1
|
Ständer SHD, Reboul CF, Le SN, Williams DE, Chandler PG, Costa MGS, Hoke DE, Jimma JDT, Fodor J, Fenalti G, Mannering SI, Porebski BT, Schofield P, Christ D, Buckle M, McGowan S, Elmlund D, Rand KD, Buckle AM. Structure and dynamics of GAD65 in complex with an autoimmune polyendocrine syndrome type 2-associated autoantibody. Nat Commun 2025; 16:2275. [PMID: 40055307 PMCID: PMC11889217 DOI: 10.1038/s41467-025-57492-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
The enzyme glutamate decarboxylase (GAD) produces the neurotransmitter GABA, using pyridoxal-5'-phosphate (PLP). GAD exists as two isoforms, GAD65 and GAD67. Only GAD65 acts as a major autoantigen, frequently implicated in type 1 diabetes and other autoimmune diseases. Here we characterize the structure and dynamics of GAD65 and its interaction with the autoimmune polyendocrine syndrome type 2-associated autoantibody b96.11. Using hydrogen-deuterium exchange mass spectrometry (HDX), X-ray crystallography, cryo-electron microscopy, and computational approaches, we examine the conformational dynamics of apo- and holoGAD65 and the GAD65-autoantibody complex. HDX reveals local dynamics accompanying autoinactivation, with the catalytic loop promoting collective motions at the CTD-PLP domain interface. In the GAD65-b96.11 complex, heavy chain CDRs dominate the interaction, with a long CDRH3 bridging the GAD65 dimer via electrostatic interactions with the 260PEVKEK265motif. This bridging links structural elements controlling GAD65's conformational flexibility to its autoantigenicity. Thus, intrinsic dynamics, rather than sequence differences within epitopes, appear to be responsible for the contrasting autoantigenicities of GAD65 and GAD67. Our findings elucidate the structural and dynamic factors that govern the varying autoantibody reactivities of GAD65 and GAD67, offering a revised rationale for the autoimmune response to GAD65.
Collapse
Affiliation(s)
- Susanne H D Ständer
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Cyril F Reboul
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- National Institutes of Health, National Cancer Institute-Frederick Campus, Fredrick, MD, USA
| | - Sarah N Le
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Daniel E Williams
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter G Chandler
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - John D T Jimma
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James Fodor
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- The Centre for Brain, Mind and Markets, The University of Melbourne, Melbourne, VIC, Australia
| | - Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Stuart I Mannering
- Immunology and Diabetes Unit, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC, Australia
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Malcolm Buckle
- LBPA, ENS de Paris-Saclay, UMR 8113 CNRS, Université Paris-Saclay 4, Gif-sur-Yvette, France
| | - Sheena McGowan
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dominika Elmlund
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Kasper D Rand
- Protein Analysis Group, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- San Diego Biomedical Research Institute, San Diego, CA, USA.
| |
Collapse
|
2
|
Chen Z, Wang R, Song Y, Ma A, Li S, Jia Y. Expression and Transformation Characteristics of a Novel Glutamic Acid Decarboxylase LcGAD10s and Its Application on Sufu Processing. Foods 2023; 12:3186. [PMID: 37685118 PMCID: PMC10486372 DOI: 10.3390/foods12173186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important non-proteinogenic amino acid and a potent bioactive compound with many anti-hypertensive and anti-depressant activities. The bioconversion of GABA by glutamic acid decarboxylase (GAD) has been eagerly studied. Herein, novel pyridoxal-5-phosphate monohydrates (PLP)-dependent GAD, which is not quite similar to reporting, was cloned from Latilactobacillus curvatus and efficiently expressed in E. coli. The conveniently purified GAD (designated LcGAD10s) appeared as a single protein on SDS-PAGE with a molecular mass of 52.0 kDa. LcGAD10s exhibited a specific activity of 303.7 U/mg after purification by Ni-IDA affinity chromatography, with optimal activity at 55 °C and pH 5. LcGAD10s displayed excellent temperature (50 °C) and pH (4-8) stability which relative activity above 80% and 70%, respectively. The enzymatic activity was, respectively, increased and depressed by 130%, and 24% in the presence of Mn+ and Cu2+. Enzyme activity over 90% can be achieved by adding at least 25 mM of PLP. LcGAD10s was able to efficiently transform 15 g/L GABA with a single-factor optimized reaction of pH (5), temperature (50 °C), time (2 h), LcGAD10s dosage (0.4 U) and monosodium glutamate level (5 g/L). Additionally, LcGAD10s can be applied to a tofu fermentation system to achieve GABA conversion and achieved 14.9 mg/g of GABA conversion when added at 2 U/mL, which is higher than most of the commercial sufu and previous application reports, increasing its functional substances.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.C.); (R.W.); (Y.S.); (A.M.); (S.L.)
| |
Collapse
|
3
|
Hayashi M, Okada A, Yamamoto K, Okugochi T, Kusaka C, Kudou D, Nemoto M, Inagaki J, Hirose Y, Okajima T, Tamura T, Soda K, Inagaki K. Gene cloning, recombinant expression, purification and characterization of l-methionine decarboxylase from Streptomyces sp. 590. J Biochem 2017; 161:389-398. [PMID: 28003434 DOI: 10.1093/jb/mvw083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/09/2016] [Indexed: 11/14/2022] Open
Abstract
l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli. The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time.
