1
|
Yu L, Shi H, Gao T, Xu W, Qian H, Jiang J, Yang X, Zhang X. Exomeres and supermeres: Current advances and perspectives. Bioact Mater 2025; 50:322-343. [PMID: 40276541 PMCID: PMC12020890 DOI: 10.1016/j.bioactmat.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025] Open
Abstract
Recent studies have revealed a great diversity and complexity in extracellular vesicles and particles (EVPs). The developments in techniques and the growing awareness of the particle heterogeneity have spurred active research on new particle subsets. Latest discoveries highlighted unique features and roles of non-vesicular extracellular nanoparticles (NVEPs) as promising biomarkers and targets for diseases. These nanoparticles are distinct from extracellular vesicles (EVs) in terms of their smaller particle sizes and lack of a bilayer membrane structure and they are enriched with diverse bioactive molecules particularly proteins and RNAs, which are widely reported to be delivered and packaged in exosomes. This review is focused on the two recently identified membraneless NVEPs, exomeres and supermeres, to provide an overview of their biogenesis and contents, particularly those bioactive substances linked to their bio-properties. This review also explains the concepts and characteristics of these nanoparticles, to compare them with other EVPs, especially EVs, as well as to discuss their isolation and identification methods, research interests, potential clinical applications and open questions.
Collapse
Affiliation(s)
- Li Yu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Shi
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, 20520, Finland
| | - Tingxin Gao
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Wenrong Xu
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Clinical Laboratory, School of Medicine, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Institute of Cancer, Affiliated Aoyang Hospital of Jiangsu University, 279 Jingang Road, Zhangjiagang, Suzhou, 215600, Jiangsu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Amiral J, Ferol R. Update on the measurement of "soluble angiotensin converting enzyme 2" in plasma and its emerging significance as a novel biomarker of cardiovascular and kidney diseases: A concise commentary. Transfus Apher Sci 2025; 64:104090. [PMID: 39923730 DOI: 10.1016/j.transci.2025.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Angiotensin Converting Enzyme 2 has emerged as a major cell-surface enzyme receptor for controlling the Renin-Angiotensin-Aldosterone-System. The SARS-Cov-2 pandemics has focused a major interest on that cell-surface receptor. It is the virus entry door for cell infection, and when inside it can replicate and lead to cell destruction. In some physio-pathological conditions, ADAM 17 and TMPSSR2 enzymes can cleave ACE2 on the cell surface and release its extra-cellular domain into the blood circulation. Measurement of this soluble protein then becomes possible, preferentially in plasma, but also in serum. Clinical studies have shown that Soluble ACE2 is an emerging biomarker for cardiovascular and kidney diseases and it could be of prognostic value for heart failure and kidney dysfunctions. In Covid-19 its diagnostic value is controversial, and the various studies lead to different conclusions. Many laboratory assays have been reported for the measurement of this biomarker. They concern enzymatic assays, aptamer methods, or immunoassays, either chemiluminescent or ELISA. Normal and pathological plasma concentrations reported with the various assays yet lack standardization and are very heterogenous. Recently introduced immunoassays tend to yield more compliant results despite variations due to the assay design and calibration, or the antibody targeted epitopes and reactivity. This article reports an ELISA designed with affinity purified rabbit polyclonal antibodies, obtained with recombinant ACE2 and calibrated with the recombinant protein in plasma. This assay has a global reactivity with the various ACE2 protein epitopes. Assay performance characteristics, and values measured in normal populations are presented. Availability of optimized ELISAs can contribute to a better harmonization of sACE2 measurements in plasma, and confirm its clinical significance as biomarker.
Collapse
Affiliation(s)
- Jean Amiral
- Scientific Hemostasis, Franconville, France.
| | - Rémy Ferol
- Scientific Hemostasis, Franconville, France
| |
Collapse
|
3
|
Michaëlsson K, Lemming EW, Larsson SC, Höijer J, Melhus H, Svennblad B, Baron JA, Wolk A, Byberg L. Non-fermented and fermented milk intake in relation to risk of ischemic heart disease and to circulating cardiometabolic proteins in swedish women and men: Two prospective longitudinal cohort studies with 100,775 participants. BMC Med 2024; 22:483. [PMID: 39511582 PMCID: PMC11546556 DOI: 10.1186/s12916-024-03651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND The effect of milk on the risk of ischemic heart disease (IHD) and acute myocardial infarction (MI) is unclear. We aimed to examine the association between non-fermented and fermented milk consumption on these endpoints and investigate the relationship between milk intake and cardiometabolic-related proteins in plasma. METHODS Our study is based on two Swedish prospective cohort studies that included 59,998 women and 40,777 men without IHD or cancer at baseline who provided repeated measures of diet and lifestyle factors and plasma proteomics data in two subcohorts. Through registry linkage, 17,896 cases with IHD were documented during up to 33 years of follow-up, including 10,714 with MI. We used time-updated multivariable Cox regression analysis to examine non-fermented or fermented milk intake with time to IHD or MI. Using high-throughput multiplex immunoassays, 276 cardiometabolic plasma proteins were measured in two subcohorts. We applied multivariable-adjusted regression models using a discovery-replication design to examine protein associations with increasing consumption of non-fermented or fermented milk. RESULTS The results for non-fermented milk differed by sex (p-value for interaction = 0.01). In women, we found a pattern of successively greater risk of IHD and MI at non-fermented milk intake levels higher than 1.5 glasses/day. Compared with an intake of 0.5 glass/day (100 mL/day), non-fermented milk intake of 2 glasses/day in women conferred a multivariable-adjusted hazard ratio (HR) of 1.05 (95% CI 1.01-1.08) for IHD, an intake of 3 glasses/day an HR of 1.12 (95% CI 1.06-1.19), and an intake of 4 glasses/day an HR of 1.21 (95% CI 1.10-1.32). Findings were similar for whole, medium-fat, and low-fat milk. We did not detect higher risks of IHD with increasing milk intakes in men. Fermented milk intake was unrelated to the risk of IHD or MI in either sex. Increasing non-fermented milk intake in women was robustly associated with a higher concentration of plasma ACE2 and a lower concentration of FGF21. CONCLUSIONS We show a positive association between high amounts of non-fermented milk intake and IHD in women but not men. We suggest metabolic pathways related to ACE2 and FGF21 potentially underlie the association.
