1
|
Bar O, Vahey E, Mintz M, Frye RE, Boles RG. Reanalysis of Trio Whole-Genome Sequencing Data Doubles the Yield in Autism Spectrum Disorder: De Novo Variants Present in Half. Int J Mol Sci 2024; 25:1192. [PMID: 38256266 PMCID: PMC10816071 DOI: 10.3390/ijms25021192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common condition with lifelong implications. The last decade has seen dramatic improvements in DNA sequencing and related bioinformatics and databases. We analyzed the raw DNA sequencing files on the Variantyx® bioinformatics platform for the last 50 ASD patients evaluated with trio whole-genome sequencing (trio-WGS). "Qualified" variants were defined as coding, rare, and evolutionarily conserved. Primary Diagnostic Variants (PDV), additionally, were present in genes directly linked to ASD and matched clinical correlation. A PDV was identified in 34/50 (68%) of cases, including 25 (50%) cases with heterozygous de novo and 10 (20%) with inherited variants. De novo variants in genes directly associated with ASD were far more likely to be Qualifying than non-Qualifying versus a control group of genes (p = 0.0002), validating that most are indeed disease related. Sequence reanalysis increased diagnostic yield from 28% to 68%, mostly through inclusion of de novo PDVs in genes not yet reported as ASD associated. Thirty-three subjects (66%) had treatment recommendation(s) based on DNA analyses. Our results demonstrate a high yield of trio-WGS for revealing molecular diagnoses in ASD, which is greatly enhanced by reanalyzing DNA sequencing files. In contrast to previous reports, de novo variants dominate the findings, mostly representing novel conditions. This has implications to the cause and rising prevalence of autism.
Collapse
Affiliation(s)
- Omri Bar
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Elizabeth Vahey
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Mark Mintz
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA;
| | - Richard G. Boles
- NeurAbilities Healthcare, Voorhees, NJ 08043, USA; (O.B.); (E.V.); (M.M.)
- NeuroNeeds, Old Lyme, CT 06371, USA
| |
Collapse
|
2
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Gasser BA, Kurz J, Dick B, Mohaupt MG. A reply to 'Alteration of steroidogenesis in boys with autism spectrum disorders'. Transl Psychiatry 2021; 11:278. [PMID: 33972510 PMCID: PMC8111024 DOI: 10.1038/s41398-021-01393-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria
| | - Bernhard Dick
- grid.5734.50000 0001 0726 5157Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
| | | |
Collapse
|
4
|
Ozlu C, Bailey RM, Sinnett S, Goodspeed KD. Gene Transfer Therapy for Neurodevelopmental Disorders. Dev Neurosci 2021; 43:230-240. [PMID: 33882495 DOI: 10.1159/000515434] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/13/2021] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) include a broad spectrum of disorders that disrupt normal brain development. Though some NDDs are caused by acquired insults (i.e., toxic or infectious encephalopathy) or may be cryptogenic, many NDDs are caused by variants in a single gene or groups of genes that disrupt neuronal development or function. In this review, we will focus on those NDDs with a genetic etiology. The exact mechanism, timing, and progression of the molecular pathology are seldom well known; however, the abnormalities in development typically manifest in similar patterns such as delays or regression in motor function, social skills, and language or cognitive abilities. Severity of impairment can vary widely. At present, only symptomatic treatments are available to manage seizures and behavioral problems commonly seen in NDDs. In recent years, there has been a rapid expansion of research into gene therapy using adeno-associated viruses (AAVs). Using AAVs as vectors to replace the non- or dysfunctional gene in vivo is a relatively simple model which has created an unprecedented opportunity for the future of NDD treatment. Advances in this field are of paramount importance as NDDs lead to a massive lifelong burden of disease on the affected individuals and families. In this article, we review the unique advantages and challenges of AAV gene therapies. We then look at potential applications of gene therapy for 3 of the more common NDDs (Rett syndrome, fragile X syndrome, and Angelman syndrome), as well as 2 less common NDDs (SLC13A5 deficiency disorder and SLC6A1-related disorder). We will review the available natural history of each disease and current state of preclinical studies including a discussion on the application of AAV gene therapies for each disease.
Collapse
Affiliation(s)
- Can Ozlu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rachel M Bailey
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sarah Sinnett
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kimberly D Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Lewis EM, Stein-O'Brien GL, Patino AV, Nardou R, Grossman CD, Brown M, Bangamwabo B, Ndiaye N, Giovinazzo D, Dardani I, Jiang C, Goff LA, Dölen G. Parallel Social Information Processing Circuits Are Differentially Impacted in Autism. Neuron 2020; 108:659-675.e6. [PMID: 33113347 PMCID: PMC8033501 DOI: 10.1016/j.neuron.2020.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
Collapse
Affiliation(s)
- Eastman M Lewis
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Genevieve L Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, School of Medicine, Baltimore, MD 21205; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Alejandra V Patino
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Romain Nardou
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Matthew Brown
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Bidii Bangamwabo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ndeye Ndiaye
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Giovinazzo
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - Ian Dardani
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connie Jiang
- Cell and Molecular Biology Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Loyal A Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | - Gül Dölen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Wendy Klag Institute for Autism and Developmental Disabilities, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
McKechanie AG, Campbell S, Eley SEA, Stanfield AC. Autism in Fragile X Syndrome; A Functional MRI Study of Facial Emotion-Processing. Genes (Basel) 2019; 10:genes10121052. [PMID: 31861230 PMCID: PMC6947308 DOI: 10.3390/genes10121052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism spectrum disorder, and among those with fragile X syndrome, approximately 1/3rd meet a threshold for an autism spectrum disorder (ASD) diagnosis. Previous functional imaging studies of fragile X syndrome have typically focused on those with fragile X syndrome compared to either neurotypical or autism spectrum disorder control groups. Further, the majority of previous studies have tended to focus on those who are more intellectually able than is typical for fragile X syndrome. In this study, we examine the impact of autistic traits in individuals with fragile X syndrome on a paradigm looking at facial emotion processing. The study included 17 individuals with fragile X syndrome, of whom 10 met criteria for autism as measured by the Autism Diagnostic Observation Schedule (ADOS). Prior to the scan, participants rehearsed on a mock scanner to help acclimatize to the scanner environment and thus allow more severely affected individuals to participate. The task examined the blood-oxygen-level-dependent (BOLD) response to fearful and neutral faces taken from the Ekman faces series. Individuals in the autism group had a region of significantly reduced activity centered on the left superior temporal gyrus, compared to those with FXS alone, in response to the fearful faces. We suggest that autism in individuals with fragile X syndrome is associated with similar changes in the neurobiology of facial emotion processing as seen in idiopathic autism.