Collapse
Affiliation(s)
- Masaya Hayashi
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Akane Okada
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Kumiko Yamamoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Tomomi Okugochi
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Chika Kusaka
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Daizou Kudou
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Michiko Nemoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Junko Inagaki
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yuu Hirose
- Department of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Toshihide Okajima
- Institute of Scientific and Industrial Research, Osaka University, 8-1 Miho-gaoka, Osaka 567-0047, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Kenji Soda
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
4
|
Merlin M, Gecchele E, Arcalis E, Remelli S, Brozzetti A, Pezzotti M, Avesani L. Enhanced GAD65 production in plants using the MagnICON transient expression system: Optimization of upstream production and downstream processing. Biotechnol J 2016; 11:542-53. [PMID: 26710327 DOI: 10.1002/biot.201500187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 09/09/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
Plants have emerged as competitive production platforms for pharmaceutical proteins that are required in large quantities. One example is the 65-kDa isoform of human glutamic acid decarboxylase (GAD65), a major autoimmune diabetes autoantigen that has been developed as a vaccine candidate for the primary prevention of diabetes. The expression of GAD65 in plants has been optimized but large-scale purification is hampered by its tendency to associate with membranes. We investigated the potential for large-scale downstream processing by evaluating different combinations of plant-based expression systems and engineered forms of GAD65 in terms of yield, subcellular localization and solubility in detergent-free buffer. We found that a modified version of GAD65 lacking the first 87 amino acids accumulates to high levels in the cytosol and can be extracted in detergent-free buffer. The highest yields of this variant protein were achieved using the MagnICON transient expression system. This combination of truncated GAD65 and the MagnICON system dramatically boosts the production of the recombinant protein and helps to optimize downstream processing for the establishment of a sustainable plant-based production platform for an autoimmune diabetes vaccine candidate.
Collapse
Affiliation(s)
- Matilde Merlin
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Gecchele
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elsa Arcalis
- Department of Applied Genetic and Cell Biology, University of Natural Resources and Life Science, Vienna, Austria
| | - Sabrina Remelli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
5
|
Comparative evaluation of recombinant protein production in different biofactories: the green perspective. BIOMED RESEARCH INTERNATIONAL 2014; 2014:136419. [PMID: 24745008 PMCID: PMC3972949 DOI: 10.1155/2014/136419] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/10/2014] [Indexed: 12/22/2022]
Abstract
In recent years, the production of recombinant pharmaceutical proteins in heterologous systems has increased significantly. Most applications involve complex proteins and glycoproteins that are difficult to produce, thus promoting the development and improvement of a wide range of production platforms. No individual system is optimal for the production of all recombinant proteins, so the diversity of platforms based on plants offers a significant advantage. Here, we discuss the production of four recombinant pharmaceutical proteins using different platforms, highlighting from these examples the unique advantages of plant-based systems over traditional fermenter-based expression platforms.
Collapse
|
6
|
Jayakrishnan B, Hoke DE, Langendorf CG, Buckle AM, Rowley MJ. An analysis of the cross-reactivity of autoantibodies to GAD65 and GAD67 in diabetes. PLoS One 2011; 6:e18411. [PMID: 21494613 PMCID: PMC3072979 DOI: 10.1371/journal.pone.0018411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background Autoantibodies to GAD65 (anti-GAD65) are present in the sera of 70–80% of patients with type 1 diabetes (T1D), but antibodies to the structurally similar 67 kDa isoform GAD67 are rare. Antibodies to GAD67 may represent a cross-reactive population of anti-GAD65, but this has not been formally tested. Methodology/Principal Findings In this study we examined the frequency, levels and affinity of anti-GAD67 in diabetes sera that contained anti-GAD65, and compared the specificity of GAD65 and GAD67 reactivity. Anti-GAD65 and anti-GAD67 were measured by radioimmunoprecipitation (RIP) using 125I labeled recombinant GAD65 and GAD67. For each antibody population, the specificity of the binding was measured by incubation with 100-fold excess of unlabeled GAD in homologous and heterologous inhibition assays, and the affinity of binding with GAD65 and GAD67 was measured in selected sera. Sera were also tested for reactivity to GAD65 and GAD67 by immunoblotting. Of the 85 sera that contained antibodies to GAD65, 28 contained anti–GAD67 measured by RIP. Inhibition with unlabeled GAD65 substantially or completely reduced antibody reactivity with both 125I GAD65 and with 125I GAD67. In contrast, unlabeled GAD67 reduced autoantibody reactivity with 125I GAD67 but not with 125I GAD65. Both populations of antibodies were of high affinity (>1010 l/mol). Conclusions Our findings show that autoantibodies to GAD67 represent a minor population of anti-GAD65 that are reactive with a cross-reactive epitope found also on GAD67. Experimental results confirm that GAD65 is the major autoantigen in T1D, and that GAD67 per se has very low immunogenicity. We discuss our findings in light of the known similarities between the structures of the GAD isoforms, in particular the location of a minor cross-reactive epitope that could be induced by epitope spreading.
