1
|
Park Y, Kim HJ, Kim YW, Kwon BS, Lee YJ, Cho YJ, Lee JH, Kim J, Kim J, Lee KH, Park JS. Occupational and environmental risk factors for idiopathic pulmonary fibrosis: A case-control study. Respir Med 2024; 231:107738. [PMID: 38992818 DOI: 10.1016/j.rmed.2024.107738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease of unknown etiology. The aim of this study was to evaluate the environmental and occupational risk factors of IPF. METHODS This hospital-based, case-control study included 206 patients with IPF selected from the Seoul National University Bundang Hospital Interstitial Lung Disease registry and 167 controls without lung disease. Data on occupation, lifestyle, transportation, and types of environmental and occupational dust exposure were obtained using a questionnaire. IPF diagnosis was confirmed based on the recent guidelines, and the possibility of hypersensitivity pneumonitis was excluded. Multiple logistic regression was performed to determine the risk factors for IPF. RESULTS After adjusting for age and sex, ever-smokers (odds ratio [OR], 2.35; 95 % confidence interval [CI]: 1.51-3.68) and individuals who smoked more than 30 pack-years (OR, 2.79; 95%CI: 1.70-4.68) showed an increased risk for IPF. Any occupational dust exposure (adjusted OR, 2.08; 95%CI: 1.19-3.72), especially exposure to chemicals (adjusted OR, 3.52; 99%CI: 1.56-9.05), was associated with IPF after adjusting for age, sex, and smoking. CONCLUSIONS Smoking and occupational dust exposure are associated with an increased risk for IPF. Both factors have dose and duration-dependent relationships with the risk for IPF.
Collapse
Affiliation(s)
- Yeonkyung Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, South Korea; Department of Internal Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Hyung-Jun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yeon Wook Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Byoung Soo Kwon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yeon Joo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Young-Jae Cho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae Ho Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Junghoon Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jihang Kim
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyung Hee Lee
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jong Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
2
|
Maher TM. Interstitial Lung Disease: A Review. JAMA 2024; 331:1655-1665. [PMID: 38648021 DOI: 10.1001/jama.2024.3669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Importance Interstitial lung disease (ILD) consists of a group of pulmonary disorders characterized by inflammation and/or fibrosis of the lung parenchyma associated with progressive dyspnea that frequently results in end-stage respiratory failure. In the US, ILD affects approximately 650 000 people and causes approximately 25 000 to 30 000 deaths per year. Observations The most common forms of ILD are idiopathic pulmonary fibrosis (IPF), which accounts for approximately one-third of all cases of ILD, hypersensitivity pneumonitis, accounting for 15% of ILD cases, and connective tissue disease (CTD), accounting for 25% of ILD cases. ILD typically presents with dyspnea on exertion. Approximately 30% of patients with ILD report cough. Thoracic computed tomography is approximately 91% sensitive and 71% specific for diagnosing subtypes of ILDs such as IPF. Physiologic assessment provides important prognostic information. A 5% decline in forced vital capacity (FVC) over 12 months is associated with an approximately 2-fold increase in mortality compared with no change in FVC. Antifibrotic therapy with nintedanib or pirfenidone slows annual FVC decline by approximately 44% to 57% in individuals with IPF, scleroderma associated ILD, and in those with progressive pulmonary fibrosis of any cause. For connective tissue disease-associated ILD, immunomodulatory therapy, such as tocilizumab, rituximab, and mycophenolate mofetil, may slow decline or even improve FVC at 12-month follow-up. Structured exercise therapy reduces symptoms and improves 6-minute walk test distance in individuals with dyspnea. Oxygen reduces symptoms and improves quality of life in individuals with ILD who desaturate below 88% on a 6-minute walk test. Lung transplant may improve symptoms and resolve respiratory failure in patients with end-stage ILD. After lung transplant, patients with ILD have a median survival of 5.2 to 6.7 years compared with a median survival of less than 2 years in patients with advanced ILD who do not undergo lung transplant. Up to 85% of individuals with end-stage fibrotic ILD develop pulmonary hypertension. In these patients, treatment with inhaled treprostinil improves walking distance and respiratory symptoms. Conclusions and Relevance Interstitial lung disease typically presents with dyspnea on exertion and can progress to respiratory failure. First-line therapy includes nintedanib or pirfenidone for IPF and mycophenolate mofetil for ILD due to connective tissue disease. Lung transplant should be considered for patients with advanced ILD. In patients with ILD, exercise training improves 6-minute walk test distance and quality of life.
Collapse
Affiliation(s)
- Toby M Maher
- University of Southern California, Los Angeles
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
3
|
Gandhi SA, Min B, Fazio JC, Johannson KA, Steinmaus C, Reynolds CJ, Cummings KJ. The Impact of Occupational Exposures on the Risk of Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Ann Am Thorac Soc 2024; 21:486-498. [PMID: 38096107 PMCID: PMC10913770 DOI: 10.1513/annalsats.202305-402oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/13/2023] [Indexed: 03/02/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic pulmonary disorder of unknown etiology that is characterized by a usual interstitial pneumonia pattern. Previous meta-analyses have reported associations between occupational exposures and IPF, but higher-quality studies have been published in recent years, doubling the number of studied patients. Objectives: To provide a contemporary and comprehensive assessment of the relationship between occupational exposures and IPF. Methods: We searched PubMed, Embase, and Web of Science through July 2023 to identify all publications on occupational exposure and IPF. We conducted a meta-analysis of the occupational burden, odds ratio (OR), and population attributable fraction (PAF) of exposures. Five exposure categories were analyzed: vapors, gas, dust, and fumes (VGDF); metal dust; wood dust; silica dust; and agricultural dust. A comprehensive bias assessment was performed. The study protocol was registered in the International Prospective Register of Systematic Reviews (identifier CRD42021267808). Results: Our search identified 23,942 publications. Sixteen publications contained relative risks needed to calculate pooled ORs and PAFs, and 12 additional publications reported an occupational burden within a case series. The proportion of cases with occupational exposures to VGDF was 44% (95% confidence interval [CI], 36-53%), with a range of 8-17% within more specific exposure categories. The pooled OR was increased for VGDF at 1.8 (95% CI, 1.3-2.4), with a pooled PAF of 21% (95% CI, 15-28%). ORs and PAFs, respectively, were found to be 1.6 and 7% for metal dust, 1.6 and 3% for wood dust, 1.8 and 14% for agricultural dust, and 1.8 and 4% for silica dust. The pooled ORs and PAFs within specific exposure categories ranged from 1.6 to 1.8 and from 4% to 14%, respectively. We identified some publication bias, but it was not sufficient to diminish the association between occupational exposures and IPF based on sensitivity analysis and bias assessment. Conclusions: Our findings indicate that 21% of IPF cases (or approximately one in five) could be prevented by removal of occupational exposure (alongside a pooled OR of 1.8). Additionally, 44% of patients with IPF report occupational exposure to VGDF. This meta-analysis suggests that a considerable number of cases of IPF are attributable to inhaled occupational exposures and warrant increased consideration in the clinical care of patients and future prevention efforts.
Collapse
Affiliation(s)
- Sheiphali A. Gandhi
- Division of Occupational, Environmental, and Climate Medicine, Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Bohyung Min
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jane C. Fazio
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | | | - Craig Steinmaus
- School of Public Health, University of California, Berkeley, Berkeley, California
| | - Carl J. Reynolds
- Faculty of Medicine, National Heart and Lung Institute, Imperial College of London, London, United Kingdom; and
| | - Kristin J. Cummings
- Occupational Health Branch, California Department of Public Health, Richmond, California
| |
Collapse
|
4
|
Zhang Y, Gan Y, Zhang H. Dietary intake and incidence risk of idiopathic pulmonary fibrosis: a Mendelian randomization study. BMC Pulm Med 2023; 23:376. [PMID: 37803281 PMCID: PMC10559423 DOI: 10.1186/s12890-023-02673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Dietary intake has been shown to have a causal relationship with various lung diseases, such as lung cancer and asthma. However, the causal relationship between dietary intake and idiopathic pulmonary fibrosis (IPF) remains unclear. We conducted a two-sample Mendelian Randomization (MR) study to investigate the causal relationship between dietary intake and IPF. METHODS The exposure datasets included meat, fruit, vegetable, and beverage intake from the UK Biobank. IPF data came from the EBI database of 451,025 individuals. All data in this study were obtained from the IEU Open GWAS Project. The inverse variance weighted (IVW), MR-Egger, and weighted median methods were used as the primary methods. Sensitivity analyses were performed to ensure the validity of the results. RESULTS Oily fish intake [odds ratio (OR):0.995; 95% confidence interval (CI): 0.993-0.998; p = 6.458E-05] and Dried fruit intake (OR:0.995;95%CI:0.991-0.998; p = 0.001) were discovered as protective factors. There was also a suggestive correlation between Beef intake (OR:1.006;95%Cl:1.001-1.012; p = 0.023) and IPF. Sensitivity analysis did not reveal any contradictory results. No causal relationship was found between IPF and the rest of the dietary exposures. CONCLUSIONS Our study found that Oily fish and Dried fruit intake were associated with the risk of IPF, while Beef intake was suggestively associated with the risk of IPF. Other studies are still needed to confirm the results in the future.
