oxygen consumption after abdominal infection in rats. Intensive Care Med Exp 2019; 7:4. [PMID: 30623256 PMCID: PMC6325055 DOI: 10.1186/s40635-018-0219-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/25/2018] [Indexed: 11/18/2022] Open
Abstract
Background Evidence suggests that early adaptive responses of hepatic mitochondria occur in experimentally induced sepsis. Little is known about both colonic mitochondrial function during abdominal infection and long-term changes in mitochondrial function under inflammatory conditions. We hypothesize that hepatic and colonic mitochondrial oxygen consumption changes time-dependently after sterile laparotomy and in the course of abdominal infection. The aim of the present study was to investigate the hepatic and colonic mitochondrial respiration after sterile laparotomy and abdominal infection over up to 96 h. Methods After approval of the local Animal Care and Use Committee, 95 Wistar rats were randomized into 8 groups (n = 11–12): 1–4 sham (laparotomy only) and 5–8 colon ascendens stent peritonitis (CASP). Healthy, unoperated animals served as controls (n = 9). The mitochondrial respiration in colon and liver homogenates was assessed 24, 48, 72, and 96 h after surgery. Mitochondrial oxygen consumption was determined using a Clark-type electrode. State 2 (oxygen consumption in the presence of the substrates for complexes I and II) and state 3 respiration (ADP dependent) were assessed. The respiratory control ratio (RCR state 3/state 2) and ADP/O ratio (ADP added/oxygen consumed) were calculated for both complexes. Data are presented as means ± SD, two-way ANOVA followed by Tukey’s post hoc test. Results Hepatic RCR was initially (after 24 h) elevated in both operated groups; after 48 h only, the septic group was elevated compared to controls. In CASP groups, the hepatic ADP/O ratio for complex I was elevated after 24 h (vs. controls) and after 48 h (vs. sham) but declined after 72 h (vs. controls). The ADP/O ratio for complex II stayed unchanged over the time period until 96 h. The colonic RCR and ADP/O did not change over time after sham or CASP operation. Conclusion Hepatic, but not colonic, mitochondrial respiration is increased in the initial phase (until 48 h) and normalizes in the longer course of time (until 96 h) of abdominal infection. Electronic supplementary material The online version of this article (10.1186/s40635-018-0219-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Henrike Papenbrock
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Rebecca Eberhardt
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200, Wien, Austria
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Clinical and Experimental Traumatology, AUVA Research Center, Donaueschingenstraße 13, 1200, Wien, Austria
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, Birzeit, Ramallah, Palestine
| | - Olaf Picker
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
42
|
El-Sherbini SA, Marzouk H, El-Sayed R, Hosam-ElDin S. Etiology of hyperglycemia in critically ill children and the impact of organ dysfunction. Rev Bras Ter Intensiva 2018; 30:286-293. [PMID: 30328985 PMCID: PMC6180474 DOI: 10.5935/0103-507x.20180051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/25/2018] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE This study aimed to study the incidence of stress hyperglycemia in critically ill children and to investigate the etiological basis of the hyperglycemia based on homeostasis model assessment. METHODS This was a prospective cohort study in one of the pediatric intensive care units of Cairo University, including 60 critically ill children and 21 healthy controls. Serum blood glucose, insulin, and C-peptide levels were measured within 24 hours of admission. Homeostasis model assessment was used to assess β-cell function and insulin sensitivity. RESULTS Hyperglycemia was estimated in 70% of patients. Blood glucose values ≥ 180mg/dL were associated with a poor outcome. Blood glucose levels were positively correlated with Pediatric Risk for Mortality (PRISM III) score and number of organ dysfunctions (p = 0.019 and p = 0.022, respectively), while insulin levels were negatively correlated with number of organ dysfunctions (r = -0.33, p = 0.01). Homeostasis model assessment revealed that 26 (43.3%) of the critically ill patients had low β-cell function, and 18 (30%) had low insulin sensitivity. Combined pathology was detected in 2 (3.3%) patients only. Low β-cell function was significantly associated with the presence of multi-organ dysfunction; respiratory, cardiovascular, and hematological dysfunctions; and the presence of sepsis. CONCLUSIONS β-Cell dysfunction appeared to be prevalent in our cohort and was associated with multi-organ dysfunction.