Collapse
Affiliation(s)
- Bindu Jayakrishnan
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - David E. Hoke
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (AMB) (AB); (MJR) (MR)
| | - Merrill J. Rowley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail: (AMB) (AB); (MJR) (MR)
| |
Collapse
|
7
|
Papakonstantinou T, Harris SJ, Fredericks D, Harrison C, Wallace EM, Hearn MTW. Synthesis, purification and bioactivity of recombinant human activin A expressed in the yeast Pichia pastoris. Protein Expr Purif 2008; 64:131-8. [PMID: 19027859 DOI: 10.1016/j.pep.2008.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 10/05/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily member, activin A, plays a central role in the regulation of multiple physiological processes including cell differentiation, mitogenesis, embryogenesis, apoptosis and inflammation. In normal cells, activin A signalling is regulated to maintain cellular and tissue health and suppress tumour growth. Disruption of activin A signalling has been implicated in tumour formation and progression. Hence, the availability of activin A is an important target for the development of diagnostics and drugs for therapeutic intervention. To this end, we have expressed human activin A in Pichia pastoris, permitting its secretion into culture medium and purification as the mature homodimer. A construct was engineered encoding the monomeric precursor protein with a N-terminal FLAG affinity tag (DYKDDDDK) and a cleavage site (EKR) for Kex2p protease. Procedures for the two-step purification of human activin A by ion-exchange and anti-FLAG antibody affinity chromatography, and for the removal of the FLAG affinity tag from purified recombinant human activin A by enteropeptidase, are described. The molecular weights of the FLAG-tagged and de-tagged human activin A were confirmed by MALDI-TOF mass spectroscopy. The biological activity of these recombinant activins was assessed for their effects on modulating the secretion of Endothelin-1 (ET-1) by human umbilical vein endothelial cells (HUVECs). The recombinant human activin A containing the intact FLAG tag resulted in a reduced ET-1 secretion from HUVECs, whereas upon removal of this affinity purification tag the purified recombinant human activin A restored ET-1 secretion to levels comparable to the positive control. These results document an approach of considerable potential for the simple, large-scale expression and purification of this important human growth factor for use in diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Theo Papakonstantinou
- ARC Special Research Centre for Green Chemistry, Building 75, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Fenalti G, Law RHP, Buckle AM, Langendorf C, Tuck K, Rosado CJ, Faux NG, Mahmood K, Hampe CS, Banga JP, Wilce M, Schmidberger J, Rossjohn J, El-Kabbani O, Pike RN, Smith AI, Mackay IR, Rowley MJ, Whisstock JC. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop. Nat Struct Mol Biol 2007; 14:280-6. [PMID: 17384644 DOI: 10.1038/nsmb1228] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 03/07/2007] [Indexed: 01/20/2023]
Abstract
Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.
Collapse
Affiliation(s)
- Gustavo Fenalti
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Laffitte E, Shafaatian R, Fontao L, Favre B, Koster J, Saurat JH, Monod M, Borradori L. Production of the bullous pemphigoid antigen 230 (BP230) by Saccharomyces cerevisiae and Pichia pastoris. Protein Expr Purif 2003; 29:141-7. [PMID: 12767802 DOI: 10.1016/s1046-5928(03)00057-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BP230 is a cytoskeletal linker protein of 2649 amino acids originally identified as the target autoantigen in bullous pemphigoid, a potentially devastating autoimmune skin blistering disorder. To better define its function, we sought to generate recombinant forms of BP230 in both Saccharomyces cerevisiae and Pichia pastoris after cloning its entire cDNA. By immunoblot analysis, full-length BP230 was not found in extracts of P. pastoris, whereas minor amounts of degraded BP230 were detected in extracts of S. cerevisiae. In contrast, both S. cerevisiae and P. pastoris were able to produce the 770-amino acid COOH-terminal domain of BP230. Furthermore, the production level of the recombinant BP230 tail in S. cerevisiae was significantly higher than that observed in P. pastoris and that of endogenous BP230 in cultured human keratinocytes. Finally, 12 of 17 (71%) BP sera recognized the recombinant BP230 protein in yeast extracts. Our results indicate that S. cerevisiae occasionally constitutes a better tool for recombinant protein production than P. pastoris. Although both its large size and poor solubility limit production of BP230, the developed yeast system provides cellular fractions enriched in BP230 recombinant proteins that constitute useful tools for the diagnosis of bullous pemphigoid.
