1
|
Frejková M, Běhalová K, Rubanová D, De Sanctis JB, Kubala L, Chytil P, Šimonová A, Křížek T, Randárová E, Gunár K, Etrych T. Polymer nanotherapeutics with the controlled release of acetylsalicylic acid and its derivatives inhibiting cyclooxygenase isoforms and reducing the production of pro-inflammatory mediators. Int J Pharm 2024; 665:124742. [PMID: 39317246 DOI: 10.1016/j.ijpharm.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
The effective treatment of inflammatory diseases, particularly their chronic forms, is a key task of modern medicine. Herein, we report the synthesis and evaluation of biocompatible polymer conjugates based on N-2-(hydroxypropyl)methacrylamide copolymers enabling the controlled release of acetylsalicylic acid (ASA)-based anti-inflammatory drugs under specific stimuli. All polymer nanotherapeutics were proposed as water-soluble drug delivery systems with a hydrodynamic size below 10 nm ensuring suitability for the parenteral application and preventing opsonization by the reticuloendothelial system. The nanotherapeutics bearing an ester-bound ASA exhibited long-term release of the ASA/salicylic acid mixture, while the nanotherapeutics carrying salicylic acid hydrazide (SAH) ensured the selective release of SAH in the acidic inflammatory environment thanks to the pH-sensitive hydrazone bond between the polymer carrier and SAH. The ASA- and SAH-containing nanotherapeutics inhibited both cyclooxygenase isoforms and/or the production of pro-inflammatory mediators. Thanks to their favorable design, they can preferentially accumulate in the inflamed tissue, resulting in reduced side effects and lower dosage, and thus more effective and safer treatment.
Collapse
Affiliation(s)
- Markéta Frejková
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Kateřina Běhalová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Daniela Rubanová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; International Clinical Research Center - Center of Biomolecular and Cellular Engineering, St. Anne's University Hospital, Pekařská 53, 602 00, Brno, Czech Republic
| | - Petr Chytil
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Alice Šimonová
- Department of Analytical Chemistry, Faculty of Science of Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science of Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Kristýna Gunár
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského náměstí 2, 162 00 Prague 6, Czech Republic.
| |
Collapse
|
2
|
Whitaker-Brothers K, Hasan MR, Tamima U, Uhrich KE. Dual drug release profiles of salicylate-based polymers and encapsulated chlorhexidine as potential periodontitis treatments. J BIOACT COMPAT POL 2024; 39:551-559. [DOI: 10.1177/08839115241279855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Salicylate-based poly(anhydride-esters; SAPAEs) have demonstrated wound healing properties due to salicylic acid (SA) release during polymer degradation. Additionally, the polymers are deformable and self-adhesive due to their low Young’s modulus, lower glass transition temperature ( Tg), and inherent tackiness at body temperature. These properties make them particularly well-suited for therapeutic use in the bacteria-laden environment of the oral cavity. To enhance their therapeutic capabilities, the antiseptic chlorhexidine dihydrochloride was physically incorporated into SAPAEs for dual release of antiseptic and anti-inflammatory upon degradation. This study analyzes the thermomechanical properties of two SAPAE compositions (adipate homopolymer and 50:50 adipate:sebacate copolymer) and the release of chlorhexidine (incorporated at 10% (w/w)) from these polymers. Polymer adhesivity was monitored as a function of chlorhexidine incorporation and in vitro degradation time. Throughout in vitro degradation, the polymer systems had a low Young’s modulus and a Tg at or near body temperature. Incorporation of the antiseptic further decreased Young’s modulus and increased both the Tg and adhesivity. The release profiles were also evaluated and determined to be similar for the homopolymer and copolymer, although the homopolymer degradation occurred over a longer time period. Overall, the SAPAE systems have favorable properties for periodontal disease treatments by virtue of their controlled degradability, deformability, adhesivity, and release profiles with encapsulated antiseptic.