Collapse
Affiliation(s)
- Andrew G. McKechanie
- The Patrick Wild Centre, The University of Edinburgh, Edinburgh EH10 5HF, UK; (S.C.); (S.E.A.E.); (A.C.S.)
- NHS Lothian, Edinburgh EH1 3EG, UK
- Correspondence: ; Tel.: +44-131-537-6000
| | - Sonya Campbell
- The Patrick Wild Centre, The University of Edinburgh, Edinburgh EH10 5HF, UK; (S.C.); (S.E.A.E.); (A.C.S.)
| | - Sarah E. A. Eley
- The Patrick Wild Centre, The University of Edinburgh, Edinburgh EH10 5HF, UK; (S.C.); (S.E.A.E.); (A.C.S.)
| | - Andrew C. Stanfield
- The Patrick Wild Centre, The University of Edinburgh, Edinburgh EH10 5HF, UK; (S.C.); (S.E.A.E.); (A.C.S.)
- NHS Lothian, Edinburgh EH1 3EG, UK
| |
Collapse
|
7
|
Mansour Y, Mangold S, Chosky D, Kulesza RJ. Auditory Midbrain Hypoplasia and Dysmorphology after Prenatal Valproic Acid Exposure. Neuroscience 2019; 396:79-93. [DOI: 10.1016/j.neuroscience.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 12/01/2022]
|
8
|
Alvares GA, Dawson PA, Dissanayake C, Eapen V, Gratten J, Grove R, Henders A, Heussler H, Lawson L, Masi A, Raymond E, Rose F, Wallace L, Wray NR, Whitehouse AJO. Study protocol for the Australian autism biobank: an international resource to advance autism discovery research. BMC Pediatr 2018; 18:284. [PMID: 30149807 PMCID: PMC6112136 DOI: 10.1186/s12887-018-1255-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 08/15/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The phenotypic and genetic heterogeneity of autism spectrum disorder (ASD) presents considerable challenges in understanding etiological pathways, selecting effective therapies, providing genetic counselling, and predicting clinical outcomes. With advances in genetic and biological research alongside rapid-pace technological innovations, there is an increasing imperative to access large, representative, and diverse cohorts to advance knowledge of ASD. To date, there has not been any single collective effort towards a similar resource in Australia, which has its own unique ethnic and cultural diversity. The Australian Autism Biobank was initiated by the Cooperative Research Centre for Living with Autism (Autism CRC) to establish a large-scale repository of biological samples and detailed clinical information about children diagnosed with ASD to facilitate future discovery research. METHODS The primary group of participants were children with a confirmed diagnosis of ASD, aged between 2 and 17 years, recruited through four sites in Australia. No exclusion criteria regarding language level, cognitive ability, or comorbid conditions were applied to ensure a representative cohort was recruited. Both biological parents and siblings were invited to participate, along with children without a diagnosis of ASD, and children who had been queried for an ASD diagnosis but did not meet diagnostic criteria. All children completed cognitive assessments, with probands and parents completing additional assessments measuring ASD symptomatology. Parents completed questionnaires about their child's medical history and early development. Physical measurements and biological samples (blood, stool, urine, and hair) were collected from children, and physical measurements and blood samples were collected from parents. Samples were sent to a central processing site and placed into long-term storage. DISCUSSION The establishment of this biobank is a valuable international resource incorporating detailed clinical and biological information that will help accelerate the pace of ASD discovery research. Recruitment into this study has also supported the feasibility of large-scale biological sample collection in children diagnosed with ASD with comprehensive phenotyping across a wide range of ages, intellectual abilities, and levels of adaptive functioning. This biological and clinical resource will be open to data access requests from national and international researchers to support future discovery research that will benefit the autistic community.