Collapse
Affiliation(s)
- Yilin Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yihong Gan
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hong Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Steele MP, Peljto AL, Mathai SK, Humphries S, Bang TJ, Oh A, Teague S, Cicchetti G, Sigakis C, Kropski JA, Loyd JE, Blackwell TS, Brown KK, Schwarz MI, Warren RA, Powers J, Walts AD, Markin C, Fingerlin TE, Yang IV, Lynch DA, Lee JS, Schwartz DA. Incidence and Progression of Fibrotic Lung Disease in an At-Risk Cohort. Am J Respir Crit Care Med 2023; 207:587-593. [PMID: 36094461 PMCID: PMC10870916 DOI: 10.1164/rccm.202206-1075oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Relatives of patients with familial interstitial pneumonia (FIP) are at increased risk for pulmonary fibrosis and develop preclinical pulmonary fibrosis (PrePF). Objectives: We defined the incidence and progression of new-onset PrePF and its relationship to survival among first-degree relatives of families with FIP. Methods: This is a cohort study of family members with FIP who were initially screened with a health questionnaire and chest high-resolution computed tomography (HRCT) scan, and approximately 4 years later, the evaluation was repeated. A total of 493 asymptomatic first-degree relatives of patients with FIP were evaluated at baseline, and 296 (60%) of the original subjects participated in the subsequent evaluation. Measurements and Main Results: The median interval between HRCTs was 3.9 years (interquartile range, 3.5-4.4 yr). A total of 252 subjects who agreed to repeat evaluation were originally determined not to have PrePF at baseline; 16 developed PrePF. A conservative estimate of the annual incidence of PrePF is 1,023 per 100,000 person-years (95% confidence interval, 511-1,831 per 100,000 person-years). Of 44 subjects with PrePF at baseline, 38.4% subjects had worsening dyspnea compared with 15.4% of those without PrePF (P = 0.002). Usual interstitial pneumonia by HRCT (P < 0.0002) and baseline quantitative fibrosis score (P < 0.001) are also associated with worsening dyspnea. PrePF at the initial screen is associated with decreased survival (P < 0.001). Conclusions: The incidence of PrePF in this at-risk population is at least 100-fold higher than that reported for sporadic idiopathic pulmonary fibrosis (IPF). Although PrePF and IPF represent distinct entities, our study demonstrates that PrePF, like IPF, is progressive and associated with decreased survival.
Collapse
Affiliation(s)
| | | | - Susan K. Mathai
- Center for Advanced Heart and Lung Disease, Baylor University Medical Center at Dallas, Dallas, Texas
| | | | | | | | | | - Giuseppe Cicchetti
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, Fondazione Policlinico University Gemelli, Rome, Italy
| | - Christopher Sigakis
- Department of Regional Radiology, Cleveland Clinic Imaging Institute, Cleveland, Ohio; and
| | | | - James E. Loyd
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | | | | - Cheryl Markin
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Tasha E. Fingerlin
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado
| | | | | | | | - David A. Schwartz
- Department of Medicine
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
6
|
Lax MB, Zoeckler JM. Occupational Disease in New York State: An Update. New Solut 2023; 32:304-323. [PMID: 36799954 DOI: 10.1177/10482911231152896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
An assessment of occupational disease in New York State was undertaken that partially replicated and expanded earlier work from 1987. Utilizing an expanded conception of occupational disease, the assessment used a variety of data sources and methods to provide estimates of mortality and morbidity of occupational disease; workers exposed to specific workplace hazards; disparities in occupational disease among racial/ethnic groups and gender; costs and distribution of costs of occupational disease; and accessible occupational medical resources. Examples of the pathways work may impact health in some of the major health issues of current import including stress-related health conditions; substance use; and overweight/obesity were included. The report contains recommendations for addressing the problem of occupational disease in New York State and advocates for the convening of a statewide group to develop an occupational disease prevention agenda.
Collapse
Affiliation(s)
- Michael B Lax
- Occupational Health Clinical Center, Department of Family Medicine State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Jeanette M Zoeckler
- Occupational Health Clinical Center, Department of Family Medicine State University of New York Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
7
|
Karhadkar TR, Chen W, Pilling D, Gomer RH. Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis. Int J Mol Sci 2022; 24:239. [PMID: 36613682 PMCID: PMC9820515 DOI: 10.3390/ijms24010239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis. First, sialidases are upregulated in fibrotic lesions in humans and in a mouse model of pulmonary fibrosis. Second, the extracellular sialidase NEU3 appears to be both necessary and sufficient for pulmonary fibrosis in mice. Third, there exist at least three mechanistic ways in which NEU3 potentiates fibrosis, with two of them being positive feedback loops where a profibrotic cytokine upregulates NEU3, and the upregulated NEU3 then upregulates the profibrotic cytokine. Fourth, a variety of NEU3 inhibitors block pulmonary fibrosis in a mouse model. Finally, the high sialidase levels in a fibrotic lesion cause an easily observed desialylation of serum proteins, and in a mouse model, sialidase inhibitors that stop fibrosis reverse the serum protein desialylation. This then indicates that serum protein sialylation is a potential surrogate biomarker for the effect of sialidase inhibitors, which would facilitate clinical trials to test the exciting possibility that sialidase inhibitors could be used as therapeutics for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
8
|
Pauchet A, Chaussavoine A, Pairon JC, Gabillon C, Didier A, Baldi I, Esquirol Y. Idiopathic Pulmonary Fibrosis: What do we Know about the Role of Occupational and Environmental Determinants? A Systematic Literature Review and Meta-Analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:372-392. [PMID: 36253946 DOI: 10.1080/10937404.2022.2131663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The objectives of this systematic review of original articles published up until August 2021 and meta-analyses were to identify the links between occupational and non-occupational environmental exposures, types of occupations and idiopathic pulmonary fibrosis (IPF). Sixteen selected case-control studies were qualified as good level with Newcastle-Ottawa quality assessment scale. Sensitivity analyses highlighted the role of choice of control group, tobacco adjustment and diagnostic tools. Significantly increased risks of IPF were observed (OR (95%CI): for metals (1.42(1.05-1.92)), wood (OR:1.32(1.02-1.71)), and general dust (OR:1.32(1.08-1.63)) exposures. Subgroup analyses found a significantly elevated risk for: hardwood (OR:1.75 (1.13-2.70)), organic dusts (OR:1.72 (1.20-2.46)) and pesticides (OR:2.30 (1.30-4.08)), while no significant change was noted for softwoods and solvents. Smoking adjustments: general dust (1.45 (1.04-2.03)/organic dust (2.5 (1.49-4.22)/metals (1.87 (1.16-3)/wood dust OR: 1.16 (0.86-1.61)/pesticide exposure 2.4 (0.84-6.9) were calculated. Among agricultural workers, the risk was also increased (OR:2.06 (1.02-4.16)). Few environmental data were available and no significant associations detected. Thus, these meta-analyses highlighted the role of some occupational exposures in IPF occurrence. A more accurate and thorough assessment of exposures over the entire working life as well as on the duration and intensity of exposure and complex of multi-pollutant exposure is needed in future research and clinical practice.
Collapse
Affiliation(s)
- A Pauchet
- Occupational and Environmental Health Department UF3, CHU Toulouse, Toulouse, France
| | - A Chaussavoine
- Occupational and Environmental Health Department UF3, CHU Toulouse, Toulouse, France
| | - J C Pairon
- Faculté de santé. Centre hospitalier intercommunal de Créteil, service de pathologies professionnelles et de l'environnement, INSERM, unité 955, Université Paris-Est Créteil, Créteil, France
| | - C Gabillon
- Service de Santé au Travail, PREVALY, Toulouse, France
| | - A Didier
- Department of Respiratory Medicine, University Hospital Centre of Toulouse, Toulouse, France. Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm U1291, University of Toulouse, CNRS U5282, Toulouse, France
| | - I Baldi
- EPICENE, U1219 INSERM, Université de Bordeaux, and Service Santé Travail Environnement, CHU de Bordeaux, Bordeaux, France
| | - Y Esquirol
- Occupational and Environmental Health Department UF3, CHU Toulouse, Toulouse, France
- CERPOP : Centre d'Epidémiologie et de Recherche en santé des POPulations, Université Paul Sabatier Toulouse, Inserm, Toulouse, France
| |
Collapse
|
9
|
Yang FQ, Li X, Ge F, Li G. Dust prevention and control in China: A systematic analysis of research trends using bibliometric analysis and Bayesian network. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Uchida Y, Kinose D, Nagatani Y, Tanaka-Mizuno S, Nakagawa H, Fukunaga K, Yamaguchi M, Nakano Y. Risk factors for pneumonitis in advanced extrapulmonary cancer patients treated with immune checkpoint inhibitors. BMC Cancer 2022; 22:551. [PMID: 35578210 PMCID: PMC9109739 DOI: 10.1186/s12885-022-09642-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Immune-mediated pneumonitis has a high mortality rate; however, information regarding the related risk factors remains limited. This study aimed to analyze risk factors for pneumonitis, including smoking and lung metastasis (LM), in patients with extrapulmonary primary tumors. METHODS Data of 110 patients treated with immune checkpoint inhibitors (ICIs) (nivolumab/pembrolizumab) for treating extrapulmonary primary tumors at the Shiga University of Medical Science Hospital between January 2015 and December 2019 were retrospectively collected. The association between the onset of pneumonitis and treatment-related factors was analyzed by logistic regression. The severity of pneumonitis was graded according to the Common Terminology Criteria for Adverse Events version 5.0. Risk factors, such as the absence or presence of interstitial lung disease (ILD) and LM, or other clinical factors, including smoking status before ICI administration, were analyzed. RESULTS Multivariate analyses indicated that the amount of smoking was significantly associated with an increase in the development of all-grade pneumonitis types (odds ratio (OR) = 20.33, 95% confidence interval (CI) = 20.03-20.66; p = 0.029). LM and ILD were significantly related to an increase in the development of symptomatic pneumonitis (≥ Grade 2) (OR = 10.08, 95% CI = 1.69-199.81; p = 0.076, and OR = 6.76, 95% CI = 1.13-40.63; p = 0.037, respectively). CONCLUSIONS Pre-screening for ILD and LM and recognizing patients' smoking history is important for determining the risk of ICI-induced pneumonitis and allowing safe ICI administration.
Collapse
Affiliation(s)
- Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan.
