1
|
Thomson-Luque R, Stabler TC, Fürle K, Silva JC, Daubenberger C. Plasmodium falciparum merozoite surface protein 1 as asexual blood stage malaria vaccine candidate. Expert Rev Vaccines 2024; 23:160-173. [PMID: 38100310 DOI: 10.1080/14760584.2023.2295430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Malaria represents a public health challenge in tropical and subtropical regions, and currently deployed control strategies are likely insufficient to drive elimination of malaria. Development and improvement of malaria vaccines might be key to reduce disease burden. Vaccines targeting asexual blood stages of the parasite have shown limited efficacy when studied in human trials conducted over the past decades. AREAS COVERED Vaccine candidates based on the merozoite surface protein 1 (MSP1) were initially envisioned as one of the most promising approaches to provide immune protection against asexual blood-stage malaria. Successful immunization studies in monkey involved the use of the full-length MSP1 (MSP1FL) as vaccine construct. Vaccines using MSP1FL for immunization have the potential benefit of including numerous conserved B-cell and T-cell epitopes. This could result in improved parasite strain-transcending, protective immunity in the field. We review outcomes of clinical trials that utilized a variety of MSP1 constructs and formulations, including MSP1FL, either alone or in combination with other antigens, in both animal models and humans. EXPERT OPINION Novel approaches to analyze breadth and magnitude of effector functions of MSP1-targeting antibodies in volunteers undergoing experimental vaccination and controlled human malaria infection will help to define correlates of protective immunity.
Collapse
Affiliation(s)
- Richard Thomson-Luque
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG Heidelberg, Germany
| | - Thomas C Stabler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| | - Kristin Fürle
- Centre for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa (GHTM IHMT, UNL), Lisbon, Portugal
| | - Claudia Daubenberger
- University of Basel Basel, Switzerland
- Swiss Tropical and Public Health Institute Allschwil, Switzerland
| |
Collapse
|
2
|
Magnano San Lio R, Favara G, Maugeri A, Barchitta M, Agodi A. How Antimicrobial Resistance Is Linked to Climate Change: An Overview of Two Intertwined Global Challenges. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1681. [PMID: 36767043 PMCID: PMC9914631 DOI: 10.3390/ijerph20031681] [Citation(s) in RCA: 227] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 05/13/2023]
Abstract
Globally, antimicrobial resistance (AMR) and climate change (CC) are two of the top health emergencies, and can be considered as two interlinked public health priorities. The complex commonalities between AMR and CC should be deeply investigated in a One Health perspective. Here, we provided an overview of the current knowledge about the relationship between AMR and CC. Overall, the studies included pointed out the need for applying a systemic approach to planetary health. Firstly, CC increasingly brings humans and animals into contact, leading to outbreaks of zoonotic and vector-borne diseases with pandemic potential. Although it is well-established that antimicrobial use in human, animal and environmental sectors is one of the main drivers of AMR, the COVID-19 pandemic is exacerbating the current scenario, by influencing the use of antibiotics, personal protective equipment, and biocides. This also results in higher concentrations of contaminants (e.g., microplastics) in natural water bodies, which cannot be completely removed from wastewater treatment plants, and which could sustain the AMR spread. Our overview underlined the lack of studies on the direct relationship between AMR and CC, and encouraged further research to investigate the multiple aspects involved, and its effect on human health.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Malaria Vaccines. Infect Dis (Lond) 2023. [DOI: 10.1007/978-1-0716-2463-0_536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
4
|
No Roots, No Fruits: Marcel Tanner's Scholarly Contribution, Achievements in Capacity Building, and Impact in Global Health. Diseases 2022; 10:diseases10040116. [PMID: 36547202 PMCID: PMC9777716 DOI: 10.3390/diseases10040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022] Open
Abstract
On 1 October 2022, Marcel Tanner celebrated his 70th birthday with his family and friends on the River Rhein in Basel. Trained in epidemiology (Ph.D.) and public health (MPH), Tanner devoted his entire working life to research, teaching, and capacity building. Indeed, he built up productive partnerships, fostered multinational consortia, served on numerous scientific and strategic advisory boards, and contributed measurably to improving people's health and well-being. We systematically searched the Web of Science Core Collection to identify Tanner's scholarly contribution and pursued an in-depth analysis of his scientific oeuvre including the main areas of research, pathogens, diseases, and health systems, and the geographical foci of his scholarly activities. Additionally, we examined Tanner's impact on personal and institutional capacity building in the arena of global health. We also invited a handful of colleagues to describe their experiences while working with Marcel Tanner. What transpires is a considerable breadth and depth of peer-reviewed publications in tropical medicine; epidemiology, environmental, and occupational health; parasitology; and infectious diseases. More than a third of the 622 peer-reviewed articles, the first piece published in 1978, focused on various aspects of the protozoan parasite Plasmodium and the disease it causes: malaria. Tanner trained, taught, and inspired generations of students, scientists, and practitioners all over the world. His unique ability to bring people and institutions together to work in partnership is at the heart of an impactful career in global health.
Collapse
|
5
|
Bergquist R, Meier L. Marcel Tanner, Global Health Specialist "Extraordinaire" Incl Supplementary Materials with Personal Contributions from Renowned Experts. Diseases 2022; 10:diseases10040074. [PMID: 36278573 PMCID: PMC9590011 DOI: 10.3390/diseases10040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Lukas Meier
- Swiss Tropical and Public Health-Institute (Swiss TPH), University of Basel, 4123 Allschwil, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Meier L, Casagrande G, Abdulla S, Masanja H. A brief history of selected malaria vaccine and medical interventions pursued by the Swiss Tropical and Public Health Institute and partners, 1943-2021. Acta Trop 2022; 225:106115. [PMID: 34464588 DOI: 10.1016/j.actatropica.2021.106115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/01/2022]
Abstract
In order to be successful in global health today, all the long-established European tropical research institutes had to undergo a transition which can be described as "hunter-gatherer" and descriptive approaches during colonial and postcolonial times to a deeper understanding of infection biology and finally to public health interventions from which populations at large can benefit. During the 1980s and 1990s, the Swiss Tropical Institute (today: Swiss Tropical and Public Health Institute, Swiss TPH) based in Basel too has changed its focus from individual medicine to a public health context. This article does not present new scientific data but takes a historical perspective. Its aim is to highlight the above-mentioned transformation by focusing on selected malaria research-cum-action interventions during the crucial period of the 1990s, which were tailored to the social-ecological settings where the disease was endemic. In order for this transformation to be successful, we intend to emphasise the importance of (i) having a fundamental understanding of local transmission; (ii) building and nurturing relationships with partner institutions; and (iii) developing a coherent research portfolio as key elements for researching and applying evidence in malaria control and elimination as part of national malaria control programmes.
Collapse
|
7
|
Diversify and Conquer: The Vaccine Escapism of Plasmodium falciparum. Microorganisms 2020; 8:microorganisms8111748. [PMID: 33171746 PMCID: PMC7694999 DOI: 10.3390/microorganisms8111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
Over the last century, a great deal of effort and resources have been poured into the development of vaccines to protect against malaria, particularly targeting the most widely spread and deadly species of the human-infecting parasites: Plasmodium falciparum. Many of the known proteins the parasite uses to invade human cells have been tested as vaccine candidates. However, precisely because of the importance and immune visibility of these proteins, they tend to be very diverse, and in many cases redundant, which limits their efficacy in vaccine development. With the advent of genomics and constantly improving sequencing technologies, an increasingly clear picture is emerging of the vast genomic diversity of parasites from different geographic areas. This diversity is distributed throughout the genome and includes most of the vaccine candidates tested so far, playing an important role in the low efficacy achieved. Genomics is a powerful tool to search for genes that comply with the most desirable attributes of vaccine targets, allowing us to evaluate function, immunogenicity and also diversity in the worldwide parasite populations. Even predicting how this diversity might evolve and spread in the future becomes possible, and can inform novel vaccine efforts.
Collapse
|
8
|
Gudipati S, Zervos M, Herc E. Can the One Health Approach Save Us from the Emergence and Reemergence of Infectious Pathogens in the Era of Climate Change: Implications for Antimicrobial Resistance? Antibiotics (Basel) 2020; 9:antibiotics9090599. [PMID: 32937739 PMCID: PMC7557833 DOI: 10.3390/antibiotics9090599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Climate change has become a controversial topic in today’s media despite decades of warnings from climate scientists and has influenced human health significantly with the increasing prevalence of infectious pathogens and contribution to antimicrobial resistance. Elevated temperatures lead to rising sea and carbon dioxide levels, changing environments and interactions between humans and other species. These changes have led to the emergence and reemergence of infectious pathogens that have already developed significant antimicrobial resistance. Although these new infectious pathogens are alarming, we can still reduce the burden of infectious diseases in the era of climate change if we focus on One Health strategies. This approach aims at the simultaneous protection of humans, animals and environment from climate change and antimicrobial impacts. Once these relationships are better understood, these models can be created, but the support of our legislative and health system partnerships are critical to helping with strengthening education and awareness.