Collapse
Affiliation(s)
- Karl Michaëlsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Eva Warensjö Lemming
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Susanna C Larsson
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Höijer
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Håkan Melhus
- Clinical Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Bodil Svennblad
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - John A Baron
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Alicja Wolk
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Liisa Byberg
- Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Vallée A. The impact of the COVID-19 pandemic on the socioeconomic gradient of hypertension. J Public Health Policy 2024; 45:413-430. [PMID: 38831023 DOI: 10.1057/s41271-024-00491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
The COVID-19 pandemic has brought into sharp focus the impact of socioeconomic factors on hypertension outcomes. This review examines the implications of the pandemic on the socioeconomic gradient of hypertension and explores the physiological and pathophysiological processes underlying this relationship. Changes in socioeconomic factors have disproportionately affected individuals with lower socioeconomic status, leading to adverse hypertension outcomes. The pandemic-related stressors, coupled with social isolation and disrupted daily routines, have contributed to elevated stress levels among individuals, particularly those with lower socioeconomic status. Equitable access to healthcare, enhancing health literacy and patient empowerment, and addressing social determinants of health are essential components of hypertension management strategies. By recognizing the specific challenges faced by individuals with lower socioeconomic status and implementing targeted interventions, public health efforts can help reduce the socioeconomic gradient of hypertension.
Collapse
Affiliation(s)
- Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, 92150, Suresnes, France.
| |
Collapse
|
5
|
Aguedo J, Vojs M, Vrška M, Nemcovic M, Pakanova Z, Dragounova KA, Romanyuk O, Kromka A, Varga M, Hatala M, Marton M, Tkac J. What Are the Key Factors for the Detection of Peptides Using Mass Spectrometry on Boron-Doped Diamond Surfaces? NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1241. [PMID: 39120346 PMCID: PMC11314266 DOI: 10.3390/nano14151241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
We investigated the use of boron-doped diamond (BDD) with different surface morphologies for the enhanced detection of nine different peptides by matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). For the first time, we compared three different nanostructured BDD film morphologies (Continuous, Nanograss, and Nanotips) with differently terminated surfaces (-H, -O, and -F) to commercially available Ground Steel plates. All these surfaces were evaluated for their effectiveness in detecting the nine different peptides by MALDI-MS. Our results demonstrated that certain nanostructured BDD surfaces exhibited superior performance for the detection of especially hydrophobic peptides (e.g., bradykinin 1-7, substance P, and the renin substrate), with a limit of detection of down to 2.3 pM. Further investigation showed that hydrophobic peptides (e.g., bradykinin 1-7, substance P, and the renin substrate) were effectively detected on hydrogen-terminated BDD surfaces. On the other hand, the highly acidic negatively charged peptide adrenocorticotropic hormone fragment 18-39 was effectively identified on oxygen-/fluorine-terminated BDD surfaces. Furthermore, BDD surfaces reduced sodium adduct contamination significantly.
Collapse
Affiliation(s)
- Juvissan Aguedo
- Institute of Chemistry, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Marian Vojs
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 841 04 Bratislava, Slovakia; (M.V.)
| | - Martin Vrška
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 841 04 Bratislava, Slovakia; (M.V.)
| | - Marek Nemcovic
- Centre of Excellence for Glycomic, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Zuzana Pakanova
- Centre of Excellence for Glycomic, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | | | - Oleksandr Romanyuk
- FZU—Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic (A.K.)
| | - Alexander Kromka
- FZU—Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic (A.K.)
| | - Marian Varga
- Institute of Electrical Engineering, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Michal Hatala
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37 Bratislava, Slovakia
| | - Marian Marton
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, 841 04 Bratislava, Slovakia; (M.V.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| |
Collapse
|
6
|
Zhang Y, Xu F, Wang T, Han Z, Shang H, Han K, Zhu P, Gao S, Wang X, Xue Y, Huang C, Chen Y, Liu G. Shared genetics and causal association between plasma levels of SARS-CoV-2 entry receptor ACE2 and Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14873. [PMID: 39056224 PMCID: PMC11273102 DOI: 10.1111/cns.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the highest risk of COVID-19 infection, hospitalization, and mortality. However, it remains largely unclear about the link between AD and COVID-19 outcomes. ACE2 is an entry receptor for SARS-CoV-2. Circulating ACE2 is a novel biomarker of death and associated with COVID-19 outcomes. METHODS Here, we explored the shared genetics and causal association between AD and plasma ACE2 levels using large-scale genome-wide association study, gene expression, expression quantitative trait loci, and high-throughput plasma proteomic profiling datasets. RESULTS We found a significant causal effect of genetically increased circulating ACE2 on increased risk of AD. Cross-trait association analysis identified 19 shared genetic variants, and three variants rs3104412, rs2395166, and rs3135344 at chromosome 6p21.32 were associated with COVID-19 infection, hospitalization, and severity. We mapped 19 variants to 117 genes, which were significantly upregulated in lung, spleen, and small intestine, downregulated in brain tissues, and involved in immune system, immune disease, and infectious disease pathways. The plasma proteins corresponding to LST1, AGER, TNXB, and APOC1 were predominantly associated with COVID-19 infection, ventilation, and death. CONCLUSION Together, our findings suggest the shared genetics and causal association between AD and plasma ACE2 levels, which may partially explain the link between AD and COVID-19.
Collapse
Affiliation(s)
- Yan Zhang
- Department of PathologyThe Affiliated Hospital of Weifang Medical UniversityWeifangChina
| | - Fang Xu
- Department of Neurology, Xuanwu Hospital, National Center for Neurological DisordersCapital Medical UniversityBeijingChina
| | - Tao Wang
- Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Zhifa Han
- Center of Respiratory Medicine, China–Japan Friendship Hospital, National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Acadamy of Medical Sciences, National Clinical Research Center for Respiratory DiseasesBeijingChina
| | - Hong Shang
- Department of NeurologyThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Kevin Han
- Department of StatisticsStanford UniversityStanfordCaliforniaUSA
| | - Ping Zhu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
| | - Xiaojie Wang
- Department of NeurologyShenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Yanli Xue
- School of Biomedical EngineeringCapital Medical UniversityBeijingChina
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacao SARChina
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public HealthWannan Medical CollegeWuhuChina
- Institute of Chronic Disease Prevention and ControlWannan Medical CollegeWuhuChina
| | - Guiyou Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijingChina
- Department of Epidemiology and Biostatistics, School of Public HealthWannan Medical CollegeWuhuChina
- Institute of Chronic Disease Prevention and ControlWannan Medical CollegeWuhuChina
- Beijing Key Laboratory of Hypoxia Translational Medicine, National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu HospitalCapital Medical UniversityBeijingChina
- Taishan Vocational College of NursingTaianChina
- Brain HospitalShengli Oilfield Central HospitalDongyingChina
| |
Collapse
|
7
|
Prato M, Tiberti N, Mazzi C, Gobbi F, Piubelli C, Longoni SS. The Renin-Angiotensin System (RAS) in COVID-19 Disease: Where We Are 3 Years after the Beginning of the Pandemic. Microorganisms 2024; 12:583. [PMID: 38543635 PMCID: PMC10975343 DOI: 10.3390/microorganisms12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.