Collapse
Affiliation(s)
| | - Huda Marzouk
- Department of Pediatrics, Cairo University - Cairo, Egypt
| | - Riham El-Sayed
- Department of Clinical and Chemical Pathology, Cairo University - Cairo; Egypt
| | | |
Collapse
|
43
|
Kang R, Han S, Lee KW, Kim GS, Choi SJ, Ko JS, Lee SH, Gwak MS. Portland Intensive Insulin Therapy During Living Donor Liver Transplantation: Association with Postreperfusion Hyperglycemia and Clinical Outcomes. Sci Rep 2018; 8:16306. [PMID: 30390037 PMCID: PMC6214899 DOI: 10.1038/s41598-018-34655-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Many liver transplant recipients experience intraoperative hyperglycemia after graft reperfusion. Accordingly, we introduced the Portland intensive insulin therapy (PoIIT) in our practice to better control blood glucose concentration (BGC). We evaluated the effects of PoIIT by comparing with our conventional insulin therapy (CoIT). Of 128 patients who underwent living donor liver transplantation (LDLT) during the phaseout period of CoIT, 89 were treated with the PoIIT and 39 were treated with CoIT. The primary outcome was hyperglycemia (BGC > 180 mg/dL) during the intraoperative postreperfusion phase. The secondary outcomes were postoperative complications such as infection. The incidence of hyperglycemia (22.5% vs. 53.8%, p = 0.001) and prolonged hyperglycemia for >2 hours (7.9% vs. 30.8%, p = 0.002) was significantly lower in PoIIT group than in CoIT group. A mixed linear model further demonstrated that repeatedly measured BGCs were lower in PoIIT group (p < 0.001). The use of PoIIT was significantly associated with decreases in major infections (OR = 0.23 [0.06-0.85], p = 0.028), prolonged mechanical ventilation (OR = 0.29 [0.09-0.89], p = 0.031), and biliary stricture (OR = 0.23 [0.07-0.78], p = 0.018) after adjustments for age, sex, and diabetes mellitus. In conclusion, the PoIIT is effective for maintaining BGC and preventing hyperglycemia during the intraoperative postreperfusion phase of living donor liver transplantation with potential clinical benefits.
Collapse
Affiliation(s)
- RyungA Kang
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sangbin Han
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Kyo Won Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gaab Soo Kim
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Joo Choi
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Justin S Ko
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sang Hyun Lee
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mi Sook Gwak
- Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
44
|
Doctor A, Cholette JM, Remy KE, Argent A, Carson JL, Valentine SL, Bateman ST, Lacroix J. Recommendations on RBC Transfusion in General Critically Ill Children Based on Hemoglobin and/or Physiologic Thresholds From the Pediatric Critical Care Transfusion and Anemia Expertise Initiative. Pediatr Crit Care Med 2018; 19:S98-S113. [PMID: 30161064 PMCID: PMC6125789 DOI: 10.1097/pcc.0000000000001590] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To present the consensus recommendations and supporting literature for RBC transfusions in general critically ill children from the Pediatric Critical Care Transfusion and Anemia Expertise Initiative. DESIGN Consensus conference series of international, multidisciplinary experts in RBC transfusion management of critically ill children. METHODS The panel of 38 experts developed evidence-based and, when evidence was lacking, expert-based recommendations and research priorities regarding RBC transfusions in critically ill children. The subgroup on RBC transfusion in general critically ill children included six experts. Electronic searches were conducted using PubMed, EMBASE, and Cochrane Library databases from 1980 to May 30, 2017, using a combination of keywords to define concepts of RBC transfusion and critically ill children. Recommendation consensus was obtained using the Research and Development/UCLA Appropriateness Method. The results were summarized using the Grading of Recommendations Assessment, Development, and Evaluation method. RESULTS Three adjudicators reviewed 4,399 abstracts; 71 papers were read, and 17 were retained. Three papers were added manually. The general Transfusion and Anemia Expertise Initiative subgroup developed, and all Transfusion and Anemia Expertise Initiative members voted on two good practice statements, six recommendations, and 11 research questions; in all instances, agreement was reached (> 80%). The good practice statements suggest a framework for RBC transfusion in PICU patients. The good practice statements and recommendations focus on hemoglobin as a threshold and/or target. The research questions focus on hemoglobin and physiologic thresholds for RBC transfusion, alternatives, and risk/benefit ratio of transfusion. CONCLUSIONS Transfusion and Anemia Expertise Initiative developed pediatric-specific good practice statements and recommendations regarding RBC transfusion management in the general PICU population, as well as recommendations to guide future research priorities. Clinical recommendations emphasized relevant hemoglobin thresholds, and research recommendations emphasized a need for further understanding of physiologic thresholds, alternatives to RBC transfusion, and hemoglobin thresholds in populations with limited pediatric literature.