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yukihiro Nagatani
- Department of Radiology, Shiga University of Medical Science, Otsu, Japan
| | - Sachiko Tanaka-Mizuno
- Department of Digital Health and Epidemiology, Kyoto University, Kyoto, Japan
- The Center for Data Science Education and Research, Shiga University, Hikone, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kentaro Fukunaga
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
- Department of Respiratory Medicine, Kohka Public Hospital, Kohka, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
11
|
Wieland S, Balmes A, Bender J, Kitzinger J, Meyer F, Ramsperger AF, Roeder F, Tengelmann C, Wimmer BH, Laforsch C, Kress H. From properties to toxicity: Comparing microplastics to other airborne microparticles. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128151. [PMID: 35042167 DOI: 10.1016/j.jhazmat.2021.128151] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) debris is considered as a potentially hazardous material. It is omnipresent in our environment, and evidence that MP is also abundant in the atmosphere is increasing. Consequently, the inhalation of these particles is a significant exposure route to humans. Concerns about potential effects of airborne MP on human health are rising. However, currently, there are not enough studies on the putative toxicity of airborne MP to adequately assess its impact on human health. Therefore, we examined potential drivers of airborne MP toxicity. Physicochemical properties like size, shape, ζ-potential, adsorbed molecules and pathogens, and the MP's bio-persistence have been proposed as possible drivers of MP toxicity. Since their role in MP toxicity is largely unknown, we reviewed the literature on toxicologically well-studied non-plastic airborne microparticles (asbestos, silica, soot, wood, cotton, hay). We aimed to link the observed health effects and toxicology of these microparticles to the abovementioned properties. By comparing this information with studies on the effects of airborne MP, we analyzed possible mechanisms of airborne MP toxicity. Thus, we provide a basis for a mechanistic understanding of airborne MP toxicity. This may enable the assessment of risks associated with airborne MP pollution, facilitating effective policymaking and product design.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | - Julian Bender
- Institute for Biochemistry and Biotechnology, Interdisciplinary Research Center HALOmem, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jonas Kitzinger
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Felix Meyer
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Anja Frm Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany; Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Franz Roeder
- Institute of Optics and Quantum Electronics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Caroline Tengelmann
- Medical Faculty, University of Würzburg, Würzburg, Germany; Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | | | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
12
|
Yang D, Li K, Mingwei Chua D, Song Y, Bai C, Powell CA. Application of Internet of Things in Chronic Respiratory Disease Prevention, Diagnosis, Treatment and Management. CLINICAL EHEALTH 2022. [DOI: 10.1016/j.ceh.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Ghio AJ, Pavlisko EN, Roggli VL, Todd NW, Sangani RG. Cigarette Smoke Particle-Induced Lung Injury and Iron Homeostasis. Int J Chron Obstruct Pulmon Dis 2022; 17:117-140. [PMID: 35046648 PMCID: PMC8763205 DOI: 10.2147/copd.s337354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
It is proposed that the mechanistic basis for non-neoplastic lung injury with cigarette smoking is a disruption of iron homeostasis in cells after exposure to cigarette smoke particle (CSP). Following the complexation and sequestration of intracellular iron by CSP, the host response (eg, inflammation, mucus production, and fibrosis) attempts to reverse a functional metal deficiency. Clinical manifestations of this response can present as respiratory bronchiolitis, desquamative interstitial pneumonitis, pulmonary Langerhans’ cell histiocytosis, asthma, pulmonary hypertension, chronic bronchitis, and pulmonary fibrosis. If the response is unsuccessful, the functional deficiency of iron progresses to irreversible cell death evident in emphysema and bronchiectasis. The subsequent clinical and pathological presentation is a continuum of lung injuries, which overlap and coexist with one another. Designating these non-neoplastic lung injuries after smoking as distinct disease processes fails to recognize shared relationships to each other and ultimately to CSP, as well as the common mechanistic pathway (ie, disruption of iron homeostasis).
Collapse
Affiliation(s)
- Andrew J Ghio
- Human Studies Facility, US Environmental Protection Agency, Chapel Hill, NC, 27514, USA
- Correspondence: Andrew J Ghio Human Studies Facility, US Environmental Protection Agency, 104 Mason Farm Road, Chapel Hill, NC, USA Email
| | | | | | - Nevins W Todd
- Department of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Rahul G Sangani
- Department of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
14
|
Abstract
Autophagy is an evolutionarily conserved process where long-lived and damaged organelles are degraded. Autophagy has been widely associated with several ageing-process as well in diseases such as neurodegeneration, cancer and fibrosis, and is now being utilised as a target in these diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive, interstitial lung disease with limited treatment options available. It is characterised by abnormal extracellular matrix (ECM) deposition by activated myofibroblasts. It is understood that repetitive micro-injuries to aged-alveolar epithelium combined with genetic factors drive the disease. Several groups have demonstrated that autophagy is altered in IPF although whether autophagy has a protective effect or not is yet to be determined. Autophagy has also been shown to influence many other processes including epithelial-mesenchymal transition (EMT) and endothelial-mesenchymal transition (EndMT) which are known to be key in the pathogenesis of IPF. In this review, we summarise the findings of evidence of altered autophagy in IPF lungs, as well as examine its roles within lung fibrosis. Given these findings, together with the growing use of autophagy manipulation in a clinical setting, this is an exciting area for further research in the study of lung fibrosis.
Collapse
|
15
|
Bae W, Lee CH, Lee J, Kim YW, Han K, Choi SM. Impact of smoking on the development of idiopathic pulmonary fibrosis: results from a nationwide population-based cohort study. Thorax 2021; 77:470-476. [PMID: 34593614 DOI: 10.1136/thoraxjnl-2020-215386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/23/2021] [Indexed: 11/04/2022]
Abstract
BACKGROUND Smoking has been considered an important risk factor for idiopathic pulmonary fibrosis (IPF) incidence. However, there are no population-based large-scale studies demonstrating the effects of smoking on the development of IPF. We aimed to evaluate the effect of smoking on IPF development using a nationwide population-based cohort. METHODS Using the Korean National Health Information Database, we enrolled individuals who had participated in the health check-up service between 2009 and 2012. Participants having a prior diagnosis of IPF were excluded. The history of smoking status and quantity was collected by a questionnaire. We identified all cases of incident IPF through 2016 on the basis of ICD-10 codes for IPF and medical claims. Cox proportional hazards models were used to calculate the adjusted HR (aHR) of the development of IPF. RESULTS A total of 25 113 individuals (0.11%) with incident IPF were identified out of 23 242 836 participants registered in the database. The risk of IPF was significantly higher in current and former smokers than in never smokers, with an aHR of 1.66 (95% CI 1.61 to 1.72) and 1.42 (95% CI 1.37 to 1.48), respectively. Current smokers had a higher risk of IPF than former smokers (aHR 1.17, 95% CI 1.13 to 1.21). The risk of IPF development increased as the smoking intensity and duration increased. CONCLUSION Smoking significantly increased the risk of IPF development. Current smokers had a higher risk of IPF than former smokers. A dose-response relationship was observed between smoking and the development of IPF.
Collapse
Affiliation(s)
- Won Bae
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Pulmonary, Allergy and Critical Care Medicine, Seongnam Citizens Medical Center, Seongnam, Republic of Korea
| | - Chang-Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinwoo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Whan Kim
- Department of Respiratory-Allergy & Clinical Immunology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Sun Mi Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea .,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
17
|
Spagnolo P, Ryerson CJ, Putman R, Oldham J, Salisbury M, Sverzellati N, Valenzuela C, Guler S, Jones S, Wijsenbeek M, Cottin V. Early diagnosis of fibrotic interstitial lung disease: challenges and opportunities. THE LANCET RESPIRATORY MEDICINE 2021; 9:1065-1076. [PMID: 34331867 DOI: 10.1016/s2213-2600(21)00017-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022]
Abstract
Many patients with interstitial lung disease (ILD) develop pulmonary fibrosis, which can lead to reduced quality of life and early mortality. Patients with fibrotic ILD often have considerable diagnostic delay, and are exposed to unnecessary and costly diagnostic procedures, and ineffective and potentially harmful treatments. Non-specific and insidious presenting symptoms, along with scarce knowledge of fibrotic ILD among primary care physicians and non-ILD experts, are some of the main causes of diagnostic delay. Here, we outline and discuss the challenges facing both patients and physicians in making an early diagnosis of fibrotic ILD, and explore strategies to facilitate early identification of patients with fibrotic ILD, both in the general population and among individuals at highest risk of developing the disease. Finally, we discuss controversies and key uncertainties in screening programmes for fibrotic ILD. Timely identification and accurate diagnosis of patients with fibrotic ILD poses several substantial clinical challenges, but could potentially improve outcomes through early initiation of appropriate management.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Respiratory Disease Unit, University of Padova, Padova, Italy.
| | - Christopher J Ryerson
- Department of Medicine, University of British Columbia and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Rachel Putman
- Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Justin Oldham
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of California at Davis, Davis, CA, USA
| | - Margaret Salisbury
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicola Sverzellati
- Department of Surgery, Section of Diagnostic Imaging, University of Parma, Parma, Italy
| | - Claudia Valenzuela
- Instituto de Investigación Princesa, Hospital Universitario de La Princesa, Madrid, Spain
| | - Sabina Guler
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Steve Jones
- Action for Pulmonary Fibrosis, Peterborough, UK
| | - Marlies Wijsenbeek
- Department of Respiratory Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Coordinating Centre for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, Lyon, France; Department of Respiratory Medicine, Université de Lyon, Université Claude Bernard Lyon 1, UMR754, IVPC, Lyon, France
| |
Collapse
|
18
|
Copeland CR, Collins BF, Salisbury ML. Identification and Remediation of Environmental Exposures in Patients With Interstitial Lung Disease: Evidence Review and Practical Considerations. Chest 2021; 160:219-230. [PMID: 33609518 PMCID: PMC8295910 DOI: 10.1016/j.chest.2021.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/07/2020] [Accepted: 02/13/2021] [Indexed: 11/21/2022] Open
Abstract
A relationship between inhalational exposure to materials in the environment and development of interstitial lung disease (ILD) is long recognized. Hypersensitivity pneumonitis is an environmentally -induced diffuse parenchymal lung disease. In addition to hypersensitivity pneumonitis, domestic and occupational exposures have been shown to influence onset and progression of other ILDs, including idiopathic interstitial pneumonias such as idiopathic pulmonary fibrosis. A key component of the clinical evaluation of patients presenting with ILD includes elucidation of a complete exposure history, which may influence diagnostic classification of the ILD as well as its management. Currently, there is no standardized approach to environmental evaluation or remediation of potentially harmful exposures in home or workplace environments for patients with ILD. This review discusses evidence for environmental contributions to ILD pathogenesis and draws on asthma and occupational medicine literature to frame the potential utility of a professional evaluation for environmental factors contributing to the development and progression of ILD. Although several reports suggest benefits of environmental assessment for those with asthma or certain occupational exposures, lack of information about benefits in broader populations may limit application. Determining the feasibility, long-term outcomes, and cost-effectiveness of environmental evaluation and remediation in acute and chronic ILDs should be a focus of future research.