Collapse
|
9
|
Penny MA, Camponovo F, Chitnis N, Smith TA, Tanner M. Future use-cases of vaccines in malaria control and elimination. Parasite Epidemiol Control 2020; 10:e00145. [PMID: 32435704 PMCID: PMC7229487 DOI: 10.1016/j.parepi.2020.e00145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 02/18/2020] [Accepted: 03/29/2020] [Indexed: 11/29/2022] Open
Abstract
Malaria burden has significantly changed or decreased over the last 20 years, however, it remains an important health problem requiring the rigorous application of existing tools and approaches, as well as the development and use of new interventions. A malaria vaccine has long been considered a possible new intervention to aid malaria burden reduction. However, after decades of development, only one vaccine to protect children has completed phase 3 studies. Before being widely recommended for use, it must further demonstrate safety, impact and feasibility in ongoing pilot implementation studies. Now is an appropriate time to consider the use-cases and health targets of future malaria vaccines. These must be considered in the context of likely innovations in other malaria tools such as vector control, as well as the significant knowledge gaps on the appropriate target antigens, and the immunology of vaccine-induced protection. Here we discuss the history of malaria vaccines and suggest some future use-cases for future malaria vaccines that will support achieving malaria health goals in different settings.
Collapse
Affiliation(s)
| | - Flavia Camponovo
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nakul Chitnis
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Thomas A. Smith
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Curtidor H, Reyes C, Bermúdez A, Vanegas M, Varela Y, Patarroyo ME. Conserved Binding Regions Provide the Clue for Peptide-Based Vaccine Development: A Chemical Perspective. Molecules 2017; 22:molecules22122199. [PMID: 29231862 PMCID: PMC6149789 DOI: 10.3390/molecules22122199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022] Open
Abstract
Synthetic peptides have become invaluable biomedical research and medicinal chemistry tools for studying functional roles, i.e., binding or proteolytic activity, naturally-occurring regions’ immunogenicity in proteins and developing therapeutic agents and vaccines. Synthetic peptides can mimic protein sites; their structure and function can be easily modulated by specific amino acid replacement. They have major advantages, i.e., they are cheap, easily-produced and chemically stable, lack infectious and secondary adverse reactions and can induce immune responses via T- and B-cell epitopes. Our group has previously shown that using synthetic peptides and adopting a functional approach has led to identifying Plasmodium falciparumconserved regions binding to host cells. Conserved high activity binding peptides’ (cHABPs) physicochemical, structural and immunological characteristics have been taken into account for properly modifying and converting them into highly immunogenic, protection-inducing peptides (mHABPs) in the experimental Aotus monkey model. This article describes stereo–electron and topochemical characteristics regarding major histocompatibility complex (MHC)-mHABP-T-cell receptor (TCR) complex formation. Some mHABPs in this complex inducing long-lasting, protective immunity have been named immune protection-inducing protein structures (IMPIPS), forming the subunit components in chemically synthesized vaccines. This manuscript summarizes this particular field and adds our recent findings concerning intramolecular interactions (H-bonds or π-interactions) enabling proper IMPIPS structure as well as the peripheral flanking residues (PFR) to stabilize the MHCII-IMPIPS-TCR interaction, aimed at inducing long-lasting, protective immunological memory.
Collapse
Affiliation(s)
- Hernando Curtidor
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - César Reyes
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
| | - Adriana Bermúdez
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Magnolia Vanegas
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- School of Medicine and Health Sciences, University of Rosario, Bogotá 111321, Colombia.
| | - Yahson Varela
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Health Sciences, Applied and Environmental Sciences University (UDCA), Bogotá 111321, Colombia.
| | - Manuel E Patarroyo
- Colombian Institute of Immunology Foundation (FIDIC Nonprofit-Making Organisation), Bogotá 111321, Colombia.
- Faculty of Medicine, National University of Colombia, Bogotá 111321, Colombia.
| |
Collapse
|
11
|
González R, Rupérez M, Sevene E, Vala A, Maculuve S, Bulo H, Nhacolo A, Mayor A, Aponte JJ, Macete E, Menendez C. Effects of HIV infection on maternal and neonatal health in southern Mozambique: A prospective cohort study after a decade of antiretroviral drugs roll out. PLoS One 2017; 12:e0178134. [PMID: 28575010 PMCID: PMC5456062 DOI: 10.1371/journal.pone.0178134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction The HIV epidemic is concentrated in sub-Saharan Africa. However, limited information exists on its impact on women and infant’s health since the introduction of antiretroviral drugs in this region, where health resources are often scarce. Methods The effect of HIV infection on maternal health, birth outcomes and infant health was analysed in two contemporary cohorts of HIV-uninfected and HIV-infected pregnant women from southern Mozambique. Pregnant women attending the first antenatal care visit were followed until one month after delivery. Antiretroviral therapy was administered based on CD4+T cell count and clinical stage. Maternal and neonatal morbidity and mortality, as well as pregnancy outcomes were assessed by mother’s HIV status. Results A total of 1183 HIV-uninfected and 561 HIV-infected pregnant women were enrolled. HIV-infected women were more likely to have anaemia both at the first antenatal care visit and at delivery than HIV-uninfected women (71.5% versus 54.8% and 49.4% versus 40.6%, respectively, p<0.001). Incidence of hospital admissions during pregnancy was increased among HIV-infected women (RR, 2.04, [95%CI, 1.45; 2.86]; p<0.001). At delivery, 21% of HIV-infected women reported being on antiretroviral therapy, and 70% having received antiretroviral drugs for prevention of mother to child transmission of HIV. The risk of stillbirths was doubled in HIV-infected women (RR, 2.16 [95%CI 1.17; 3.96], p = 0.013). Foetal anaemia was also increased among infants born to HIV-infected women (10.6% versus 7.3%, p = 0.022). No differences were found in mean birth weight, malaria, prematurity and maternal and neonatal deaths between groups. Conclusions HIV infection continues to be associated with significant maternal morbidity and poor neonatal health outcomes. Efforts should urgently be made to identify the barriers that impede improvements on the devastating effects of HIV in African women and their infants. Trial registration ClinicalTrials.gov NCT 00811421.
Collapse
Affiliation(s)
- Raquel González
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
- * E-mail:
| | - María Rupérez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Esperança Sevene
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
- Eduardo Mondlane University, Faculty of medicine, Maputo, Mozambique
| | - Anifa Vala
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Sónia Maculuve
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Helder Bulo
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | | | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - John J. Aponte
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Eusébio Macete
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Clara Menendez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| |
Collapse
|
12
|
Portugal-Calisto D, Ferreira AR, Silva MS, Teodósio R. Post-exposure serological responses to malaria parasites in potential blood donors. Malar J 2016; 15:548. [PMID: 27829450 PMCID: PMC5103439 DOI: 10.1186/s12936-016-1586-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/28/2016] [Indexed: 11/29/2022] Open
Abstract
Background Cases of transfusion-transmitted malaria have been described around the world and highlighted in some studies. Semi-immune individuals are more likely to transmit malaria as they may be asymptomatic. Some countries allow blood donations only based on epidemiological criteria while others reinforce their criteria with serological tests. However, little is known about the longevity of anti-Plasmodium spp. antibodies and its meaning in blood donation. Therefore, this study aims to assess the longevity of different subclasses of anti-Plasmodium spp. antibodies in individuals with previous stays in endemic areas, as well as to assess how those antibodies are related to personal features and travel characteristics. Based on those results, the suitability of the Portuguese blood donors screening method was addressed, i.e. the method to search for an eventual risk of transfusion–transmitted malaria among the population studied. Results Statistical associations were found between the presence of total anti-Plasmodium spp. antibodies and some travel characteristics, namely to be born in endemic area versus non endemic and previous episodes of malaria. The intersection between seropositive results and the last year of stay in endemic areas showed a longer longevity of anti-Plasmodium spp. antibodies than previously reported. Those results represented a considerable portion of the individuals having returned from their last stay in endemic areas more than 10 years before enrolment in this study. Considering the study population as potential blood donors, serological results also indicated that if epidemiological criteria alone were applied to screen blood donors, an important percentage of seropositive individuals would be approved for blood donation. Because the nature and meaning of those antibodies in the blood donation context is still not understood, those approved individuals could represent a risk for blood transfusion safety. Conclusions The place of birth and past episodes of malaria seem to be related to the serological outcome. Epidemiological criteria to screen potential blood donors are insufficient to guarantee the safety of the blood, if applied alone. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1586-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela Portugal-Calisto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Ana Raquel Ferreira
- Instituto Português do Sangue e da Transplantação, Parque de Saúde de Lisboa, Av. do Brasil, 53-Pav. 17, 1749-005, Lisbon, Portugal
| | - Marcelo Sousa Silva
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal. .,Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal, 59078-970, Brazil. .,Programa de Pós-graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova, Natal, 59078-970, Brazil.
| | - Rosa Teodósio
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal.