Collapse
Affiliation(s)
- Allan Doctor
- Allan Doctor, MD, Professor of Pediatrics and Biochemistry, Division of Pediatric Critical Care Medicine, Washington University in St. Louis, St. Louis Children’s Hospital, United States
| | - Jill M. Cholette
- Jill M. Cholette, MD, Associate Professor of Pediatrics, Medical Director, Pediatric Cardiac Care Center, University of Rochester, Golisano Children’s Hospital, United States
| | - Kenneth E. Remy
- Kenneth E. Remy, MD, MHSc, Assistant Professor of Pediatrics. Division of Pediatric Critical Care Medicine, Washington University in St. Louis, St. Louis Children’s Hospital, United States
| | - Andrew Argent
- Andrew Argent, MD, Professor of Pediatrics, Medical Director, Paediatric Intensive Care, University of Cape Town and Red Cross War Memorial Children’s Hospital, South Africa
| | - Jeffrey L. Carson
- Jeffrey L. Carson, MD, Provost – New Brunswick Distinguished Professor of Medicine, Richard C. Reynolds Chair of General Internal Medicine; Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, United States
| | - Stacey L. Valentine
- Stacey L. Valentine, MD, MPH, Assistant Professor of Pediatrics, University of Massachusetts Medical School, United States
| | - Scot T. Bateman
- Scot T. Bateman, MD, Professor of Pediatrics, Division Chief of Pediatric Critical Care Medicine, University of Massachusetts Medical School, United States
| | - Jacques Lacroix
- Jacques Lacroix, MD, Professor of Pediatrics, Division of Pediatric Critical Care, Department of Pediatrics, Sainte-Justine Hospital, Université de Montréal, Canada
| | | | | | | |
Collapse
|
45
|
Husain H, Latief U, Ahmad R. Pomegranate action in curbing the incidence of liver injury triggered by Diethylnitrosamine by declining oxidative stress via Nrf2 and NFκB regulation. Sci Rep 2018; 8:8606. [PMID: 29872102 PMCID: PMC5988808 DOI: 10.1038/s41598-018-26611-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/15/2018] [Indexed: 01/14/2023] Open
Abstract
Unearthing and employment of healthy substitutes is now in demand to tackle a number of diseases due to the excessive repercussions of synthetic drugs. In this frame of reference pomegranate juice (PGJ) is a boon comprising of anthocyanins and hydrolysable tannins, known for its anti-oxidant and anti-inflammatory properties. Despite various documented roles of PGJ, there are no studies on antifibrotic potential in NDEA-induced mammalian liver fibrotic model. Hepatic fibrosis in rats was induced by the intra-peritoneal injection of NDEA (10 mlkg-1b.wt. of 1% NDEA) in two weeks. Biochemical, histopathological and ultra-structural studies were carried out on control, fibrotic and treated rats. The liver function indices and LPO were increased significantly by intoxication of NDEA. The antioxidant status was disturbed with the decrease in SOD, GST and catalase in the liver and membrane-ATPases as well. Histopathological observations by H&E, M&T, picro-sirius and ultra-structural scrutiny by SEM and TEM indicated liver damage and increase in COX2 and α-SMA by NDEA which was successfully rectified by the supplementation of PGJ. PGJ abrogates liver fibrosis instigated by NDEA in Wistar rats by declining oxidative stress via regulation of Nrf2 and NFκB. These findings point towards pomegranate as a potential and efficacious therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Hadiya Husain
- Biochemical and Clinical Genetics Lab, Section of Genetics, Department of Zoology, Faculty of Life Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Uzma Latief
- Biochemical and Clinical Genetics Lab, Section of Genetics, Department of Zoology, Faculty of Life Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Riaz Ahmad
- Biochemical and Clinical Genetics Lab, Section of Genetics, Department of Zoology, Faculty of Life Science, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
46
|
Abstract
