1
|
Soerjawinata W, Prajapati S, Barth I, Lu X, Ulber R, Efferth T, Kampeis P. Production of Protease Inhibitor With Penicillium sp. - Optimization of the Medium for Growth in Pellet Form and Cytotoxicity Testing. Eng Life Sci 2025; 25:e70012. [PMID: 40104836 PMCID: PMC11913720 DOI: 10.1002/elsc.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 03/20/2025] Open
Abstract
Penicillium sp. (IBWF 040-09) produces a protease inhibitor that can potentially be used against the main protease of human African trypanosomiasis. Since the target substance is formed intracellularly (under nutrient limitation), the fungal pellet is preferred compared to the free mycelia in bioreactor cultivation. The optimization of the production of protease inhibitor became the main focus of this study. The effects of the concentrations of spores, calcium chloride, and Pluronic F68 were investigated with regard to fungal growth, pellet morphology, and the production of protease inhibitor. The combination of adjusting the spore concentration and adding Pluronic F68 and calcium chloride increased the probability of achieving the desired morphology. This ensured better reproducibility of the production of the target substance by Penicillium sp. (IBWF 040-09) with the bioreactor system used. In addition, the protease inhibitor was tested in a resazurin assay and showed no noticeable cytotoxic effects on peripheral blood mononuclear cells isolated from whole blood cells.
Collapse
Affiliation(s)
- Winda Soerjawinata
- Environmental Campus Birkenfeld Institute for Biotechnical Process Design Trier University of Applied Sciences Birkenfeld Germany
| | - Shila Prajapati
- Institute of Pharmaceutical and Biomedical Sciences Johannes Gutenberg University Mainz Mainz Germany
| | - Isabelle Barth
- Environmental Campus Birkenfeld Institute for Biotechnical Process Design Trier University of Applied Sciences Birkenfeld Germany
| | - Xiaohua Lu
- Institute of Pharmaceutical and Biomedical Sciences Johannes Gutenberg University Mainz Mainz Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering University of Kaiserslautern-Landau (RPTU) Kaiserslautern Germany
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences Johannes Gutenberg University Mainz Mainz Germany
| | - Percy Kampeis
- Environmental Campus Birkenfeld Institute for Biotechnical Process Design Trier University of Applied Sciences Birkenfeld Germany
| |
Collapse
|
2
|
Fomina M, Gromozova O, Gadd GM. Morphological responses of filamentous fungi to stressful environmental conditions. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:115-169. [PMID: 39389704 DOI: 10.1016/bs.aambs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The filamentous growth mode of fungi, with its modular design, facilitates fungal adaptation to stresses they encounter in diverse terrestrial and anthropogenic environments. Surface growth conditions elicit diverse morphological responses in filamentous fungi, particularly demonstrating the remarkable adaptability of mycelial systems to metal- and mineral-rich environments. These responses are coupled with fungal biogeochemical activity and can ameliorate hostile conditions. A tessellated agar tile system, mimicking natural environmental heterogeneity, revealed negative chemotropism to toxic metals, distinct extreme growth strategies, such as phalanx and guerrilla movements and transitions between them, and the formation of aggregated re-allocation structures (strands, cords, synnemata). Other systems showed intrahyphal growth, intense biomineralization, and extracellular hair-like structures. Studies on submerged mycelial growth, using the thermophilic fungus Thielavia terrestris as an example, provided mechanistic insights into the morphogenesis of two extreme forms of fungal submerged culture-pelleted and dispersed growth. It was found that the development of fungal pellets was related to fungal adaptation to unfavorable stressful conditions. The two key elements affecting morphogenesis leading to the formation of either pelleted or dispersed growth were found to be (1) a lag phase (or conidia swelling stage) as a specific period of fungal morphogenesis when a certain growth form is programmed in response to morphogenic stressors, and (2) cAMP as a secondary messenger of cell signaling, defining the implementation of the particular growth strategy. These findings can contribute to knowledge of fungal-based biotechnologies, providing a means for controllable industrial processes at both morphological and physiological levels.
Collapse
Affiliation(s)
- Marina Fomina
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Olena Gromozova
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, P.R. China
| |
Collapse
|
3
|
Książek E. Citric Acid: Properties, Microbial Production, and Applications in Industries. Molecules 2023; 29:22. [PMID: 38202605 PMCID: PMC10779990 DOI: 10.3390/molecules29010022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Citric acid finds broad applications in various industrial sectors, such as the pharmaceutical, food, chemical, and cosmetic industries. The bioproduction of citric acid uses various microorganisms, but the most commonly employed ones are filamentous fungi such as Aspergillus niger and yeast Yarrowia lipolytica. This article presents a literature review on the properties of citric acid, the microorganisms and substrates used, different fermentation techniques, its industrial utilization, and the global citric acid market. This review emphasizes that there is still much to explore, both in terms of production process techniques and emerging new applications of citric acid.
Collapse
Affiliation(s)
- Ewelina Książek
- Department of Agroenginieering and Quality Analysis, Faculty of Production Engineering, Wroclaw University of Economics and Business, Komandorska 118-120, 53-345 Wrocław, Poland
| |
Collapse
|
4
|
Cairns TC, de Kanter T, Zheng XZ, Zheng P, Sun J, Meyer V. Regression modelling of conditional morphogene expression links and quantifies the impact of growth rate, fitness and macromorphology with protein secretion in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:95. [PMID: 37268954 DOI: 10.1186/s13068-023-02345-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood. RESULTS In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth. By harnessing gene coexpression network data, we bioinformatically predicted six morphology and productivity associated 'morphogenes', and placed them under control of a conditional Tet-on gene switch using CRISPR-Cas genome editing. Strains were phenotypically screened on solid and liquid media following titration of morphogene expression, generating quantitative measurements of growth rate, filamentous morphology, response to various abiotic perturbations, Euclidean parameters of submerged macromorphologies, and total secreted protein. These data were built into a multiple linear regression model, which identified radial growth rate and fitness under heat stress as positively correlated with protein titres. In contrast, diameter of submerged pellets and cell wall integrity were negatively associated with productivity. Remarkably, our model predicts over 60% of variation in A. niger secreted protein titres is dependent on these four variables, suggesting that they play crucial roles in productivity and are high priority processes to be targeted in future engineering programs. Additionally, this study suggests A. niger dlpA and crzA genes are promising new leads for enhancing protein titres during fermentation. CONCLUSIONS Taken together this study has identified several potential genetic leads for maximizing protein titres, delivered a suite of chassis strains with user controllable macromorphologies during pilot fermentation studies, and has quantified four crucial factors which impact secreted protein titres in A. niger.
Collapse
Affiliation(s)
- Timothy C Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| | - Tom de Kanter
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany
| | - Xiaomei Z Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
5
|
Laltha M, Sewsynker-Sukai Y, Gueguim Kana EB. Simultaneous saccharification and citric acid production from paper wastewater pretreated banana pseudostem: Optimization of fermentation medium formulation and kinetic assessment. BIORESOURCE TECHNOLOGY 2022; 361:127700. [PMID: 35901862 DOI: 10.1016/j.biortech.2022.127700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
This study optimized the simultaneous saccharification and citric acid (CA) production from banana pseudostem (BP). Thereafter, kinetic assessment of Aspergillus brasiliensis growth and CA production were determined for the optimum conditions using fresh water (SSFoptimizedFW) or dairy wastewater (SSFDWW) and compared to Sabouraud Dextrose Emmon's medium modified with BP (SSFSDEmodified). The optimized conditions gave a CA concentration of 14.408 g/L. Kinetic assessment revealed the same maximum specific growth rates (μmax) (0.05 h-1) for all three bioprocesses, while the SSFSDEmodified process resulted in the highest maximum potential CA concentration (Pm) (13.991 g/L) in comparison to the SSFDWW (Pm = 13.095 g/L) and SSFoptimizedFW (Pm = 12.967 g/L) systems. Findings from this study facilitates the implementation of waste-based lignocellulosic bioprocesses that may eradicate the use of expensive pretreatment chemicals, fermentation medium constituents, and resources, in keeping with the water, energy and food nexus towards developing a circular bioeconomy.