Collapse
Affiliation(s)
- Marco Prato
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Federico Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
8
|
Bouillet L, Deroux A, Benmarce M, Guérin C, Bouvet L, Garnier O, Martin DK, Vilgrain I. Molecular Mechanisms of Endothelialitis in SARS-CoV-2 Infection: Evidence for VE-Cadherin Cleavage by ACE2. Int J Mol Sci 2023; 24:12525. [PMID: 37569899 PMCID: PMC10419376 DOI: 10.3390/ijms241512525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Long COVID-19 syndrome appears after Severe Acute Respiratory Syndrome-Corona Virus (SARS-CoV-2) infection with acute damage to microcapillaries, microthrombi, and endothelialitis. However, the mechanisms involved in these processes remain to be elucidated. All blood vessels are lined with a monolayer of endothelial cells called vascular endothelium, which provides a the major function is to prevent coagulation. A component of endothelial cell junctions is VE-cadherin, which is responsible for maintaining the integrity of the vessels through homophilic interactions of its Ca++-dependent adhesive extracellular domain. Here we provide the first evidence that VE-cadherin is a target in vitro for ACE2 cleavage because its extracellular domain (hrVE-ED) contains two amino acid sequences for ACE2 substrate recognition at the positions 256P-F257 and 321PMKP-325L. Indeed, incubation of hrVE-ED with the active ectopeptidase hrACE2 for 16 hrs in the presence of 10 μM ZnCl2 showed a dose-dependent (from 0.2 ng/μL to 2 ng/μL) decrease of the VE-cadherin immunoreactive band. In vivo, in the blood from patients having severe COVID-19 we detected a circulating form of ACE2 with an apparent molecular mass of 70 kDa, which was barely detectable in patients with mild COVID-19. Of importance, in the patients with severe COVID-19 disease, the presence of three soluble fragments of VE-cadherin (70, 62, 54 kDa) were detected using the antiEC1 antibody while only the 54 kDa fragment was present in patients with mild disease. Altogether, these data clearly support a role for ACE2 to cleave VE-cadherin, which leads to potential biomarkers of SARS-CoV-2 infection related with the vascular disease in "Long COVID-19".
Collapse
Affiliation(s)
- Laurence Bouillet
- University Grenoble Alpes, CNRS, TIMC-IMAG/T-RAIG (UMR 5525), 38000 Grenoble, France; (L.B.)
- Grenoble Hospital Grenoble Alpes (CHUGA), University Grenoble Alpes, 38000 Grenoble, France;
- Internal Medicine, University Hospital Centre Grenoble Alpes, CEDEX 9, 38043 Grenoble, France;
| | - Alban Deroux
- Grenoble Hospital Grenoble Alpes (CHUGA), University Grenoble Alpes, 38000 Grenoble, France;
| | - Meryem Benmarce
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), 38000 Grenoble, France (D.K.M.)
| | - Chloé Guérin
- Internal Medicine, University Hospital Centre Grenoble Alpes, CEDEX 9, 38043 Grenoble, France;
- University Grenoble Alpes, INSERM U13, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Laboratory of Biosciences et Bioingénierie Pour la Santé (BGE)-Biomics, 38000 Grenoble, France
| | - Laura Bouvet
- University Grenoble Alpes, CNRS, TIMC-IMAG/T-RAIG (UMR 5525), 38000 Grenoble, France; (L.B.)
| | - Olivia Garnier
- University Grenoble Alpes, INSERM U13, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Laboratory of Biosciences et Bioingénierie Pour la Santé (BGE)-Biomics, 38000 Grenoble, France
| | - Donald K. Martin
- University Grenoble Alpes, CNRS, TIMC-IMAG/SyNaBi (UMR 5525), 38000 Grenoble, France (D.K.M.)
| | - Isabelle Vilgrain
- University Grenoble Alpes, INSERM U13, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Laboratory of Biosciences et Bioingénierie Pour la Santé (BGE)-Biomics, 38000 Grenoble, France
| |
Collapse
|
9
|
Kei CY, Singh K, Dautov RF, Nguyen TH, Chirkov YY, Horowitz JD. Coronary "Microvascular Dysfunction": Evolving Understanding of Pathophysiology, Clinical Implications, and Potential Therapeutics. Int J Mol Sci 2023; 24:11287. [PMID: 37511046 PMCID: PMC10379859 DOI: 10.3390/ijms241411287] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Until recently, it has been generally held that stable angina pectoris (SAP) primarily reflects the presence of epicardial coronary artery stenoses due to atheromatous plaque(s), while acute myocardial infarction (AMI) results from thrombus formation on ruptured plaques. This concept is now challenged, especially by results of the ORBITA and ISCHEMIA trials, which showed that angioplasty/stenting does not substantially relieve SAP symptoms or prevent AMI or death in such patients. These disappointing outcomes serve to redirect attention towards anomalies of small coronary physiology. Recent studies suggest that coronary microvasculature is often both structurally and physiologically abnormal irrespective of the presence or absence of large coronary artery stenoses. Structural remodelling of the coronary microvasculature appears to be induced primarily by inflammation initiated by mast cell, platelet, and neutrophil activation, leading to erosion of the endothelial glycocalyx. This leads to the disruption of laminar flow and the facilitation of endothelial platelet interaction. Glycocalyx shedding has been implicated in the pathophysiology of coronary artery spasm, cardiovascular ageing, AMI, and viral vasculitis. Physiological dysfunction is closely linked to structural remodelling and occurs in most patients with myocardial ischemia, irrespective of the presence or absence of large-vessel stenoses. Dysfunction includes the impairment of platelet and vascular responsiveness to autocidal coronary vasodilators, such as nitric oxide, prostacyclin, and hydrogen sulphide, and predisposes both to coronary vasoconstriction and to a propensity for microthrombus formation. These findings emphasise the need for new directions in medical therapeutics for patients with SAP, as well as a wide range of other cardiovascular disorders.
Collapse
Affiliation(s)
- Chun Yeung Kei
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
| | - Kuljit Singh
- Department of Medicine, Griffith University, Southport 4111, Australia;
- Gold Coast University Hospital, Gold Coast 4215, Australia
| | - Rustem F. Dautov
- Department of Medicine, University of Queensland, Woolloongabba 4102, Australia;
- Prince Charles Hospital, Brisbane 4032, Australia
| | - Thanh H. Nguyen
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Northern Adelaide Local Health Network, Adelaide 5000, Australia
| | - Yuliy Y. Chirkov
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| | - John D. Horowitz
- Department of Medicine, University of Adelaide, Adelaide 5371, Australia; (C.Y.K.); (T.H.N.); (Y.Y.C.)