Collapse
Affiliation(s)
- Carla R Copeland
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Bridget F Collins
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center, Seattle, WA
| | - Margaret L Salisbury
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW A recent meta-analysis of data from international case-control studies reports a population attributable fraction of 16% for occupational factors in the cause of idiopathic pulmonary fibrosis (IPF). Smoking, genetic factors and other prevalent diseases only partly explain IPF, and so this review aims to summarize recent progress in establishing which occupational exposures are important in cause. RECENT FINDINGS IPF is a rare disease, although it is the commonest idiopathic interstitial pneumonia. Epidemiological study suggests that incidence of IPF is increasing, particularly in older men. There are significant associations with IPF and occupational exposures to organic dust, including livestock, birds and animal feed, metal dust, wood dust and silica/minerals. Estimates of effect vary between studies, and are influenced by the distribution of employment, study design and case definition. Inhalation of asbestos fibres is a known cause of usual interstitial pneumonia (as seen histologically in IPF), though there are significant linear relationships between asbestos consumption, and mortality from both IPF and mesothelioma, leading to the hypothesis that low-level asbestos exposure may cause IPF. SUMMARY Research must focus on exposure-response relationships between asbestos and other occupational inhaled hazards, and IPF. Funding bodies and policy makers should acknowledge the significant occupational burden on IPF.
Collapse
|
20
|
Yang DC, Gu S, Li JM, Hsu SW, Chen SJ, Chang WH, Chen CH. Targeting the AXL Receptor in Combating Smoking-related Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:734-746. [PMID: 33730527 PMCID: PMC8456879 DOI: 10.1165/rcmb.2020-0303oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Tobacco smoking is a well-known risk factor for both fibrogenesis and fibrotic progression; however, the mechanisms behind these processes remain enigmatic. RTKs (receptor tyrosine kinases) have recently been reported to drive profibrotic phenotypes in fibroblasts during pulmonary fibrosis (PF). Using a phospho-RTK array screen, we identified the RTK AXL as a top upregulated RTK in response to smoke. Both expression and signaling activity of AXL were indeed elevated in lung fibroblasts exposed to tobacco smoke, whereas no significant change to the levels of a canonical AXL ligand, Gas6 (growth arrest-specific 6), was seen upon smoke treatment. Notably, we found that smoke-exposed human lung fibroblasts exhibited highly proliferative and invasive activities and were capable of inducing fibrotic lung lesions in mice. Conversely, genetic suppression of AXL in smoke-exposed fibroblasts cells led to suppression of AXL downstream pathways and aggressive phenotypes. We further demonstrated that AXL interacted with MARCKS (myristoylated alanine-rich C kinase substrate) and cooperated with MARCKS in regulating downstream signaling activity and fibroblast invasiveness. Pharmacological inhibition of AXL with AXL-specific inhibitor R428 showed selectivity for smoke-exposed fibroblasts. In all, our data suggest that AXL is a potential marker for smoke-associated PF and that targeting of the AXL pathway is a potential therapeutic strategy in treating tobacco smoking-related PF.
Collapse
Affiliation(s)
- David C. Yang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Shenwen Gu
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ji-Min Li
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ssu-Wei Hsu
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Szu-Jung Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Wen-Hsin Chang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| |
Collapse
|
21
|
Forte G, Bocca B, Pisano A, Collu C, Farace C, Sabalic A, Senofonte M, Fois AG, Mazzarello VL, Pirina P, Madeddu R. The levels of trace elements in sputum as biomarkers for idiopathic pulmonary fibrosis. CHEMOSPHERE 2021; 271:129514. [PMID: 33434828 DOI: 10.1016/j.chemosphere.2020.129514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare lung disease that quickly leads to death. This paper addressed the issue of whether the levels of trace elements in sputum samples are suitable biomarkers for IPF disease. The sputum Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn concentrations were measured by sector field inductively coupled plasma mass spectrometry in populations sampled in Sardinia Island (Italy) including 31 patients with IPF, 31 patients with other lung-related diseases and 30 age- and gender-matched healthy controls. Risk factors in the disease as gender, age, severity and duration of the disease were assessed. Results showed that IPF patients had significantly increased sputum levels of Cd, Cr, Cu and Pb respect to controls. In males, but not in females, sputum levels of Cd, Cr and Cu were significantly higher in IPF cases respect to controls. In addition, Cr and Pb were increased in male patients with IPF compared to male patients with other lung diseases. Regarding Zn, it was found higher with the more serious stage of disease. Moreover, the ratios Cu/Zn, Fe/Mn and Cu/Mn were significantly increased in IPF patients and in non-IPF patients than in control subjects. These data showed clear increases in the concentration of some trace elements in sputum from patients with IPF and patients with other lung-related diseases that may contribute to the injury. The non-invasiveness of the sputum analysis is beneficial for its use as biomarker of trace element status in diseased patients for both the researcher and the clinic.
Collapse
Affiliation(s)
- Giovanni Forte
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy.
| | - Andrea Pisano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Claudia Collu
- Department of Clinical, Surgical & Experimental Sciences, University of Sassari, Sassari, Italy
| | - Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Angela Sabalic
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marta Senofonte
- Department of Environment and Health, Italian National Institute for Health, Rome, Italy
| | | | | | - Pietro Pirina
- Department of Clinical, Surgical & Experimental Sciences, University of Sassari, Sassari, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
22
|
Tobacco Smoking and Risk for Pulmonary Fibrosis: A Prospective Cohort Study From the UK Biobank. Chest 2021; 160:983-993. [PMID: 33905677 DOI: 10.1016/j.chest.2021.04.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/16/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease of unknown origin. A limited number of small studies show an effect of tobacco smoking on risk of IPF, but second-hand smoking has not been examined. RESEARCH QUESTION Are smoking-related exposures associated with risk of IPF and does interaction between them exist? STUDY DESIGN AND METHODS We designed a prospective cohort study using UK Biobank data, including 437,453 nonrelated men and women of White ethnic background (40-69 years of age at baseline). We assessed the effect of tobacco smoking-related exposures on risk for IPF using Cox regression adjusted for age, sex, Townsend deprivation index, and home area population density. We also examined potential additive and multiplicative interaction between these exposures. Multiple imputation with chained equations was used to address missing data. RESULTS We identified 802 incident IPF cases. We showed an association between smoking status (hazard ratio [HR], 2.12; 95% CI, 1.81-2.47), and maternal smoking (HR, 1.38; 95% CI, 1.18-1.62) with risk of IPF. In ever smokers, a dose-response relationship was observed between pack-years of smoking and risk of IPF (HR per 1-pack-year increase, 1.013; 95% CI, 1.009-1.016). Furthermore, an additive and multiplicative interaction was observed between maternal smoking and smoking status, with a relative excess risk due to interaction of 1.00 (95% CI, 0.45-1.54) and a ratio of HRs of 1.50 (95% CI, 1.05-2.14). INTERPRETATION Active and maternal tobacco smoking have an independent detrimental effect on risk of IPF and work synergistically. Also, intensity of smoking presents a dose-response association with IPF, strengthening the hypothesis for a potentially causal association.
Collapse
|
23
|
Andersson M, Blanc PD, Torén K, Järvholm B. Smoking, occupational exposures, and idiopathic pulmonary fibrosis among Swedish construction workers. Am J Ind Med 2021; 64:251-257. [PMID: 33547652 DOI: 10.1002/ajim.23231] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cigarette smoking and occupational exposures each have been reported to increase the risk of idiopathic pulmonary fibrosis (IPF), a disease previously considered of unknown origin. We investigated the risk of IPF mortality associated with combined smoking and occupational exposures. METHODS A registry study of Swedish construction workers (N = 389,132), linked baseline smoking and occupational data with registry data on cause of death and hospital care diagnoses. Occupation was classified by the likelihood of exposure to vapors, gases, dusts, or fumes using a job-exposure matrix. Those likely exposed to asbestos or silica were excluded from the analysis. Age-adjusted relative risks [RRs] were calculated using Poisson regression. Follow-up observation began at age 40 and ended at age 89. RESULTS Heavy smokers at baseline who were exposed to inorganic dusts during their working life had an increased risk of IPF mortality (RR 1.70; 95% confidence interval [CI] 1.11-2.60), while there was no statistically increased risk in the other exposure groups. There were dose-response relationships between smoking at baseline and IPF mortality among both unexposed and dust exposed workers, with similar risk for dust exposed and unexposed, except among baseline heavy smokers, where workers exposed to inorganic dust manifested the highest risk (RR 4.22; 95% CI 2.69-6.60). Excluding workers with chronic obstructive pulmonary disease or emphysema did not affect the results substantively. CONCLUSION A clear dose-response relationship was seen between smoking at baseline and IPF, supporting a causal relationship. Occupational exposure to inorganic dusts, excluding silica and asbestos, was associated with increased risk of IPF in baseline heavy current smokers.
Collapse
Affiliation(s)
- Martin Andersson
- Department of Public Health and Clinical Medicine Sustainable Health, Umeå University Umeå Sweden
| | - Paul D. Blanc
- Department of Medicine, Division of Occupational and Environmental Medicine University of California San Francisco San Francisco California USA
| | - Kjell Torén
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
- Department of Occupational and Environmental Medicine Sahlgrenska University Hospital Gothenburg Sweden
| | - Bengt Järvholm
- Department of Public Health and Clinical Medicine Sustainable Health, Umeå University Umeå Sweden
| |
Collapse
|
24
|
Singh N, Singh S. Interstitial Lung Diseases and Air Pollution: Narrative Review of Literature. Pulm Ther 2021; 7:89-100. [PMID: 33689161 PMCID: PMC7943709 DOI: 10.1007/s41030-021-00148-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Air pollution has been associated with respiratory diseases such as chronic obstructive pulmonary disease (COPD) and lung malignancies. The aim of this narrative review is to analyze the current data on the possible association between air pollution and interstitial lung disease (ILD). There are multiple studies showing the association of ILD with air pollution but the mechanism remains unclear. Although some of the environmental factors have been associated with idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), and pneumoconiosis, data about other ILDs are scarce and not well known. Air pollution as an etiology for ILD may act in multiple ways, leading to disease pathogenesis or exacerbation of underlying ILD. Clinical implications of this association are manifold; limiting the exposure to poor-quality air could possibly reduce the fall in lung functions and the risk of acute exacerbations of the underlying ILD. Air pollution is a major problem worldwide. Pollutants are vented out in the ambient air by sources like vehicular fume exhaust, factory pollution, combustion by burning of biomass fuels, and indoor pollution. The probable constituents responsible for respiratory diseases are particulate matter 2.5 and 10, nitrogen dioxide (NO2), and ozone present in polluted air. The role of these pollutants in pathogenesis of interstitial lung disease (ILD) is complex. The probable pathways include: oxidative stress, inflammation, and telomere shortening. ILD is a heterogeneous group of diseases, and the effect of pollution on various types is also varied. Air pollution has been associated with poor lung function and exacerbations in idiopathic pulmonary fibrosis (IPF), increased prevalence of hypersensitivity pneumonitis (HP), and presence of pulmonary fibrosis in healthy adults and children. The incidence rate of IPF has also been associated with pollutant levels such as NO2. Thus, patients with ILD should be cautious during bad-quality air days and they are advised to avoid outdoor activities and use facemasks during this period.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Respiratory Medicine, Asthma Bhawan, Jaipur, India
| | - Sheetu Singh
- Department of Chest and Tuberculosis, Institute of Respiratory Disease, SMS Medical College, Jaipur, India.