Collapse
Affiliation(s)
| | - M Ragib Hasan
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Umme Tamima
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Kathryn E Uhrich
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
3
|
Zhang W, Hu W, Zhu Q, Niu M, An N, Feng Y, Kawamura K, Fu P. Hydroxy fatty acids in the surface Earth system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167358. [PMID: 37793460 DOI: 10.1016/j.scitotenv.2023.167358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023]
Abstract
Lipids are ubiquitous and highly abundant in a wide range of organisms and have been found in various types of environmental media. These molecules play a crucial role as organic tracers by providing a chemical perspective on viewing the material world, as well as offering a wealth of information on metabolic activities. Among the diverse lipid compounds, hydroxy fatty acids (HFAs) with one to multiple hydroxyl groups attached to the carbon chain stand out as important biomarkers for different sources of organic matter. HFAs are widespread in nature and are involved in biotransformation and oxidation processes in living organisms. The unique chemical and physical properties attributed to the hydroxyl group make HFAs ideal biomarkers in biomedicine and environmental toxicology, as well as organic geochemistry. The molecular distribution patterns of HFAs can be unique and diagnostic for a given class of organisms, including animals, plants, and microorganisms. Thus, HFAs can act as a valuable proxy for understanding the ecological relationships between different organisms and their environment. Furthermore, HFAs have numerous industrial applications due to their higher reactivity, viscosity, and solvent miscibility. This review paper integrates the latest research on the sources and chemical analyses of HFAs, as well as their applications in industrial/medicinal production and as biomarkers in environmental studies. This review article also provides insights into the biogeochemical cycles of HFAs in the surface Earth system, highlighting the importance of these compounds in understanding the complex interactions between living organisms and the environment.
Collapse
Affiliation(s)
- Wenxin Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin 300072, China.
| | - Quanfei Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Mutong Niu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Na An
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Yuqi Feng
- Department of Chemistry, Wuhan University, Wuhan 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
4
|
Eriksson V, Beckerman L, Aerts E, Andersson Trojer M, Evenäs L. Polyanhydride Microcapsules Exhibiting a Sharp pH Transition at Physiological Conditions for Instantaneous Triggered Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18003-18010. [PMID: 37976413 PMCID: PMC10720446 DOI: 10.1021/acs.langmuir.3c02708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Stimulus-responsive microcapsules pose an opportunity to achieve controlled release of the entire load instantaneously upon exposure to an external stimulus. Core-shell microcapsules based on the polyanhydride poly(bis(2-carboxyphenyl)adipate) as a shell were formulated in this work to encapsulate the model active substance pyrene and enable a pH-controlled triggered release. A remarkably narrow triggering pH interval was found where a change in pH from 6.4 to 6.9 allowed for release of the entire core content within seconds. The degradation kinetics of the shell were measured by both spectrophotometric detection of degradation products and mass changes by quartz crystal microbalance with dissipation monitoring and were found to correlate excellently with diffusion coefficients fitted to release measurements at varying pH values. The microcapsules presented in this work allow for an almost instantaneous triggered release even under mild conditions, thanks to the designed core-shell morphology.
Collapse
Affiliation(s)
- Viktor Eriksson
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Leyla Beckerman
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Erik Aerts
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| | - Markus Andersson Trojer
- Department
of Materials and Production, RISE Research
Institutes of Sweden, 431
53 Mölndal, Sweden
| | - Lars Evenäs
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
5
|
King O, Pérez-Madrigal MM, Murphy ER, Hmayed AAR, Dove AP, Weems AC. 4D Printable Salicylic Acid Photopolymers for Sustained Drug Releasing, Shape Memory, Soft Tissue Scaffolds. Biomacromolecules 2023; 24:4680-4694. [PMID: 37747816 DOI: 10.1021/acs.biomac.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots. Here we demonstrate this concept using salicylic acids with varied prodrug structures for control of physical and chemical properties. The role of different salicylic acid derivatives (salicylic acid, bromosalicylic allyl ester, iodosalicylic allyl ester) and linker species (allyl salicylate, allyl 2-(allyloxy)benzoate, allyl 2-(((allyloxy)carbonyl)oxy)benzoate) were investigated using thiol-ene cross-linking in digital light processing (DLP) 3D printing to produce porous prodrug tissue scaffolds containing more than 50% salicylic acid by mass. Salicylic acid photopolymer resins were all found to be highly reactive (solidification within 5 s of irradiation at λ = 405 nm), while the cross-linked solids display tunable thermomechanical behaviors with low glass transition temperatures (Tgs) and elastomeric behaviors, with the carbonate species displaying an elastic modulus matching that of adipose tissue (approximately 65 kPa). Drug release profiles were found to be zero order, sustained release based upon hydrolytic degradation of multilayered scaffolds incorporating fluorescent modeling compounds, with release rates tuned through selection of the linker species. Cytocompatibility in 2D and 3D was further demonstrated for all species compared to polycarbonate controls, as well as salicylic acid-containing composites (physical incorporation), over a 2-week period using murine fibroblasts. The use of drugs as the matrix material for solid prodrug tissue scaffolds opens the door to novel therapeutic strategies, longer sustained release profiles, and even reduced complications for advanced medicine.