| |
Collapse
|
13
|
Persistence and immunogenicity of chemically attenuated blood stage Plasmodium falciparum in Aotus monkeys. Int J Parasitol 2016; 46:581-91. [PMID: 27238088 DOI: 10.1016/j.ijpara.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/24/2022]
Abstract
Malaria is a disease caused by a protozoan of the Plasmodium genus and results in 0.5-0.7million deaths per year. Increasing drug resistance of the parasite and insecticide resistance of mosquitoes necessitate alternative control measures. Numerous vaccine candidates have been identified but none have been able to induce robust, long-lived protection when evaluated in malaria endemic regions. Rodent studies have demonstrated that chemically attenuated blood stage parasites can persist at sub-patent levels and induce homologous and heterologous protection against malaria. Parasite-specific cellular responses were detected, with protection dependent on CD4+ T cells. To investigate this vaccine approach for Plasmodium falciparum, we characterised the persistence and immunogenicity of chemically attenuated P. falciparum FVO strain parasites (CAPs) in non-splenectomised Aotus nancymaae monkeys following administration of a single dose. Control monkeys received either normal red blood cells or wild-type parasites followed by drug treatment. Chemical attenuation was performed using tafuramycin A, which irreversibly binds to DNA. CAPs were detected in the peripheral blood for up to 2days following inoculation as determined by thick blood smears, and for up to 8days as determined by quantitative PCR. Parasite-specific IgG was not detected in monkeys that received CAPs; however, in vitro parasite-specific T cell proliferation was observed. Following challenge, the CAP monkeys developed an infection; however, one CAP monkey and the infection and drug-cure monkeys showed partial or complete resistance. These experiments lay the groundwork for further assessment of CAPs as a potential vaccine against malaria.
Collapse
|
14
|
Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJI, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 2016; 40:343-72. [PMID: 26833236 PMCID: PMC4852283 DOI: 10.1093/femsre/fuw001] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2016] [Indexed: 01/11/2023] Open
Abstract
Malaria accounts for an enormous burden of disease globally, with Plasmodium falciparum accounting for the majority of malaria, and P. vivax being a second important cause, especially in Asia, the Americas and the Pacific. During infection with Plasmodium spp., the merozoite form of the parasite invades red blood cells and replicates inside them. It is during the blood-stage of infection that malaria disease occurs and, therefore, understanding merozoite invasion, host immune responses to merozoite surface antigens, and targeting merozoite surface proteins and invasion ligands by novel vaccines and therapeutics have been important areas of research. Merozoite invasion involves multiple interactions and events, and substantial processing of merozoite surface proteins occurs before, during and after invasion. The merozoite surface is highly complex, presenting a multitude of antigens to the immune system. This complexity has proved challenging to our efforts to understand merozoite invasion and malaria immunity, and to developing merozoite antigens as malaria vaccines. In recent years, there has been major progress in this field, and several merozoite surface proteins show strong potential as malaria vaccines. Our current knowledge on this topic is reviewed, highlighting recent advances and research priorities. The authors summarize current knowledge of merozoite surface proteins of malaria parasites; their function in invasion, processing of surface proteins before, during and after invasion, their importance as targets of immunity, and the current status of malaria vaccines that target merozoite surface proteins.
Collapse
Affiliation(s)
- James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Damien R Drew
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Epidemiology and Preventive Medicine, Monash University, Clayton, Victoria, Australia School of Population Health, University of Melbourne, Parkville, Victoria, Australia
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, Victoria, Australia Department of Microbiology, Monash University, Clayton, Victoria, Australia Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Moro L, Bardají A, Macete E, Barrios D, Morales-Prieto DM, España C, Mandomando I, Sigaúque B, Dobaño C, Markert UR, Benitez-Ribas D, Alonso PL, Menéndez C, Mayor A. Placental Microparticles and MicroRNAs in Pregnant Women with Plasmodium falciparum or HIV Infection. PLoS One 2016; 11:e0146361. [PMID: 26757431 PMCID: PMC4710532 DOI: 10.1371/journal.pone.0146361] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
Background During pregnancy, syncytiotrophoblast vesicles contribute to maternal tolerance towards the fetus, but also to pathologies such as pre-eclampsia. The aim of the study was to address whether Plasmodium falciparum and HIV infections in pregnancy affect the secretion, microRNA content and function of trophoblast microparticles. Methods Microparticles were isolated and characterized from 122 peripheral plasmas of Mozambican pregnant women, malaria- and/or HIV-infected and non-infected. Expression of placenta-related microRNAs in microparticles was analysed by qPCR and the effect of circulating microparticles on dendritic cells assessed by phenotype analysis and cytokine/chemokine measurement. Results Concentrations of total and trophoblast microparticles detected by flow cytometry were higher in HIV-positive (P = 0.005 and P = 0.030, respectively) compared to non-infected mothers, as well as in women delivering low birthweight newborns (P = 0.032 and P = 0.021, respectively). miR-517c was overexpressed in mothers with placental malaria (P = 0.034), compared to non-infected. Microparticles from HIV-positive induced a higher expression of MHCII (P = 0.021) and lower production of MCP1 (P = 0.008) than microparticles from non-infected women. Conclusions In summary, alterations in total and trophoblast microparticles associated with malaria and HIV in pregnant women may have an immunopathogenic role. The potential for placental-derived vesicles and microRNAs as biomarkers of adverse outcomes during pregnancy and malaria infection should be confirmed in future studies.
Collapse
Affiliation(s)
- Laura Moro
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Placenta-Labor, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - Azucena Bardají
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | - Eusebio Macete
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | - Diana Barrios
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | | | - Carolina España
- Department of Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | | | - Betuel Sigaúque
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | - Carlota Dobaño
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | - Udo R. Markert
- Placenta-Labor, Department of Obstetrics, University Hospital Jena, Jena, Germany
| | - Daniel Benitez-Ribas
- Department of Gastroenterology, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Hospital Clínic, Barcelona, Spain
| | - Pedro L. Alonso
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | - Clara Menéndez
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça, Manhiça, Mozambique
- * E-mail:
| |
Collapse
|
16
|
Curtidor H, Patarroyo ME, Patarroyo MA. Recent advances in the development of a chemically synthesised anti-malarial vaccine. Expert Opin Biol Ther 2015; 15:1567-81. [DOI: 10.1517/14712598.2015.1075505] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, Patarroyo MA. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. PLoS One 2015; 10:e0123249. [PMID: 25879751 PMCID: PMC4400017 DOI: 10.1371/journal.pone.0123249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/28/2015] [Indexed: 01/14/2023] Open
Abstract
Determining immune protection-inducing protein structures (IMPIPS) involves defining the stereo-electron and topochemical characteristics which are essential in MHC-p-TCR complex formation. Modified high activity binding peptides (mHABP) were thus synthesised to produce a large panel of IMPIPS measuring 26.5 ±3.5Å between the farthest atoms fitting into Pockets 1 to 9 of HLA-DRβ1* structures. They displayed a polyproline II-like (PPIIL) structure with their backbone O and N atoms orientated to establish H-bonds with specific residues from HLA-DRβ1*-peptide binding regions (PBR). Residues having specific charge and gauche+ orientation regarding p3χ1, p5χ2, and p7χ1 angles determined appropriate rotamer orientation for perfectly fitting into the TCR to induce an appropriate immune response. Immunological assays in Aotus monkeys involving IMPIPS mixtures led to promising results; taken together with the aforementioned physicochemical principles, non-interfering, long-lasting, protection-inducing, multi-epitope, multistage, minimal subunit-based chemically-synthesised peptides can be designed against diseases scourging humankind.
Collapse
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad Nacional de Colombia, Bogotá, Colombia
- * E-mail:
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Martha Patricia Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | - Magnolia Vanegas
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| | | | | | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
18
|
Balam S, Olugbile S, Servis C, Diakité M, D'Alessandro A, Frank G, Moret R, Nebie I, Tanner M, Felger I, Smith T, Kajava AV, Spertini F, Corradin G. Plasmodium falciparum merozoite surface protein 2: epitope mapping and fine specificity of human antibody response against non-polymorphic domains. Malar J 2014; 13:510. [PMID: 25526742 PMCID: PMC4320585 DOI: 10.1186/1475-2875-13-510] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/06/2014] [Indexed: 11/16/2022] Open
Abstract
Background Two long synthetic peptides representing the dimorphic and constant C-terminal domains of the two allelic families of Plasmodium falciparum merozoite surface proteins 2 are considered promising malaria vaccine candidates. The aim of the current study is to characterize the immune response (epitope mapping) in naturally exposed individuals and relate immune responses to the risk of clinical malaria. Methods To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins. Results Immunodominant epitopes were characterized, and their distribution was similar irrespective of geographic origin, age group and gender. Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot. Conclusion Data from this current study may contribute to a development of MSP2 vaccine candidates based on conserved and dimorphic regions thus bypassing the complexity of vaccine development related to the polymorphism of full-length MSP2. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-510) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saidou Balam
- Department of Biochemistry, University of Lausanne, Ch des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Moro L, Bardají A, Nhampossa T, Mandomando I, Serra-Casas E, Sigaúque B, Cisteró P, Chauhan VS, Chitnis CE, Ordi J, Dobaño C, Alonso PL, Menéndez C, Mayor A. Malaria and HIV infection in Mozambican pregnant women are associated with reduced transfer of antimalarial antibodies to their newborns. J Infect Dis 2014; 211:1004-14. [PMID: 25271267 DOI: 10.1093/infdis/jiu547] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Malaria and human immunodeficiency virus (HIV) infection during pregnancy affect the transplacental transfer of antibodies against several pathogens from mother to fetus, although the effect of malaria and HIV infection on the transfer of antimalarial antibodies remains unclear. METHODS Levels of total immunoglobulin G (IgG), immunoglobulin M (IgM), and IgG subtypes against the following Plasmodium falciparum antigens were measured in 187 pairs of mother-cord plasma specimens from Mozambique: 19-kDa fragment of merozoite surface protein 1 (MSP119), erythrocyte binding antigen 175 (EBA175), apical membrane antigen 1 (AMA1), and parasite lysate. Placental antibody transfer was defined as the cord-to-mother ratio (CMR) of antibody levels. RESULTS Maternal malaria was associated with reduced CMR of EBA175 IgG (P = .014) and IgG1 (P = .029), AMA1 IgG (P = .002), lysate IgG1 (P = .001), and MSP1 IgG3 (P = .01). Maternal HIV was associated with reduced CMR of MSP1 IgG1 (P = .022) and IgG3 (P = .023), lysate IgG1 (P = .027) and IgG3 (P = .025), AMA1 IgG1 (P = .001), and EBA175 IgG3 (P = .001). Decreased CMR was not associated with increased adverse pregnancy outcomes or augmented risk of malaria in the infant during the first year of life. CONCLUSIONS Placental transfer of antimalarial antibodies is reduced in pregnant women with malaria and HIV infection. However, this decrease does not contribute to an increased risk of malaria-associated morbidity during infancy.