Collapse
Affiliation(s)
- Milesh Laltha
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa
| | - Y Sewsynker-Sukai
- University of Fort Hare, Fort Hare Institute of Technology, Private Bag X1314, Alice 5700, South Africa
| | - E B Gueguim Kana
- University of KwaZulu-Natal, School of Life Sciences, Pietermaritzburg, South Africa.
| |
Collapse
|
6
|
Shahidi N, Pan M, Tran K, Crampin EJ, Nickerson DP. SBML to bond graphs: From conversion to composition. Math Biosci 2022; 352:108901. [PMID: 36096376 DOI: 10.1016/j.mbs.2022.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
The Systems Biology Markup Language (SBML) is a popular software-independent XML-based format for describing models of biological phenomena. The BioModels Database is the largest online repository of SBML models. Several tools and platforms are available to support the reuse and composition of SBML models. However, these tools do not explicitly assess whether models are physically plausible or thermodynamically consistent. This often leads to ill-posed models that are physically impossible, impeding the development of realistic complex models in biology. Here, we present a framework that can automatically convert SBML models into bond graphs, which imposes energy conservation laws on these models. The new bond graph models are easily mergeable, resulting in physically plausible coupled models. We illustrate this by automatically converting and coupling a model of pyruvate distribution to a model of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Niloofar Shahidi
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand.
| | - Michael Pan
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Victoria, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Kenneth Tran
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| | - Edmund J Crampin
- Systems Biology Laboratory, School of Mathematics and Statistics, and Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Victoria, Australia; School of Mathematics and Statistics, Faculty of Science, University of Melbourne, Melbourne, 3010, Victoria, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Faculty of Engineering and Information Technology, University of Melbourne, Melbourne, 3010, Victoria, Australia; School of Medicine, University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - David P Nickerson
- Auckland Bioengineering Institute, University of Auckland, Auckland, 1010, New Zealand
| |
Collapse
|
7
|
Shah SS, Palmieri MC, Sponchiado SRP, Bevilaqua D. A sustainable approach on biomining of low-grade bauxite by P. simplicissimum using molasses medium. Braz J Microbiol 2022; 53:831-843. [PMID: 35079978 PMCID: PMC9151954 DOI: 10.1007/s42770-022-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
In order to find a sustainable and low-cost alternative route to the traditional recovery of aluminum, the filamentous fungus Penicillium simplicissimum was evaluated for aluminum recovery from low-grade bauxite ore. The oat-agar medium was carefully chosen as the foremost solid medium for fungal sporulation due to lower cost, ease in preparation, and high spore production in a short incubation time. To examine the acid production capability in submerged fermentation, P. simplicissimum was inoculated in a medium augmented with glucose and molasses as an energy source. High-performance liquid chromatography (HPLC) technique was used for the determination of the produced organic acids. Three different bioleaching approaches were evaluated using 1% bauxite pulp density. The culture containing P. simplicissimum spores grown in a medium supplemented with molasses leached 86.6% Al in the direct two steps on the fifth day, 56.5% in the direct one step on the fourth day, and 71.7% in the indirect bioleaching on the fourth day, while in the controlled sterile flasks, Al leaching was almost negligible. A maximal amount of Al was leached by the fungal strains using low-cost molasses as a substrate.
Collapse
Affiliation(s)
- Syed Sikandar Shah
- grid.410543.70000 0001 2188 478XDepartment of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14800-060 Brazil ,grid.11899.380000 0004 1937 0722Department of Chemical Engineering, Polytechnic School of University of Sao Paulo (USP), São Paulo, SP 05508-010 Brazil
| | | | - Sandra Regina Pombeiro Sponchiado
- grid.410543.70000 0001 2188 478XDepartment of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14800-060 Brazil
| | - Denise Bevilaqua
- grid.410543.70000 0001 2188 478XDepartment of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP 14800-060 Brazil
| |
Collapse
|
8
|
Cairns TC, Zheng X, Feurstein C, Zheng P, Sun J, Meyer V. A Library of Aspergillus niger Chassis Strains for Morphology Engineering Connects Strain Fitness and Filamentous Growth With Submerged Macromorphology. Front Bioeng Biotechnol 2022; 9:820088. [PMID: 35111742 PMCID: PMC8801610 DOI: 10.3389/fbioe.2021.820088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Submerged fermentation using filamentous fungal cell factories is used to produce a diverse portfolio of useful molecules, including food, medicines, enzymes, and platform chemicals. Depending on strain background and abiotic culture conditions, different macromorphologies are formed during fermentation, ranging from dispersed hyphal fragments to approximately spherical pellets several millimetres in diameter. These macromorphologies are known to have a critical impact on product titres and rheological performance of the bioreactor. Pilot productivity screens in different macromorphological contexts is technically challenging, time consuming, and thus a significant limitation to achieving maximum product titres. To address this bottleneck, we developed a library of conditional expression mutants in the organic, protein, and secondary metabolite cell factory Aspergillus niger. Thirteen morphology-associated genes transcribed during fermentation were placed via CRISPR-Cas9 under control of a synthetic Tet-on gene switch. Quantitative analysis of submerged growth reveals that these strains have distinct and titratable macromorphologies for use as chassis during strain engineering programs. We also used this library as a tool to quantify how pellet formation is connected with strain fitness and filamentous growth. Using multiple linear regression modelling, we predict that pellet formation is dependent largely on strain fitness, whereas pellet Euclidian parameters depend on fitness and hyphal branching. Finally, we have shown that conditional expression of the putative kinase encoding gene pkh2 can decouple fitness, dry weight, pellet macromorphology, and culture heterogeneity. We hypothesize that further analysis of this gene product and the cell wall integrity pathway in which it is embedded will enable more precise engineering of A. niger macromorphology in future.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Claudia Feurstein
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- *Correspondence: Timothy C. Cairns, ; Jibin Sun, ; Vera Meyer,
| |
Collapse
|
9
|
Xue X, Bi F, Liu B, Li J, Zhang L, Zhang J, Gao Q, Wang D. Improving citric acid production of an industrial Aspergillus niger CGMCC 10142: identification and overexpression of a high-affinity glucose transporter with different promoters. Microb Cell Fact 2021; 20:168. [PMID: 34446025 PMCID: PMC8394697 DOI: 10.1186/s12934-021-01659-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glucose transporters play an important role in the fermentation of citric acid. In this study, a high-affinity glucose transporter (HGT1) was identified and overexpressed in the industrial strain A. niger CGMCC 10142. HGT1-overexpressing strains using the PglaA and Paox1 promoters were constructed to verify the glucose transporter functions. RESULT As hypothesized, the HGT1-overexpressing strains showed higher citric acid production and lower residual sugar contents. The best-performing strain A. niger 20-15 exhibited a reduction of the total sugar content and residual reducing sugars by 16.5 and 44.7%, while the final citric acid production was significantly increased to 174.1 g/L, representing a 7.3% increase compared to A. niger CGMCC 10142. Measurement of the mRNA expression levels of relevant genes at different time-points during the fermentation indicated that in addition to HGT1, citrate synthase and glucokinase were also expressed at higher levels in the overexpression strains. CONCLUSION The results indicate that HGT1 overexpression resolved the metabolic bottleneck caused by insufficient sugar transport and thereby improved the sugar utilization rate. This study demonstrates the usefulness of the high-affinity glucose transporter HGT1 for improving the citric acid fermentation process of Aspergillus niger CGMCC 10142.
Collapse
Affiliation(s)
- Xianli Xue
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Futi Bi
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Boya Liu
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China
| | - Jie Li
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lan Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jian Zhang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Qiang Gao
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Depei Wang
- Key Laboratory of Industrial Microbiology & Engineering Research Center of Food Biotechnology of Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China. .,Tianjin Key Laboratory of Industrial Fermentation Microbiology, Tianjin, 300457, People's Republic of China. .,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
10
|
Low-waste fermentation-derived organic acid production by bipolar membrane electrodialysis—an overview. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01720-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractOrganic acids, e.g, citric acid, fumaric acid, lactic acid, malic acid, pyruvic acid and succinic acid, have important role in the food industry and are potential raw materials for the sustainable chemical industry. Their fermentative production based on renewable raw materials requires innovatively designed downstream processing to maintain low environmental impact and resource efficiency throughout the production process. The application of bipolar membranes offers clean and effective way to generate hydrogen ions required for free acid production from its salt. The water dissociation reaction inside the bipolar membrane triggered by electric field plays key role in providing hydrogen ion for the replacement of the cations in organic acid salts. Combined with monopolar ion-exchange membranes in a bipolar membrane electrodialysis process, material flow can be separated beside the product stream into additional reusable streams, thus minimizing the waste generation. This paper focuses on bipolar membrane electrodialysis applied for organic acid recovery from fermentation broth.