Collapse
Affiliation(s)
- Olivia King
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Maria M Pérez-Madrigal
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Erin R Murphy
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, Ohio 45701, United States
| | | | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Mechanical Engineering, Russ College of Engineering, Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
6
|
Kamakura R, Raza GS, Sodum N, Lehto V, Kovalainen M, Herzig K. Colonic Delivery of Nutrients for Sustained and Prolonged Release of Gut Peptides: A Novel Strategy for Appetite Management. Mol Nutr Food Res 2022; 66:e2200192. [PMID: 35938221 PMCID: PMC9787473 DOI: 10.1002/mnfr.202200192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/17/2022] [Indexed: 12/30/2022]
Abstract
Obesity is one of the major global threats to human health and risk factors for cardiometabolic diseases and certain cancers. Glucagon-like peptide-1 (GLP-1) plays a major role in appetite and glucose homeostasis and recently the USFDA approved GLP-1 agonists for the treatment of obesity and type 2 diabetes. GLP-1 is secreted from enteroendocrine L-cells in the distal part of the gastrointestinal (GI) tract in response to nutrient ingestion. Endogenously released GLP-1 has a very short half-life of <2 min and most of the nutrients are absorbed before reaching the distal GI tract and colon, which hinders the use of nutritional compounds for appetite regulation. The review article focuses on nutrients that endogenously stimulate GLP-1 and peptide YY (PYY) secretion via their receptors in order to decrease appetite as preventive action. In addition, various delivery technologies such as pH-sensitive, mucoadhesive, time-dependent, and enzyme-sensitive systems for colonic targeting of nutrients delivery are described. Sustained colonic delivery of nutritional compounds could be one of the most promising approaches to prevent obesity and associated metabolic diseases by, e.g., sustained GLP-1 release.
Collapse
Affiliation(s)
- Remi Kamakura
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Ghulam Shere Raza
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Nalini Sodum
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsFaculty of Science and ForestryUniversity of Eastern FinlandKuopioFI‐70211Finland
| | - Miia Kovalainen
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
| | - Karl‐Heinz Herzig
- Research Unit of BiomedicineFaculty of Medicine, and Medical Research CenterUniversity of Oulu and Oulu University HospitalOulu90220Finland
- Department of Pediatric Gastroenterology and Metabolic DiseasesPediatric InstitutePoznan University of Medical SciencesPoznań60–572Poland
| |
Collapse
|
7
|
Gulrajani S, Snyder S, Hackenberg JD, Uhrich K. Effect of pH on salicylic acid-based poly(anhydride-ester): Implications for polymer degradation and controlled salicylic acid release. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221121844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Salicylic acid (SA)-based poly(anhydride-esters) (SAPAEs) hydrolytically degrade to release SA in a controlled manner over extended time periods. While these polymers have been well investigated under in vivo conditions, this study is the first detailed, systematic assessment of in vitro polymer degradation over a range of pH values. To investigate the effect of pH conditions on SAPAE degradation, in vitro degradation studies were conducted on SAPAE disks over a wide pH range (2.0, 4.0, 6.0, 7.4, 8.0, 9.0, and 10.0) for 30 days. Several parameters were evaluated, including SA concentrations in the degradation media, polymer mass loss, water uptake in the polymer matrices, and SA solubility at different pH values to substantiate SA release results and characterize the in vitro polymer degradation process. Complete SA release was achieved at more basic conditions (pH 9.0 and 10.0) over 9 days, whereas less than 41% SA was released over the same time period at neutral pH conditions (pH 8.0 and 7.4). By comparison, SA release was minimal in acidic pH conditions. Overall, we present quantitative data of polymer degradation as defined by SA in vitro release, which increased with increasing pH values. More basic conditions promoted polymer degradation, whereas acidic conditions minimized polymer degradation.
Collapse
Affiliation(s)
- Sammy Gulrajani
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Sabrina Snyder
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Jason D. Hackenberg
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Kathryn Uhrich
- Department of Chemistry, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
8
|
Arza CR, Li X, İlk S, Liu Y, Demircan D, Zhang B. Biocompatible non-leachable antimicrobial polymers with a nonionic hyperbranched backbone and phenolic terminal units. J Mater Chem B 2022; 10:8064-8074. [PMID: 36111601 DOI: 10.1039/d2tb01233b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work aimed to develop biocompatible non-leachable antimicrobial polymers without ionic structures. A series of nonionic hyperbranched polymers (HBPs) with an isatin-based backbone and phenolic terminal units were synthesized and characterized. The molecular structures and thermal properties of the obtained HBPs were characterized by SEC, NMR, FTIR, TGA and DSC analyses. Disk diffusion assay revealed significant antibacterial activity of the obtained phenolic HBPs against nine different pathogenic bacteria. The presence of a methoxy or long alkyl group close to the phenolic unit enhanced the antibacterial effect against certain Gram positive and negative bacteria. The obtained nonionic HBPs were blended in polyester poly(hexamethylene terephthalate) films, which showed no noticeable leakage after being immersed in water for 5 days. Finally, these HBPs showed no cytotoxicity effect to MG-63 osteoblast-like human cells according to MTT analysis, and negligible hemolytic effect.