Collapse
Affiliation(s)
- Laura Moro
- Barcelona Center for International Health Research
| | - Azucena Bardají
- Barcelona Center for International Health Research Centro de Investigaçao em Saúde da Manhiça
| | | | | | | | - Betuel Sigaúque
- Centro de Investigaçao em Saúde da Manhiça Instituto Nacional de Saúde, Ministry of Health, Maputo, Mozambique
| | - Pau Cisteró
- Barcelona Center for International Health Research
| | - Virander S Chauhan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Chetan E Chitnis
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Jaume Ordi
- Barcelona Center for International Health Research Department of Pathology, Hospital Clínic-Universitat de Barcelona, Spain
| | - Carlota Dobaño
- Barcelona Center for International Health Research Centro de Investigaçao em Saúde da Manhiça
| | - Pedro L Alonso
- Barcelona Center for International Health Research Centro de Investigaçao em Saúde da Manhiça
| | - Clara Menéndez
- Barcelona Center for International Health Research Centro de Investigaçao em Saúde da Manhiça
| | - Alfredo Mayor
- Barcelona Center for International Health Research Centro de Investigaçao em Saúde da Manhiça
| |
Collapse
|
20
|
González R, Desai M, Macete E, Ouma P, Kakolwa MA, Abdulla S, Aponte JJ, Bulo H, Kabanywanyi AM, Katana A, Maculuve S, Mayor A, Nhacolo A, Otieno K, Pahlavan G, Rupérez M, Sevene E, Slutsker L, Vala A, Williamsom J, Menéndez C. Intermittent preventive treatment of malaria in pregnancy with mefloquine in HIV-infected women receiving cotrimoxazole prophylaxis: a multicenter randomized placebo-controlled trial. PLoS Med 2014; 11:e1001735. [PMID: 25247995 PMCID: PMC4172537 DOI: 10.1371/journal.pmed.1001735] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/05/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is recommended for malaria prevention in HIV-negative pregnant women, but it is contraindicated in HIV-infected women taking daily cotrimoxazole prophylaxis (CTXp) because of potential added risk of adverse effects associated with taking two antifolate drugs simultaneously. We studied the safety and efficacy of mefloquine (MQ) in women receiving CTXp and long-lasting insecticide treated nets (LLITNs). METHODS AND FINDINGS A total of 1,071 HIV-infected women from Kenya, Mozambique, and Tanzania were randomized to receive either three doses of IPTp-MQ (15 mg/kg) or placebo given at least one month apart; all received CTXp and a LLITN. IPTp-MQ was associated with reduced rates of maternal parasitemia (risk ratio [RR], 0.47 [95% CI 0.27-0.82]; p=0.008), placental malaria (RR, 0.52 [95% CI 0.29-0.90]; p=0.021), and reduced incidence of non-obstetric hospital admissions (RR, 0.59 [95% CI 0.37-0.95]; p=0.031) in the intention to treat (ITT) analysis. There were no differences in the prevalence of adverse pregnancy outcomes between groups. Drug tolerability was poorer in the MQ group compared to the control group (29.6% referred dizziness and 23.9% vomiting after the first IPTp-MQ administration). HIV viral load at delivery was higher in the MQ group compared to the control group (p=0.048) in the ATP analysis. The frequency of perinatal mother to child transmission of HIV was increased in women who received MQ (RR, 1.95 [95% CI 1.14-3.33]; p=0.015). The main limitation of the latter finding relates to the exploratory nature of this part of the analysis. CONCLUSIONS An effective antimalarial added to CTXp and LLITNs in HIV-infected pregnant women can improve malaria prevention, as well as maternal health through reduction in hospital admissions. However, MQ was not well tolerated, limiting its potential for IPTp and indicating the need to find alternatives with better tolerability to reduce malaria in this particularly vulnerable group. MQ was associated with an increased risk of mother to child transmission of HIV, which warrants a better understanding of the pharmacological interactions between antimalarials and antiretroviral drugs. TRIAL REGISTRATION ClinicalTrials.gov NCT 00811421; Pan African Clinical Trials Registry PACTR 2010020001813440 Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Raquel González
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Meghna Desai
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, and Kisumu, Kenya
| | - Eusebio Macete
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Peter Ouma
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Kenya Medical Research Institute (KEMRI)/Center for Global Health Research, Kisumu, Kenya
| | | | | | - John J. Aponte
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Helder Bulo
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | | | - Abraham Katana
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Kenya Medical Research Institute (KEMRI)/Center for Global Health Research, Kisumu, Kenya
| | - Sonia Maculuve
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - Alfredo Mayor
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | | | - Kephas Otieno
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Kenya Medical Research Institute (KEMRI)/Center for Global Health Research, Kisumu, Kenya
| | - Golbahar Pahlavan
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - María Rupérez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | | | - Laurence Slutsker
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, and Kisumu, Kenya
| | - Anifa Vala
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
| | - John Williamsom
- Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) Research and Public Health Collaboration, Kisumu, Kenya
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America, and Kisumu, Kenya
| | - Clara Menéndez
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
- Manhiça Health Research Center (CISM), Manhiça, Mozambique
- * E-mail:
| |
Collapse
|
21
|
Nhabomba AJ, Guinovart C, Jiménez A, Manaca MN, Quintó L, Cisteró P, Aguilar R, Barbosa A, Rodríguez MH, Bassat Q, Aponte JJ, Mayor A, Chitnis CE, Alonso PL, Dobaño C. Impact of age of first exposure to Plasmodium falciparum on antibody responses to malaria in children: a randomized, controlled trial in Mozambique. Malar J 2014; 13:121. [PMID: 24674654 PMCID: PMC3986595 DOI: 10.1186/1475-2875-13-121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/22/2014] [Indexed: 12/03/2022] Open
Abstract
Background The impact of the age of first Plasmodium falciparum infection on the rate of acquisition of immunity to malaria and on the immune correlates of protection has proven difficult to elucidate. A randomized, double-blind, placebo-controlled trial using monthly chemoprophylaxis with sulphadoxine-pyrimethamine plus artesunate was conducted to modify the age of first P. falciparum erythrocytic exposure in infancy and assess antibodies and malaria risk over two years. Methods Participants (n = 349) were enrolled at birth to one of three groups: late exposure, early exposure and control group, and were followed up for malaria morbidity and immunological analyses at birth, 2.5, 5.5, 10.5, 15 and 24 months of age. Total IgG, IgG subclasses and IgM responses to MSP-119, AMA-1, and EBA-175 were measured by ELISA, and IgG against variant antigens on the surface of infected erythrocytes by flow cytometry. Factors affecting antibody responses in relation to chemoprophylaxis and malaria incidence were evaluated. Results Generally, antibody responses did not vary significantly between exposure groups except for levels of IgM to EBA-175, and seropositivity of IgG1 and IgG3 to MSP-119. Previous and current malaria infections were strongly associated with increased IgG against MSP-119, EBA-175 and AMA-1 (p < 0.0001). After adjusting for exposure, only higher levels of anti-EBA-175 IgG were significantly associated with reduced clinical malaria incidence (IRR 0.67, p = 0.0178). Conclusions Overall, the age of first P. falciparum infection did not influence the magnitude and breadth of IgG responses, but previous exposure was critical for antibody acquisition. IgG responses to EBA-175 were the strongest correlate of protection against clinical malaria. Trial registration ClinicalTrials.gov: NCT00231452.