Collapse
|
11
|
Bondancia TJ, de Aguiar J, Batista G, Cruz AJG, Marconcini JM, Mattoso LHC, Farinas CS. Production of Nanocellulose Using Citric Acid in a Biorefinery Concept: Effect of the Hydrolysis Reaction Time and Techno-Economic Analysis. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01359] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thalita J. Bondancia
- Embrapa Instrumentation, National Nanotechnology Laboratory for Agribusiness (LNNA), Rua XV de Novembro 1452, 13560-970 São Carlos, SP, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Jessica de Aguiar
- Embrapa Instrumentation, National Nanotechnology Laboratory for Agribusiness (LNNA), Rua XV de Novembro 1452, 13560-970 São Carlos, SP, Brazil
- Graduate Program of Material Sciences and Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Gustavo Batista
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Antonio J. G. Cruz
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - José Manoel Marconcini
- Embrapa Instrumentation, National Nanotechnology Laboratory for Agribusiness (LNNA), Rua XV de Novembro 1452, 13560-970 São Carlos, SP, Brazil
- Graduate Program of Material Sciences and Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Luiz Henrique C. Mattoso
- Embrapa Instrumentation, National Nanotechnology Laboratory for Agribusiness (LNNA), Rua XV de Novembro 1452, 13560-970 São Carlos, SP, Brazil
- Graduate Program of Material Sciences and Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Cristiane S. Farinas
- Embrapa Instrumentation, National Nanotechnology Laboratory for Agribusiness (LNNA), Rua XV de Novembro 1452, 13560-970 São Carlos, SP, Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
12
|
Gold Bioleaching from Printed Circuit Boards of Mobile Phones by Aspergillus niger in a Culture without Agitation and with Glucose as a Carbon Source. METALS 2019. [DOI: 10.3390/met9050521] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Hydrometallurgical and pyrometallurgical processes to recover gold (Au) from cell-phone printed circuit boards (PCBs) have the disadvantage of generating corrosive residues and consuming a large amount of energy. Therefore, it is necessary to look for biological processes that have low energy consumption and are friendly to the environment. Among the biological alternatives for the recovery of Au from PCB is the use of cyanogenic bacteria and filamentous fungi in cultures with agitation. Considering that it is important to explore the response of microorganisms in cultures without agitation to reduce energy expenditure in the recovery of metals from PCB, the present investigation evaluated the capacity of Aspergillus niger MXPE6 and a fungal consortium to induce Au bioleaching from PCB in a culture medium with glucose as a carbon source and without agitation (pH 4.5). The results indicate that the treatments with PCB inoculated with the fungal consortium showed a considerable decrease in pH (2.8) in comparison with the treatments inoculated with A. niger MXPE6 (4.0). The fungal consortium showed a significantly higher Au bioleaching (56%) than A. niger MXPE6 (17%). Finally, the use of fungal consortia grown without agitation could be an alternative to recover metals from PCB, saving energy and material resources.
Collapse
|
13
|
Cairns TC, Zheng X, Zheng P, Sun J, Meyer V. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:77. [PMID: 30988699 PMCID: PMC6446404 DOI: 10.1186/s13068-019-1400-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/09/2019] [Indexed: 05/21/2023]
Abstract
Filamentous fungi are harnessed as cell factories for the production of a diverse range of organic acids, proteins, and secondary metabolites. Growth and morphology have critical implications for product titres in both submerged and solid-state fermentations. Recent advances in systems-level understanding of the filamentous lifestyle and development of sophisticated synthetic biological tools for controlled manipulation of fungal genomes now allow rational strain development programs based on data-driven decision making. In this review, we focus on Aspergillus spp. and other industrially utilised fungi to summarise recent insights into the multifaceted and dynamic relationship between filamentous growth and product titres from genetic, metabolic, modelling, subcellular, macromorphological and process engineering perspectives. Current progress and knowledge gaps with regard to mechanistic understanding of product secretion and export from the fungal cell are discussed. We highlight possible strategies for unlocking lead genes for rational strain optimizations based on omics data, and discuss how targeted genetic manipulation of these candidates can be used to optimise fungal morphology for improved performance. Additionally, fungal signalling cascades are introduced as critical processes that can be genetically targeted to control growth and morphology during biotechnological applications. Finally, we review progress in the field of synthetic biology towards chassis cells and minimal genomes, which will eventually enable highly programmable filamentous growth and diversified production capabilities. Ultimately, these advances will not only expand the fungal biotechnology portfolio but will also significantly contribute to a sustainable bio-economy.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Vera Meyer
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
14
|
Cairns TC, Feurstein C, Zheng X, Zheng P, Sun J, Meyer V. A quantitative image analysis pipeline for the characterization of filamentous fungal morphologies as a tool to uncover targets for morphology engineering: a case study using aplD in Aspergillus niger. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:149. [PMID: 31223339 PMCID: PMC6570962 DOI: 10.1186/s13068-019-1473-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/20/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Fungal fermentation is used to produce a diverse repertoire of enzymes, chemicals, and drugs for various industries. During submerged cultivation, filamentous fungi form a range of macromorphologies, including dispersed mycelia, clumped aggregates, or pellets, which have critical implications for rheological aspects during fermentation, gas/nutrient transfer, and, thus, product titres. An important component of strain engineering efforts is the ability to quantitatively assess fungal growth phenotypes, which will drive novel leads for morphologically optimized production strains. RESULTS In this study, we developed an automated image analysis pipeline to quantify the morphology of pelleted and dispersed growth (MPD) which rapidly and reproducibly measures dispersed and pelleted macromorphologies from any submerged fungal culture. It (i) enables capture and analysis of several hundred images per user/day, (ii) is designed to quantitatively assess heterogeneous cultures consisting of dispersed and pelleted forms, (iii) gives a quantitative measurement of culture heterogeneity, (iv) automatically generates key Euclidian parameters for individual fungal structures including particle diameter, aspect ratio, area, and solidity, which are also assembled into a previously described dimensionless morphology number MN, (v) has an in-built quality control check which enables end-users to easily confirm the accuracy of the automated calls, and (vi) is easily adaptable to user-specified magnifications and macromorphological definitions. To concomitantly provide proof of principle for the utility of this image analysis pipeline, and provide new leads for morphologically optimized fungal strains, we generated a morphological mutant in the cell factory Aspergillus niger based on CRISPR-Cas technology. First, we interrogated a previously published co-expression networks for A. niger to identify a putative gamma-adaptin encoding gene (aplD) that was predicted to play a role in endosome cargo trafficking. Gene editing was used to generate a conditional aplD expression mutant under control of the titratable Tet-on system. Reduced aplD expression caused a hyperbranched growth phenotype and diverse defects in pellet formation with a putative increase in protein secretion. This possible protein hypersecretion phenotype could be correlated with increased dispersed mycelia, and both decreased pellet diameter and MN. CONCLUSION The MPD image analysis pipeline is a simple, rapid, and flexible approach to quantify diverse fungal morphologies. As an exemplar, we have demonstrated that the putative endosomal transport gene aplD plays a crucial role in A. niger filamentous growth and pellet formation during submerged culture. This suggests that endocytic components are underexplored targets for engineering fungal cell factories.