Collapse
Affiliation(s)
- Carlos R Arza
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Xiaoya Li
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Sedef İlk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Immunology, TR-51240 Niğde, Turkey
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deniz Demircan
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | - Baozhong Zhang
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| |
Collapse
|
9
|
Seidi F, Zhong Y, Xiao H, Jin Y, Crespy D. Degradable polyprodrugs: design and therapeutic efficiency. Chem Soc Rev 2022; 51:6652-6703. [PMID: 35796314 DOI: 10.1039/d2cs00099g] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prodrugs are developed to increase the therapeutic properties of drugs and reduce their side effects. Polyprodrugs emerged as highly efficient prodrugs produced by the polymerization of one or several drug monomers. Polyprodrugs can be gradually degraded to release therapeutic agents. The complete degradation of polyprodrugs is an important factor to guarantee the successful disposal of the drug delivery system from the body. The degradation of polyprodrugs and release rate of the drugs can be controlled by the type of covalent bonds linking the monomer drug units in the polymer structure. Therefore, various types of polyprodrugs have been developed based on polyesters, polyanhydrides, polycarbonates, polyurethanes, polyamides, polyketals, polymetallodrugs, polyphosphazenes, and polyimines. Furthermore, the presence of stimuli-responsive groups, such as redox-responsive linkages (disulfide, boronate ester, metal-complex, and oxalate), pH-responsive linkages (ester, imine, hydrazone, acetal, orthoester, P-O and P-N), light-responsive (metal-complex, o-nitrophenyl groups) and enzyme-responsive linkages (ester, peptides) allow for a selective degradation of the polymer backbone in targeted tumors. We envision that new strategies providing a more efficient synergistic therapy will be developed by combining polyprodrugs with gene delivery segments and targeting moieties.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. .,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Yajie Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
10
|
Medical Adhesives and Their Role in Laparoscopic Surgery—A Review of Literature. MATERIALS 2022; 15:ma15155215. [PMID: 35955150 PMCID: PMC9369661 DOI: 10.3390/ma15155215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/15/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023]
Abstract
Laparoscopic surgery is undergoing rapid development. Replacing the traditional method of joining cut tissues with sutures or staples could greatly simplify and speed up laparoscopic procedures. This alternative could undoubtedly be adhesives. For decades, scientists have been working on a material to bond tissues together to create the best possible conditions for tissue regeneration. The results of research on tissue adhesives achieved over the past years show comparable treatment effects to traditional methods. Tissue adhesives are a good alternative to surgical sutures in wound closure. This article is a review of the most important groups of tissue adhesives including their properties and possible applications. Recent reports on the development of biological adhesives are also discussed.