Collapse
Affiliation(s)
- Emmanuel Laffitte
- Department of Dermatology, University Hospital, Rue Micheli-du-Crest 24, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Tong JC, Mackay IR, Chin J, Law RHP, Fayad K, Rowley MJ. Enzymatic characterization of a recombinant isoform hybrid of glutamic acid decarboxylase (rGAD67/65) expressed in yeast. J Biotechnol 2002; 97:183-90. [PMID: 12067524 DOI: 10.1016/s0168-1656(02)00060-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND AIMS Glutamic acid decarboxylase (GAD, EC 4.1.1.15) catalyses the conversion of glutamate to gamma-aminobutyric acid (GABA). The 65 kDa isoform, GAD65 is a potent autoantigen in type 1 diabetes, whereas GAD67 is not. A hybrid cDNA was created by fusing a human cDNA for amino acids 1-101 of GAD67 to a human cDNA for amino acids 96-585 of GAD65; the recombinant (r) protein was expressed in yeast and was shown to have equivalent immunoreactivity to mammalian brain GAD with diabetes sera. We here report on enzymatic and molecular properties of rGAD67/65. METHODS Studies were performed on enzymatic activity of rGAD67/65 by production of 3H-GABA from 3H-glutamate, enzyme kinetics, binding to the enzyme cofactor pyridoxal phosphate (PLP), stability according to differences in pH, temperature and duration of storage, and antigenic reactivity with various GAD-specific antisera. RESULTS The properties of rGAD67/65 were compared with published data for mammalian brain GAD (brackets). These included a specific enzyme activity of 22.7 (16.7) nKat, optimal pH for enzymatic activity 7.4 (6.8), K(m) of 1.3 (1.3) mM, efficient non-covalent binding to the cofactor PLP, and high autoantigenic potency. The stability of rGAD67/65 was optimal over 3 months at -80 degrees C, or in lyophilized form at -20 degrees C. CONCLUSIONS Hybrid rGAD67/65 has enzymatic and other properties similar to those of the mixed isoforms of GAD in preparations from mammalian brain as described elsewhere, in addition to its previously described similar immunoreactivity.
Collapse
Affiliation(s)
- Jonathan C Tong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Vic. 3800, Australia
| | | | | | | | | | | |
Collapse
|
11
|
Papakonstantinou T, Myers MA, Jois J, Roucou X, Prescott M, Rowley MJ, Mackay IR. Expression of protein tyrosine phosphatase-like molecule ICA512/IA-2 induces growth arrest in yeast cells and transfected mammalian cell lines. J Autoimmun 2001; 17:51-61. [PMID: 11488637 DOI: 10.1006/jaut.2001.0516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ICA512/IA-2 molecule, a protein with similarity to receptor-type protein tyrosine phosphatases, was discovered during studies to identify autoantigens in Type 1 diabetes. The biological function of ICA512/IA-2 is unknown. We describe striking effects of ICA512/IA-2 on viability and growth of both yeast cells and cultured mammalian cells. In transformed yeast Saccharomyces cerevisiae cells, expression of ICA512/IA-2 induced growth retardation as judged by measurements of optical density and counts of colony-forming units. In contrast, expression of the intracellular domain (amino acids 600-979) of ICA512/IA-2 in yeast or mammalian cells had no such effects. In investigations on apoptosis, expression of ICA512/IA-2 in yeast cells caused loss of plasma membrane asymmetry, but not release of cytochrome c from mitochondria which did occur in a control system after expression of the pro-apoptotic molecule Bax. Possible interactions between ICA512/IA-2 and components of the cytoskeleton were not supported by studies on staining of fixed yeast cells with phalloidin-Texas Red. With transfected mammalian cell lines COS-7 and NIH3T3, expression of ICA512/IA-2 likewise induced growth arrest, with some of the morphological features of apoptosis. Thus obligatory expression of ICA512/IA-2 in eukaryotic cells causes disruption of cellular activities, with growth arrest in yeast and nuclear pycnosis/fragmentation in mammalian cells. A possible explanation is that growth inhibition reflects a part of the presently unknown function of ICA512/IA-2.
Collapse
Affiliation(s)
- T Papakonstantinou
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | |
Collapse
|