Collapse
|
22
|
Patarroyo ME, Bermúdez A, Moreno-Vranich A. Towards the development of a fully protectivePlasmodium falciparumantimalarial vaccine. Expert Rev Vaccines 2014; 11:1057-70. [DOI: 10.1586/erv.12.57] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
23
|
Cunnington AJ, Riley EM. Suppression of vaccine responses by malaria: insignificant or overlooked? Expert Rev Vaccines 2014; 9:409-29. [DOI: 10.1586/erv.10.16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Aguilar R, Moraleda C, Achtman AH, Mayor A, Quintó L, Cisteró P, Nhabomba A, Macete E, Schofield L, Alonso PL, Menéndez C. Severity of anaemia is associated with bone marrow haemozoin in children exposed to Plasmodium falciparum. Br J Haematol 2014; 164:877-87. [PMID: 24386973 DOI: 10.1111/bjh.12716] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/28/2013] [Indexed: 11/29/2022]
Abstract
There are no large-scale ex vivo studies addressing the contribution of Plasmodium falciparum in the bone marrow to anaemia. The presence of malaria parasites and haemozoin were studied in bone marrows from 290 anaemic children attending a rural hospital in Mozambique. Peripheral blood infections were determined by microscopy and polymerase chain reactions. Bone marrow parasitaemia, haemozoin and dyserythropoiesis were microscopically assessed. Forty-two percent (123/290) of children had parasites in the bone marrow and 49% (111/226) had haemozoin, overlapping with parasitaemia in 83% (92/111) of cases. Sexual and mature asexual parasites were highly prevalent (62% gametocytes, 71% trophozoites, 23% schizonts) suggesting their sequestration in this tissue. Sixteen percent (19/120) of children without peripheral infection had haemozoin in the bone marrow. Haemozoin in the bone marrow was independently associated with decreased Hb concentration (P = 0·005) and was more common in dyserythropoietic bone marrows (P = 0·010). The results of this ex vivo study suggest that haemozoin in the bone marrow has a role in the pathogenesis of malarial-anaemia through ineffective erythropoiesis. This finding may have clinical implications for the development of drugs targeted to prevent and treat malarial-anaemia.
Collapse
Affiliation(s)
- Ruth Aguilar
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic - University of Barcelona), Barcelona, Spain; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain; Manhiça Health Research Centre (CISM), Maputo, Mozambique
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Molecular evidence for the localization of Plasmodium falciparum immature gametocytes in bone marrow. Blood 2013; 123:959-66. [PMID: 24335496 DOI: 10.1182/blood-2013-08-520767] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plasmodium falciparum immature gametocytes are not observed in peripheral blood. However, gametocyte stages in organs such as bone marrow have never been assessed by molecular techniques, which are more sensitive than optical microscopy. We quantified P falciparum sexual stages in bone marrow (n = 174) and peripheral blood (n = 70) of Mozambican anemic children by quantitative polymerase chain reaction targeting transcripts specific for early (PF14_0748; PHISTa), intermediate (PF13_0247; Pfs48/45), and mature (PF10_0303; Pfs25) gametocytes. Among children positive for the P falciparum housekeeping gene (PF08_0085; ubiquitin-conjugating enzyme gene) in bone marrow (n = 136) and peripheral blood (n = 25), prevalence of immature gametocytes was higher in bone marrow than peripheral blood (early: 95% vs 20%, P < .001; intermediate: 80% vs 16%; P < .001), as were transcript levels (P < .001 for both stages). In contrast, mature gametocytes were more prevalent (100% vs 51%, P < .001) and abundant (P < .001) in peripheral blood than in the bone marrow. Severe anemia (3.57, 95% confidence interval 1.49-8.53) and dyserythropoiesis (6.21, 95% confidence interval 2.24-17.25) were independently associated with a higher prevalence of mature gametocytes in bone marrow. Our results highlight the high prevalence and abundance of early sexual stages in bone marrow, as well as the relationship between hematological disturbances and gametocyte development in this tissue.
Collapse
|
26
|
Ulbricht C, Basch E, Chao W, Conquer J, Costa D, Culwell S, Flanagan K, Guilford J, Hammerness P, Hashmi S, Isaac R, Rusie E, Serrano JMG, Ulbricht C, Vora M, Windsor RC, Woloszyn M, Zhou S. An evidence-based systematic review of vitamin A by the natural standard research collaboration. J Diet Suppl 2013; 9:299-416. [PMID: 23157584 DOI: 10.3109/19390211.2012.736721] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An evidence-based systematic review of vitamin A by the Natural Standard Research Collaboration consolidates the safety and efficacy data available in the scientific literature using a validated and reproducible grading rationale. This paper includes written and statistical analysis of clinical trials, plus a compilation of expert opinion, folkloric precedent, history, pharmacology, kinetics/dynamics, interactions, adverse effects, toxicology, and dosing.
Collapse
|
27
|
Hammami I, Nuel G, Garcia A. Statistical properties of parasite density estimators in malaria. PLoS One 2013; 8:e51987. [PMID: 23516389 PMCID: PMC3597708 DOI: 10.1371/journal.pone.0051987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 11/14/2012] [Indexed: 02/04/2023] Open
Abstract
Malaria is a global health problem responsible for nearly one million deaths every year around 85% of which concern children younger than five years old in Sub-Saharan Africa. In addition, around 300 million clinical cases are declared every year. The level of infection, expressed as parasite density, is classically defined as the number of asexual parasites relative to a microliter of blood. Microscopy of Giemsa-stained thick blood films is the gold standard for parasite enumeration. Parasite density estimation methods usually involve threshold values; either the number of white blood cells counted or the number of high power fields read. However, the statistical properties of parasite density estimators generated by these methods have largely been overlooked. Here, we studied the statistical properties (mean error, coefficient of variation, false negative rates) of parasite density estimators of commonly used threshold-based counting techniques depending on variable threshold values. We also assessed the influence of the thresholds on the cost-effectiveness of parasite density estimation methods. In addition, we gave more insights on the behavior of measurement errors according to varying threshold values, and on what should be the optimal threshold values that minimize this variability.
Collapse
Affiliation(s)
- Imen Hammami
- Department of Applied Mathematics (MAP5), UMR CNRS 8145, Paris Descartes University, Paris, France.
| | | | | |
Collapse
|
28
|
Mayor A, Kumar U, Bardají A, Gupta P, Jiménez A, Hamad A, Sigaúque B, Singh B, Quintó L, Kumar S, Gupta PK, Chauhan VS, Dobaño C, Alonso PL, Menéndez C, Chitnis CE. Improved Pregnancy Outcomes in Women Exposed to Malaria With High Antibody Levels Against Plasmodium falciparum. J Infect Dis 2013; 207:1664-74. [DOI: 10.1093/infdis/jit083] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
29
|
Engers H. Corrigendum: Engers, H.D. and Godal, T. Malaria vaccine development: current status. Parasitol. Today 14, 56-64, 1998. ACTA ACUST UNITED AC 2013; 14:192. [PMID: 17040749 DOI: 10.1016/s0169-4758(98)01236-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Plowe CV. Malaria Vaccines. Infect Dis (Lond) 2013. [DOI: 10.1007/978-1-4614-5719-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Matuschewski K. Murine infection models for vaccine development: the malaria example. Hum Vaccin Immunother 2012; 9:450-6. [PMID: 23249712 DOI: 10.4161/hv.23218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccines are developed and eventually licensed following consecutive human clinical trials. Malaria is a potential fatal vector-borne infectious disease caused by blood infection of the single-cell eukaryote Plasmodium. Pathogen stage conversion is a hallmark of parasites in general and permits unprecedented vaccine strategies. In the case of malaria, experimental human challenge infections with Plasmodium falciparum sporozoites can be performed under rigorous clinical supervision. This rare opportunity in vaccinology has permitted many small-scale phase II anti-malaria vaccine studies using experimental homologous challenge infections. Demonstration of safety and lasting sterile protection are central endpoints to advance a candidate malaria vaccine approach to phase II field trials. A growing list of antigens as targets for subunit development makes pre-selection and prioritization of vaccine candidates in murine infection models increasingly important. Preclinical assessment in challenge studies with murine Plasmodium species also led to the development of whole organism vaccine approaches. They include live attenuated, metabolically active parasites that educate effector memory T cells to recognize and inactivate developing parasites inside host cells. Here, opportunities from integrating challenge experiments with murine Plasmodium parasites into malaria vaccine development will be discussed.