- Basil Hetzel Institute for Translational Research, Adelaide 5011, Australia
| |
Collapse
|
10
|
Cocco N, Leibundgut G, Pelliccia F, Cammalleri V, Nusca A, Mangiacapra F, Cocco G, Fanale V, Ussia GP, Grigioni F. Arrhythmias after COVID-19 Vaccination: Have We Left All Stones Unturned? Int J Mol Sci 2023; 24:10405. [PMID: 37373551 DOI: 10.3390/ijms241210405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
SARS-CoV-2 vaccination offered the opportunity to emerge from the pandemic and, thereby, worldwide health, social, and economic disasters. However, in addition to efficacy, safety is an important issue for any vaccine. The mRNA-based vaccine platform is considered to be safe, but side effects are being reported more frequently as more and more people around the world become treated. Myopericarditis is the major, but not the only cardiovascular complication of this vaccine; hence it is important not to underestimate other side effects. We report a case series of patients affected by cardiac arrhythmias post-mRNA vaccine from our clinical practice and the literature. Reviewing the official vigilance database, we found that heart rhythm disorders after COVID vaccination are not uncommon and deserve more clinical and scientific attention. Since the COVID vaccine is the only vaccination related to this side effect, questions arose about whether these vaccines could affect heart conduction. Although the risk-benefit ratio is clearly in favor of vaccination, heart rhythm disorders are not a negligible issue, and there are red flags in the literature about the risk of post-vaccination malignant arrhythmias in some predisposed patients. In light of these findings, we reviewed the potential molecular pathways for the COVID vaccine to impact cardiac electrophysiology and cause heart rhythm disorders.
Collapse
Affiliation(s)
- Nino Cocco
- Department of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Gregor Leibundgut
- University Heart Center, University Hospital Basel, Petersgraben 4, 4053 Basel, Switzerland
| | - Francesco Pelliccia
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00186 Rome, Italy
| | - Valeria Cammalleri
- Department of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Annunziata Nusca
- Department of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Fabio Mangiacapra
- Department of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Giulio Cocco
- Unit of Ultrasound in Internal Medicine, Department of Medicine and Aging Sciences, University of Chieti G d'Annunzio, 65122 Chieti, Italy
| | - Valerio Fanale
- Department of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Gian Paolo Ussia
- Department of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Francesco Grigioni
- Department of Cardiovascular Sciences, Campus Bio-Medico University of Rome, Via Álvaro del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
11
|
Shi H, Zhao H, Zhang W, Wang S. COVID-19 is not a causal risk for miscarriage: evidence from a Mendelian randomization study. J Assist Reprod Genet 2023; 40:333-341. [PMID: 36527564 PMCID: PMC9758471 DOI: 10.1007/s10815-022-02675-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) has caused a global pandemic in the last three years. The lack of reliable evidence on the risk of miscarriage due to COVID-19 has become a concern for patients and obstetricians. We sought to identify rigorous evidence using two-sample Mendelian randomization (MR) analysis. METHODS Seven single-nucleotide polymorphisms (SNPs) associated with COVID-19 were used as instrumental variables to explore causality by two-sample MR. The summary data of genetic variants were obtained from the Genome Wide Association Study (GWAS) among European populations in the UK Biobank and EBI database. Inverse variance weighting (IVW) method was taken as the gold standard for MR results, and other methods were taken as auxiliary. We also performed sensitivity analysis to evaluate the robustness of MR. RESULTS The MR analysis showed there was no clear causal association between COVID-19 and miscarriage in the genetic prediction [OR 0.9981 (95% CI, 0.9872-1.0091), p = 0.7336]. Sensitivity analysis suggested that the MR results were robust [horizontal pleiotropy (MR-Egger, intercept = 0.0001592; se = 0.0023; p = 0.9480)]. CONCLUSIONS The evidence from MR does not support COVID-19 as a causal risk factor for miscarriage in European populations. The small probability of direct placental infection, as well as the inability to stratify the data may explain the results of MR. These findings can be informative for obstetricians when managing women in labor.
Collapse
Affiliation(s)
- Huangcong Shi
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
| | - Hui Zhao
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Department of Obstetrics and Gynecology, Yinan People's Hospital, No.50, Lishan Road, Yinan, Linyi, 276300, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, China
| | - Wei Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, China.
| | - Shan Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, 250021, China.
| |
Collapse
|
12
|
Long Chain N3-PUFA Decreases ACE2 Protein Levels and Prevents SARS-CoV-2 Cell Entry. Int J Mol Sci 2022; 23:ijms232213825. [PMID: 36430303 PMCID: PMC9695276 DOI: 10.3390/ijms232213825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a target of interest for both COVID-19 and cardiovascular disease management. Even though lower ACE2 levels may be beneficial in SARS-CoV-2 infectivity, maintaining the ACE1/ACE2 balance is also crucial for cardiovascular health. So far, reports describing conditions capable of altering ACE2 protein levels, especially via dietary components, are limited. In this study, the effects of omega-3 polyunsaturated fatty acids (n3-PUFA) on the protein levels of ACE1 and ACE2 in rodent tissues, human endothelial and kidney cell lines, and human plasma were examined. The ability of n3-PUFA to affect the entry of the SARS-CoV-2 pseudovirus into cells was also tested. Docosahexaenoic acid (DHA), and in some cases eicosapentaenoic acid (EPA), but not α-linoleic acid (ALA), reduced both ACE1 and ACE2 (non-glycosylated p100 and glycosylated p130 forms) in the heart, aorta, and kidneys of obese rats, as well as in human EA.hy926 endothelial and HEK293 kidney cells. Dietary supplementation with either DHA or ALA had no effect on plasma soluble ACE2 levels in humans. However, treatment of HEK293 cells with 80 and 125 µM DHA for 16 h inhibited the entry of the SARS-CoV-2 pseudovirus. These results strongly suggest that DHA treatment may reduce the ability of SARS-CoV-2 to infect cells via a mechanism involving a decrease in the absolute level of ACE2 protein as well as its glycosylation. Our findings warrant further evaluation of long-chain n3-PUFA supplements as a novel option for restricting SARS-CoV-2 infectivity in the general population.