Collapse
|
11
|
Brannon ER, Kelley WJ, Newstead MW, Banka AL, Uhrich KE, O’Connor CE, Standiford TJ, Eniola-Adefeso O. Polysalicylic Acid Polymer Microparticle Decoys Therapeutically Treat Acute Respiratory Distress Syndrome. Adv Healthc Mater 2022; 11:e2101534. [PMID: 34881524 PMCID: PMC8986552 DOI: 10.1002/adhm.202101534] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/03/2021] [Indexed: 01/13/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain problematic due to high mortality rates and lack of effective treatments. Neutrophilic injury contributes to mortality in ALI/ARDS. Here, technology for rapid ARDS intervention is developed and evaluated, where intravenous salicylic acid-based polymer microparticles, i.e., Poly-Aspirin (Poly-A), interfere with neutrophils in blood, reducing lung neutrophil infiltration and injury in vivo in mouse models of ALI/ARDS. Importantly, Poly-A particles reduce multiple inflammatory cytokines in the airway and bacterial load in the bloodstream in a live bacteria lung infection model of ARDS, drastically improving survival. It is observed that phagocytosis of the Poly-A microparticles, with salicylic acid in the polymer backbone, alters the neutrophil surface expression of adhesion molecules, potentially contributing to their added therapeutic benefits. Given the proven safety profile of the microparticle degradation products-salicylic acid and adipic acid-it is anticipated that the Poly-A particles represent a therapeutic strategy in ARDS with a rare opportunity for rapid clinical translation.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - William J. Kelley
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | | | - Alison L. Banka
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
| | - Kathryn E. Uhrich
- Department of Chemistry, University of California Riverside, Riverside, CA
| | | | | | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Li X, Wang X, Subramaniyan S, Liu Y, Rao J, Zhang B. Hyperbranched Polyesters Based on Indole- and Lignin-Derived Monomeric Aromatic Aldehydes as Effective Nonionic Antimicrobial Coatings with Excellent Biocompatibility. Biomacromolecules 2022; 23:150-162. [PMID: 34932316 PMCID: PMC8753607 DOI: 10.1021/acs.biomac.1c01186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Indexed: 11/28/2022]
Abstract
This research aims to investigate nonionic hyperbranched polyesters (HBPs) derived from indole and lignin resources as new nontoxic antimicrobial coatings. Three nonionic HBPs with zero to two methoxy ether substituents on each benzene ring in the polymer backbones were synthesized by melt-polycondensation of three corresponding AB2 monomers. The molecular structures and thermal properties of the obtained HBPs were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry analyses. These HBPs were conveniently spin-coated on a silicon substrate, which exhibited significant antibacterial effect against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). The presence of methoxy substituents enhanced the antimicrobial effect, and the resulting polymers showed negligible leakage in water. Finally, the polymers with the methoxy functionality exhibited excellent biocompatibility according to the results of hemolysis and MTT assay, which may facilitate their biomedical applications.
Collapse
Affiliation(s)
- Xiaoya Li
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Xiao Wang
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Centre for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic
of China
| | - Sathiyaraj Subramaniyan
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Yang Liu
- Faculty
of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, 221 84 Lund, Sweden
| | - Jingyi Rao
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Centre for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic
of China
| | - Baozhong Zhang
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
13
|
Brannon ER, Guevara MV, Pacifici NJ, Lee JK, Lewis JS, Eniola-Adefeso O. Polymeric particle-based therapies for acute inflammatory diseases. NATURE REVIEWS. MATERIALS 2022; 7:796-813. [PMID: 35874960 PMCID: PMC9295115 DOI: 10.1038/s41578-022-00458-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 05/02/2023]
Abstract
Acute inflammation is essential for initiating and coordinating the body's response to injuries and infections. However, in acute inflammatory diseases, inflammation is not resolved but propagates further, which can ultimately lead to tissue damage such as in sepsis, acute respiratory distress syndrome and deep vein thrombosis. Currently, clinical protocols are limited to systemic steroidal treatments, fluids and antibiotics that focus on eradicating inflammation rather than modulating it. Strategies based on stem cell therapeutics and selective blocking of inflammatory molecules, despite showing great promise, still lack the scalability and specificity required to treat acute inflammation. By contrast, polymeric particle systems benefit from uniform manufacturing at large scales while preserving biocompatibility and versatility, thus providing an ideal platform for immune modulation. Here, we outline design aspects of polymeric particles including material, size, shape, deformability and surface modifications, providing a strategy for optimizing the targeting of acute inflammation.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | | | - Noah J. Pacifici
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | - Jonathan K. Lee
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI USA
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California, Davis, CA USA
| | | |
Collapse
|
14
|
Li X, İlk S, Liu Y, Raina DB, Demircan D, Zhang B. Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups. Polym Chem 2022. [DOI: 10.1039/d1py01504d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of new nonionic antimicrobial polymers with a biodegradable polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification.
Collapse
Affiliation(s)
- Xiaoya Li
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Sedef İlk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Immunology, TR-51240, Niğde, Turkey
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, SE-10691 Stockholm, Sweden
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deniz Demircan
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
15
|
Swami Vetha BS, Adam AG, Aileru A. Redox Responsive Copolyoxalate Smart Polymers for Inflammation and Other Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22115607. [PMID: 34070585 PMCID: PMC8198274 DOI: 10.3390/ijms22115607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Polyoxalate (POx) and copolyoxalate (CPOx) smart polymers are topics of interest the field of inflammation. This is due to their drug delivery ability and their potential to target reactive oxygen species (ROS) and to accommodate small molecules such as curcumin, vanilline, and p-Hydroxybenzyl alcohol. Their biocompatibility, ultra-size tunable characteristics and bioimaging features are remarkable. In this review we discuss the genesis and concept of oxylate smart polymer-based particles and a few innovative systemic delivery methods that is designed to counteract the inflammation and other aging-associated diseases (AADs). First, we introduce the ROS and its role in human physiology. Second, we discuss the polymers and methods of incorporating small molecule in oxalate backbone and its drug delivery application. Finally, we revealed some novel proof of concepts which were proven effective in disease models and discussed the challenges of oxylate polymers.