Collapse
Affiliation(s)
- Kai Matuschewski
- Parasitology Unit; Max Planck Institute for Infection Biology; Berlin, Germany; Institute of Biology; Humboldt University; Berlin, Germany
| |
Collapse
|
32
|
Aguilar R, Moraleda C, Quintó L, Renom M, Mussacate L, Macete E, Aguilar JL, Alonso PL, Menéndez C. Challenges in the diagnosis of iron deficiency in children exposed to high prevalence of infections. PLoS One 2012; 7:e50584. [PMID: 23209786 PMCID: PMC3507793 DOI: 10.1371/journal.pone.0050584] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND While WHO guidelines recommend iron supplements to only iron-deficient children in high infection pressure areas, these are rarely implemented. One of the reasons for this is the commonly held view that iron supplementation increases the susceptibility to some infectious diseases including malaria. Secondly, currently used markers to diagnose iron deficiency are also modified by infections. With the objective of improving iron deficiency diagnosis and thus, its management, we evaluated the performance of iron markers in children exposed to high infection pressure. METHODOLOGY/PRINCIPAL FINDINGS Iron markers were compared to bone marrow findings in 180 anaemic children attending a rural hospital in southern Mozambique. Eighty percent (144/180) of the children had iron deficiency by bone marrow examination, 88% (155/176) had an inflammatory process, 66% (119/180) had moderate anaemia, 25% (45/180) severe anaemia and 9% (16/180) very severe anaemia. Mean cell haemoglobin concentration had a sensitivity of 51% and specificity of 71% for detecting iron deficiency. Soluble transferrin receptor (sTfR) and soluble transferrin receptor/log ferritin (TfR-F) index (adjusted by C reactive protein) showed the highest areas under the ROC curve (AUC(ROC)) (0.75 and 0.76, respectively), and were the most sensitive markers in detecting iron deficiency (83% and 75%, respectively), but with moderate specificities (50% and 56%, respectively). CONCLUSIONS/SIGNIFICANCE Iron deficiency by bone marrow examination was extremely frequent in these children exposed to high prevalence of infections. However, even the best markers of bone marrow iron deficiency did not identify around a quarter of iron-deficient children. Tough not directly extrapolated to the community, these findings urge for more reliable, affordable and easy to measure iron indicators to reduce the burden of iron deficiency anaemia in resource-poor settings where it is most prevalent.
Collapse
Affiliation(s)
- Ruth Aguilar
- Barcelona Centre for International Heath Research, Hospital Clínic, University of Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Yukich J, Briët O, Bretscher MT, Bennett A, Lemma S, Berhane Y, Eisele TP, Keating J, Smith T. Estimating Plasmodium falciparum transmission rates in low-endemic settings using a combination of community prevalence and health facility data. PLoS One 2012; 7:e42861. [PMID: 22936995 PMCID: PMC3425560 DOI: 10.1371/journal.pone.0042861] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 07/13/2012] [Indexed: 12/04/2022] Open
Abstract
As some malaria control programs shift focus from disease control to transmission reduction, there is a need for transmission data to monitor progress. At lower levels of transmission, it becomes increasingly more difficult to measure precisely, for example through entomological studies. Many programs conduct regular cross sectional parasite prevalence surveys, and have access to malaria treatment data routinely collected by ministries of health, often in health management information systems. However, by themselves, these data are poor measures of transmission. In this paper, we propose an approach for combining annual parasite incidence and treatment data with cross-sectional parasite prevalence and treatment seeking survey data to estimate the incidence of new infections in the human population, also known as the force of infection. The approach is based on extension of a reversible catalytic model. The accuracy of the estimates from this model appears to be highly dependent on levels of detectability and treatment in the community, indicating the importance of information on private sector treatment seeking and access to effective and appropriate treatment.
Collapse
Affiliation(s)
- Joshua Yukich
- Department of Global Health Systems and Development, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tyagi RK, Garg NK, Sahu T. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release 2012; 162:242-254. [PMID: 22564369 DOI: 10.1016/j.jconrel.2012.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multi-antigen approach to develop an effective vaccine against complex systemic inflammatory pathogens such as Plasmodium spp. that cause severe malaria. The capacity of multi subunit DNA vaccine encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and interferon-γ responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be capable of eliciting both cell mediated and humoral immune responses. The cytotoxic T cell responses are categorically needed against intracellular hepatic stage and humoral response with antibodies targeted against antigens from all stages of malaria parasite life cycle. Therefore, the key to success for any DNA based vaccine is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of non-viral DNA-mediated gene transfer techniques such as liposome, virosomes, microsphere and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. Also, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells (APC). Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. In this review we discussed various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccine.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612-9415, USA.
| | | | | |
Collapse
|
35
|
Mayor A, Serra-Casas E, Rovira-Vallbona E, Jiménez A, Quintó L, Sigaúque B, Dobaño C, Bardají A, Alonso PL, Menéndez C. Immunoglobulins against the surface of Plasmodium falciparum-infected erythrocytes increase one month after delivery. Malar J 2012; 11:130. [PMID: 22533971 PMCID: PMC3423004 DOI: 10.1186/1475-2875-11-130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/25/2012] [Indexed: 11/18/2022] Open
Abstract
Background The risk of Plasmodium falciparum malaria increases during pregnancy and at early postpartum. Immunological and physiological alterations associated with pregnancy that persist after delivery may contribute to the susceptibility to P. falciparum during early postpartum period. Methods To determine changes in antibody-mediated responses after pregnancy, levels of Immunoglobulin G (IgGs) specific for P. falciparum were compared in 200 pairs of plasmas collected from Mozambican women at delivery and during the first two months postpartum. IgGs against the surface of erythrocytes infected with a P. falciparum chondroitin sulphate A binding line (CS2) and a paediatric isolate (MOZ2) were measured by flow cytometry. Results IgG levels against CS2 and MOZ2 were higher at postpartum than at delivery (p = 0.033 and p = 0.045, respectively) in women without P. falciparum infection. The analysis stratified by parity and period after delivery showed that this increase was significant in multi-gravid women (p = 0.023 for CS2 and p = 0.054 for MOZ2) and during the second month after delivery (p = 0.018 for CS2 and p = 0.015 for MOZ2). Conclusions These results support the view that early postpartum is a period of recovery from physiological or immunological changes associated with pregnancy.
Collapse
Affiliation(s)
- Alfredo Mayor
- Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mayor A, Moro L, Aguilar R, Bardají A, Cisteró P, Serra-Casas E, Sigaúque B, Alonso PL, Ordi J, Menéndez C. How hidden can malaria be in pregnant women? Diagnosis by microscopy, placental histology, polymerase chain reaction and detection of histidine-rich protein 2 in plasma. Clin Infect Dis 2012; 54:1561-8. [PMID: 22447794 DOI: 10.1093/cid/cis236] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Accurate diagnosis of malaria infection during pregnancy remains challenging because of low parasite densities and placental sequestration of Plasmodium falciparum. The performance of different methods to detect P. falciparum in pregnancy and the clinical relevance of undetected infections were evaluated. METHODS P. falciparum infections were assessed in 272 Mozambican women at delivery by microscopy, placental histology, quantitative polymerase chain reaction (qPCR) and detection of histidine-rich protein 2 (HRP2) in plasma by enzyme-linked immunosorbent assay (ELISA) and a rapid diagnostic test (RDT). Association between infection and delivery outcomes was determined. RESULTS Among the 122 women qPCR-positive for P. falciparum in peripheral and/or placental blood samples, 87 (71.3%) did not receive a positive diagnosis by peripheral microscopy, 75 (61.5%) by HRP2 ELISA, and 74 (60.7%) by HRP2 RDT in plasma. Fifty-seven of the 98 qPCR-positive placental infections (58.2%) were not detected by histology. Women who were qPCR-positive but negative in their peripheral blood by microscopy or HRP2 RDT in plasma (n = 62) were at increased risk of anemia, compared with negative women (n = 141; odds ratio, 2.03; 95% confidence interval, 1.07-3.83; P = .029). CONCLUSIONS Microscopy, placental histology and HRP2-based plasma diagnostic methods fail to identify the majority of the P. falciparum infections detected by qPCR in peripheral and placental blood. Undetected infections were associated with maternal anemia, highlighting the urgent need for more accurate malaria diagnostic tools for pregnant women to avoid the negative clinical impact that hidden infections can have during pregnancy. CLINICAL TRIALS REGISTRATION NCT00209781.
Collapse
Affiliation(s)
- Alfredo Mayor
- Barcelona Center for International Health Research, Hospital Clínic-Universitat de Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guinovart C, Dobaño C, Bassat Q, Nhabomba A, Quintó L, Manaca MN, Aguilar R, Rodríguez MH, Barbosa A, Aponte JJ, Mayor AG, Renom M, Moraleda C, Roberts DJ, Schwarzer E, Le Souëf PN, Schofield L, Chitnis CE, Doolan DL, Alonso PL. The role of age and exposure to Plasmodium falciparum in the rate of acquisition of naturally acquired immunity: a randomized controlled trial. PLoS One 2012; 7:e32362. [PMID: 22412865 PMCID: PMC3296698 DOI: 10.1371/journal.pone.0032362] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 01/26/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The rate of acquisition of naturally acquired immunity (NAI) against malaria predominantly depends on transmission intensity and age, although disentangling the effects of these is difficult. We used chemoprophylaxis to selectively control exposure to P. falciparum during different periods in infancy and explore the effect of age in the build-up of NAI, measured as risk of clinical malaria. METHODS AND FINDINGS A three-arm double-blind randomized placebo-controlled trial was conducted in 349 infants born to Mozambican HIV-negative women. The late exposure group (LEG) received monthly Sulfadoxine-Pyrimethamine (SP) plus Artesunate (AS) from 2.5-4.5 months of age and monthly placebo from 5.5-9.5 months; the early exposure group (EEG) received placebo from 2.5-4.5 months and SP+AS from 5.5-9.5 months; and the control group (CG) received placebo from 2.5-9.5 months. Active and passive case detection (PCD) were conducted from birth to 10.5 and 24 months respectively. The primary endpoint was time to first or only episode of malaria in the second year detected by PCD. The incidence of malaria during the second year was of 0.50, 0.51 and 0.35 episodes/PYAR in the LEG, EEG and CG respectively (p = 0.379 for the adjusted comparison of the 3 groups). The hazard ratio of the adjusted comparison between the LEG and the CG was 1.38 (0.83-2.28, p = 0.642) and that between the EEG and the CG was 1.35 (0.81-2.24, p = 0.743). CONCLUSIONS After considerably interfering with exposure during the first year of life, there was a trend towards a higher risk of malaria in the second year in children who had received chemoprophylaxis, but there was no significant rebound. No evidence was found that the age of first exposure to malaria affects the rate of acquisition of NAI. Thus, the timing of administration of antimalarial interventions like malaria vaccines during infancy does not appear to be a critical determinant. TRIAL REGISTRATION ClinicalTrials.gov NCT00231452.