Collapse
|
13
|
Chemaly M, McAllister R, Peace A, Bjourson AJ, Watterson S, Parton A, Clauss M, McGilligan V. TACE/ADAM17 substrates associate with ACS (Ep-CAM, HB-EGF) and follow-up MACE (TNFR1 and TNFR2). ATHEROSCLEROSIS PLUS 2022; 50:40-49. [PMID: 36643799 PMCID: PMC9833260 DOI: 10.1016/j.athplu.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023]
Abstract
Background and aims TACE/ADAM17 is a membrane bound metalloprotease, which cleaves substrates involved in immune and inflammatory responses and plays a role in coronary artery disease (CAD). We measured TACE and its substrates in CAD patients to identify potential biomarkers within this molecular pathway with potential for acute coronary syndrome (ACS) and major adverse cardiovascular events (MACE) prediction. Methods Blood samples were obtained from consecutive patients (n = 229) with coronary angiographic evidence of CAD admitted with ACS or electively. MACE were recorded after a median 3-year follow-up. Controls (n = 115) had a <10% CAD risk as per the HeartSCORE. TACE and TIMP3 protein and mRNA levels were measured by ELISA and RT-qPCR respectively. TACE substrates were measured using a multiplex proximity extension assay. Results TACE mRNA and cell protein levels (p < 0.01) and TACE substrates LDLR (p = 0.006), TRANCE (p = 0.045), LAG-3 (p < 0.001) and ACE2 (p < 0.001) plasma levels were significantly higher in CAD patients versus controls. TACE inhibitor TIMP3 mRNA levels were significantly lower in CAD patients and tended to be lower in the ACS population (p < 0.05). TACE substrates TNFR1 (OR:3.237,CI:1.514-6.923,p = 0.002), HB-EGF (OR:0.484,CI:0.288-0.813,p = 0.006) and Ep-CAM (OR:0.555,CI:0.327-0.829,p = 0.004) accurately classified ACS patients with HB-EGF and Ep-CAM levels being lower compared to electively admitted patients. TNFR1 (OR:2.317,CI:1.377-3.898,p = 0.002) and TNFR2 (OR:1.902,CI:1.072-3.373,p = 0.028) were significantly higher on admission in those patients who developed MACE within 3 years. Conclusions We demonstrate a possible role of TACE substrates LAG-3, HB-EGF and Ep-CAM in atherosclerotic plaque development and stability. We also underline the importance of measuring TNFR1 and TNFR2 earlier than previously appreciated for MACE prediction. We report an important role of TIMP3 in regulating TACE levels.
Collapse
Affiliation(s)
- Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Solna, Sweden,Corresponding author.
| | - Roisin McAllister
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Aaron Peace
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK,Cardiology Department, Western Health and Social Care Trust, Altnagelvin Hospital, Glenshane Road, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Anthony John Bjourson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Steve Watterson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Andrew Parton
- Ensembl Variation, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, IN, 46202, USA,Centre for Molecular Bioscience, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| |
Collapse
|
14
|
Batlle D, Monteil V, Garreta E, Hassler L, Wysocki J, Chandar V, Schwartz RE, Mirazimi A, Montserrat N, Bader M, Penninger JM. Evidence in favor of the essentiality of human cell membrane-bound ACE2 and against soluble ACE2 for SARS-CoV-2 infectivity. Cell 2022; 185:1837-1839. [PMID: 35623327 PMCID: PMC9134488 DOI: 10.1016/j.cell.2022.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 05/03/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Vanessa Monteil
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden
| | - Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vasuretha Chandar
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Ali Mirazimi
- Karolinska Institute and Karolinska University Hospital, Department of Laboratory Medicine, Unit of Clinical Microbiology, 17177 Stockholm, Sweden; National Veterinary Institute, 751 89 Uppsala, Sweden
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; University of Lübeck, Institute for Biology, Lübeck, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
McGree JM, Hockham C, Kotwal S, Wilcox A, Bassi A, Pollock C, Burrell LM, Snelling T, Jha V, Jardine M, Jones M, for the CLARITY Trial Steering Committee. Controlled evaLuation of Angiotensin Receptor Blockers for COVID-19 respIraTorY disease (CLARITY): statistical analysis plan for a randomised controlled Bayesian adaptive sample size trial. Trials 2022; 23:361. [PMID: 35477480 PMCID: PMC9044378 DOI: 10.1186/s13063-022-06167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
The CLARITY trial (Controlled evaLuation of Angiotensin Receptor Blockers for COVID-19 respIraTorY disease) is a two-arm, multi-centre, randomised controlled trial being run in India and Australia that investigates the effectiveness of angiotensin receptor blockers in addition to standard care compared to placebo (in Indian sites) with standard care in reducing the duration and severity of lung failure in patients with COVID-19. The trial was designed as a Bayesian adaptive sample size trial with regular planned analyses where pre-specified decision rules will be assessed to determine whether the trial should be stopped due to sufficient evidence of treatment effectiveness or futility. Here, we describe the statistical analysis plan for the trial and define the pre-specified decision rules, including those that could lead to the trial being halted. The primary outcome is clinical status on a 7-point ordinal scale adapted from the WHO Clinical Progression scale assessed at day 14. The primary analysis will follow the intention-to-treat principle. A Bayesian adaptive trial design was selected because there is considerable uncertainty about the extent of potential benefit of this treatment.Trial registrationClinicalTrials.gov NCT04394117 . Registered on 19 May 2020Clinical Trial Registry of India CTRI/2020/07/026831Version and revisionsVersion 1.0. No revisions.
Collapse
Affiliation(s)
- J. M. McGree
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
| | - C. Hockham
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, Imperial College London, London, UK
| | - S. Kotwal
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Prince of Wales Hospital, Sydney, Australia
| | - A. Wilcox
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
| | - A. Bassi
- The George Institute for Global Health, New Delhi, India
| | - C. Pollock
- Royal North Shore Hospital, Sydney, Australia
- Kolling Institute of Medical Research, The University of Sydney, Sydney, Australia
| | - L. M. Burrell
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria Australia
| | - T. Snelling
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- The Sydney Children’s Hospitals Network, Westmead, Australia
| | - V. Jha
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, New Delhi, India
| | - M. Jardine
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
- Concord Repatriation General Hospital, Sydney, Australia
| | - M. Jones
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - for the CLARITY Trial Steering Committee
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, Imperial College London, London, UK
- Prince of Wales Hospital, Sydney, Australia
- NHMRC Clinical Trials Centre, The University of Sydney, Sydney, Australia
- The George Institute for Global Health, New Delhi, India
- Royal North Shore Hospital, Sydney, Australia
- Kolling Institute of Medical Research, The University of Sydney, Sydney, Australia
- Department of Medicine, The University of Melbourne, Austin Health, Heidelberg, Victoria Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
- The Sydney Children’s Hospitals Network, Westmead, Australia
- Concord Repatriation General Hospital, Sydney, Australia
| |
Collapse
|
16
|
Kassif Lerner R, Stein Yeshurun M, Hemi R, Zada N, Asraf K, Doolman R, Benoit SW, Santos de Oliveira MH, Lippi G, Henry BM, Pessach IM, Pode Shakked N. The Predictive Value of Serum ACE2 and TMPRSS2 Concentrations in Patients with COVID-19-A Prospective Pilot Study. J Pers Med 2022; 12:jpm12040622. [PMID: 35455738 PMCID: PMC9032089 DOI: 10.3390/jpm12040622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 01/08/2023] Open
Abstract
One of the major challenges for healthcare systems during the Coronavirus-2019 (COVID-19) pandemic was the inability to successfully predict which patients would require mechanical ventilation (MV). Angiotensin-Converting Enzyme 2 (ACE2) and TransMembrane Protease Serine S1 member 2 (TMPRSS2) are enzymes that play crucial roles in SARS-CoV-2 entry into human host cells. However, their predictive value as biomarkers for risk stratification for respiratory deterioration requiring MV has not yet been evaluated. We aimed to evaluate whether serum ACE2 and TMPRSS2 levels are associated with adverse outcomes in COVID-19, and specifically the need for MV. COVID-19 patients admitted to an Israeli tertiary medical center between March--November 2020, were included. Serum samples were obtained shortly after admission (day 0) and again following one week of admission (day 7). ACE2 and TMPRSS2 concentrations were measured with ELISA. Of 72 patients included, 30 (41.6%) ultimately required MV. Serum ACE2 concentrations >7.8 ng/mL at admission were significantly associated with the need for MV (p = 0.036), inotropic support, and renal replacement therapy. In multivariate logistic regression analysis, elevated ACE2 at admission was associated with the need for MV (OR = 7.49; p = 0.014). To conclude, elevated serum ACE2 concentration early in COVID-19 illness correlates with respiratory failure necessitating mechanical ventilation. We suggest that measuring serum ACE2 at admission may be useful for predicting the risk of severe disease.