| |
Collapse
|
25
|
Behr J, Günther A, Bonella F, Dinkel J, Fink L, Geiser T, Geissler K, Gläser S, Handzhiev S, Jonigk D, Koschel D, Kreuter M, Leuschner G, Markart P, Prasse A, Schönfeld N, Schupp JC, Sitter H, Müller-Quernheim J, Costabel U. S2K Guideline for Diagnosis of Idiopathic Pulmonary Fibrosis. Respiration 2021; 100:238-271. [PMID: 33486500 DOI: 10.1159/000512315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe and often fatal disease. Diagnosis of IPF requires considerable expertise and experience. Since the publication of the international IPF guideline in the year 2011 and the update 2018 several studies and technical advances have occurred, which made a new assessment of the diagnostic process mandatory. The goal of this guideline is to foster early, confident, and effective diagnosis of IPF. The guideline focusses on the typical clinical context of an IPF patient and provides tools to exclude known causes of interstitial lung disease including standardized questionnaires, serologic testing, and cellular analysis of bronchoalveolar lavage. High-resolution computed tomography remains crucial in the diagnostic workup. If it is necessary to obtain specimens for histology, transbronchial lung cryobiopsy is the primary approach, while surgical lung biopsy is reserved for patients who are fit for it and in whom a bronchoscopic diagnosis did not provide the information needed. After all, IPF is a diagnosis of exclusion and multidisciplinary discussion remains the golden standard of diagnosis.
Collapse
Affiliation(s)
- Jürgen Behr
- Department of Internal Medicine V, Ludwig-Maximilians-University (LMU) of Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Munich, Germany,
| | - Andreas Günther
- Section of Fibrotic Lung Diseases, University Hospital Giessen and Marburg, Giessen Campus, Justus Liebig University Giessen, Agaplesion Pneumological Clinic Waldhof-Elgershausen, University of Giessen Marburg Lung Center, Member of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Giessen, Germany
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik - University Hospital, University Duisburg-Essen, Essen, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU, and Asklepios Specialty Hospitals Munich Gauting, Member of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Munich, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, Supraregional Joint Practice for Pathology (Überregionale Gemeinschaftspraxis für Pathologie, ÜGP), Member of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Wetzlar, Germany
| | - Thomas Geiser
- Clinic of Pneumology of the University Hospital of Bern, Bern, Switzerland
| | - Klaus Geissler
- Pulmonary Fibrosis (IPF) Patient Advocacy Group, Essen, Germany
| | - Sven Gläser
- Vivantes Neukölln and Spandau Hospitals Berlin, Department of Internal Medicine - Pneumology and Infectiology as well as Greifswald Medical School, University of Greifswald, Greifswald, Germany
| | - Sabin Handzhiev
- Clinical Department of Pneumology, University Hospital Krems, Krems, Austria
| | - Danny Jonigk
- Institute of Pathology, Hanover Medical School, Member of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hanover, Germany
| | - Dirk Koschel
- Department of Internal Medicine/Pneumology, Coswig Specialist Hospital, Center for Pneumology, Allergology, Respiratory Medicine, Thoracic Surgery and Medical Clinic 1, Pneumology Department, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Medicine, Thorax Clinic, University Hospital Heidelberg, Member of German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Heidelberg, Germany
| | - Gabriela Leuschner
- Department of Internal Medicine V, Ludwig-Maximilians-University (LMU) of Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Munich, Germany
| | - Philipp Markart
- Section of Fibrotic Lung Diseases, University Hospital Giessen and Marburg, Giessen Campus, Justus Liebig University Giessen, University of Giessen Marburg Lung Center, as well as the Fulda Campus of the Medical University of Marburg, Med. Clinic V, Member of German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Giessen, Germany
| | - Antje Prasse
- Department of Pneumology, Hanover Medical School and Clinical Research Center Fraunhofer Institute ITEM, Member of the German Center for Lung Research (Deutsches Zentrum für Lungenforschung, DZL), Hanover, Germany
| | - Nicolas Schönfeld
- Pneumology Clinic, Part of the Heckeshorn Lung Clinic, HELIOS Klinikum Emil von Behring, Berlin, Germany
| | - Jonas Christian Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Helmut Sitter
- Institute for Surgical Research, Philipps-University Marburg, Marburg, Germany
| | - Joachim Müller-Quernheim
- Department of Pneumology, Medical Center - University of Freiburg, Faculty of Medicine - University of Freiburg, Freiburg, Germany
| | - Ulrich Costabel
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik - University Hospital, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Yusuf HAA, Galal M, Kaddah S, el Sharkawy M, Mousa MS, Moussa H. A preliminary study: MUC5B promoter polymorphism and its association with IPF. THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2020. [DOI: 10.1186/s43168-020-00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The (T) allele of MUC5B gene is strongly correlated with idiopathic pulmonary fibrosis (IPF) and interstitial lung diseases (ILD) related to autoimmune conditions in Caucasians, but no data is available regarding this polymorphism in the Egyptian patients.
Results
This study is an observational cross-sectional study; the percentage of the (T) allele of MUC5B gene promoter in normal Egyptian persons in this study was 20%. This polymorphism is strongly related with risk for development of UIP/IPF in Egyptian patients compared to the other 2 groups (P value < 0.001). The MUC5B polymorphism has no role for developing interstitial lung disease in autoimmune diseases.
Conclusions
This study showed the potential role of MUC5B promoter polymorphism in IPF patients. Further multicentric studies are essential to be conducted deploying larger cohorts and different ethnic populations for further evaluation of these polymorphisms correlation.
Collapse
|
27
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2020; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates. .,Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
28
|
Stone RC, Chen V, Burgess J, Pannu S, Tomic-Canic M. Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response. Int J Mol Sci 2020; 21:ijms21228590. [PMID: 33202590 PMCID: PMC7698326 DOI: 10.3390/ijms21228590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrotic disease, which is implicated in almost half of all deaths worldwide, is the result of an uncontrolled wound healing response to injury in which tissue is replaced by deposition of excess extracellular matrix, leading to fibrosis and loss of organ function. A plethora of genome-wide association studies, microarrays, exome sequencing studies, DNA methylation arrays, next-generation sequencing, and profiling of noncoding RNAs have been performed in patient-derived fibrotic tissue, with the shared goal of utilizing genomics to identify the transcriptional networks and biological pathways underlying the development of fibrotic diseases. In this review, we discuss fibrosing disorders of the skin, liver, kidney, lung, and heart, systematically (1) characterizing the initial acute injury that drives unresolved inflammation, (2) identifying genomic studies that have defined the pathologic gene changes leading to excess matrix deposition and fibrogenesis, and (3) summarizing therapies targeting pro-fibrotic genes and networks identified in the genomic studies. Ultimately, successful bench-to-bedside translation of observations from genomic studies will result in the development of novel anti-fibrotic therapeutics that improve functional quality of life for patients and decrease mortality from fibrotic diseases.
Collapse
Affiliation(s)
- Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Correspondence: (R.C.S.); (M.T.-C.)
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
| | - Jamie Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Medical Scientist Training Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sukhmani Pannu
- Department of Dermatology, Tufts Medical Center, Boston, MA 02116, USA;
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- John P. Hussman Institute for Human Genomics, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (R.C.S.); (M.T.-C.)