Collapse
Affiliation(s)
- Timothy C. Cairns
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Claudia Feurstein
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Vera Meyer
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
- Department of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| |
Collapse
|
15
|
Van den Bergh M, Van de Voorde B, De Vos D. Adsorption and Selective Recovery of Citric Acid with Poly(4-vinylpyridine). CHEMSUSCHEM 2017; 10:4864-4871. [PMID: 29064637 DOI: 10.1002/cssc.201701672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Citric acid (CA) is an important organic acid that is produced on a large scale by fermentation. Current methods to recover CA from the fermentation broth require large amounts of chemicals and produce considerable amounts of waste, while not all CA can be recovered. The use of adsorbents can increase the degree of product recovery and reduce chemical consumption and waste generation. In this work, poly(4-vinylpyridine) (PVP) is evaluated as an adsorbent for CA recovery. It has a high adsorption capacity (>30 wt %) at low pH and a high selectivity for CA at moderate pH in the presence of sulfate anions, two conditions that are frequently encountered during CA recovery. PVP could be efficiently regenerated after adsorption using simple alcohols like methanol and ethanol. Considering selectivity and regeneration, PVP distinctly outperforms more common adsorbents for organic acids, including commercial strongly and weakly basic anion exchangers. The desirable adsorptive features of PVP for CA can be attributed to the low basicity of the pyridine group.
Collapse
Affiliation(s)
- Matthias Van den Bergh
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F box 2461, 3001, Leuven, Belgium
| | - Ben Van de Voorde
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F box 2461, 3001, Leuven, Belgium
| | - Dirk De Vos
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F box 2461, 3001, Leuven, Belgium
| |
Collapse
|
16
|
Bandh SA, Kamili AN, Ganai BA, Lone BA. Assessment of species richness in Lake Dal, Kashmir, based on classical approach, physiological approach and rDNA ITS sequences from isolates. Microb Pathog 2017; 104:303-309. [PMID: 28161358 DOI: 10.1016/j.micpath.2017.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
Abstract
As a first description to document the species richness in Dal Lake, a freshwater lake ecosystem in Kashmir valley, an extensive network of sixteen sampling stations with distinguishing features was sampled seasonally for two years. The identification process yielded fifty-one species probably first and new records for this area to date. The taxonomic groups observed were those with species from Ascomycetes (inclusive of yeasts), Basidiomycetes, Blastocladiomycetes, Zygomycetes, and Peronosporomycetes. Each phylum was represented by a single Order, with the exception of the Peronosporomycetes, which was represented by two Orders- Saprolegniales and Pythiales. In the filamentous fungal group, family Trichocomaceae was dominant followed by Saccharomycetaceae, Mucoraceae, Nectriaceae, Tremellaceae and Hypocreaceae. However, in the group of zoosporic & fungal like eukaryotes, family Saprolegniaceae was most dominant followed by Blastocladiaceae and Pythiaceae. A dramatic decrease in fungal load was observed in different seasons with highest colonial load in the summer season and lowest in the winter season. The observed distribution was statistically significant for both the filamentous fungal species (p < 0.01) as well as zoosporic fungi & fungal like eukaryotes (p < 0.05). In order to assess biodiversity patterns of fungi more accurately, it is necessary to repeat such investigations in other areas and to improve the tools for taxonomic identification of these highly diverse but mostly microscopic organisms.
Collapse
Affiliation(s)
- Suhaib A Bandh
- Microbiology Research Laboratory, Centre of Research for Development/Department of Environmental Science, University of Kashmir, Srinagar, India.
| | - Azra N Kamili
- Microbiology Research Laboratory, Centre of Research for Development/Department of Environmental Science, University of Kashmir, Srinagar, India
| | - Bashir A Ganai
- Microbiology Research Laboratory, Centre of Research for Development/Department of Environmental Science, University of Kashmir, Srinagar, India
| | - Bashir A Lone
- Parasitology Research Laboratory, Centre of Research for Development/Department, University of Kashmir, Srinagar, India
| |
Collapse
|
17
|
He R, Li C, Ma L, Zhang D, Chen S. Effect of highly branched hyphal morphology on the enhanced production of cellulase in Trichoderma reesei DES-15. 3 Biotech 2016; 6:214. [PMID: 28330286 PMCID: PMC5052222 DOI: 10.1007/s13205-016-0516-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/10/2023] Open
Abstract
The morphology of Trichoderma reesei is a vitally important factor for cellulase productivity. This study investigated the effect of hyphal morphology on cellulase production in the hyper-cellulolytic mutant, T. reesei DES-15. With a distinct morphology, T. reesei DES-15 was obtained through Diethyl sulfite (DES) mutagenesis. The hyphal morphology of DES-15 batch-cultured in a 5-L fermentor was significantly shorter and more branched than the parental strain RUT C30. The cellulase production of DES-15 during batch fermentation was 66 % greater than that of RUT C30 when cultured the same conditions. DES-15 secreted nearly 50 % more protein than RUT C30. The gene expression level of a set of genes (cla4, spa2, ras2, ras1, rhoA, cdc42, and racA) known to be involved in hyphae growth and hyphal branching was measured by quantitative real-time PCR. The transcriptional analysis of these genes demonstrated that a decrease in gene expressions might contribute to the increased hyphal branching seen in DES-15. These results indicated that the highly branching hyphae in DES-15 resulted in increased cellulase production, suggesting that DES-15 may be a good candidate for use in the large-scale production of cellulase.
Collapse
Affiliation(s)
- Ronglin He
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
- Tianjin Key Lab of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chen Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Lijuan Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Dongyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| | - Shulin Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| |
Collapse
|
18
|
Wang B, Chen J, Li H, Sun F, Li Y, Shi G. Pellet-dispersion strategy to simplify the seed cultivation of Aspergillus niger and optimize citric acid production. Bioprocess Biosyst Eng 2016; 40:45-53. [PMID: 27573803 DOI: 10.1007/s00449-016-1673-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/17/2016] [Indexed: 11/25/2022]
Abstract
Citric acid (CA) as an extremely important platform compound has attracted intense attention due to wide applications and huge markets. Here, we proposed a novel method, using pellet inoculation to replace spores, and constructed the seed recycling cultivation process, effectively avoided the longtime (spore preparation 30 days) of seed culture (including spores germination 12 h) in the traditional batch-fermentation. On this basis, using pellet-dispersion strategy, the bottleneck caused by the mycelium structure was overcome, with the seed restoring high cell-viability with CA titer (11.0 g/L) even in the eighth batch compared to that in the control (4.6 g/L). The optimum morphology of these recycling cultured seeds for CA production was dispersed pattern rather than pellets. And the CA production was 130.5 g/L on average in 5 L five-conjoined-fermenters recycling eight batches, especially increasing 3.1 g/L compared with the control. To our knowledge, this is the first that reported the application of these strategies in effective production of CA. Our fermentation strategies not only significantly enhanced CA productivity, but also severed as a promising stepping-stone for other fermentations dominated with the filamentous fungi.
Collapse
Affiliation(s)
- Baoshi Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, 214203, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, 214122, China
| | - Hua Li
- National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, 214122, China
| | - Fuxin Sun
- Jiangsu Guoxin Union Energy Co., Ltd., Wuxi, 214203, China
| | - Youran Li
- National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, 214122, China
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guiyang Shi
- National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, 214122, China.