Collapse
Affiliation(s)
- Berwin Singh Swami Vetha
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
| | - Angela Guma Adam
- Physio/Biochem/New Product Development Division, Cocoa Research Center Institute of Ghana, P.O. Box 8, New Tafo-Akim 0233, Eastern Region, Ghana;
| | - Azeez Aileru
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA;
- Correspondence: ; Tel.: +252-737-7125
| |
Collapse
|
16
|
Wang H, Liu X, Christiansen DE, Fattahpour S, Wang K, Song H, Mehraeen S, Cheng G. Thermoplastic polyurethane with controllable degradation and critical anti-fouling properties. Biomater Sci 2021; 9:1381-1396. [PMID: 33367341 DOI: 10.1039/d0bm01967d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioresorbable polymers, including polyesters and polypeptides, are being widely used in the medical field. However, these materials still suffer from some long-standing challenges, such as material-induced blood coagulation, foreign body response, non-adjustable degradation rate, and absence of elastic properties. In this work, we explored a new approach to address these challenges by incorporating critical anti-fouling, improved mechanical and controllable degradation properties into the existing bioresorbable polymers. We synthesized a set of zwitterionic thermoplastic polyurethanes, which consist of degradable polycaprolactone diols as soft segments and faster hydrolyzable carboxybetaine (CB) diols as chain extenders. Differential scanning calorimetry and temperature sweep rheology revealed thermal transition performance and thermoplastic behavior of the polymers. The calorimetric study observed that CB-based chain extender played a critical role in the crystallization process by affecting the structure and crystallization temperature. Cell attachment study demonstrated that the degradable zwitterionic polyurethane surfaces highly resist cell attachment even after being submerged in 100% fetal bovine serum for two weeks. The gold standard PEG-based degradable polyurethane showed the initial resistance to the cell attachment for one day and then failed after three days. This work clearly shows that the adaption of existing materials with slightly better anti-fouling properties is unlikely to solve these long-lasting challenges. Our design approach and the material platform with critical anti-fouling properties and other desired tunable properties show the potential to address these complications associated with existing bioresorbable polymers. This method can be adapted to design customized bioresorbable polymers for a wide range of applications, including implantable biomedical devices and drug delivery.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Xuan Liu
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | | - Kun Wang
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Haiqing Song
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Shafigh Mehraeen
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
17
|
Li X, İlk S, Linares-Pastén JA, Liu Y, Raina DB, Demircan D, Zhang B. Synthesis, Enzymatic Degradation, and Polymer-Miscibility Evaluation of Nonionic Antimicrobial Hyperbranched Polyesters with Indole or Isatin Functionalities. Biomacromolecules 2021; 22:2256-2271. [PMID: 33900740 PMCID: PMC8382248 DOI: 10.1021/acs.biomac.1c00343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Most macromolecular
antimicrobials are ionic and thus lack miscibility/compatibility
with nonionic substrate materials. In this context, nonionic hyperbranched
polyesters (HBPs) with indole or isatin functionality were rationally
designed, synthesized, and characterized. Antimicrobial disk diffusion
assay indicated that these HBPs showed significant antibacterial activity
against 8 human pathogenic bacteria compared to small molecules with
indole or isatin groups. According to DSC measurements, up to 20%
indole-based HBP is miscible with biodegradable polyesters (polyhydroxybutyrate
or polycaprolactone), which can be attributed to the favorable hydrogen
bonding between the N–H moiety of indole and the C=O
of polyesters. HBPs with isatin or methylindole were completely immiscible
with the same matrices. None of the HBPs leaked out from plastic matrix
after being immersed in water for 5 days. The incorporation of indole
into HBPs as well as small molecules facilitated their enzymatic degradation
with PETase from Ideonella sakaiensis, while isatin
had a complex impact. Molecular docking simulations of monomeric molecules
with PETase revealed different orientations of the molecules at the
active site due to the presence of indole or isatin groups, which
could be related to the observed different enzymatic degradation behavior.
Finally, biocompatibility analysis with a mammalian cell line showed
the negligible cytotoxic effect of the fabricated HBPs.