| |
Collapse
|
29
|
Paudel KR, Dharwal V, Patel VK, Galvao I, Wadhwa R, Malyla V, Shen SS, Budden KF, Hansbro NG, Vaughan A, Yang IA, Kohonen-Corish MRJ, Bebawy M, Dua K, Hansbro PM. Role of Lung Microbiome in Innate Immune Response Associated With Chronic Lung Diseases. Front Med (Lausanne) 2020; 7:554. [PMID: 33043031 PMCID: PMC7530186 DOI: 10.3389/fmed.2020.00554] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), lung fibrosis, and lung cancer, pose a huge socio-economic burden on society and are one of the leading causes of death worldwide. In the past, culture-dependent techniques could not detect bacteria in the lungs, therefore the lungs were considered a sterile environment. However, the development of culture-independent techniques, particularly 16S rRNA sequencing, allowed for the detection of commensal microbes in the lung and with further investigation, their roles in disease have since emerged. In healthy individuals, the predominant commensal microbes are of phylum Firmicutes and Bacteroidetes, including those of the genera Veillonella and Prevotella. In contrast, pathogenic microbes (Haemophilus, Streptococcus, Klebsiella, Pseudomonas) are often associated with lung diseases. There is growing evidence that microbial metabolites, structural components, and toxins from pathogenic and opportunistic bacteria have the capacity to stimulate both innate and adaptive immune responses, and therefore can contribute to the pathogenesis of lung diseases. Here we review the multiple mechanisms that are altered by pathogenic microbiomes in asthma, COPD, lung cancer, and lung fibrosis. Furthermore, we focus on the recent exciting advancements in therapies that can be used to restore altered microbiomes in the lungs.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vivek Dharwal
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Vyoma K Patel
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Izabela Galvao
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Sj Sijie Shen
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Annalicia Vaughan
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Ian A Yang
- Faculty of Medicine, Thoracic Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Maija R J Kohonen-Corish
- Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia.,St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
30
|
Salisbury ML, Hewlett JC, Ding G, Markin CR, Douglas K, Mason W, Guttentag A, Phillips JA, Cogan JD, Reiss S, Mitchell DB, Wu P, Young LR, Lancaster LH, Loyd JE, Humphries SM, Lynch DA, Kropski JA, Blackwell TS. Development and Progression of Radiologic Abnormalities in Individuals at Risk for Familial Interstitial Lung Disease. Am J Respir Crit Care Med 2020; 201:1230-1239. [PMID: 32011901 DOI: 10.1164/rccm.201909-1834oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: The preclinical natural history of progressive lung fibrosis is poorly understood.Objectives: Our goals were to identify risk factors for interstitial lung abnormalities (ILA) on high-resolution computed tomography (HRCT) scans and to determine progression toward clinical interstitial lung disease (ILD) among subjects in a longitudinal cohort of self-reported unaffected first-degree relatives of patients with familial interstitial pneumonia.Methods: Enrollment evaluation included a health history and exposure questionnaire and HRCT scans, which were categorized by visual assessment as no ILA, early/mild ILA, or extensive ILA. The study endpoint was met when ILA were extensive or when ILD was diagnosed clinically. Among subjects with adequate study time to complete 5-year follow-up HRCT, the proportion with ILD events (endpoint met or radiographic ILA progression) was calculated.Measurements and Main Results: Among 336 subjects, the mean age was 53.1 (SD, 9.9) years. Those with ILA (early/mild [n = 74] or extensive [n = 3]) were older, were more likely to be ever smokers, had shorter peripheral blood mononuclear cell telomeres, and were more likely to carry the MUC5B risk allele. Self-reported occupational or environmental exposures, including aluminum smelting, lead, birds, and mold, were independently associated with ILA. Among 129 subjects with sufficient study time, 25 (19.4%) had an ILD event by 5 years after enrollment; of these, 12 met the study endpoint and another 13 had radiologic progression of ILA. ILD events were more common among those with early/mild ILA at enrollment (63.3% vs. 6.1%; P < 0.0001).Conclusions: Rare and common environmental exposures are independent risk factors for radiologic abnormalities. In 5 years, progression of ILA occurred in most individuals with early ILA detected at enrollment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Pingsheng Wu
- Department of Medicine.,Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lisa R Young
- Department of Medicine.,Department of Pediatrics, and.,Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | - David A Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - Jonathan A Kropski
- Department of Medicine.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and.,Department of Veterans Affairs Medical Center, Nashville, Tennessee
| | - Timothy S Blackwell
- Department of Medicine.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; and.,Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
31
|
Abramson MJ, Murambadoro T, Alif SM, Benke GP, Dharmage SC, Glaspole I, Hopkins P, Hoy RF, Klebe S, Moodley Y, Rawson S, Reynolds PN, Wolfe R, Corte TJ, Walters EH. Occupational and environmental risk factors for idiopathic pulmonary fibrosis in Australia: case-control study. Thorax 2020; 75:864-869. [PMID: 32660982 DOI: 10.1136/thoraxjnl-2019-214478] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/08/2020] [Accepted: 06/10/2020] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a lung disease of unknown cause characterised by progressive scarring, with limited effective treatment and a median survival of only 2-3 years. Our aim was to identify potential occupational and environmental exposures associated with IPF in Australia. METHODS Cases were recruited by the Australian IPF registry. Population-based controls were recruited by random digit dialling, frequency matched on age, sex and state. Participants completed a questionnaire on demographics, smoking, family history, environmental and occupational exposures. Occupational exposure assessment was undertaken with the Finnish Job Exposure Matrix and Australian asbestos JEM. Multivariable logistic regression was used to describe associations with IPF as ORs and 95% CIs, adjusted for age, sex, state and smoking. RESULTS We recruited 503 cases (mean±SD age 71±9 years, 69% male) and 902 controls (71±8 years, 69% male). Ever smoking tobacco was associated with increased risk of IPF: OR 2.20 (95% CI 1.74 to 2.79), but ever using marijuana with reduced risk after adjusting for tobacco: 0.51 (0.33 to 0.78). A family history of pulmonary fibrosis was associated with 12.6-fold (6.52 to 24.2) increased risk of IPF. Occupational exposures to secondhand smoke (OR 2.1; 1.2 to 3.7), respirable dust (OR 1.38; 1.04 to 1.82) and asbestos (OR 1.57; 1.15 to 2.15) were independently associated with increased risk of IPF. However occupational exposures to other specific organic, mineral or metal dusts were not associated with IPF. CONCLUSION The burden of IPF could be reduced by intensified tobacco control, occupational dust control measures and elimination of asbestos at work.
Collapse
Affiliation(s)
- Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tsitsi Murambadoro
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sheikh M Alif
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Geza P Benke
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Shyamali C Dharmage
- School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ian Glaspole
- Respiratory Medicine, Alfred Hospital, Melbourne, Victoria, Australia
| | - Peter Hopkins
- School of Medicine, University of Queensland, St Lucia, Queensland, Australia.,Lung Transplant Service, Prince Charles Hospital, Chermside, Queensland, Australia
| | - Ryan F Hoy
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Yuben Moodley
- School of Pharmacology and Respiratory Medicine, Lung Institute of Western Australia, University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory and Sleep Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Shuli Rawson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Paul N Reynolds
- Department of Respiratory Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Tamera J Corte
- Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - E Haydn Walters
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | | |
Collapse
|
32
|
Očkajová A, Kučerka M, Kminiak R, Krišťák Ľ, Igaz R, Réh R. Occupational Exposure to Dust Produced when Milling Thermally Modified Wood. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051478. [PMID: 32106505 PMCID: PMC7084310 DOI: 10.3390/ijerph17051478] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/22/2023]
Abstract
During production, thermally modified wood is processed using the same machining operations as unmodified wood. Machining wood is always accompanied with the creation of dust particles. The smaller they become, the more hazardous they are. Employees are exposed to a greater health hazard when machining thermally modified wood because a considerable amount of fine dust is produced under the same processing conditions than in the case of unmodified wood. The International Agency for Research on Cancer (IARC) states that wood dust causes cancer of the nasal cavity and paranasal sinuses and of the nasopharynx. Wood dust is also associated with toxic effects, irritation of the eyes, nose and throat, dermatitis, and respiratory system effects which include decreased lung capacity, chronic obstructive pulmonary disease, asthma and allergic reactions. In our research, granular composition of particles resulting from the process of longitudinal milling of heat-treated oak and spruce wood under variable conditions (i.e., the temperature of modification of 160, 180, 200 and 220 °C and feed rate of 6, 10 and 15 m.min-1) are presented in the paper. Sieve analysis was used to determine the granular composition of particles. An increase in fine particle fraction when the temperature of modification rises was confirmed by the research. This can be due to the lower strength of thermally modified wood. Moreover, a different effect of the temperature modification on granularity due to the tree species was observed. In the case of oak wood, changes occurred at a temperature of 160 °C and in the case of spruce wood, changes occurred at the temperatures of 200 and 220 °C. At the temperatures of modification of 200 and 220 °C, the dust fraction (i.e., that occurred in the mesh sieves, particles with the size ≤ 0.08 mm) ranged from 2.99% (oak wood, feed rate of 10 m.min-1) to 8.07% (spruce wood, feed rate of 6 m.min-1). Such particles might have a harmful effect on employee health in wood-processing facilities.
Collapse
Affiliation(s)
- Alena Očkajová
- Faculty of Natural Sciences, Matej Bel University, Banská Bystrica 97401, Slovakia; (A.O.); (M.K.)
| | - Martin Kučerka
- Faculty of Natural Sciences, Matej Bel University, Banská Bystrica 97401, Slovakia; (A.O.); (M.K.)
| | - Richard Kminiak
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen 96001, Slovakia; (R.K.); (R.I.); (R.R.)
| | - Ľuboš Krišťák
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen 96001, Slovakia; (R.K.); (R.I.); (R.R.)
- Correspondence:
| | - Rastislav Igaz
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen 96001, Slovakia; (R.K.); (R.I.); (R.R.)
| | - Roman Réh
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, Zvolen 96001, Slovakia; (R.K.); (R.I.); (R.R.)
| |
Collapse
|
33
|
Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic pulmonary fibrosis. Cell Signal 2020; 66:109482. [DOI: 10.1016/j.cellsig.2019.109482] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
|
34
|
Particulate Matter Increases the Severity of Bleomycin-Induced Pulmonary Fibrosis through KC-Mediated Neutrophil Chemotaxis. Int J Mol Sci 2019; 21:ijms21010227. [PMID: 31905700 PMCID: PMC6981983 DOI: 10.3390/ijms21010227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Although particular matter (PM) increases incidence and severity of idiopathic pulmonary fibrosis, the underlying mechanism remains elusive. Methods: The effects of PM were evaluated in a murine model of bleomycin-induced pulmonary fibrosis. Mice were divided into four groups, receiving: (1) Saline (control), (2) bleomycin, (3) PM, or (4) bleomycin plus PM (Bleo+PM). Additional groups of Bleo+PM mice were treated with sivelestat (an inhibitor of neutrophil elastase) or reparixin (a C-X-C motif chemokine receptor 2 antagonist), or were genetically modified with keratinocyte chemoattractant (KC) deletion. Results: Pulmonary fibrosis was not observed in the control or PM groups. Bleomycin induced pulmonary fibrosis within 14 days. The Bleo+PM group showed worse pulmonary fibrosis when compared to the bleomycin group. Analyses of immune cell profile and chemokine/cytokine concentrations at day 2-bronchoalveolar lavage fluid (BALF) revealed that the Bleo+PM group had increased neutrophil number and elastase level and KC concentration compared to the bleomycin group. Neutrophil elastase activated the Smad2/Smad3/α-SMA pathway to induce collagen deposition, while sivelestat abrogated the increased severity of pulmonary fibrosis caused by PM. Chemotaxis assay revealed that BALF of the Bleo+PM group recruited neutrophil, which was dependent on KC. Further, genetic KC deletion or pharmaceutical inhibition of KC binding to CXCR2 with reparixin ameliorated the PM-induced increased severity of pulmonary fibrosis. Conclusions: These data provide evidence that the PM-induced increased severity of pulmonary fibrosis depends on KC-mediated neutrophil chemotaxis and give additional mechanic insight that will aid in the development of therapeutic strategies.