Collapse
Affiliation(s)
- Gail A. Alvares
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Telethon Kids Institute, University of Western Australia, Perth, WA Australia
| | - Paul A. Dawson
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Mater Research Institute, The University of Queensland, Brisbane, QLD Australia
| | - Cheryl Dissanayake
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC Australia
| | - Valsamma Eapen
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW Australia
- Academic Unit of Child Psychiatry South West Sydney, Ingham Institute, Liverpool Hospital, Sydney, NSW Australia
| | - Jacob Gratten
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | - Rachel Grove
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Anjali Henders
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | - Helen Heussler
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Mater Research Institute, The University of Queensland, Brisbane, QLD Australia
| | - Lauren Lawson
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Olga Tennison Autism Research Centre, La Trobe University, Melbourne, VIC Australia
| | - Anne Masi
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW Australia
| | - Emma Raymond
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Wesley Medical Research, Brisbane, QLD Australia
| | - Felicity Rose
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
| | - Leanne Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | - Naomi R. Wray
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Andrew J. O. Whitehouse
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, QLD Australia
- Telethon Kids Institute, University of Western Australia, Perth, WA Australia
| |
Collapse
|
9
|
Group I Metabotropic Glutamate Receptors (mGluRs): Ins and Outs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:163-175. [DOI: 10.1007/978-981-13-3065-0_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Chaste P, Roeder K, Devlin B. The Yin and Yang of Autism Genetics: How Rare De Novo and Common Variations Affect Liability. Annu Rev Genomics Hum Genet 2017; 18:167-187. [DOI: 10.1146/annurev-genom-083115-022647] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pauline Chaste
- Centre de Psychiatrie et Neurosciences, 75014 Paris, France
- Centre hospitalier Sainte-Anne, 75674 Paris, France
| | - Kathryn Roeder
- Department of Statistics and Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Bernie Devlin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
11
|
Gillberg C, Fernell E, Kočovská E, Minnis H, Bourgeron T, Thompson L, Allely CS. The role of cholesterol metabolism and various steroid abnormalities in autism spectrum disorders: A hypothesis paper. Autism Res 2017; 10:1022-1044. [PMID: 28401679 PMCID: PMC5485071 DOI: 10.1002/aur.1777] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 12/15/2016] [Accepted: 01/30/2017] [Indexed: 01/25/2023]
Abstract
Based on evidence from the relevant research literature, we present a hypothesis that there may be a link between cholesterol, vitamin D, and steroid hormones which subsequently impacts on the development of at least some of the "autisms" [Coleman & Gillberg]. Our hypothesis, driven by the peer reviewed literature, posits that there may be links between cholesterol metabolism, which we will refer to as "steroid metabolism" and findings of steroid abnormalities of various kinds (cortisol, testosterone, estrogens, progesterone, vitamin D) in autism spectrum disorder (ASD). Further research investigating these potential links is warranted to further our understanding of the biological mechanisms underlying ASD. Autism Res 2017. © 2017 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research. Autism Res 2017, 10: 1022-1044. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Eva Kočovská
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Barts and London School of Medicine, Queen Mary University of London, Blizard Institute58 Turner StreetE1 2ABLondon
| | - Helen Minnis
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Health and Wellbeing, University of Glasgow, RHSC YorkhillGlasgowScotlandG3 8SJUnited Kingdom
| | - Thomas Bourgeron
- Institut Pasteur, Human Genetics and Cognitive Functions UnitParisFrance
- CNRS UMR 3571: Genes, Synapses and Cognition, Institut PasteurParisFrance
- Université Paris Diderot, Sorbonne Paris CitéHuman Genetics and Cognitive FunctionsParisFrance
- FondaMental FoundationCréteilFrance
| | - Lucy Thompson
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Institute of Health and Wellbeing, University of Glasgow, RHSC YorkhillGlasgowScotlandG3 8SJUnited Kingdom
| | - Clare S. Allely
- Gillberg Neuropsychiatry Centre, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- School of Health SciencesUniversity of SalfordManchesterEngland
- Honorary Research Fellow in the College of MedicalVeterinary and Life Sciences affiliated to the Institute of Health and Wellbeing at the University of Glasgow
| |
Collapse
|
12
|
Ciaccio C, Fontana L, Milani D, Tabano S, Miozzo M, Esposito S. Fragile X syndrome: a review of clinical and molecular diagnoses. Ital J Pediatr 2017; 43:39. [PMID: 28420439 PMCID: PMC5395755 DOI: 10.1186/s13052-017-0355-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background Fragile X Syndrome (FXS) is the second cause of intellectual disability after Down syndrome and the most prevalent cause of intellectual disability in males, affecting 1:5000–7000 men and 1:4000–6000 women. It is caused by an alteration of the FMR1 gene, which maps at the Xq27.3 band: more than 99% of individuals have a CGG expansion (>200 triplets) in the 5′ UTR of the gene, and FMR1 mutations and duplication/deletion are responsible for the remaining (<1%) molecular diagnoses of FXS. The aim of this review was to gather the current clinical and molecular knowledge about FXS to provide clinicians with a tool to guide the initial assessment and follow-up of FXS and to offer to laboratory workers and researchers an update about the current diagnostic procedures. Discussion FXS is a well-known condition; however, most of the studies thus far have focused on neuropsychiatric features. Unfortunately, some of the available studies have limitations, such as the paucity of patients enrolled or bias due to the collection of the data in a single-country population, which may be not representative of the average global FXS population. In recent years, insight into the adult presentation of the disease has progressively increased. Pharmacological treatment of FXS is essentially symptom based, but the growing understanding of the molecular and biological mechanisms of the disease are paving the way to targeted therapy, which may reverse the effects of FMRP deficiency and be a real cure for the disease itself, not just its symptoms. Conclusions The clinical spectrum of FXS is wide, presenting not only as an isolated intellectual disability but as a multi-systemic condition, involving predominantly the central nervous system but potentially affecting any apparatus. Given the relative high frequency of the condition and its complex clinical management, FXS appears to have an important economic and social burden.
Collapse
Affiliation(s)
- Claudia Ciaccio
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Laura Fontana
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda 9, 20122, Milan, Italy
| | - Silvia Tabano
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Miozzo
- Division of Pathology, Department of Pathophysiology and Transplantation, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Piazza Lucio Severi 1, Loc. S. Andrea delle Fratte, 06132, Perugia, Italy.
| |
Collapse
|
13
|
Bostrom C, Yau SY, Majaess N, Vetrici M, Gil-Mohapel J, Christie BR. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome. Neurosci Biobehav Rev 2016; 68:563-574. [DOI: 10.1016/j.neubiorev.2016.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
|
14
|
Turk J, Graham P. Fragile X Syndrome, Autism and Autistic Features. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2016. [DOI: 10.1177/1362361397012005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The relationship between fragile X syndrome and autism is reviewed. Results from a semi-structured questionnaire survey of development and behaviour in boys with fragile X syndrome, Down's syndrome and learning disability of unknown aetiology are presented. A behavioural profile characteristic of many boys with fragile X syndrome was identified which distinguished them from both other groups. Fragile X boys did not show more autism than boys with idiopathic learning disability but they did have a common autistic-like profile of communicatory and stereotypic disturbances, most notably delayed echolalia, repetitive speech and hand flapping. Boys with idiopathic learning disability showed difficulties more in areas of social functioning. Boys with Down's syndrome were characterized by fewer difficulties in social functioning and ritualistic/stereotypic tendencies but this might have been explained by subject ascertainment bias. Behavioural items distinguishing boys with fragile X significantly from both other groups retained their significance even when individuals with autism were excluded from statistical analysis. The findings provide further support for the notion of a behavioural phenotype in boys with fragile X syndrome.