Circulatory shock is defined as an imbalance between tissue oxygen supply and demand, and mostly results from a loss of blood volume, cardiac pump failure, and/or reduction of vasomotor tone. The clinical hallmarks of circulatory shock are arterial hypotension and lactate acidosis. Since the degree and duration of hypotension are major determinants of outcome, vasopressor administration represents a cornerstone therapy to treat these patients. Current guidelines recommend the use of catecholamines as the drug of first choice. However, apart from their hemodynamic effects, which depend on the different receptor profile, receptor affinity, receptor density, and the relative potency of the individual molecule, catecholamines have numerous other biological effects as a result of the ubiquitous presence of their receptors. In shock states, catecholamines aggravate hypermetabolism by promoting hyperglycemia and hyperlactatemia, and further increase oxygen demands, which can contribute to further organ damage. In the mitochondria, catecholamines may promote mitochondrial uncoupling, and aggravate oxidative stress, thereby contributing to the progression of mitochondrial dysfunction. Immunological side effects have also gained specific attention. Although both pro- and anti-inflammatory effects have been described, current evidence strongly indicates an immunosuppressive effect, thereby making patients potentially vulnerable to secondary infections. Catecholamines may not only decrease splanchnic perfusion due to their vasoconstrictor properties, but can also directly impair gastrointestinal motility. This article reviews the non-hemodynamic effects of different catecholamines, both under physiologic and pathophysiologic conditions, with a special focus on energy metabolism, mitochondrial function, immune response, and the gastrointestinal system.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW We discuss key studies that have set the scene for the debate on the efficacy and safety of tight glycemic control in critically ill patients, highlighting important differences among them, and describe the ensuing search towards strategies for safer glucose control. RECENT FINDINGS Differences in level of glycemic control, glucose measurement and insulin administration, expertise, and nutritional management may explain the divergent outcomes of the landmark studies on tight glycemic control in critical illness. Regarding strategies towards safer glucose control, several computerized algorithms have shown promise, but lack validation in adequately powered outcome studies. Real-time continuous glucose monitoring and closed loop blood glucose control systems are not up to the task yet due to technical challenges, though recent advances are promising. Alternatives for insulin have only been investigated in small feasibility studies. Severe hyperglycemia in critically ill patients generally is not tolerated anymore, but the optimal blood glucose target may depend on the specific patient and logistic context.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
48
|
Chen GD, Zhang JL, Chen YT, Zhang JX, Wang T, Zeng QY. Insulin alleviates mitochondrial oxidative stress involving upregulation of superoxide dismutase 2 and uncoupling protein 2 in septic acute kidney injury. Exp Ther Med 2018; 15:3967-3975. [PMID: 29563990 PMCID: PMC5858081 DOI: 10.3892/etm.2018.5890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/19/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the effects and mechanisms of insulin on mitochondrial oxidative stress in septic acute kidney injury (AKI). Male Sprague Dawley rats were divided randomly into four groups: Control group, sham surgery group, cecal ligation and puncture (CLP) group, and CLP plus insulin group. Blood specimens and kidney tissues were obtained at 12 and 24 h after surgery as separate experiments. Analyses of histology and indicators of renal injury [blood urea nitrogen (BUN) and serum creatinine (CRE) and neutrophil gelatinase-associated lipocalin (NGAL)], mitochondrial function [adenosine triphosphate (ATP) and mitochondrial membrane potential (MMP)], oxidative stress [inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS) and nitric oxide (NO)], endogenous antioxidant systems [superoxide dismutase (SOD) and glutathione (GSH)] as well as the expression of uncoupling protein (UCP), PINK1 protein (a major mediator of mitophagy), PGC1α protein (a major regulator of mitochondrial biogenesis) were performed. Compared with CLP group, the CLP plus insulin group had milder histological damage, higher levels of ATP and MMP as well as lower levels of BUN, serum CRE and NGAL, intrarenal iNOS, mitochondrial ROS and total NO. Moreover, the CLP plus insulin group demonstrated increased expression of SOD2 and UCP2. In contrast, insulin administration suppressed mitophagy meanwhile did not upregulate total GSH and induce mitochondrial biogenesis following CLP. These findings indicated that the upregulation of SOD2 and UCP2 may be involved in insulin protecting against mitochondrial oxidative stress in septic AKI.