Collapse
Affiliation(s)
- Reut Kassif Lerner
- Department of Pediatric Intensive Care, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; (R.K.L.); (I.M.P.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
| | - Michal Stein Yeshurun
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Rina Hemi
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- Division of Endocrinology and Metabolism, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Nahid Zada
- Division of Endocrinology and Metabolism, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Keren Asraf
- The Dworman Automated-Mega Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Ram Doolman
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- The Dworman Automated-Mega Laboratory, Sheba Medical Center, Tel Hashomer 52621, Israel;
| | - Stefanie W. Benoit
- Division of Pediatric Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.W.B.); (B.M.H.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37134 Verona, Italy;
| | - Brandon Michael Henry
- Division of Pediatric Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.W.B.); (B.M.H.)
| | - Itai M. Pessach
- Department of Pediatric Intensive Care, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel; (R.K.L.); (I.M.P.)
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
| | - Naomi Pode Shakked
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; (M.S.Y.); (R.H.); (R.D.)
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer 52621, Israel
- Division of Pediatric Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.W.B.); (B.M.H.)
- Correspondence:
| |
Collapse
|
17
|
Theoretical Investigation of the Coronavirus SARS-CoV-2 (COVID-19) Infection Mechanism and Selectivity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072080. [PMID: 35408482 PMCID: PMC9000624 DOI: 10.3390/molecules27072080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
Abstract
The SARS-CoV-2 virus, commonly known as COVID-19, first occurred in December 2019 in Wuhan, Hubei Province, China. Since then, it has become a tremendous threat to human health. With a pandemic threat, it is in the significant interest of the scientific world to establish its method of infection. In this manuscript, we combine knowledge of the infection mechanism with theoretical methods to answer the question of the virus’s selectivity. We proposed a two-stage infection mechanism. In the first step, the virus interacts with the ACE2 receptor, with the “proper strength”. When the interaction is too strong, the virus will remain in an “improper position”; if the interaction is too weak, the virus will “run away” from the cell. We also indicated three residues (positions 30, 31, and 353) located on the ACE2 protein-binding interface, which seems to be crucial for successful infection. Our results indicate that these residues are necessary for the initiation of the infection process.
Collapse
|
18
|
Sun X, Wang H, Hodge H, Wright KN, Ahmad S, Ferrario CM, Groban L. Amplifying effect of chronic lisinopril therapy on diastolic function and the angiotensin-(1-7) Axis by the G1 agonist in ovariectomized spontaneously hypertensive rats. Transl Res 2021; 235:62-76. [PMID: 33915312 DOI: 10.1016/j.trsl.2021.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
G protein-coupled estrogen receptor (GPER) activation by G1 attenuates diastolic dysfunction from estrogen loss, which may be partly due to suppression of angiotensin II pathological actions. We aimed to determine the independent effects of 8 weeks of G1 (100 µg/kg/d, subcutaneous pellet), ACE-inhibition (ACEi; lisinopril 10 mg/kg, drinking water), or combination therapy versus vehicle in the ovariectomized (OVX) spontaneously hypertensive rat (SHR) on cardiac function and morphometrics (echocardiography), serum equilibrium of angiotensins (mass spectroscopy) and cardiac components of the RAS (Western blotting). G1 alone and when combined with ACEi enhanced myocardial relaxation (é: 30 and 17%) and diastolic wall strain (DWS: 76 and 68%) while reducing relative wall thickness (RWT: 20 and 33%) and filling pressures (E/é: 30 and 37%). Cardiac expression levels of Mas receptor (Mas-R) and ACE2 also increased in the presence of G1. Strong antihypertensive effects of lisinopril monotherapy were associated with reductions in RWT, collagen deposition and E/é without overtly altering é or DWS. Chronic ACEi also increased cardiac levels of Mas-R and AT1-R and tilted the circulating RAS toward the formation of Ang-(1-7), which was amplified in the presence of G1. In vitro studies further revealed that an inhibitor to prolyl endopeptidase (PEP), but not to neprilysin, significantly reduced serum Ang-(1-7) levels in G1-treated rats, suggesting that G1 might be increasing Ang-(1-7) formation via PEP. We conclude that activating GPER with G1 augments components of the cardiac RAS and improves diastolic function without lowering blood pressure, and that lisinopril-induced blood pressure control and cardiac alterations in OVX SHR are permissive in facilitating G1 to augment Ang-(1-7) in serum, thereby strengthening its cardioprotective benefits.