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
19
|
Opportunistic fungi in lake water and fungal infections in associated human population in Dal Lake, Kashmir. Microb Pathog 2016; 93:105-10. [DOI: 10.1016/j.micpath.2016.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/26/2016] [Indexed: 11/23/2022]
|
20
|
Lu H, Li C, Tang W, Wang Z, Xia J, Zhang S, Zhuang Y, Chu J, Noorman H. Dependence of fungal characteristics on seed morphology and shear stress in bioreactors. Bioprocess Biosyst Eng 2015; 38:917-28. [DOI: 10.1007/s00449-014-1337-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/07/2014] [Indexed: 11/30/2022]
|
21
|
López-Garzón CS, Straathof AJ. Recovery of carboxylic acids produced by fermentation. Biotechnol Adv 2014; 32:873-904. [DOI: 10.1016/j.biotechadv.2014.04.002] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 11/26/2022]
|
22
|
Zhang H, Hu YD, Lu RQ, Xia YJ, Zhang BB, Xu GR. Integrated strategy of pH-shift and glucose feeding for enhanced production of bioactive Antrodin C in submerged fermentation of Antrodia camphorata. ACTA ACUST UNITED AC 2014; 41:1305-10. [DOI: 10.1007/s10295-014-1460-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/08/2014] [Indexed: 01/19/2023]
Abstract
Abstract
Antrodin C is one of the most potent bioactive components produced by the medicinal mushroom Antrodia camphorata. However, almost all studies in this field have focused on the biological activity of Antrodin C and relatively rare information has been reported regarding the biosynthetic process of Antrodin C. In this study, the strategies of pH-shift and glucose feeding for enhanced production of Antrodin C in submerged fermentation of A. camphorata were successfully applied in stirred bioreactors. The critical parameters for pH-shift and glucose feeding were systematically investigated. On one hand, the optimal culture pH for cell growth was distinct with Antrodin C biosynthesis and the maximum Antrodin C production was obtained by maintaining the first-stage culture at initial pH 4.5 and adjusted to 6.0 at day 8. On the other hand, it was beneficial for the Antrodin C accumulation with the initial glucose concentration of 40 g/L and feeding glucose to keep the residual sugar above 10 g/L. The maximum Antrodin C production (1,549.06 mg/L) was about 2.1-fold higher than that of control in 15-L stirred bioreactors by taking advantage of the integrated strategy of pH-shift and glucose feeding. These results would be helpful for the design of a highly efficient Antrodin C biosynthesis process.
Collapse
Affiliation(s)
- Huan Zhang
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Yong-Dan Hu
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Rui-Qiu Lu
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Yong-Jun Xia
- grid.267139.8 000000009188055X School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology 200093 Shanghai People’s Republic of China
| | - Bo-Bo Zhang
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| | - Gan-Rong Xu
- grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
| |
Collapse
|
23
|
Othman N, Jahim JM, Murad AMA, Bakar FDA. Dual Carbon Fermentation for the Production of Inducible Cellobiohydrolase by Recombinant Aspergillus Niger. JOURNAL OF MEDICAL AND BIOENGINEERING 2014; 3:93-97. [DOI: 10.12720/jomb.3.2.93-97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
24
|
Straathof AJJ. Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells. Chem Rev 2013; 114:1871-908. [DOI: 10.1021/cr400309c] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Adrie J. J. Straathof
- Department of Biotechnology, Delft University of Technology, Julianalaan
67, 2628
BC Delft, The Netherlands
| |
Collapse
|
25
|
Taskin M, Tasar GE, Incekara U. Citric acid production from Aspergillus niger MT-4 using hydrolysate extract of the insect Locusta migratoria. Toxicol Ind Health 2012; 29:426-34. [DOI: 10.1177/0748233712436646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Citric acid (CA) is the most important organic acid used in the food and other industries. Locusta migratoria is an insect species, which has rich nutritional composition (especially protein) and cultivated in some countries. Therefore, the present study investigated the usability of hydrolysate extract of L. migratoria biomass as substrate for the production of CA from Aspergillus niger MT-4. The insect extract (IE) was found to be rich in ash (34.9 g/100 g), protein (35.6 g/100 g) and mineral contents. Yeast extract was found to be the most favorable substrate for biomass production, whereas the maximum production of CA (41.8 g/L) was achieved in the medium containing IE. Besides, uniform pellets with the smallest size (4 mm) were observed in IE medium. It was thought that rich magnesium (6.78 g/100 g) and manganese (1.14 g/100 g) contents of IE increased the production of CA, resulting in the formation of small uniform pellets. This is the first report on the effect of protein-rich insect biomasses on the production of CA. In this regard, L. migratoria biomass was tested for the first time as a CA-production substrate.
Collapse
Affiliation(s)
- Mesut Taskin
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Turkey
| | - Gani Erhan Tasar
- Institute of Natural and Applied Sciences, Ataturk University, Turkey
| | - Umit Incekara
- Department of Biology, Faculty of Science, Ataturk University, Turkey
| |
Collapse
|
26
|
García J, Torres N. Mathematical modelling and assessment of the pH homeostasis mechanisms in Aspergillus niger while in citric acid producing conditions. J Theor Biol 2011; 282:23-35. [DOI: 10.1016/j.jtbi.2011.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 04/16/2011] [Accepted: 04/23/2011] [Indexed: 11/29/2022]
|
27
|
Wucherpfennig T, Hestler T, Krull R. Morphology engineering--osmolality and its effect on Aspergillus niger morphology and productivity. Microb Cell Fact 2011; 10:58. [PMID: 21801352 PMCID: PMC3178489 DOI: 10.1186/1475-2859-10-58] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/29/2011] [Indexed: 05/26/2023] Open
Abstract
Background The filamentous fungus Aspergillus niger is a widely used strain in a broad range of industrial processes from food to pharmaceutical industry. One of the most intriguing and often uncontrollable characteristics of this filamentous organism is its complex morphology, ranging from dense spherical pellets to viscous mycelia depending on culture conditions. Optimal productivity correlates strongly with a specific morphological form, thus making high demands on process control. Results In about 50 2L stirred tank cultivations the influence of osmolality on A. niger morphology and productivity was investigated. The specific productivity of fructofuranosidase producing strain A. niger SKAn 1015 could be increased notably from 0.5 to 9 U mg-1 h-1 around eighteen fold, by increasing the culture broth osmolality by addition of sodium chloride. The specific productivity of glucoamylase producing strain A. niger AB1.13, could be elevated using the same procedure. An optimal producing osmolality was shown to exist well over the standard osmolality at about 3.2 osmol kg-1 depending on the strain. Fungal morphology of all cultivations was examined by microscope and characterized by digital image analysis. Particle shape parameters were combined to a dimensionless Morphology number, which enabled a comprehensive characterization of fungal morphology correlating closely with productivity. A novel method for determination of germination time in submerged cultivations by laser diffraction, introduced in this study, revealed a decelerated germination process with increasing osmolality. Conclusions Through the introduction of the versatile Morphology number, this study provides the means for a desirable characterization of fungal morphology and demonstrates its relation to productivity. Furthermore, osmolality as a fairly new parameter in process engineering is introduced and found to affect fungal morphology and productivity. Osmolality might provide an auspicious and reliable approach to increase the productivity in industrial processes. Because of the predictable behavior fungal morphology showed in dependence of osmolality, a customization of morphology for process needs seems feasible.
Collapse
Affiliation(s)
- Thomas Wucherpfennig
- Institute of Biochemical Engineering, Technische Universität Braunschweig, Gaußstraße 17, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
28
|
Roa Engel CA, van Gulik WM, Marang L, van der Wielen LAM, Straathof AJJ. Development of a low pH fermentation strategy for fumaric acid production by Rhizopus oryzae. Enzyme Microb Technol 2010; 48:39-47. [PMID: 22112769 DOI: 10.1016/j.enzmictec.2010.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
Dicarboxylic acids that are produced from renewable resources are becoming attractive building blocks for the polymers industry. In this respect, fumaric acid is very interesting. Its low aqueous solubility facilitates product recovery. To avoid excessive waste salt production during downstream processing, a low pH for fumaric acid fermentation will be beneficial. Studying the influence of pH, working volume and shaking frequency on cell cultivation helped us to identify the best conditions to obtain appropriate pellet morphologies of a wild type strain of Rhizopus oryzae. Using these pellets, the effects of pH and CO(2) addition were studied to determine the best conditions to produce fumaric acid in batch fermentations under nitrogen-limited conditions with glucose as carbon source. Decreasing either the fermentation pH below 5 or increasing the CO(2) content of the inlet air above 10% was unfavourable for the cell-specific productivity, fumaric acid yield, and fumaric acid titer. However, switching off the pH control late in the batch phase did not affect these performance parameters and allowed achieving pH of 3.6. A concentration of 20 gL(-1) of fumaric acid was obtained at pH 3.6 while the average cell mass specific productivity and fumaric acid yield were the same as at pH 5.0. Consequently, relatively modest amounts of inorganic base were required for pH control, while recovery of the acid should be relatively easy at pH 3.6.