Collapse
|
35
|
Avdeev SN, Chikina SY, Nagatkina OV. Idiopathic pulmonary fibrosis: a new international clinical guideline. ACTA ACUST UNITED AC 2019. [DOI: 10.18093/0869-0189-2019-29-5-525-552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- S. N. Avdeev
- I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia (Sechenov University); Federal Pulmonology Research Institute, Federal Medical and Biological Agency of Russia
| | - S. Yu. Chikina
- I.M.Sechenov First Moscow State Medical University, Healthcare Ministry of Russia (Sechenov University)
| | | |
Collapse
|
36
|
Ranzieri S, Illica Magrini E, Mozzoni P, Andreoli R, Pelà G, Bertorelli G, Corradi M. Idiopathic pulmonary fibrosis and occupational risk factors. LA MEDICINA DEL LAVORO 2019; 110:407-436. [PMID: 31846447 PMCID: PMC7809935 DOI: 10.23749/mdl.v110i6.8970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a rare lung disease of unknown origin that rapidly leads to death. However, the rate of disease progression varies from one individual to another and is still difficult to predict. The prognosis of IPF is poor, with a median survival of three to five years after diagnosis, without curative therapies other than lung transplantation. The factors leading to disease onset and progression are not yet completely known. The current disease paradigm is that sustained alveolar epithelial micro-injury caused by environmental triggers (e.g., cigarette smoke, microaspiration of gastric content, particulate dust, viral infections or lung microbial composition) leads to alveolar damage resulting in fibrosis in genetically susceptible individuals. Numerous epidemiological studies and case reports have shown that occupational factors contribute to the risk of developing IPF. In this perspective, we briefly review the current understanding of the pathophysiology of IPF and the importance of occupational factors in the pathogenesis and prognosis of the disease. Prompt identification and elimination of occult exposure may represent a novel treatment approach in patients with IPF.
Collapse
Affiliation(s)
- Silvia Ranzieri
- Dipartimento di Medicina e Chirurgia - Università di Parma .
| | | | | | | | | | | | | |
Collapse
|
37
|
Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, Wang Y, Zhang W, Zhang HL. Viral Infection Increases the Risk of Idiopathic Pulmonary Fibrosis: A Meta-Analysis. Chest 2019; 157:1175-1187. [PMID: 31730835 DOI: 10.1016/j.chest.2019.10.032] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/11/2019] [Accepted: 10/19/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic lung disease with a poor prognosis. Although many factors have been identified that possibly trigger or aggravate IPF, such as viral infection, the exact cause of IPF remains unclear. Until now, there has been no systematic review to assess the role of viral infection in IPF quantitatively. OBJECTIVE This meta-analysis aims to present a collective view on the relationship between viral infection and IPF. METHODS We searched studies reporting the effect of viral infection on IPF in the PubMed, Embase, Cochrane Library, Web of Science, and Wiley Online Library databases. We calculated ORs with 95% CIs to assess the risk of virus in IPF. We also estimated statistical heterogeneity by using I2 and Cochran Q tests and publication bias by using the funnel plot, Begg test, Egger test, and trim-and-fill methods. Regression, sensitivity, and subgroup analyses were performed to assess the effects of confounding factors, such as sex and age. RESULTS We analyzed 20 case-control studies from 10 countries with 1,287 participants. The pooled OR of all viruses indicated that viral infection could increase the risk of IPF significantly (OR, 3.48; 95% CI, 1.61-7.52; P = .001), but not that of exacerbation of IPF (OR, 0.99; 95% CI, 0.47-2.12; P = .988). All analyzed viruses, including Epstein-Barr virus (EBV), cytomegalovirus (CMV), human herpesvirus 7 (HHV-7), and human herpesvirus 8 (HHV-8), were associated with a significant elevation in the risk of IPF, except human herpesvirus 6 (HHV-6). CONCLUSIONS The presence of persistent or chronic, but not acute, viral infections, including EBV, CMV, HHV-7, and HHV-8, significantly increases the risk of developing IPF, but not exacerbation of IPF. These findings imply that viral infection could be a potential risk factor for IPF.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Division of Cardiology, Departments of Internal Medicine and Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan, China
| | - Yanqiu Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Yue
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Chu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, and the Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Wanguang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Lan Zhang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
38
|
Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ, Bouros D, Brown KK, Collard HR, Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T, Kazerooni EA, Kitaichi M, Knight SL, Mansour G, Nicholson AG, Pipavath SNJ, Buendía-Roldán I, Selman M, Travis WD, Walsh S, Wilson KC. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med 2019; 198:e44-e68. [PMID: 30168753 DOI: 10.1164/rccm.201807-1255st] [Citation(s) in RCA: 2417] [Impact Index Per Article: 483.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This document provides clinical recommendations for the diagnosis of idiopathic pulmonary fibrosis (IPF). It represents a collaborative effort between the American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society. METHODS The evidence syntheses were discussed and recommendations formulated by a multidisciplinary committee of IPF experts. The evidence was appraised and recommendations were formulated, written, and graded using the Grading of Recommendations, Assessment, Development, and Evaluation approach. RESULTS The guideline panel updated the diagnostic criteria for IPF. Previously defined patterns of usual interstitial pneumonia (UIP) were refined to patterns of UIP, probable UIP, indeterminate, and alternate diagnosis. For patients with newly detected interstitial lung disease (ILD) who have a high-resolution computed tomography scan pattern of probable UIP, indeterminate, or an alternative diagnosis, conditional recommendations were made for performing BAL and surgical lung biopsy; because of lack of evidence, no recommendation was made for or against performing transbronchial lung biopsy or lung cryobiopsy. In contrast, for patients with newly detected ILD who have a high-resolution computed tomography scan pattern of UIP, strong recommendations were made against performing surgical lung biopsy, transbronchial lung biopsy, and lung cryobiopsy, and a conditional recommendation was made against performing BAL. Additional recommendations included a conditional recommendation for multidisciplinary discussion and a strong recommendation against measurement of serum biomarkers for the sole purpose of distinguishing IPF from other ILDs. CONCLUSIONS The guideline panel provided recommendations related to the diagnosis of IPF.
Collapse
|
39
|
Philp CJ, Siebeke I, Clements D, Miller S, Habgood A, John AE, Navaratnam V, Hubbard RB, Jenkins G, Johnson SR. Extracellular Matrix Cross-Linking Enhances Fibroblast Growth and Protects against Matrix Proteolysis in Lung Fibrosis. Am J Respir Cell Mol Biol 2019; 58:594-603. [PMID: 29053339 DOI: 10.1165/rcmb.2016-0379oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by accumulation of extracellular matrix (ECM) proteins and fibroblast proliferation. ECM cross-linking enzymes have been implicated in fibrotic diseases, and we hypothesized that the ECM in IPF is abnormally cross-linked, which enhances fibroblast growth and resistance to normal ECM turnover. We used a combination of in vitro ECM preparations and in vivo assays to examine the expression of cross-linking enzymes and the effect of their inhibitors on fibroblast growth and ECM turnover. Lysyl oxidase-like 1 (LOXL1), LOXL2, LOXL3, and LOXL4 were expressed equally in control and IPF-derived fibroblasts. Transglutaminase 2 was more strongly expressed in IPF fibroblasts. LOXL2-, transglutaminase 2-, and transglutaminase-generated cross-links were strongly expressed in IPF lung tissue. Fibroblasts grown on IPF ECM had higher LOXL3 protein expression and transglutaminase activity than those grown on control ECM. IPF-derived ECM also enhanced fibroblast adhesion and proliferation compared with control ECM. Inhibition of lysyl oxidase and transglutaminase activity during ECM formation affected ECM structure as visualized by electron microscopy, and it reduced the enhanced fibroblast adhesion and proliferation of IPF ECM to control levels. Inhibition of transglutaminase, but not of lysyl oxidase, activity enhanced the turnover of ECM in vitro. In bleomycin-treated mice, during the postinflammatory fibrotic phase, inhibition of transglutaminases was associated with a reduction in whole-lung collagen. Our findings suggest that the ECM in IPF may enhance pathological cross-linking, which contributes to increased fibroblast growth and resistance to normal ECM turnover to drive lung fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vidya Navaratnam
- 2 Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Richard B Hubbard
- 2 Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
40
|
Inorganic particulate matter in the lung tissue of idiopathic pulmonary fibrosis patients reflects population density and fine particle levels. Ann Diagn Pathol 2019; 40:136-142. [DOI: 10.1016/j.anndiagpath.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/24/2022]
|
41
|
Li B, Huang X, Xu X, Ning W, Dai H, Wang C. The profibrotic effect of downregulated Na,K‑ATPase β1 subunit in alveolar epithelial cells during lung fibrosis. Int J Mol Med 2019; 44:273-280. [PMID: 31115510 DOI: 10.3892/ijmm.2019.4201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/08/2019] [Indexed: 11/06/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease characterized by progressive lung scarring and excessive extracellular matrix depositon. When stimulated, alveolar epithelial cells (AECs) are aberrantly activated, the expression of profibrotic molecules is enhanced, and lung fibrosis is promoted, but the mechanism for this is unclear. It has been reported that a downregulation of the Na,K‑ATPase β1 subunit in renal epithelial cells is involved in renal fibrosis development, but the role of this protein in lung fibrosis remains unknown. In the present study, the expression of the Na,K‑ATPase β1 subunit was revealed to be markedly decreased in AECs of patients with IPF and a bleomycin‑induced pulmonary fibrosis mouse model. Treatment with transforming growth factor β‑1 led to significantly downregulation of the Na,K‑ATPase β1 subunit in lung adenocarcioma A549 cells. Furthermore, the knockdown of the Na,K‑ATPase β1 subunit in A549 cells resulted in the upregulation of profibrotic molecules, activation of the neurogenic locus notch homolog protein 1 and extracellular signal‑regulated kinase 1/2 signaling pathways and induction of endoplasmic reticulum stress. These findings reveal that the downregulation of the Na,K‑ATPase β1 subunit enhances the expression of profibrotic molecules in AECs and may contribute to IPF pathogenesis.