Collapse
Affiliation(s)
- Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Hunter Hodge
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Kendra N Wright
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Sarfaraz Ahmad
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina.
| |
Collapse
|
19
|
Hockham C, Kotwal S, Wilcox A, Bassi A, McGree J, Pollock C, Burrell LM, Bathla N, Kunigari M, Rathore V, John M, Lin E, Jenkins C, Ritchie A, McLachlan A, Snelling T, Jones M, Jha V, Jardine M. Protocol for the Controlled evaLuation of Angiotensin Receptor blockers for COVID-19 respIraTorY disease (CLARITY): a randomised controlled trial. Trials 2021; 22:573. [PMID: 34454580 PMCID: PMC8397850 DOI: 10.1186/s13063-021-05521-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/06/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND SARS-CoV-2 binds to membrane-bound angiotensin-converting enzyme 2 (ACE2) which may result in downregulation of membrane-bound ACE2. ACE2 is a key regulator of the renin-angiotensin system (RAS) and is responsible for degrading angiotensin II and thereby counteracting its pro-inflammatory, pro-fibrotic effects mediated through the angiotensin II type 1 receptor (AT1R). As AT1R is directly blocked by angiotensin receptor blockers (ARBs), these agents may offer a safe, low-cost solution for reducing COVID-19 respiratory outcomes. METHODS AND DISCUSSION CLARITY is a pragmatic, adaptive, two-arm, multi-centre, comparative effectiveness phase III randomised controlled trial that examines whether ARBs reduce COVID-19 severity among high-risk patients. Recruiting in India and Australia, the trial will compare treatment with a maximum tolerated daily dose of an ARB to standard of care. Treatment allocation is blinded in India but open-label in Australia due to interruptions to placebo supply in the latter. The primary endpoint is a 7-point ordinal scale of clinical states, ranging from no limitation of activities (category 1) to death (category 7), assessed on day 14. Secondary outcomes include the 7-point scale assessed at day 28 and 28- and 90-day mortality. The design adapts the sample size based on accumulating data via frequent interim analyses and the use of predictive probability to determine whether the current sample size is sufficient or continuing accrual would be futile. The trial commenced recruitment on 18 August 2020. TRIAL REGISTRATION ClinicalTrials.gov, NCT04394117 . Registered on 19 May 2020. Clinical Trial Registry of India: CTRI/2020/07/026831).
Collapse
Affiliation(s)
- Carinna Hockham
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, Imperial College London, London, UK
| | - Sradha Kotwal
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Prince of Wales Hospital, Sydney, Australia
| | - Arlen Wilcox
- The George Institute for Global Health, University of New South Wales, Sydney, Australia.
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia.
| | - Abhinav Bassi
- The George Institute for Global Health, New Delhi, India
| | - James McGree
- Queensland University of Technology, Brisbane, Australia
| | - Carol Pollock
- Royal North Shore Hospital, Sydney, Australia
- Kolling Institute of Medical Research, University of Sydney, Sydney, Australia
| | - Louise M Burrell
- Department of Medicine, The University of Melbourne, Austin Health, Heidelburg, Victoria, Australia
| | - Nikita Bathla
- The George Institute for Global Health, New Delhi, India
| | | | - Vinay Rathore
- All India Institute of Medical Sciences, Raipur, India
| | | | - Enmoore Lin
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Christine Jenkins
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- Concord Repatriation General Hospital, Sydney, Australia
| | - Angus Ritchie
- Concord Repatriation General Hospital, Sydney, Australia
| | - Andrew McLachlan
- Concord Repatriation General Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
| | - Thomas Snelling
- Sydney School of Public Health, University of Sydney, Sydney, Australia
- The Sydney Children's Hospitals Network, Westmead, NSW, Australia
| | - Mark Jones
- Sydney School of Public Health, University of Sydney, Sydney, Australia
| | - Vivekanand Jha
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- The George Institute for Global Health, New Delhi, India
| | - Meg Jardine
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
20
|
Liu LP, Zhang XL, Li J. New perspectives on angiotensin-converting enzyme 2 and its related diseases. World J Diabetes 2021; 12:839-854. [PMID: 34168732 PMCID: PMC8192247 DOI: 10.4239/wjd.v12.i6.839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Since the worldwide outbreak of coronavirus disease 2019, angiotensin-converting enzyme 2 (ACE2) has received widespread attention as the cell receptor of the severe acute respiratory syndrome coronavirus 2 virus. At the same time, as a key enzyme in the renin-angiotensin-system, ACE2 is considered to be an endogenous negative regulator of vasoconstriction, proliferation, fibrosis, and proinflammation caused by the ACE-angiotensin II-angiotensin type 1 receptor axis. ACE2 is now implicated as being closely connected to diabetes, cardiovascular, kidney, and lung diseases, and so on. This review covers the available information on the host factors regulating ACE2 and discusses its role in a variety of pathophysiological conditions in animal models and humans.
Collapse
Affiliation(s)
- Li-Ping Liu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, Hunan Province, China
| | - Xiao-Li Zhang
- TheFifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg 68135, Baden-Württemberg, Germany
| | - Jian Li
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, Hunan Province, China
| |
Collapse
|
21
|
Kaur G, Yogeswaran S, Muthumalage T, Rahman I. Persistently Increased Systemic ACE2 Activity Is Associated With an Increased Inflammatory Response in Smokers With COVID-19. Front Physiol 2021; 12:653045. [PMID: 34122129 PMCID: PMC8194708 DOI: 10.3389/fphys.2021.653045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background: Tobacco smoking is known to be involved in the pathogenesis of several cardiopulmonary diseases. Additionally, smokers are highly susceptible to infectious agents due to weakened immunity. However, the progression of lung injury based on SARS-CoV-2-mediated COVID-19 pathogenesis amongst smokers and those with pre-existing pulmonary diseases is not known. We determined the systemic levels and activity of COVID-19 associated proteins, cytokine/chemokines, and lipid mediators (lipidomics) amongst COVID-19 patients with and without a history of smoking to understand the underlying susceptible factor in the pathogenesis of COVID-19. Methods: We obtained serum from healthy (CoV−), COVID-19 positive (CoV+), and COVID-19 recovered (CoV Rec) subjects with and without a history of smoking. We conducted a Luminex multiplex assay (cytokine levels), LC/MS (eicosanoids or oxylipin panel), and ACE2 enzymatic activity assays on the serum samples to determine the systemic changes in COVID-19 patients. Results: On comparing the levels of serum ACE2 amongst COVID-19 (positive and recovered) patients and healthy controls, we found a pronounced increase in serum ACE2 levels in patients with COVID-19 infection. Furthermore, ACE2 enzyme activity was significantly increased amongst COVID-19 patients with a smoking history. Also, we analyzed the levels of Angiotensin 1–7 (Ang1–7) peptide, the product of enzymatic action of ACE2, in the serum samples. We found significantly high levels of Ang1–7 in the serum of both CoV+ and CoV Rec patients. Our data further demonstrated a smoking-induced increase in serum furin and inflammatory cytokine [IFNγ(p = 0.0836), Eotaxin (p < 0.05), MCP-1 (p < 0.05), and IL-9 (p = 0.0991)] levels in COVID-19 patients as compared to non-smoking controls. Overall, our results show that smoking adversely affects the levels of systemic inflammatory markers and COVID-19 associated proteins, thus suggesting that COVID-19 infection may have severe outcomes amongst smokers.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Shaiesh Yogeswaran