Collapse
Affiliation(s)
- Jeremy Turk
- St George's Hospital Medical School, London, UK
| | | |
Collapse
|
15
|
Navon D, Eyal G. Looping Genomes: Diagnostic Change and the Genetic Makeup of the Autism Population. AJS; AMERICAN JOURNAL OF SOCIOLOGY 2016; 121:1416-1471. [PMID: 27092389 DOI: 10.1086/684201] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This article builds on Hacking's framework of "dynamic nominalism" to show how knowledge about biological etiology can interact with the "kinds of people" delineated by diagnostic categories in ways that "loop" or modify both over time. The authors use historical materials to show how "geneticization" played a crucial role in binding together autism as a biosocial community and how evidence from genetics research later made an important contribution to the diagnostic expansion of autism. In the second part of the article, the authors draw on quantitative and qualitative analyses of autism rates over time in several rare conditions that are delineated strictly according to genomic mutations in order to demonstrate that these changes in diagnostic practice helped to both increase autism's prevalence and create its enormous genetic heterogeneity. Thus, a looping process that began with geneticization and involved the social effects of genetics research itself transformed the autism population and its genetic makeup.
Collapse
|
16
|
Abstract
Over 70 years since the first description of the disease, disrupted social behavior remains a core clinical feature of autistic spectrum disorder. The complex etiology of the disorder portends the need for a better understanding of the brain mechanisms that enable social behaviors, particularly those that are relevant to autism which is characterized by a failure to develop peer relationships, difficulty with emotional reciprocity and imitative play, and disrupted language and communication skills. Toward this end, the current review will examine recent progress that has been made toward understanding the neural mechanisms underlying consociate social attachments.
Collapse
Affiliation(s)
- Gül Dölen
- a Department of Neuroscience, Brain Science Institute, Wendy Klag Center for Autism and Developmental Disabilities , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
17
|
Thurman AJ, McDuffie A, Kover ST, Hagerman RJ, Abbeduto L. Autism Symptomatology in Boys with Fragile X Syndrome: A Cross Sectional Developmental Trajectories Comparison with Nonsyndromic Autism Spectrum Disorder. J Autism Dev Disord 2015; 45:2816-32. [PMID: 25904201 PMCID: PMC4554893 DOI: 10.1007/s10803-015-2443-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although males with fragile X syndrome (FXS) are frequently described as demonstrating autism symptomatology, there is much debate regarding whether the behavioral symptoms representing the core domains of autism are the result of the same or different underlying neurological/psychological mechanisms. The present study used a cross-sectional developmental trajectories approach to compare the profiles of autism symptomatology relative to chronological age (CA), nonverbal IQ, and expressive vocabulary ability between individuals with FXS and individuals with nonsyndromic ASD. Results suggest that the onset of autism symptoms and their developmental trajectories in males with FXS differ in important ways as a function of CA, nonverbal cognitive ability, and expressive vocabulary relative to males with nonsyndromic ASD. Theoretical and clinical implications are discussed.
Collapse
Affiliation(s)
- Angela John Thurman
- MIND Institute, University of California Davis, 2825 50th Street, Room 2101, Sacramento, CA, 95817, USA,
| | | | | | | | | |
Collapse
|
18
|
Abbeduto L, McDuffie A, Thurman AJ. The fragile X syndrome-autism comorbidity: what do we really know? Front Genet 2014; 5:355. [PMID: 25360144 PMCID: PMC4199273 DOI: 10.3389/fgene.2014.00355] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/24/2014] [Indexed: 01/13/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common comorbid condition in people with fragile X syndrome (FXS). It has been assumed that ASD symptoms reflect the same underlying psychological and neurobiological impairments in both FXS and non-syndromic ASD, which has led to the claim that targeted pharmaceutical treatments that are efficacious for core symptoms of FXS are likely to be beneficial for non-syndromic ASD as well. In contrast, we present evidence from a variety of sources suggesting that there are important differences in ASD symptoms, behavioral and psychiatric correlates, and developmental trajectories between individuals with comorbid FXS and ASD and those with non-syndromic ASD. We also present evidence suggesting that social impairments may not distinguish individuals with FXS with and without ASD. Finally, we present data that demonstrate that the neurobiological substrates of the behavioral impairments, including those reflecting core ASD symptoms, are different in FXS and non-syndromic ASD. Together, these data suggest that there are clinically important differences between FXS and non-syndromic ASD that are masked by reliance on the categorical diagnosis of ASD. We argue for use of a symptom-based approach in future research, including studies designed to evaluate treatment efficacy.
Collapse
Affiliation(s)
- Leonard Abbeduto
- MIND Institute, University of California, Davis , Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis , Sacramento, CA, USA
| | - Andrea McDuffie
- MIND Institute, University of California, Davis , Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis , Sacramento, CA, USA
| | - Angela John Thurman
- MIND Institute, University of California, Davis , Sacramento, CA, USA ; Department of Psychiatry and Behavioral Sciences, University of California, Davis , Sacramento, CA, USA
| |
Collapse
|
19
|
Hauser CT, Kover ST, Abbeduto L. Maternal well-being and child behavior in families with fragile X syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2014; 35:2477-86. [PMID: 24984053 PMCID: PMC4135714 DOI: 10.1016/j.ridd.2014.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 06/08/2014] [Accepted: 06/12/2014] [Indexed: 05/18/2023]
Abstract
The purpose of this study was to examine the bidirectional relationships relationship between maternal mental health status, maternal stress, family environment and behavioral functioning of children with fragile X syndrome (FXS), the leading cause of inherited intellectual disability. Children with FXS commonly demonstrate challenging behavior related to anxiety, attention, and aggression, whereas mothers of children with FXS have been identified as susceptible to mental health challenges due to their status as genetic carriers of the FXS premutation, as well as the environmental stressors of raising children with special needs. The longitudinal design of this study builds upon prior work that established a concurrent relationship among these factors in families of children with other intellectual disorders. Findings indicated that maternal mental health status was not significantly related to changes in levels of child challenging behavior, heightened child challenging behavior was related to improvements in maternal depression over time, and heightened levels of child challenging behavior was related to increased feelings of maternal closeness toward the child over time. The unexpected nature of the results regarding maternal depression and closeness provides new and more complex hypotheses about how mothers of special needs children demonstrate adaptation and resilience. The findings have implications for maternal and familial mental health treatment as well as future research.