Collapse
Affiliation(s)
- Biyun Li
- Department of Pulmonary and Critical Care Medicine, China‑Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, P.R. China
| | - Xiaoxi Huang
- Department of Medical Research, Beijing Chao‑Yang Hospital, Beijing 100020, P.R. China
| | - Xuefeng Xu
- Department of Surgical Intensive Care Unit, Beijing An‑Zhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Wen Ning
- Department of Genetics and Cellular Biology, College of Life Sciences, Nankai University, Tianjin 300071, P.R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‑Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, P.R. China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China‑Japan Friendship School of Clinical Medicine, Peking University, Beijing 100029, P.R. China
| |
Collapse
|
42
|
Collins BF, Raghu G. Sarcoidosis and idiopathic pulmonary fibrosis: The same tale or a tale of two diseases in one. Respir Med 2019; 160:105668. [PMID: 30975546 DOI: 10.1016/j.rmed.2019.03.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Bridget F Collins
- Center for Interstitial Lung Diseases, Division of Pulmonary and Critical Care and Sleep Medicine, University of Washington Medical Center, Seattle, WA, 98195, USA
| | - Ganesh Raghu
- Center for Interstitial Lung Diseases, Division of Pulmonary and Critical Care and Sleep Medicine, University of Washington Medical Center, Seattle, WA, 98195, USA.
| |
Collapse
|
43
|
Lee SH, Yeo Y, Kim TH, Lee HL, Lee JH, Park YB, Park JS, Kim YH, Song JW, Jhun BW, Kim HJ, Park J, Uh ST, Kim YW, Kim DS, Park MS. Korean Guidelines for Diagnosis and Management of Interstitial Lung Diseases: Part 2. Idiopathic Pulmonary Fibrosis. Tuberc Respir Dis (Seoul) 2019; 82:102-117. [PMID: 30841014 PMCID: PMC6435928 DOI: 10.4046/trd.2018.0091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrosing interstitial pneumonia, which presents with a progressive worsening dyspnea, and thus a poor outcome. The members of the Korean Academy of Tuberculosis and Respiratory Diseases as well as the participating members of the Korea Interstitial Lung Disease Study Group drafted this clinical practice guideline for IPF management. This guideline includes a wide range of topics, including the epidemiology, pathogenesis, risk factors, clinical features, diagnosis, treatment, prognosis, and acute exacerbation of IPF in Korea. Additionally, we suggested the PICO for the use of pirfenidone and nintendanib and for lung transplantation for the treatment of patients with IPF through a systemic literature review using experts' help in conducting a meta-analysis. We recommend this guideline to physicians, other health care professionals, and government personnel in Korea, to facilitate the treatment of patients with IPF.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Yoomi Yeo
- Division of Pulmonary and Critical Care Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Tae Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Hong Lyeol Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, Incheon, Korea
| | - Jin Hwa Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Yong Bum Park
- Department of Internal Medicine, Hallym University Kangdong Sacred Heart Hospital, Lung Research Institute of Hallym University College of Medicine, Seoul, Korea
| | - Jong Sun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Jung Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Jinkyeong Park
- Division of Pulmonary and Critical Care Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Taek Uh
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Young Whan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Dong Soon Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonology, Department of Internal Medicine, Severance Hospital, Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea.
| | | |
Collapse
|
44
|
Hayton C, Terrington D, Wilson AM, Chaudhuri N, Leonard C, Fowler SJ. Breath biomarkers in idiopathic pulmonary fibrosis: a systematic review. Respir Res 2019; 20:7. [PMID: 30634961 PMCID: PMC6329167 DOI: 10.1186/s12931-019-0971-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/01/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Exhaled biomarkers may be related to disease processes in idiopathic pulmonary fibrosis (IPF) however their clinical role remains unclear. We performed a systematic review to investigate whether breath biomarkers discriminate between patients with IPF and healthy controls. We also assessed correlation with lung function, ability to distinguish diagnostic subgroups and change in response to treatment. METHODS MEDLINE, EMBASE and Web of Science databases were searched. Study selection was limited to adults with a diagnosis of IPF as per international guidelines. RESULTS Of 1014 studies screened, fourteen fulfilled selection criteria and included 257 IPF patients. Twenty individual biomarkers discriminated between IPF and controls and four showed correlation with lung function. Meta-analysis of three studies indicated mean (± SD) alveolar nitric oxide (CalvNO) levels were significantly higher in IPF (8.5 ± 5.5 ppb) than controls (4.4 ± 2.2 ppb). Markers of oxidative stress in exhaled breath condensate, such as hydrogen peroxide and 8-isoprostane, were also discriminatory. Two breathomic studies have isolated discriminative compounds using mass spectrometry. There was a lack of studies assessing relevant treatment and none assessed differences in diagnostic subgroups. CONCLUSIONS Evidence suggests CalvNO is higher in IPF, although studies were limited by small sample size. Further breathomic work may identify biomarkers with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Conal Hayton
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK.
| | | | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Nazia Chaudhuri
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colm Leonard
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
45
|
|
46
|
The Keys to Making a Confident Diagnosis of IPF. Respir Med 2019. [DOI: 10.1007/978-3-319-99975-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Zhou LL, Wang M, Liu F, Lu YZ, Song LJ, Xiong L, Xiang F, He XL, Shuai SY, Xin JB, Ye H, Yu F, Ma WL. Cigarette smoking aggravates bleomycin-induced experimental pulmonary fibrosis. Toxicol Lett 2018; 303:1-8. [PMID: 30572104 DOI: 10.1016/j.toxlet.2018.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/30/2018] [Accepted: 12/16/2018] [Indexed: 11/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease that typically leads to respiratory failure and death. The cause of IPF is poorly understood. Although several environmental and occupational factors are considered as risk factors in IPF, cigarette smoking seems to be the most strongly associated risk factor. Here firstly, we treated mice with cigarette (16 mg tar, 1.0 mg nicotine in each cigarette) smoking and tried to explore the role of cigarette smoking in pulmonary fibrosis. Mice were continuously subjected to smoke for about 1 h each day (12 cigarettes per day, 5 days per week) during 40 days. Bleomycin was administrated by intraperitoneal injection at a dose of 40 mg/kg on days 1, 5, 8, 11 and 15. We found bleomycin induced pulmonary fibrosis in mice, and cigarette smoking augmented bleomycin-induced fibrosis reflected by both in fibrotic area and percentages of collagen in the lungs. Then we prepared and employed cigarette smoke extract (CSE) in cell models and found that CSE could induce the activation of p-Smad2/3 and p-Akt, as well as collagen-I synthesis and cell proliferation in lung fibroblasts and pleural mesothelial cells (PMCs). TGF-β1 signaling mediated CSE-induced PMCs migration. Moreover, in vitro studies revealed that CSE had superimposed effect on bleomycin-induced activation of TGF-β-Smad2/3 and -Akt signaling. TGF-β-Smad2/3 and -Akt signaling were further augmented by cigarette smoking in the lung of bleomycin-treated mice. Taken together, these findings represent the first evidence that cigarette smoking aggravated bleomycin-induced pulmonary fibrosis via TGF-β1 signaling.
Collapse
Affiliation(s)
- Li-Ling Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Wang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fei Liu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Zhi Lu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Fei Xiang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Shi-Yuan Shuai
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Jian-Bao Xin
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Hong Ye
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China.
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Key Laboratory of Respiratory Diseases, Ministry of Health of China, Wuhan 430030, China.
| |
Collapse
|
48
|
The Role of Occupational and Environmental Exposures in the Pathogenesis of Idiopathic Pulmonary Fibrosis: A Narrative Literature Review. ACTA ACUST UNITED AC 2018; 54:medicina54060108. [PMID: 30544758 PMCID: PMC6306764 DOI: 10.3390/medicina54060108] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterised by a progressive and irreversible decline in lung function, which is associated with poor long-term survival. The pathogenesis of IPF is incompletely understood. An accumulating body of evidence, obtained over the past three decades, suggests that occupational and environmental exposures may play a role in the development of IPF. This narrative literature review aims to summarise current understanding and the areas of ongoing research into the role of occupational and environmental exposures in the pathogenesis of IPF.
Collapse
|
49
|
Septiadi D, Abdussalam W, Rodriguez-Lorenzo L, Spuch-Calvar M, Bourquin J, Petri-Fink A, Rothen-Rutishauser B. Revealing the Role of Epithelial Mechanics and Macrophage Clearance during Pulmonary Epithelial Injury Recovery in the Presence of Carbon Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1806181. [PMID: 30370701 DOI: 10.1002/adma.201806181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Wound healing assays are extensively used to study tissue repair mechanisms; they are typically performed by means of physical (i.e., mechanical, electrical, or optical) detachment of the cells in order to create an open space in which live cells can lodge. Herein, an advanced system based on extensive photobleaching-induced apoptosis; providing a powerful tool to understand the repair response of lung epithelial tissue, consisting of a small injury area where apoptotic cells are still intact, is developed. Notably, the importance of epithelial mechanics and the presence of macrophages during the repair can be understood. The findings reveal that individual epithelial cells are able to clear the apoptotic cells by applying a pushing force, whilst macrophages actively phagocytose the dead cells to create an empty space. It is further shown that this repair mechanism is hampered when carbon nanotubes (CNTs) are introduced: formation of aberrant (i.e., thickening) F-actins, maturation of focal adhesion, and increase in traction force leading to retardation in cell migration are observed. The results provide a mechanistic view of how CNTs can interfere with lung repair.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Wildan Abdussalam
- Department of High Energy Density, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Laura Rodriguez-Lorenzo
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Miguel Spuch-Calvar
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Joël Bourquin
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| | | |
Collapse
|
50
|
Occupational and Environmental Risk Factors for Chronic Fibrosing idiopathic Interstitial Pneumonia in South Korea. J Occup Environ Med 2018; 59:e221-e226. [PMID: 28938261 DOI: 10.1097/jom.0000000000001153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We studied the association of occupational and environmental agents with chronic fibrosing idiopathic interstitial pneumonia (IIP) in South Korea. METHODS We recruited 92 patients with chronic fibrosing IIP and 92 matched controls who had normal chest radiograph findings by age and gender. We used a structured exposure questionnaire to evaluate potential occupational and environmental risk factors for chronic fibrosing IIP, with adjustments for age, smoking, and clinical risk factors. RESULTS We used conditional logistic regression models to analyze associations with chronic fibrosing IIP adjusted for age, smoking and clinical risk factors. Exposure to stone, sand, or silica significantly increased the risk of chronic fibrosing IIP (odds ratio = 5.01; 95% confidence interval, 1.07-24.21) CONCLUSIONS:: Our findings indicate that exposure to stone, sand, and silica might constitute a risk factor for developing chronic fibrosing IIP in the Korean population.
Collapse
|