Collapse
Affiliation(s)
- Xiaoya Li
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sedef İlk
- Faculty of Medicine, Department of Immunology, Niğde Ömer Halisdemir University, 51240 Niǧde, Turkey.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Javier A Linares-Pastén
- Division of Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, 22100 Lund, Sweden
| | - Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, 22100 Lund, Sweden
| | - Deniz Demircan
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
18
|
Heyder RS, Sunbul FS, Almuqbil RM, Fines CB, da Rocha SRP. Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy. J Control Release 2021; 330:1178-1190. [PMID: 33212118 PMCID: PMC10939058 DOI: 10.1016/j.jconrel.2020.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Gemcitabine (GMT) is a nucleoside analog used in the treatment of a variety of solid tumors. GMT was chemically modified with a hydrolysable linker, and subsequently incorporated into a poly(anhydride-ester) backbone via melt-polymerization, with the active antimetabolite GMT, thus, becoming the repeat unit that makes up this new material, a biodegradable polymer. Characterization of the structure of polymeric GMT (polyGMT) revealed the incorporation of an average 26 molecules of GMT per polymer chain, which corresponds to a drug loading of 58%w/w. The glass transition temperature of the formed polyGMT was determined to be 123 °C. PolyGMT was engineered into nanoparticles (NPs) using a dialysis-based method, with a resulting geometric diameter of 206 ± 38 nm. The particles are easily dispersible and stable in aqueous-based media, with a hydrodynamic diameter of 229 ± 28 nm. The prepared hydrolysable polyGMT NPs demonstrate ultra-long release profile due to the hydrophobic nature of the linker, and as per characteristic erosion behavior of polymers with anhydride-ester bonds. Accelerated in vitro release studies demonstrate the recovery of free GMT upon hydrolysis, with biological activity as assessed by cytotoxicity assays performed in adenocarcinoma human alveolar basal epithelial (A549) and highly metastatic murine osteosarcoma (K7M2) cells lines. The characteristics of polyGMT, including its thermal properties and built in hydrolysable structure, are thus conducive for use in the preparation of drug delivery systems. Engineered structures prepared with polyGMT can maintain their morphology at ambient and physiologically relevant conditions, and free GMT is recovered as the anhydride and ester bonds are hydrolyzed. This work is innovative as for the first time we demonstrate the ability to polymerize GMT in a hydrolysable polymer structure, and engineer NPs of this polymeric chemotherapy. The synthetic strategy allows for tuning of the polymer hydrophobicity and thus potentialize its behavior, including degradation profile, by varying the linker chemistry. Such controlled release hydrolysable polymers with very high drug loading and controlled erosion profiles are relevant as they may offer new opportunities in drug delivery applications for the treatment of malignant neoplasms.
Collapse
Affiliation(s)
- Rodrigo S Heyder
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Fatemah S Sunbul
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Rashed M Almuqbil
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Cory B Fines
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Sandro R P da Rocha
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23284, United States.
| |
Collapse
|
19
|
Han S, Yao S, Meng W, Yang J. Rapid, controlled ring-opening polymerization of salicylic acid o-carboxyanhydride for poly(salicylate) synthesis. Polym Chem 2021. [DOI: 10.1039/d1py01309b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fast synthesis pathway of poly(salicylate) in mild conditions was explored, in which the combination of Lewis base and alcohol enables salicylic acid o-carboxyanhydride polymerize in seconds to afford well-defined hompolymers with high Tg.
Collapse
Affiliation(s)
- Song Han
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shiman Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
20
|
Impallomeni G, Mineo PG, Vento F, Ballistreri A. Novel pranoprofen‐poly(ε‐caprolactone) conjugates: microwave‐assisted synthesis and structural characterization. POLYM INT 2020. [DOI: 10.1002/pi.6141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Giuseppe Impallomeni
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche Catania Italy
| | - Placido Giuseppe Mineo
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche Catania Italy
- Dipartimento di Scienze Chimiche, Università di Catania Catania Italy
| | - Fabiana Vento
- Dipartimento di Scienze Chimiche, Università di Catania Catania Italy
| | | |
Collapse
|
21
|
Bernhard Y, Sedlacek O, Van Guyse JFR, Bender J, Zhong Z, De Geest BG, Hoogenboom R. Poly(2-ethyl-2-oxazoline) Conjugates with Salicylic Acid via Degradable Modular Ester Linkages. Biomacromolecules 2020; 21:3207-3215. [PMID: 32639725 DOI: 10.1021/acs.biomac.0c00659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conjugation of drugs to polymers is a widely used approach to gain control over the release of therapeutics. In this contribution, salicylic acid, a multipurpose model drug, is conjugated to the biocompatible poly(2-ethyl-2-oxazoline) (PEtOx). The drug is attached to the side chains of a polymer carrier through a hydrolytically cleavable ester linker, via a sequential postpolymerization modification. The chemical modulation of this ester, i.e., by primary or secondary alcohols, is demonstrated to greatly influence the ester hydrolysis rate. This crucial parameter allows us to tune the in vitro kinetics of the sustained drug release for periods exceeding a month in phosphate-buffered saline (PBS). The synthetic accessibility of the cleavable linker, together with the modularity of the drug release rate offered by this approach, highlights the utility of this class of polymers in the field of long-lasting drug delivery systems for persistent and chronic disease treatment.