Collapse
Affiliation(s)
- Claire T Hauser
- Waisman Center, University of Wisconsin-Madison, United States
| | - Sara T Kover
- Waisman Center, University of Wisconsin-Madison, United States
| | | |
Collapse
|
20
|
Advances in Genetic Diagnosis of Autism Spectrum Disorders. CURRENT PEDIATRICS REPORTS 2014. [DOI: 10.1007/s40124-014-0042-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Adachi K, Murai Y, Teramoto A. Infantile cerebellar pilocytic astrocytoma with autism spectrum disorder. J NIPPON MED SCH 2013; 79:228-31. [PMID: 22791126 DOI: 10.1272/jnms.79.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The etiology of autism remains unclear, but relationships to cerebellar factors have been reported. We report 2 cases of infantile cerebellar pilocytic astrocytoma in children with autism spectrum disorder. Cerebellar tumors may be related to the pathogenesis of autism.
Collapse
Affiliation(s)
- Koji Adachi
- Department of Neurosurgery, Graduate School of Medicine, Nippon Medical School, Kawasaki, Kanagawa, Japan.
| | | | | |
Collapse
|
22
|
Fisch GS. Autism and epistemology IV: Does autism need a theory of mind? Am J Med Genet A 2013; 161A:2464-80. [PMID: 23956150 DOI: 10.1002/ajmg.a.36135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/02/2013] [Indexed: 11/06/2022]
Abstract
In their article, "Does the autistic child have a 'theory of mind'?," Baron-Cohen et al. [1985] proposed a novel paradigm to explain social impairment in children diagnosed as autistic (AD). Much research has been undertaken since their article went to print. The purpose of this commentary is to gauge whether Theory of Mind (ToM)-or lack thereof-is a valid model for explaining abnormal social behavior in children with AD. ToM is defined as "the ability to impute mental states to oneself and to others" and "the ability to make inferences about what other people believe to be the case." The source for their model was provided by an article published earlier by Premack and Woodruff, "Does the chimpanzee have a theory of mind?" Later research in chimpanzees did not support a ToM in primates. From the outset, ToM as a neurocognitive model of autism has had many shortcomings-methodological, logical, and empirical. Other ToM assumptions, for example, its universality in all children in all cultures and socioeconomic conditions, are not supported by data. The age at which a ToM emerges, or events that presage a ToM, are too often not corroborated. Recent studies of mirror neurons, their location and interconnections in brain, their relationship to social behavior and language, and the effect of lesions there on speech, language and social behavior, strongly suggests that a neurobiological as opposed to neurocognitive model of autism is a more parsimonious explanation for the social and behavioral phenotypes observed in autism.
Collapse
Affiliation(s)
- Gene S Fisch
- Department of Epidemiology and Health Promotion, NYU Colleges of Dentistry and Nursing, New York, New York
| |
Collapse
|
23
|
McDuffie A, Kover ST, Hagerman R, Abbeduto L. Investigating word learning in fragile X syndrome: a fast-mapping study. J Autism Dev Disord 2013; 43:1676-91. [PMID: 23179343 PMCID: PMC3620772 DOI: 10.1007/s10803-012-1717-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fast-mapping paradigms have not been used previously to examine the process of word learning in boys with fragile X syndrome (FXS), who are likely to have intellectual impairment, language delays, and symptoms of autism. In this study, a fast-mapping task was used to investigate associative word learning in 4- to 10-year-old boys with FXS relative to younger typically developing boys and age-matched boys with autism spectrum disorders (ASD). Task performance exceeded chance levels for all groups; however, boys with FXS outperformed boys with ASD, despite having lower levels of nonverbal cognition. Memory task demands significantly impacted performance only for boys with typical development. For boys with FXS or ASD, fast-mapping uniquely accounted for small but significant variance in concurrent levels of vocabulary comprehension as did chronological age and nonverbal IQ, but not autism severity. Understanding the fast-mapping process has implications for designing interventions to support word learning and language acquisition in these populations.
Collapse
Affiliation(s)
- Andrea McDuffie
- MIND Institute, University of California, Davis, 2825 50th Street, Sacramento, CA 95864, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
Fragile X syndrome (FXS) is associated with a complex but relatively consistent psychiatric phenotype. Recent research has suggested neural substrates for the behavioral abnormalities typically seen in FXS, and enhanced treatment strategies for managing disabling psychiatric comorbidity. While disease-specific, and possibly disease-modifying, therapeutics are being developed for FXS, currently available psychiatric medications can provide significant symptomatic relief of the hyperactivity, anxiety disorders, and affective disturbances often seen in the course of FXS. However, patients with fragile X may be especially susceptible to the psychiatric side effects of these medications, requiring particular care in prescribing. Recent findings concerning disease mechanisms and treatment strategies are reviewed from the perspective of a clinical psychiatrist, in an effort to enhance conventional pharmacotherapy of FXS.
Collapse
|
25
|
McDuffie A, Kover ST, Abbeduto L, Lewis P, Brown WT. Profiles of receptive and expressive language abilities in boys with comorbid fragile X syndrome and autism. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2012; 117:18-32. [PMID: 22264110 PMCID: PMC3265023 DOI: 10.1352/1944-7558-117.1.18] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Abstract The authors examined receptive and expressive language profiles for a group of verbal male children and adolescents who had fragile X syndrome along with varying degrees of autism symptoms. A categorical approach for assigning autism diagnostic classification, based on the combined use of the Autism Diagnostic Interview-Revised and the Autism Diagnostic Observation Schedule (ADOS), and a continuous approach for representing autism symptom severity, based on ADOS severity scores, were used in 2 separate sets of analyses. All analyses controlled for nonverbal IQ and chronological age. Nonverbal IQ accounted for significant variance in all language outcomes with large effect sizes. Results of the categorical analyses failed to reveal an effect of diagnostic group (fragile X syndrome-autism, fragile X syndrome-no autism) on standardized language test performance. Results of the continuous analyses revealed a negative relationship between autism symptom severity and all of the standardized language measures. Implications for representing autism symptoms in fragile X syndrome research are considered.