Collapse
Affiliation(s)
- Carol A Roa Engel
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Diano A, Peeters J, Dynesen J, Nielsen J. Physiology of Aspergillus niger in oxygen-limited continuous cultures: Influence of aeration, carbon source concentration and dilution rate. Biotechnol Bioeng 2009; 103:956-65. [PMID: 19382249 DOI: 10.1002/bit.22329] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In industrial production of enzymes using the filamentous fungus Aspergillus niger supply of sufficient oxygen is often a limitation, resulting in the formation of by-products such as polyols. In order to identify the mechanisms behind formation of the different by-products we studied the effect of low oxygen availability, at different carbon source concentrations and at different specific growth rates, on the metabolism of A. niger, using continuous cultures. The results show that there is an increase in the production of tricarboxylic acid (TCA) cycle intermediates at low oxygen concentrations. Indeed, at these conditions, a decrease in the mitochondrial respiratory chain activity leads to an accumulation of NADH and to a decreased ATP production which uncouples catabolism and anabolism, influences the intracellular pH and leads to production and excretion of organic acids. Moreover, mannitol is being produced in order to ensure reoxidation of NADH, and this is the main cellular response to balance the ratio NADH/NAD at low oxygen availability. Mannitol production is also coupled to low specific growth rate, which suggests a control of carbon catabolite repression on the mannitol pathway. The roles of two other polyols, erythritol and glycerol, were also investigated. Both compounds are known to accumulate intracellularly, at high osmotic pressure, in order to restore the osmotic balance, but we show that the efficiency of this system is affected by a leakage of polyols through the membrane.
Collapse
Affiliation(s)
- A Diano
- Center for Microbial Biotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | |
Collapse
|
31
|
Vrabl P, Mutschlechner W, Burgstaller W. Characteristics of glucose uptake by glucose- and NH4-limited grown Penicillium ochrochloron at low, medium and high glucose concentration. Fungal Genet Biol 2008; 45:1380-92. [PMID: 18722543 DOI: 10.1016/j.fgb.2008.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/30/2008] [Accepted: 07/26/2008] [Indexed: 11/15/2022]
Abstract
Glucose uptake by Penicillium ochrochloron (formerly Penicillium simplicissimum) was studied from 0.01 to 400 mM glucose using chemostat culture and bioreactor batch culture. The characteristics of glucose uptake varied considerably with the conditions of growth, harvest and uptake assay. Glucose-limited grown mycelium showed one saturable transport system [K(S) below 0.01 mM; v(max) 1.1-1.2 mmol (g dry weight)(-1)h(-1)] plus a first order process (permeability P=1.2x10(-7)cm s(-1)). Ammonium-limited grown mycelium showed only one saturable transport system [K(S) 0.3-0.7 mM; v(max) 0.5-0.8 mmol (g dry weight)(-1)h(-1)]. During exponential growth at high glucose concentration (300-400 mM) a first order process was found with a P value of 5.6-9.3x10(-7)cm s(-1). After ammonium exhaustion a second first order phase showed a lower P value (6.1-9.3x10(-8)cm s(-1)). A similar change in permeability was also found after a re-evaluation of published data for Gibberella fujikuroi, Aspergillus niger, Aspergillus awamori and Saccharomycopsis lipolytica. For the first order processes simple diffusion was ruled out as a mechanism for glucose uptake. Glucose uptake by P. ochrochloron was controlled more strongly by metabolism than by transport and was not rate limiting for overflow metabolism.
Collapse
Affiliation(s)
- Pamela Vrabl
- University of Innsbruck, Institute of Microbiology, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
32
|
Guilherme AA, Pinto GAS, Rodrigues S. Optimization of Trace Metals Concentration on Citric Acid Production by Aspergillus niger NRRL 2001. FOOD BIOPROCESS TECH 2007. [DOI: 10.1007/s11947-007-0009-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Lee WY, Park Y, Ahn JK. Improvement of Ergone Production from Mycelial Culture of Polyporus umbellatus. MYCOBIOLOGY 2007; 35:82-86. [PMID: 24015076 PMCID: PMC3763134 DOI: 10.4489/myco.2007.35.2.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Indexed: 06/02/2023]
Abstract
Ergone,a fungal metabolite derived from ergosterol,was previously isolated and identified from Polyporus umbellatus. Ergone is a major component of P. umbellatus known to have anti-aldosteronic diuretic effect and also displays cytotoxic activities. Most of mushroom's fruit bodies used for test contained less than 10 µg/g of ergone. But P. umbellatus have larger amount of ergone than any other mushrooms. In order to improve the ergone production from the submerged culture of P. umbellatus, several factors including medium composition,culture conditions (temperature and pH) and different combinations of co-cultivation with various mycelia were studied. Among various carbon sources examined,starch proved to be most effective for the production of mycelia. The optimum pH and temperature for a flask culture of P. umbellatus mycelia were found to be 4.5 and 25℃,respectively. Under the optimized culture conditions,both the ergone production (86.9 µg/g) and mycelial growth (3.5 g/l) increased when P. umbellatus was cultured with Armillariella mellea. When the optimized conditions were applied,both mycelium and ergone production were significantly enhanced.
Collapse
Affiliation(s)
- Wi Young Lee
- Division of Biotechnology, Korea Forest Research Institute, Suwon 441-350, Korea
| | | | | |
Collapse
|
34
|
Papagianni M. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 2007; 25:244-63. [PMID: 17337335 DOI: 10.1016/j.biotechadv.2007.01.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 01/11/2007] [Accepted: 01/11/2007] [Indexed: 11/18/2022]
Abstract
Citric acid is regarded as a metabolite of energy metabolism, of which the concentration will rise to appreciable amounts only under conditions of substantive metabolic imbalances. Citric acid fermentation conditions were established during the 1930s and 1940s, when the effects of various medium components were evaluated. The biochemical mechanism by which Aspergillus niger accumulates citric acid has continued to attract interest even though its commercial production by fermentation has been established for decades. Although extensive basic biochemical research has been carried out with A. niger, the understanding of the events relevant for citric acid accumulation is not completely understood. This review is focused on citric acid fermentation by A. niger. Emphasis is given to aspects of fermentation biochemistry, membrane transport in A. niger and modeling of the production process.
Collapse
Affiliation(s)
- Maria Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
35
|
Papagianni M, Papamichael EM. Modeling growth, substrate consumption and product formation of Penicillium nalgiovense grown on meat simulation medium in submerged batch culture. J Ind Microbiol Biotechnol 2006; 34:225-31. [PMID: 17171349 DOI: 10.1007/s10295-006-0190-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Penicillium nalgiovense is the most widely used starter mold for cured and fermented meat products. The development of a biomass film on the surface of these products prevents a large degree undesirable growth of various fungal contaminants and contributes to the ripening process with production of metabolites. This work presents an attempt to model the growth of P. nalgiovense and to relate it to substrate consumption and product release. Because of the extremely complex nature of the meat product fermentation, submerged culture was employed in a bioreactor system that enabled on-line monitoring, using a meat simulation medium, which contained peptones and lactate as carbon, nitrogen and energy sources. The unstructured model presented is based on a partial association of substrate assimilation and product formation with growth. Experimentally derived values for peptones and lactate were compared with model-derived values and their proportions corresponding to growth associated parts, used for biosynthesis, and non-growth associated parts, used for maintenance. The model was applied for the products ammonia, carbon dioxide and protons. Both peptones and lactate were used mainly for biosynthesis (85 and 80% of the total amounts provided, respectively). Assimilation of lactate and ammonia formation from amino acid metabolism resulted in a proton exchange, which was mainly growth associated. The contribution of the growth associated mechanism to the total proton exchange was estimated to be 75% while the contribution of the non-growth associated mechanism increased during the growth phase and reached a maximum of 25%. For carbon dioxide production, the contribution of a maintenance mechanism was evident at 40 h, while production was growth-associated and remained such even at the end of fermentation at 168 h when growth rate was very low. The partially growth associated model showed good agreement with the experimental data and allows accurate determination of the proportions of substrates or products related to biosynthesis and cell maintenance.