Collapse
Affiliation(s)
- Guang-Dao Chen
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of Pediatrics, Central Hospital of Panyu District, Guangzhou, Guangdong 511400, P.R. China
| | - Jun-Liang Zhang
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of Neonatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yi-Ting Chen
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ju-Xing Zhang
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Tao Wang
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qi-Yi Zeng
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
49
|
Thiessen SE, Derese I, Derde S, Dufour T, Pauwels L, Bekhuis Y, Pintelon I, Martinet W, Van den Berghe G, Vanhorebeek I. The Role of Autophagy in Critical Illness-induced Liver Damage. Sci Rep 2017; 7:14150. [PMID: 29074879 PMCID: PMC5658339 DOI: 10.1038/s41598-017-14405-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which activates the unfolded protein response (UPR), mediate critical illness-induced organ failure, often affecting the liver. Autophagy is known to alleviate both and suppressed or insufficiently activated autophagy in prolonged illness has shown to associate with organ failure. Whether insufficient autophagy contributes to organ failure during critical illness by affecting these underlying mechanisms is incompletely understood. In this study, we investigated whether the inability to acutely activate hepatic autophagy during critical illness aggravates liver damage by increasing hepatic mitochondrial dysfunction and affecting the UPR. In a mouse model of critical illness, induced by surgery and sepsis, we investigated the impact of inactivating hepatic autophagy on markers of hepatic mitochondrial function, the UPR and liver damage in acute (1 day) and prolonged (3 days) critical illness. Hepatic autophagy inactivation during critical illness acutely worsened mitochondrial dysfunction and time-dependently modulated the hepatic UPR. Furthermore, autophagy inactivation aggravated markers of liver damage on both time points. In conclusion, the inability to acutely activate autophagy in liver during critical illness worsened hepatic mitochondrial damage and dysfunction, partially prohibited acute UPR activation and aggravated liver damage, indicating that autophagy is crucial in alleviating critical illness-induced organ failure.
Collapse
Affiliation(s)
- Steven E Thiessen
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Thomas Dufour
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Lies Pauwels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Youri Bekhuis
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, 2610, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, 2610, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium
| | - Ilse Vanhorebeek
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
50
|
Chandhok G, Lazarou M, Neumann B. Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc 2017; 93:933-949. [PMID: 29068134 PMCID: PMC6446723 DOI: 10.1111/brv.12378] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 12/12/2022]
Abstract
Mitochondria are highly dynamic organelles that constantly migrate, fuse, and divide to regulate their shape, size, number, and bioenergetic function. Mitofusins (Mfn1/2), optic atrophy 1 (OPA1), and dynamin-related protein 1 (Drp1), are key regulators of mitochondrial fusion and fission. Mutations in these molecules are associated with severe neurodegenerative and non-neurological diseases pointing to the importance of functional mitochondrial dynamics in normal cell physiology. In recent years, significant progress has been made in our understanding of mitochondrial dynamics, which has raised interest in defining the physiological roles of key regulators of fusion and fission and led to the identification of additional functions of Mfn2 in mitochondrial metabolism, cell signalling, and apoptosis. In this review, we summarize the current knowledge of the structural and functional properties of Mfn2 as well as its regulation in different tissues, and also discuss the consequences of aberrant Mfn2 expression.
Collapse
Affiliation(s)
- Gursimran Chandhok
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael Lazarou
- Department of Biochemistry and Molecular Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Brent Neumann
- Department of Anatomy and Developmental Biology, and Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|