Collapse
Affiliation(s)
| | | | | | | | - W. Ted Brown
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY
| |
Collapse
|
26
|
Mitchell KJ, Huang ZJ, Moghaddam B, Sawa A. Following the genes: a framework for animal modeling of psychiatric disorders. BMC Biol 2011; 9:76. [PMID: 22078115 PMCID: PMC3214139 DOI: 10.1186/1741-7007-9-76] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 11/07/2011] [Indexed: 01/19/2023] Open
Abstract
The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans.
Collapse
Affiliation(s)
- Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Bita Moghaddam
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
Affiliation(s)
- Michael Stern
- Department of Biochemistry and Cell Biology, Rice UniversityHouston, TX, USA
- *Correspondence:
| |
Collapse
|
28
|
A voxel-based morphometry comparison of regional gray matter between fragile X syndrome and autism. Psychiatry Res 2009; 174:138-45. [PMID: 19853418 PMCID: PMC2783567 DOI: 10.1016/j.pscychresns.2009.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 03/02/2009] [Accepted: 04/27/2009] [Indexed: 11/21/2022]
Abstract
The phenotypic association between fragile X syndrome (FXS) and autism is well established, but no studies have directly compared whole-brain anatomy between the two disorders. We performed voxel-based morphometry analyses of magnetic resonance imaging (MRI) scans on 10 individuals with FXS, 10 individuals with autism, and 10 healthy comparison subjects to identify volumetric changes in each disorder. Regional gray matter volumes within frontal, parietal, temporal, and cingulate gyri, as well as in the caudate nuclei and cerebellum, were larger in the FXS group relative to the autism group. In addition, volume increases in FXS were observed in frontal gyri and caudate nuclei compared to controls. The autism group exhibited volume increases in frontal and temporal gyri relative to the FXS group, and no volume increases relative to controls. Volumetric deficits relative to controls were observed in regions of the cerebellum for both groups, with additional deficits in parietal and temporal gyri for the FXS group. Our caudate nuclei and frontal gyri results may implicate dysfunction of frontostriatal circuitry in FXS. Cerebellar deficits suggest atypical development of the cerebellum contributing to the phenotype of both disorders, but further imply that unique cerebellar regions contribute to the phenotype of each disorder.
Collapse
|
29
|
Seltzer MM, Abbeduto L, Greenberg JS, Almeida D, Hong J, Witt W. Biomarkers in the Study of Families of Individuals with Developmental Disabilities. INTERNATIONAL REVIEW OF RESEARCH IN MENTAL RETARDATION 2009; 37:213-249. [PMID: 20414357 DOI: 10.1016/s0074-7750(09)37007-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Research during the past 20 years on families of children with developmental disabilities has yielded a rich body of knowledge about the stress of parenting a child with DD, and the risk and protective factors that result in profiles of family resilience vs. vulnerability at various stages of the family life course. Virtually all of this research has been based on data collected from self-report measures, and has focused on family interactions and relationships, and the psychosocial well-being of individual family members. The present chapter focuses on different sources of data, namely biomarkers, which have the potential to extend our understanding of the biological mechanisms by which the stress of parenting a child with developmental disabilities can take its toll on parents' physical and mental health. We focus on two examples: (1) variations in the FMR1 gene, FMRP, and FMR1 messenger RNA in mothers of children with fragile X syndrome and the association of these measures with maternal depression and anxiety; and (2) profiles of cortisol expression in mothers of children with disabilities and the association of cortisol with daily measures of caregiving stress.
Collapse
|
30
|
Matuszek G, Talebizadeh Z. Autism Genetic Database (AGD): a comprehensive database including autism susceptibility gene-CNVs integrated with known noncoding RNAs and fragile sites. BMC MEDICAL GENETICS 2009; 10:102. [PMID: 19778453 PMCID: PMC2761880 DOI: 10.1186/1471-2350-10-102] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 09/24/2009] [Indexed: 01/27/2023]
Abstract
Background Autism is a highly heritable complex neurodevelopmental disorder, therefore identifying its genetic basis has been challenging. To date, numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism, but most discoveries either fail to be replicated or account for a small effect. Thus, in most cases the underlying causative genetic mechanisms are not fully understood. In the present work, the Autism Genetic Database (AGD) was developed as a literature-driven, web-based, and easy to access database designed with the aim of creating a comprehensive repository for all the currently reported genes and genomic copy number variations (CNVs) associated with autism in order to further facilitate the assessment of these autism susceptibility genetic factors. Description AGD is a relational database that organizes data resulting from exhaustive literature searches for reported susceptibility genes and CNVs associated with autism. Furthermore, genomic information about human fragile sites and noncoding RNAs was also downloaded and parsed from miRBase, snoRNA-LBME-db, piRNABank, and the MIT/ICBP siRNA database. A web client genome browser enables viewing of the features while a web client query tool provides access to more specific information for the features. When applicable, links to external databases including GenBank, PubMed, miRBase, snoRNA-LBME-db, piRNABank, and the MIT siRNA database are provided. Conclusion AGD comprises a comprehensive list of susceptibility genes and copy number variations reported to-date in association with autism, as well as all known human noncoding RNA genes and fragile sites. Such a unique and inclusive autism genetic database will facilitate the evaluation of autism susceptibility factors in relation to known human noncoding RNAs and fragile sites, impacting on human diseases. As a result, this new autism database offers a valuable tool for the research community to evaluate genetic findings for this complex multifactorial disorder in an integrated format. AGD provides a genome browser and a web based query client for conveniently selecting features of interest. Access to AGD is freely available at .