Collapse
Affiliation(s)
- M Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, Laboratory of Food Technology, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece.
| | | |
Collapse
|
36
|
M. Al-Sheh A, . YSM. Citric Acid Production from Date Syrup using Immobilized Cells of Aspergillus niger. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/biotech.2006.461.465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Papagianni M. Quantification of the fractal nature of mycelial aggregation in Aspergillus niger submerged cultures. Microb Cell Fact 2006; 5:5. [PMID: 16472407 PMCID: PMC1382250 DOI: 10.1186/1475-2859-5-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Accepted: 02/13/2006] [Indexed: 11/30/2022] Open
Abstract
Background Fractal geometry estimates have proven useful in studying the growth strategies of fungi in response to different environments on soil or on agar substrates, but their use in mycelia grown submerged is still rare. In the present study, the effects of certain important fermentation parameters, such as the spore inoculum level, phosphate and manganese concentrations in the medium, on mycelial morphology of the citric acid producer Aspergillus niger were determined by fractal geometry. The value of employing fractal geometry to describe mycelial structures was examined in comparison with information from other descriptors including classic morphological parameters derived from image analysis. Results Fractal analysis of distinct morphological forms produced by fermentation conditions that influence fungal morphology and acid production, showed that the two fractal dimensions DBS (box surface dimension) and DBM (box mass dimension) are very sensitive indexes, capable of describing morphological differences. The two box-counting methods applied (one applied to the whole mass of the mycelial particles and the other applied to their surface only) enabled evaluation of fractal dimensions for mycelial particles in this analysis in the region of DBS = 1.20–1.70 and DBM = 1.20–2.70. The global structure of sufficiently branched mycelia was described by a single fractal dimension D, which did not exceed 1.30. Such simple structures are true mass fractals (DBS = DBM = D) and they could be young mycelia or dispersed forms of growth produced by very dense spore inocula (108–109 spores/ml) or by addition of manganese in the medium. Mycelial clumps and pellets were effectively discriminated by fractal analysis. Fractal dimension values were plotted together with classic morphological parameters derived from image analysis for comparisons. Their sensitivity to treatment was analogous to the sensitivity of classic morphological parameters suggesting that they could be equally used as morphological descriptors. Conclusion Starting from a spore, the mycelium develops as a mass fractal and, depending on culture conditions, it either turns to a surface fractal or remains a mass fractal. Since fractal dimensions give a measure of the degree of complexity and the mass filling properties of an object, it may be possible that a large number of morphological parameters which contribute to the overall complexity of the particles, could be replaced by these indexes effectively.
Collapse
Affiliation(s)
- Maria Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece.
| |
Collapse
|
38
|
Papagianni M, Mattey M. Morphological development of Aspergillus niger in submerged citric acid fermentation as a function of the spore inoculum level. Application of neural network and cluster analysis for characterization of mycelial morphology. Microb Cell Fact 2006; 5:3. [PMID: 16433930 PMCID: PMC1386700 DOI: 10.1186/1475-2859-5-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 01/25/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although the citric acid fermentation by Aspergillus niger is one of the most important industrial microbial processes and various aspects of the fermentation appear in a very large number of publications since the 1950s, the effect of the spore inoculum level on fungal morphology is a rather neglected area. The aim of the presented investigations was to quantify the effects of changing spore inoculum level on the resulting mycelial morphology and to investigate the physiology that underlines the phenomena. Batch fermentations were carried out in a stirred tank bioreactor, which were inoculated directly with spores in concentrations ranging from 10(4) to 10(9) spores per ml. Morphological features, evaluated by digital image analysis, were classified using an artificial neural network (ANN), which considered four main object types: globular and elongated pellets, clumps and free mycelial trees. The significance of the particular morphological features and their combination was determined by cluster analysis. RESULTS Cell volume fraction analysis for the various inoculum levels tested revealed that by rising the spore inoculum level from 10(4) to 10(9) spores per ml, a clear transition from pelleted to dispersed forms occurs. Glucosamine formation and release by the mycelium appears to be related to spore inoculum level. Maximum concentrations detected in fermentations inoculated with 10(4) and 10(5) spores/ml, where pellets predominated. At much higher inoculum levels (10(8), 10(9) spores/ml), lower dissolved oxygen levels during the early fermentation phase were associated with slower ammonium ions uptakes and significantly lower glucosamine concentrations while the mycelium developed in dispersed morphologies. A big increase in the main and total hyphal lengths and branching frequency was observed in mycelial trees as inoculum levels rise from 10(4) to 10(9) spores/ml, while in aggregated forms particle sizes and their compactness decreased. CONCLUSION The methods used in this study, allowed for the detailed quantification of the transition between the two extreme morphological forms. The impact of spore inoculum level on the detailed characteristics of the particular morphological forms produced was high. Control of mycelial morphology is often regarded as a prerequisite to ensure increased productivities in industrial applications. The research described here demonstrates that adjusting the spore inoculum level controls effectively mycelial morphology.
Collapse
Affiliation(s)
- Maria Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece
| | - Michael Mattey
- Department of Bioscience, University of Strathclyde, Royal College Building, 204 George street, Glasgow G1 1XW, UK
| |
Collapse
|
39
|
Papagianni M, Wayman F, Mattey M. Fate and role of ammonium ions during fermentation of citric acid by Aspergillus niger. Appl Environ Microbiol 2005; 71:7178-86. [PMID: 16269757 PMCID: PMC1287698 DOI: 10.1128/aem.71.11.7178-7186.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stoichiometric modeling of the early stages of the citric acid fermentation process by Aspergillus niger revealed that ammonium ions combine with a carbon-containing metabolite inside the cell, in a ratio 1:1, to form a nitrogen compound which is then excreted by the mycelium. High-performance liquid chromatography analysis identified glucosamine as the product of the relationship between glucose and ammonium during the early stages of the citric acid fermentation process. Slightly acidic internal pHs, extremely low ammonium ion concentrations inside the cell, and glucosamine synthesis come into direct contradiction with the earlier theory of the ammonium pool inside the cell, regarded as responsible for inhibition of the enzyme phosphofructokinase. At later fermentation stages, when the mycelium is involved in a process of fragmentation and regrowth, the addition of ammonium sulfate leads to a series of events: the formation and secretion of glucosamine in elevated amounts, the short inhibition of citrate synthesis, growth enhancement, the utilization of glucosamine, and finally, the enhancement of citric acid production rates. Obviously, the enzymatic processes underlining the phenomena need to be reexamined. As a by-product of the citric acid fermentation, glucosamine is reported for the first time here. Suitable process manipulations of the system described in this work could lead to successful glucosamine recovery at the point of its highest yield before degradation by the fungus occurs.
Collapse
Affiliation(s)
- Maria Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54006, Greece.
| | | | | |
Collapse
|
40
|
Grimm LH, Kelly S, Krull R, Hempel DC. Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 2005; 69:375-84. [PMID: 16317480 DOI: 10.1007/s00253-005-0213-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 10/06/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
Cultivation processes involving filamentous fungi have been optimised for decades to obtain high product yields. Several bulk chemicals like citric acid and penicillin are produced this way. A simple adaptation of cultivation parameters for new production processes is not possible though. Models explaining the correlation between process-dependent growth behaviour and productivity are therefore necessary to prevent long-lasting empiric test series. Yet, filamentous growth consists of a complex microscopic differentiation process from conidia to hyphae resulting in various macroscopically visible appearances. Early approaches to model this morphologic development are recapitulated in this review to explain current trends in this area of research. Tailoring morphology by adjusting process parameters is one side of the coin, but an ideal morphology has not even been found. This article reviews several reasons for this fact starting with nutrient supply in a fungal culture and presents recent advances in the investigation of fungal metabolism. It illustrates the challenge to unfold the relationship between morphology and productivity.