Collapse
Affiliation(s)
- Caterina Guinovart
- Centre de Recerca en Salut Internacional de Barcelona (CRESIB), Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Naniche D, Serra-Casas E, Bardají A, Quintó L, Dobaño C, Sigauque B, Cisteró P, Chauhan VS, Chitnis CE, Alonso PL, Menéndez C, Mayor A. Reduction of antimalarial antibodies by HIV infection is associated with increased risk of Plasmodium falciparum cord blood infection. J Infect Dis 2012; 205:568-77. [PMID: 22238468 DOI: 10.1093/infdis/jir815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Plasmodium falciparum infection in pregnancy can lead to congenital malaria, which has detrimental health consequences for infants. Human immunodeficiency virus (HIV) might increase cord blood P. falciparum infection by decreasing maternal antimalarial-specific antibodies. METHODS HIV-negative (n=133) and HIV-positive (n=55) Mozambican pregnant women were assessed at delivery for maternal and cord P. falciparum infection by quantitative polymerase chain reaction (qPCR) and P. falciparum-specific antibodies by enzyme-linked immunosorbent assay and flow cytometry. RESULTS Prevalence of qPCR-detected cord blood infection was 8.0%. Risk of cord infection was increased in presence of HIV (adjusted odds ratio [AOR], 3.80; P=.04) and placental malaria (AOR, 22.08; P=.002) after adjusting for clinical variables. The odds of having a high immunoglobulin G response to chondrotin sulphate A-binding infected erythrocytes, parasite lysate, and erythrocyte-binding antigen-175 were reduced among HIV-positive women (P < .001, .048, and .056, respectively) and among women with cord P. falciparum infection (P = .009, .04, and .046, respectively). In multivariate analysis including maternal HIV status, placental malaria, and antibody responses, HIV was no longer associated with cord blood infection (P = .11). CONCLUSIONS HIV-associated impairment of antibody responses in pregnant women may contribute to a higher transmission of P. falciparum to their infants.
Collapse
Affiliation(s)
- Denise Naniche
- Barcelona Centre for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schwartz L, Brown GV, Genton B, Moorthy VS. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar J 2012; 11:11. [PMID: 22230255 PMCID: PMC3286401 DOI: 10.1186/1475-2875-11-11] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022] Open
Abstract
Development and Phase 3 testing of the most advanced malaria vaccine, RTS,S/AS01, indicates that malaria vaccine R&D is moving into a new phase. Field trials of several research malaria vaccines have also confirmed that it is possible to impact the host-parasite relationship through vaccine-induced immune responses to multiple antigenic targets using different platforms. Other approaches have been appropriately tested but turned out to be disappointing after clinical evaluation. As the malaria community considers the potential role of a first-generation malaria vaccine in malaria control efforts, it is an apposite time to carefully document terminated and ongoing malaria vaccine research projects so that lessons learned can be applied to increase the chances of success for second-generation malaria vaccines over the next 10 years. The most comprehensive resource of malaria vaccine projects is a spreadsheet compiled by WHO thanks to the input from funding agencies, sponsors and investigators worldwide. This spreadsheet, available from WHO's website, is known as "the rainbow table". By summarizing the published and some unpublished information available for each project on the rainbow table, the most comprehensive review of malaria vaccine projects to be published in the last several years is provided below.
Collapse
Affiliation(s)
- Lauren Schwartz
- Initiative for Vaccine Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Avenue Appia 20, 1211-CH 27, Geneva, Switzerland
| | | | | | | |
Collapse
|
40
|
Age-dependent IgG subclass responses to Plasmodium falciparum EBA-175 are differentially associated with incidence of malaria in Mozambican children. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:157-66. [PMID: 22169088 DOI: 10.1128/cvi.05523-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plasmodium falciparum blood-stage antigens such as merozoite surface protein 1 (MSP-1), apical membrane antigen 1 (AMA-1), and the 175-kDa erythrocyte binding antigen (EBA-175) are considered important targets of naturally acquired immunity to malaria. However, it is not clear whether antibodies to these antigens are effectors in protection against clinical disease or mere markers of exposure. In the context of a randomized, placebo-controlled trial of intermittent preventive treatment in infants conducted between 2002 and 2004, antibody responses to Plasmodium falciparum blood-stage antigens in a cohort of 302 Mozambican children were evaluated by immunofluorescence antibody test and enzyme-linked immunosorbent assay at 5, 9, 12, and 24 months of age. We found that IgG subclass responses to EBA-175 were differentially associated with the incidence of malaria in the follow-up period. A double amount of cytophilic IgG1 or IgG3 was associated with a significant decrease in the incidence of malaria (incidence rate ratio [IRR] = 0.49, 95% confidence interval [CI] = 0.25 to 0.97, and P = 0.026 and IRR = 0.44, CI = 0.19 to 0.98, and P = 0.037, respectively), while a double amount of noncytophilic IgG4 was significantly correlated with an increased incidence of malaria (IRR = 3.07, CI = 1.08 to 8.78, P = 0.020). No significant associations between antibodies to the 19-kDa fragment of MSP-1 (MSP-1(19)) or AMA-1 and incidence of malaria were found. Age, previous episodes of malaria, present infection, and neighborhood of residence were the main factors influencing levels of antibodies to all merozoite antigens. Deeper understanding of the acquisition of antibodies against vaccine target antigens in early infancy is crucial for the rational development and deployment of malaria control tools in this vulnerable population.
Collapse
|
41
|
Abstract
Vaccines are the most powerful public health tools mankind has created, but malaria parasites are bigger, more complicated, and wilier than the viruses and bacteria that have been conquered or controlled with vaccines. Despite decades of research toward a vaccine for malaria, this goal has remained elusive. Nevertheless, recent advances justify optimism that a licensed malaria vaccine is within reach. A subunit recombinant protein vaccine that affords in the neighborhood of 50% protective efficacy against clinical malaria is in the late stages of clinical evaluation in Africa. Incremental improvements on this successful vaccine are possible and worth pursuing, but the best hope for a highly efficacious malaria vaccine that would improve prospects for malaria eradication may lie with the use of attenuated whole parasites and powerful immune-boosting adjuvants.
Collapse
Affiliation(s)
- Mahamadou A Thera
- Malaria Research and Training Center, Faculty of Medicine, University of Bamako, Bamako, Mali, West Africa.
| | | |
Collapse
|
42
|
Lievens M, Aponte JJ, Williamson J, Mmbando B, Mohamed A, Bejon P, Leach A. Statistical methodology for the evaluation of vaccine efficacy in a phase III multi-centre trial of the RTS, S/AS01 malaria vaccine in African children. Malar J 2011; 10:222. [PMID: 21816030 PMCID: PMC3167766 DOI: 10.1186/1475-2875-10-222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 08/04/2011] [Indexed: 11/24/2022] Open
Abstract
Background There has been much debate about the appropriate statistical methodology for the evaluation of malaria field studies and the challenges in interpreting data arising from these trials. Methods The present paper describes, for a pivotal phase III efficacy of the RTS, S/AS01 malaria vaccine, the methods of the statistical analysis and the rationale for their selection. The methods used to estimate efficacy of the primary course of vaccination, and of a booster dose, in preventing clinical episodes of uncomplicated and severe malaria, and to determine the duration of protection, are described. The interpretation of various measures of efficacy in terms of the potential public health impact of the vaccine is discussed. Conclusions The methodology selected to analyse the clinical trial must be scientifically sound, acceptable to regulatory authorities and meaningful to those responsible for malaria control and public health policy. Trial registration Clinicaltrials.gov NCT00866619
Collapse
|
43
|
Association of severe malaria outcomes with platelet-mediated clumping and adhesion to a novel host receptor. PLoS One 2011; 6:e19422. [PMID: 21559373 PMCID: PMC3084855 DOI: 10.1371/journal.pone.0019422] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/02/2011] [Indexed: 11/19/2022] Open
Abstract
Introduction Severe malaria has been attributed partly to the sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature of vital host organs. Identification of P. falciparum cytoadherence phenotypes that are associated with severe malaria may lead to the development of novel strategies against life-threatening malaria. Methods and Findings Forty-six P. falciparum isolates from Mozambican children under 5 years of age with severe malaria (cases) were examined and compared to 46 isolates from sex and age matched Mozambican children with uncomplicated malaria (controls). Cytoadherence properties such as platelet-mediated clumping, rosetting and adhesion to purified receptors (CD36, ICAM1 and gC1qR), were compared between these matched pairs by non-parametric tests. The most common clinical presentation associated with severe malaria was prostration. Compared to matched controls, prevalence of platelet-mediated clumping was higher in cases (P = .019), in children presenting with prostration (P = .049) and in children with severe anaemia (P = .025). Prevalence of rosetting and gC1qR adhesion were also higher in isolates from cases with severe anemia and multiple seizures, respectively (P = .045 in both cases), than in controls. Conclusions These data indicate a role for platelet-mediated clumping, rosetting and adhesion to gC1qR in the pathogenesis of severe malaria. Inhibition of these cytoadherence phenotypes may reduce the occurrence or improve the prognosis of severe malaria outcomes.