Collapse
Affiliation(s)
- Gregory Matuszek
- K-INBRE Bioinformatics Core Facility, University of Kansas, Lawrence, KS, USA.
| | | |
Collapse
|
31
|
Dölen G, Bear MF. Fragile x syndrome and autism: from disease model to therapeutic targets. J Neurodev Disord 2009; 1:133-40. [PMID: 21547712 PMCID: PMC3164025 DOI: 10.1007/s11689-009-9015-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 04/29/2009] [Indexed: 01/29/2023] Open
Abstract
Autism is an umbrella diagnosis with several different etiologies. Fragile X syndrome (FXS), one of the first identified and leading causes of autism, has been modeled in mice using molecular genetic manipulation. These Fmr1 knockout mice have recently been used to identify a new putative therapeutic target, the metabotropic glutamate receptor 5 (mGluR5), for the treatment of FXS. Moreover, mGluR5 signaling cascades interact with a number of synaptic proteins, many of which have been implicated in autism, raising the possibility that therapeutic targets identified for FXS may have efficacy in treating multiple other causes of autism.
Collapse
Affiliation(s)
- Gül Dölen
- Department of Brain and Cognitive Sciences, Howard Hughes Medical Institute, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA,
| | | |
Collapse
|
32
|
Affiliation(s)
- Richard Lathe
- Pieta Research PO Box 27069, Edinburgh EH10 5YW, UK,
| |
Collapse
|
33
|
Fisch GS. Syndromes and epistemology II: Is autism a polygenic disorder? Am J Med Genet A 2008; 146A:2203-12. [DOI: 10.1002/ajmg.a.32438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Kelley DJ, Bhattacharyya A, Lahvis GP, Yin JCP, Malter J, Davidson RJ. The cyclic AMP phenotype of fragile X and autism. Neurosci Biobehav Rev 2008; 32:1533-43. [PMID: 18601949 DOI: 10.1016/j.neubiorev.2008.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/06/2008] [Accepted: 06/08/2008] [Indexed: 12/27/2022]
Abstract
Cyclic AMP (cAMP) is a second messenger involved in many processes including mnemonic processing and anxiety. Memory deficits and anxiety are noted in the phenotype of fragile X (FX), the most common heritable cause of mental retardation and autism. Here we review reported observations of altered cAMP cascade function in FX and autism. Cyclic AMP is a potentially useful biochemical marker to distinguish autism comorbid with FX from autism per se and the cAMP cascade may be a viable therapeutic target for both FX and autism.
Collapse
Affiliation(s)
- Daniel J Kelley
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Lewis P, Abbeduto L, Murphy M, Richmond E, Giles N, Bruno L, Schroeder S. Cognitive, language and social-cognitive skills of individuals with fragile X syndrome with and without autism. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2006; 50:532-45. [PMID: 16774638 DOI: 10.1111/j.1365-2788.2006.00803.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND It is not known whether those with co-morbid fragile X syndrome (FXS) and autism represent a distinct subtype of FXS; whether the especially severe cognitive delays seen in studies of young children with co-morbid FXS and autism compared with those with only FXS continue into adolescence and young adulthood; and whether autism in those with FXS is 'true autism', i.e. reflects the same underlying problems as idiopathic autism. METHOD We compared the non-verbal IQ of adolescents and young adults with co-morbid FXS and autism (n = 10) with those with only FXS (n = 44). We then created a subsample of those with FXS only, matched on non-verbal IQ, mental age and gender (n = 21) to the subsample of those with co-morbid FXS and autism. We compared the two groups on measures of expressive language, receptive language (lexical, grammatical morphology and syntactic patterns), and a theory of mind task. RESULTS Those with co-morbid FXS and autism had lower non-verbal IQs than those with only FXS. The participants with co-morbid FXS and autism did not perform as well as the cognitive ability- and gender-matched participants with only FXS on the three measures of receptive language or the theory of mind task; there were no differences on the expressive language measure. CONCLUSIONS Our findings support the notion that those with co-morbid FXS and autism represent a distinct subtype of FXS, with more impairment in receptive language and theory of mind even when controlling for their lower non-verbal IQ relative to those with only FXS. The greater cognitive impairments observed in those with co-morbid FXS and autism continues into adolescence and young adulthood; and the autism seen in those with FXS appears to be the same as idiopathic autism.
Collapse
Affiliation(s)
- P Lewis
- Waisman Center University of Wisconsin, Madison, WI 53705, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Schutz CK, Polley D, Robinson PD, Chalifoux M, Macciardi F, White BN, Holden JJA. Autism and the X chromosome: no linkage to microsatellite loci detected using the affected sibling pair method. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 109:36-41. [PMID: 11932990 DOI: 10.1002/ajmg.10138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The etiology of autism spectrum disorders (ASDs) is poorly understood, although it is clear that genetic factors play a major role. ASDs appear to be a heterogeneous group of disorders, making genetic analysis difficult in the absence of etiologically definable subgroups. The excess of males in the affected population has led to suggestions that an X-linked locus could play a role in the causation of autism or a related pervasive developmental disorder. To examine this, we have investigated the genotypes of 31 families with two or more affected boys, at a series of 16 highly polymorphic loci distributed along the X chromosome with an average interlocus distance of 12 cM, in order to identify regions of significantly increased concordance among pairs of affected brothers. No locus tested showed a significant increase in concordance, supporting findings by others that there are no genes of major effect located on the X chromosome that contribute to increased susceptibility to ASD.