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
22
|
Patel SK, Juno JA, Lee WS, Wragg KM, Hogarth PM, Kent SJ, Burrell LM. Plasma ACE2 activity is persistently elevated following SARS-CoV-2 infection: implications for COVID-19 pathogenesis and consequences. Eur Respir J 2021; 57:13993003.03730-2020. [PMID: 33479113 PMCID: PMC7830336 DOI: 10.1183/13993003.03730-2020] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/03/2021] [Indexed: 12/02/2022]
Abstract
Coronavirus disease 2019 (COVID-19) causes persistent endothelial inflammation, lung, cardiovascular, kidney and neurological complications, and thromboembolic phenomena of unclear pathogenesis [1]. Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) utilises the catalytic site of full-length membrane-bound angiotensin converting enzyme 2 (ACE2) for host cell entry [2], which is thought to downregulate membrane-bound ACE2, and thus contribute to ongoing inflammation due to loss of a degradative pathway for angiotensin II. In healthy individuals, ACE2 exists primarily in its membrane-bound form with very low levels of the catalytically active ectodomain of ACE2 present in the circulation [3]. However, in patients with cardiovascular disease, there is increased “shedding” of ACE2, and higher circulating levels are associated with downregulation of membrane-bound ACE2 [4]. Plasma ACE2 activity is persistently elevated in patients after COVID-19 infection. Larger studies are needed to determine if this identifies people at risk of prolonged illness following COVID-19.https://bit.ly/2XQlrYF
Collapse
Affiliation(s)
- Sheila K Patel
- Dept of Medicine, Austin Health, University of Melbourne, Melbourne, Australia.,Contributed equally
| | - Jennifer A Juno
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,Contributed equally
| | - Wen Shi Lee
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Kathleen M Wragg
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - P Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - Stephen J Kent
- Dept of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.,S.J. Kent and L.M. Burrell contributed equally to this article as lead authors and supervised the work
| | - Louise M Burrell
- Dept of Medicine, Austin Health, University of Melbourne, Melbourne, Australia .,S.J. Kent and L.M. Burrell contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
23
|
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) associates with a considerable high rate of mortality and represents currently the most important concern in global health. The risk of more severe clinical manifestation of COVID-19 is higher in males and steeply raised with age but also increased by the presence of chronic comorbidities. Among the latter, early reports suggested that arterial hypertension associates with higher susceptibility to SARS-CoV-2 infection, more severe course and increased COVID-19-related deaths. Furthermore, experimental studies suggested that key pathophysiological hypertension mechanisms, such as activation of the renin-angiotensin system (RAS), may play a role in COVID-19. In fact, ACE2 (angiotensin-converting-enzyme 2) is the pivotal receptor for SARS-CoV-2 to enter host cells and provides thus a link between COVID-19 and RAS. It was thus anticipated that drugs modulating the RAS including an upregulation of ACE2 may increase the risk for infection with SARS-CoV-2 and poorer outcomes in COVID-19. Since the use of RAS-blockers, ACE inhibitors or angiotensin receptor blockers, represents the backbone of recommended antihypertensive therapy and intense debate about their use in the COVID-19 pandemic has developed. Currently, a direct role of hypertension, independent of age and other comorbidities, as a risk factor for the SARS-COV-2 infection and COVID-19 outcome, particularly death, has not been established. Similarly, both current experimental and clinical studies do not support an unfavorable effect of RAS-blockers or other classes of first line blood pressure lowering drugs in COVID-19. Here, we review available data on the role of hypertension and its management on COVID-19. Conversely, some aspects as to how the COVID-19 affects hypertension management and impacts on future developments are also briefly discussed. COVID-19 has and continues to proof the critical importance of hypertension research to address questions that are important for global health.
Collapse
Affiliation(s)
- Carmine Savoia
- Clinical and Molecular Medicine Department, Division of Cardiology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy (C.S., M.V.)
| | - Massimo Volpe
- Clinical and Molecular Medicine Department, Division of Cardiology, Sant' Andrea Hospital, Sapienza University of Rome, Rome, Italy (C.S., M.V.)
| | - Reinhold Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institut für Klinische Pharmakologie und Toxikologie (R.K.)
| |
Collapse
|
24
|
Gressens SB, Leftheriotis G, Dussaule JC, Flamant M, Levy BI, Vidal-Petiot E. Controversial Roles of the Renin Angiotensin System and Its Modulators During the COVID-19 Pandemic. Front Physiol 2021; 12:624052. [PMID: 33692701 PMCID: PMC7937723 DOI: 10.3389/fphys.2021.624052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022] Open
Abstract
Since December 2019, the coronavirus 2019 (COVID-19) pandemic has rapidly spread and overwhelmed healthcare systems worldwide, urging physicians to understand how to manage this novel infection. Early in the pandemic, more severe forms of COVID-19 have been observed in patients with cardiovascular comorbidities, who are often treated with renin-angiotensin aldosterone system (RAAS)-blockers, such as angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs), but whether these are indeed independent risk factors is unknown. The cellular receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the membrane-bound angiotensin converting enzyme 2 (ACE2), as for SARS-CoV(-1). Experimental data suggest that expression of ACE2 may be increased by RAAS-blockers, raising concerns that these drugs may facilitate viral cell entry. On the other hand, ACE2 is a key counter-regulator of the RAAS, by degrading angiotensin II into angiotensin (1-7), and may thereby mediate beneficial effects in COVID-19. These considerations have raised concerns about the management of these drugs, and early comments shed vivid controversy among physicians. This review will describe the homeostatic balance between ACE-angiotensin II and ACE2-angiotensin (1-7) and summarize the pathophysiological rationale underlying the debated role of the RAAS and its modulators in the context of the pandemic. In addition, we will review available evidence investigating the impact of RAAS blockers on the course and prognosis of COVID-19 and discuss why retrospective observational studies should be interpreted with caution. These considerations highlight the importance of solid evidence-based data in order to guide physicians in the management of RAAS-interfering drugs in the general population as well as in patients with more or less severe forms of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Simon B Gressens
- Department of Infectious and Tropical Diseases, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France
| | - Georges Leftheriotis
- Laboratory of Molecular Physiology and Medicine, Université Cote d'Azur, Nice, France
| | - Jean-Claude Dussaule
- Sorbonne Université, INSERM, Unité des Maladies Rénales Fréquentes et Rares: des Mécanismes Moléculaires à la Médecine Personnalisée, AP-HP, Hôpital Tenon, Paris, France.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Martin Flamant
- Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France.,Inserm U1149, Centre for Research on Inflammation, Université de Paris, Paris, France
| | | | - Emmanuelle Vidal-Petiot
- Department of Physiology, Assistance Publique-Hôpitaux de Paris, Bichat-Claude Bernard University Hospital, Paris, France.,Inserm U1149, Centre for Research on Inflammation, Université de Paris, Paris, France
| |
Collapse
|