Collapse
Affiliation(s)
- L H Grimm
- Institute of Biochemical Engineering, Technical University of Braunschweig, Gaussstrasse 17, 38106 Braunschweig, Germany
| | | | | | | |
Collapse
|
41
|
Mehyar G, Delaimy K, Ibrahim S. Citric Acid Production byAspergillus nigerUsing Date-Based Medium Fortified with Whey and Additives. FOOD BIOTECHNOL 2005. [DOI: 10.1081/fbt-200063458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
Physiological aspects of free and immobilized Aspergillus niger cultures producing citric acid under various glucose concentrations. Process Biochem 2004. [DOI: 10.1016/j.procbio.2003.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Hwang HJ, Kim SW, Xu CP, Choi JW, Yun JW. Morphological and rheological properties of the three different species of basidiomycetes Phellinus in submerged cultures. J Appl Microbiol 2004; 96:1296-305. [PMID: 15139922 DOI: 10.1111/j.1365-2672.2004.02271.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The objective of this work was to investigate the morphological and rheological properties in submerged culture of the three different basidiomycetes Phellinus (P. baumii, P. gilvus and P. linteus) that produce pharmacologically important exopolysaccharides (EPS). METHODS AND RESULTS In flask cultures, pH proved to be a critical factor affecting mycelial growth, morphological change and EPS production. The macroscopic morphologies observed under different pHs in flask cultures were also comparable: i.e. starfish-like pellets with a lesser extent of free mycelium appeared in P. baumii, whereas smooth pellets with higher amounts of free mycelium were observed in P. gilvus and P. linteus. The pelleted fermentations were further characterized in a 5-l stirred-tank fermenter by image analysis with respect to mean diameter, core area and pellet circularity. Phellinus baumii showed the largest pellet size (5.2 mm in diameter), whereas P. linteus had extremely small and spherical pellets. The culture broth of P. baumii and P. gilvus yielded extremely high apparent viscosities, ranging from 5 to 7 Pa s. CONCLUSIONS Three important species of Phellinus showed significantly different morphological and rheological properties. The morphological variation of the three Phellinus species was closely linked to EPS productivity and the apparent viscosity of the whole broth. SIGNIFICANCE AND IMPACT OF THE STUDY The morphological change in the three species of Phellinus was a good indicator for identifying cell activity for EPS production. Our finding may be beneficial for further optimization of other fungal fermentation processes for large-scale production of EPS.
Collapse
Affiliation(s)
- H J Hwang
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk, Korea
| | | | | | | | | |
Collapse
|
44
|
Papagianni M, Mattey M. Modeling the mechanisms of glucose transport through the cell membrane of Aspergillus niger in submerged citric acid fermentation processes. Biochem Eng J 2004. [DOI: 10.1016/j.bej.2004.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Kurbanoglu EB, Kurbanoglu NI. Ram horn peptone as a source of citric acid production by Aspergillus niger, with a process. J Ind Microbiol Biotechnol 2004; 31:289-94. [PMID: 15248090 DOI: 10.1007/s10295-004-0147-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Accepted: 05/04/2004] [Indexed: 10/26/2022]
Abstract
The present study deals with the production of citric acid from a ram horn peptone (RHP) by Aspergillus niger NRRL 330. A medium from RHP and a control medium (CM) were compared for citric acid production using A. niger in a batch culture. For this purpose, first, RHP was produced. Ram horns were hydrolyzed by treatment with acids (6 N H(2)SO(4), 6 N HCl) and neutralizing solutions. The amounts of protein, nitrogen, ash, some minerals, total sugars, total lipids and amino acids of the RHP were determined. RHP was compared with peptones with a bacto-tryptone from casein and other peptones. The results from RHP were similar to those of standard peptones. The optimal concentration of RHP for the production of citric acid was found to be 4% (w/w). A medium prepared from 4% RHP was termed ram horn peptone medium (RHPM). In comparison with CM, the content of citric acid in RHPM broth (84 g/l) over 6 days was 35% higher than that in CM broth (62 g/l). These results show that citric acid can be produced efficiently by A. niger from ram horn.
Collapse
Affiliation(s)
- Esabi B Kurbanoglu
- Department of Biology, Science and Letters Faculty, Atatürk University, 25240 Erzurum, Turkey.
| | | |
Collapse
|
46
|
Kurbanoglu EB. Enhancement of citric acid production with ram horn hydrolysate by Aspergillus niger. BIORESOURCE TECHNOLOGY 2004; 92:97-101. [PMID: 14643992 DOI: 10.1016/j.biortech.2003.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The potential use of ram horn hydrolysate (RHH) as a supplement for improvement of citric acid production by Aspergillus niger NRRL 330 was studied. For this purpose, first RHH was produced. Ram horns were hydrolyzed by treating with acid (6 N-H2SO4) and the RHH was obtained. With the addition of RHH to the fermentation medium with a final concentration of 4% (optimal concentration), citric acid value reached a maximum value (94 g/l), which is 52% higher than that of the control experiment. The addition of 4% (v/v) RHH enhanced citric acid accumulation, reduced residual sugar concentration and stimulated mycelial growth. Adding 4% RHH had no adverse effects on A. niger. As a result, RHH was found to be suitable as a valuable supplement for citric acid production in the submerged fermentation.
Collapse
|
47
|
Abstract
The use of fungi for the production of commercial products is ancient, but it has increased rapidly over the last 50 years. Fungi are morphologically complex organisms, differing in structure at different times in their life cycle, differing in form between surface and submerged growth, differing also with the nature of the growth medium and physical environment. Many genes and physiological mechanisms are involved in the process of morphogenesis. In submerged culture, a large number of factors contribute to the development of any particular morphological form. Factors affecting morphology include the type and concentration of carbon substrate, levels of nitrogen and phosphate, trace minerals, dissolved oxygen and carbon dioxide, pH and temperature. Physical factors affecting morphology include fermenter geometry, agitation systems, rheology and the culture modes, whether batch, fed-batch or continuous. In many cases, particular morphological forms achieve maximum performance. It is a very difficult task to deduce unequivocal general relationships between process variables, product formation and fungal morphology since too many parameters influence these interrelationships and the role of many of them is still not fully understood. The use of automatic image analysis systems during the last decade proved an invaluable tool for characterizing complex mycelial morphologies, physiological states and relationships between morphology and productivity. Quantified morphological information can be used to build morphologically structured models of predictive value. The mathematical modeling of the growth and process performance has led to improved design and operation of mycelial fermentations and has improved the ability of scientists to translate laboratory observations into commercial practice. However, it is still necessary to develop improved and new experimental techniques for understanding phenomena such as the mechanisms of mycelial fragmentation and non-destructive measurement of concentration profiles in mycelial aggregates. This would allow the establishment of a process control on a physiological basis. This review is focused on the factors influencing the fungal morphology and metabolite production in submerged culture.
Collapse
Affiliation(s)
- Maria Papagianni
- Department of Hygiene and Technology of Food of Animal Origin, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54006 Thessaloniki, Greece.
| |
Collapse
|
48
|
|
49
|
Tang YJ, Zhong JJ. Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00066-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Gallmetzer M, Burgstaller W. Efflux of organic acids in Penicillium simplicissimum is an energy-spilling process, adjusting the catabolic carbon flow to the nutrient supply and the activity of catabolic pathways. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1143-1149. [PMID: 11932458 DOI: 10.1099/00221287-148-4-1143] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Continuous cultivation was used to study the effect of glucose, ammonium, nitrate or phosphate limitation on the excretion of tricarboxylic acid (TCA) cycle intermediates by Penicillium simplicissimum. Additionally, the effect of benzoic acid, salicylhydroxamic acid (SHAM) and 2,4-dinitrophenol on TCA cycle intermediates was studied. The physiological state of the fungus was characterized by its glucose and O(2) consumption, its CO(2) production, its intra- and extracellular concentrations of TCA cycle intermediates, as well as by its biomass yield, its maintenance coefficient and its respiratory quotient. The excretion of TCA cycle intermediates was observed during ammonium-, nitrate- and phosphate-limited growth. The highest productivity was found with phosphate-limited growth. The respiratory quotient was 1.3 under ammonium limitation and 0.7 under phosphate limitation. Citrate was always the main excreted intermediate. This justifies calling this excretion an energy-spilling process, because citrate excretion avoids the synthesis of too much NADH. The addition of benzoic acid further increased the excretion of TCA cycle intermediates by ammonium-limited hyphae. A SHAM-sensitive respiration was constitutively present during ammonium-limited growth of the fungus. The sum of the excreted organic acids was negatively correlated with the biomass yield (Y(GlcX)).
Collapse
Affiliation(s)
- Martin Gallmetzer
- Institute of Microbiology, Leopold-Franzens-University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria1
| | - Wolfgang Burgstaller
- Institute of Microbiology, Leopold-Franzens-University of Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria1
| |
Collapse
|