Collapse
|
44
|
Affiliation(s)
- Eleanor Riley
- Institute of Cell, Animal and Population Biology, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK
| |
Collapse
|
45
|
Patarroyo ME, Bermúdez A, Patarroyo MA. Structural and Immunological Principles Leading to Chemically Synthesized, Multiantigenic, Multistage, Minimal Subunit-Based Vaccine Development. Chem Rev 2011; 111:3459-507. [DOI: 10.1021/cr100223m] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Manuel Elkin Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad Nacional de Colombia
| | - Adriana Bermúdez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50, No. 26-00, Bogotá, Colombia
- Universidad del Rosario
| |
Collapse
|
46
|
Alexander N, Cundill B, Sabatelli L, Bethony JM, Diemert D, Hotez P, Smith PG, Rodrigues LC, Brooker S. Selection and quantification of infection endpoints for trials of vaccines against intestinal helminths. Vaccine 2011; 29:3686-94. [PMID: 21435404 PMCID: PMC3093614 DOI: 10.1016/j.vaccine.2011.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 12/22/2022]
Abstract
Vaccines against human helminths are being developed but the choice of optimal parasitological endpoints and effect measures to assess their efficacy has received little attention. Assuming negative binomial distributions for the parasite counts, we rank the statistical power of three measures of efficacy: ratio of mean parasite intensity at the end of the trial, the odds ratio of infection at the end of the trial, and the rate ratio of incidence of infection during the trial. We also use a modelling approach to estimate the likely impact of trial interventions on the force of infection, and hence statistical power. We conclude that (1) final mean parasite intensity is a suitable endpoint for later phase vaccine trials, and (2) mass effects of trial interventions are unlikely to appreciably reduce the force of infection in the community - and hence statistical power - unless there is a combination of high vaccine efficacy and a large proportion of the population enrolled.
Collapse
Affiliation(s)
- Neal Alexander
- London School of Hygiene and Tropical Medicine, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Maokola W, Willey BA, Shirima K, Chemba M, Armstrong Schellenberg JRM, Mshinda H, Alonso P, Tanner M, Schellenberg D. Enhancing the routine health information system in rural southern Tanzania: successes, challenges and lessons learned. Trop Med Int Health 2011; 16:721-30. [PMID: 21395928 DOI: 10.1111/j.1365-3156.2011.02751.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe and evaluate the use of handheld computers for the management of Health Management Information System data. METHODS Electronic data capture took place in 11 sentinel health centres in rural southern Tanzania. Information from children attending the outpatient department (OPD) and the Expanded Program on Immunization vaccination clinic was captured by trained local school-leavers, supported by monthly supervision visits. Clinical data included malaria blood slides and haemoglobin colour scale results. Quality of captured data was assessed using double data entry. Malaria blood slide results from health centre laboratories were compared to those from the study's quality control laboratory. RESULTS The system took 5 months to implement, and few staffings or logistical problems were encountered. Over the following 12 months (April 2006-March 2007), 7056 attendances were recorded in 9880 infants aged 2-11 months, 50% with clinical malaria. Monthly supervision visits highlighted incomplete recording of information between OPD and laboratory records, where on average 40% of laboratory visits were missing the record of their corresponding OPD visit. Quality of microscopy from health facility laboratories was lower overall than that from the quality assurance laboratory. CONCLUSIONS Electronic capture of HMIS data was rapidly and successfully implemented in this resource-poor setting. Electronic capture alone did not resolve issues of data completeness, accuracy and reliability, which are essential for management, monitoring and evaluation; suggestions to monitor and improve data quality are made.
Collapse
Affiliation(s)
- W Maokola
- Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Willey BA, Armstrong Schellenberg JRM, Maokola W, Shirima K, Chemba M, Mshinda H, Alonso P, Tanner M, Schellenberg D. Evaluating the effectiveness of IPTi on malaria using routine health information from sentinel health centres in southern Tanzania. Malar J 2011; 10:41. [PMID: 21320346 PMCID: PMC3055223 DOI: 10.1186/1475-2875-10-41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 02/14/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intermittent preventive treatment of malaria in infants (IPTi) consists of the administration of a treatment dose of sulphadoxine-pyrimethamine (SP) at the time of routine vaccinations. The use of routine Health Management and Information Services (HMIS) data to investigate the effect of IPTi on malaria, anaemia, and all-cause attendance in children aged 2-11 months presenting to 11 health centres in southern Tanzania is described. METHODS Clinical diagnosis of malaria was confirmed with a positive blood slide reading from a quality assurance laboratory. Anaemia was defined using two thresholds (mild [Hb<11 g/dL], severe [Hb<8 g/dL]). Incidence rates between IPTi and non-implementing health centres were calculated using Poisson regression, and all statistical testing was based on the t test due to the clustered nature of the data. RESULTS Seventy two per cent of infants presenting in intervention areas received at least one dose of IPTi--22% received all three. During March 2006-April 2007, the incidence of all cause attendance was two attendances per person, per year (pppy), including 0.2 episodes pppy of malaria, 0.7 episodes of mild and 0.13 episodes of severe anaemia. Point estimates for the effect of IPTi on malaria varied between 18% and 52%, depending on the scope of the analysis, although adjustment for clustering rendered these not statistically significant. CONCLUSIONS The point estimate of the effect of IPTi on malaria is consistent with that from a large pooled analysis of randomized control trials. As such, it is plausible that the difference seen in health centre data is due to IPTi, even thought the effect did not reach statistical significance. Findings draw attention to the challenges of robust inference of effects of interventions based on routine health centre data. Analysis of routine health information can reassure that interventions are being made available and having desired effects, but unanticipated effects should trigger data collection from representative samples of the target population.
Collapse
Affiliation(s)
- Barbara A Willey
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bardají A, Sigauque B, Sanz S, Maixenchs M, Ordi J, Aponte JJ, Mabunda S, Alonso PL, Menéndez C. Impact of malaria at the end of pregnancy on infant mortality and morbidity. J Infect Dis 2011; 203:691-9. [PMID: 21199881 PMCID: PMC3071276 DOI: 10.1093/infdis/jiq049] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND There is some consensus that malaria in pregnancy may negatively affect infant's mortality and malaria morbidity, but there is less evidence concerning the factors involved. METHODS A total of 1030 Mozambican pregnant women were enrolled in a randomized, placebo-controlled trial of intermittent preventive treatment with sulfadoxine-pyrimethamine, and their infants were followed up throughout infancy. Overall mortality and malaria morbidity rates were recorded. The association of maternal and fetal risk factors with infant mortality and malaria morbidity was assessed. RESULTS There were 58 infant deaths among 997 live-born infants. The risk of dying during infancy was increased among infants born to women with acute placental infection (odds ratio [OR], 5.08 [95% confidence interval (CI), 1.77-14.53)], parasitemia in cord blood (OR, 19.31 [95% CI, 4.44-84.02]), low birth weight (OR, 2.82 [95% CI, 1.27-6.28]) or prematurity (OR, 3.19 [95% CI, 1.14-8.95]). Infants born to women who had clinical malaria during pregnancy (OR, 1.96 [95% CI, 1.13-3.41]) or acute placental infection (OR, 4.63 [95% CI, 2.10-10.24]) had an increased risk of clinical malaria during infancy. CONCLUSIONS Malaria infection at the end of pregnancy and maternal clinical malaria negatively impact survival and malaria morbidity in infancy. Effective clinical management and prevention of malaria in pregnancy may improve infant's health and survival.
Collapse
Affiliation(s)
- Azucena Bardají
- Barcelona Centre for International Health Research and Department of Pathology, Hospital Clinic, Institut d'Investigacions Biomèdicas August Pi i Sunyer, Universitat de Barcelona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Menendez C, Serra-Casas E, Scahill MD, Sanz S, Nhabomba A, Bardaji A, Sigauque B, Cistero P, Mandomando I, Dobano C, Alonso PL, Mayor A. HIV and Placental Infection Modulate the Appearance of Drug-Resistant Plasmodium falciparum in Pregnant Women who Receive Intermittent Preventive Treatment. Clin Infect Dis 2011; 52:41-8. [DOI: 10.1093/cid/ciq049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|