Collapse
Affiliation(s)
- Chris K Schutz
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
38
|
Meyer GA, Blum NJ, Hitchcock W, Fortina P. Absence of the fragile X CGG trinucleotide repeat expansion in girls diagnosed with a pervasive developmental disorder. J Pediatr 1998; 133:363-5. [PMID: 9738717 DOI: 10.1016/s0022-3476(98)70270-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to determine the prevalence of the fragile X (FRAX) CGG trinucleotide expansion in a population of young girls (n = 45) diagnosed with pervasive developmental disorder (PDD). Their mean age was 43.7 months (range, 25 to 132 months). Diagnoses included autistic disorder (n = 20), PDD (n = 23), and Asperger's syndrome (n = 2). Molecular FRAX testing was performed on all patients by using the Southern gene blot technique. Genomic DNA was digested with both EcoRI and EagI, fractionated on agarose gel, and blotted and probed with the radiolabeled StB12.3 FMR-1 probe. None of the subjects were found to have an expansion of CGG in either the 2.8 kb or 5.2 kb fragments. A 95% CI, for the prevalence of the FRAX mutation in female subjects with PDD, has an upper bound of 2.9%. We conclude that the prevalence of FRAX positivity in girls with PDD is lower than previously reported. This raises the question of whether any association between FRAX and PDD in female subjects is specific to PDD or is related rather to the presence of mental retardation.
Collapse
Affiliation(s)
- G A Meyer
- Department of Pediatrics, Naval Medical Center, Portsmouth, Virginia 23708-2197, USA
| | | | | | | |
Collapse
|
39
|
Murray J, Cuckle H, Taylor G, Hewison J. Screening for fragile X syndrome: information needs for health planners. J Med Screen 1997; 4:60-94. [PMID: 9275266 DOI: 10.1177/096914139700400204] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- J Murray
- Centre for Reproduction, Growth & Development, Research School of Medicine, University of Leeds, United Kingdom
| | | | | | | |
Collapse
|
40
|
Cohen IL. A theoretical analysis of the role of hyperarousal in the learning and behavior of fragile X males. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/mrdd.1410010410] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Abstract
OBJECTIVE This review summarizes research findings on the genetics of several childhood psychiatric disorders. METHOD One hundred fifty papers were reviewed from the past several decades and were selected because they have suggested that genetic factors may play a role in the etiology of certain childhood disorders. This review is not meant to be exhaustive but rather has emphasized those disorders for which a genetic etiology has been proposed by different research groups. RESULTS The more classical approaches to genetic research are reviewed and critiqued. The status of research for a number of childhood disorders is summarized. The molecular basis for several developmental disorders is presented and the prospects for arriving at a similar molecular understanding for other childhood psychiatric illnesses are discussed. CONCLUSIONS Genetic factors play a determining role for certain developmental disorders. However, the molecular basis for other psychiatric disorders has yet to be elucidated and there are complicating factors that bear on genetic research of complex behavioral disorders.
Collapse
Affiliation(s)
- P J Lombroso
- Child Study Center, Yale University, New Haven, CT 06510-0009
| | | | | |
Collapse
|
42
|
Li SY, Chen YC, Lai TJ, Hsu CY, Wang YC. Molecular and cytogenetic analyses of autism in Taiwan. Hum Genet 1993; 92:441-5. [PMID: 8244333 DOI: 10.1007/bf00216447] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Karyotypic and DNA analyses were both performed on 104 autistic children referred from Taichung Autism Education Academy and Tainan Autism Association in Taiwan. The frequency of fragile sites of the autistic patients did not differ significantly from that of the normal individuals. Of the 12 autistic children with chromosomal abnormalities, 8 had the fragile X, 2 had Down syndrome, and the remaining had other aneuploid constitutions. The results of this study illustrate the contribution of chromosomal abnormalities or variants to the pathogenesis of infantile autism.
Collapse
Affiliation(s)
- S Y Li
- Cytogenetics Laboratory, Chung Shan Medical and Dental College, Taichung, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Abstract
The fragile-X syndrome accounts for up to 10% of individuals with mental handicap, and 50% of cases of X-linked mental retardation. Knowledge of the genetic basis of mental functioning, psychopathology, and neuropsychology is being furthered by this recently recognised condition. The disorder has considerable significance for psychiatrists, particularly, but by no means exclusively, those working in the field of mental handicap and with children. This review outlines the slow clarification of this complex and important behavioural phenotype and the implications of these advances for identification, diagnosis, genetic counselling and a wide range of management interventions.
Collapse
Affiliation(s)
- J Turk
- Academic Department of Child Psychiatry, Institute of Child Health, London
| |
Collapse
|
45
|
Affiliation(s)
- W T Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York
| | | |
Collapse
|
46
|
|
47
|
Abstract
Hand preferences of 219 mothers and 186 fathers of autistic children were assessed using the Annett Handedness questionnaire. Subgroups of 54 mothers and 57 fathers with a family history of language-related developmental disorders were identified. Parents also reported the handedness of other relatives. Mothers (but not fathers) in the main group were significantly more likely to be consistently right-handed than females in the general population, but this was not specifically associated with a family history of language problems. There was no evidence of an increased incidence of consistent left-handedness in either the whole group of parents or the subgroups. Reported handedness of other relatives showed no abnormal distribution in relation to a comparison group. The findings are discussed in relation to theories about genetic factors in language-related developmental disorders in general, and autism in particular.
Collapse
Affiliation(s)
- J Boucher
- Department of Psychology, University of Sheffield
| | | | | |
Collapse
|
48
|
|
49
|
Cohen IL, Brown WT, Jenkins EC, Krawczun MS, French JH, Raguthu S, Wolf-Schein EG, Sudhalter V, Fisch G, Wisniewski K. Fragile X syndrome in females with autism. AMERICAN JOURNAL OF MEDICAL GENETICS 1989; 34:302-3. [PMID: 2817015 DOI: 10.1002/ajmg.1320340240] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Madokoro H, Ohdo S, Sonoda T, Ohba K, Tanaka H, Hayakawa K. Infantile autism and the fragile X syndrome in Japanese children. ACTA PAEDIATRICA JAPONICA : OVERSEAS EDITION 1989; 31:163-5. [PMID: 2516694 DOI: 10.1111/j.1442-200x.1989.tb01283.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A total of 97 children with infantile autism, 85 boys and 12 girls, were screened for the fragile X chromosome. They ranged in age from 2 to 14 years with an average of 5 5/12 years. There were two fra(X) positive boys and no such girls.
Collapse
|