Collapse
Affiliation(s)
- Yann Bernhard
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ondrej Sedlacek
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Joachim F R Van Guyse
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Johan Bender
- Bender Analytical Holding BV, Oude Holleweg 6, 6572 AB Berg en Dal, The Netherlands
| | - Zifu Zhong
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| |
Collapse
|
22
|
Radiation Grafting of a Polymeric Prodrug onto Silicone Rubber for Potential Medical/Surgical Procedures. Polymers (Basel) 2020; 12:polym12061297. [PMID: 32517004 PMCID: PMC7361976 DOI: 10.3390/polym12061297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Silicone rubber (SR) is a material used for medical procedures, with a common example of its application being in implants for cosmetic or plastic surgeries. It is also an essential component for the development of medical devices. SR was functionalized with the polymeric prodrug of poly(2-methacryloyloxy-benzoic acid) (poly(2MBA)) to render the analgesic anti-inflammatory drug salicylic acid by hydrolysis. The system was designed by functionalizing SR films (0.5 cm × 1 cm) with a direct grafting method, using gamma irradiation (60Co source) to induce the polymerization process. The absorbed dose (from 20 to 100 kGy) and the monomer concentration (between 0.4 and 1.5 M) were critical in controlling the surface and the bulk modifications of SR. Grafting poly(2MBA) onto SR (SR-g-2MBA) were characterized by attenuated total reflectance Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy/energy-dispersive X-ray spectrometry, fluorescence microscopy, the contact angle, and the swelling. SR-g-2MBA demonstrated the drug’s sustained and pH-dependent release in simulated physiological mediums (pH = 5.5 and 7.4). The drug’s release was quantified by high-performance liquid chromatography and confirmed by gas chromatography–mass spectrometry. Finally, cytocompatibility was demonstrated in murine fibroblast and human cervical cancer cell lines. The developed systems provide new polymeric drug release systems for medical silicone applications.
Collapse
|
23
|
Asikainen S, Seppälä J. Photo-crosslinked anhydride-modified polyester and -ethers for pH-sensitive drug release. Eur J Pharm Biopharm 2020; 150:33-42. [PMID: 32142953 DOI: 10.1016/j.ejpb.2020.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/31/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022]
Abstract
Photo-crosslinkable polymers have a great potential for the delivery of sensitive drugs. They allow preparation of drug releasing devices by photo-crosslinking, thus avoiding high processing temperatures. In this study, the hydrolysis behavior and drug release of three different photo-crosslinkable poly(ether anhydride)s and one poly(ester anhydride) were investigated. Three-arm poly(ethylene glycol) or polycaprolactone was reacted with succinic anhydride to obtain carboxylated macromers, and further functionalized with methacrylic anhydride to form methacrylated marcromers with anhydride linkages. The synthetized macromers were used to prepare photo-crosslinked matrices with different hydrolytic degradation times for active agent release purposes. The hydrolysis was clearly pH-sensitive: polymer networks degraded slowly in acidic conditions, and degradation rate increased as the pH shifted towards basic conditions. Drug release was studied with two water-soluble model drugs lidocaine (234 mol/g) and vitamin B12 (1355 g/mol). Vitamin B12 was released mainly due to polymer network degradation, whereas smaller molecule lidocaine was released also through diffusion and swelling of polymer network. Only a small amount of vitamin B12 was released in acidic conditions (pH 1.3 and pH 2.1). These polymers have potential in colon targeted drug delivery as the polymer could protect sensitive drugs from acidic conditions in the stomach, and the drug would be released as the conditions change closer to neutral pH in the intestine.
Collapse
Affiliation(s)
- Sanja Asikainen
- Polymer Technology, Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Finland
| | - Jukka Seppälä
- Polymer Technology, Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Finland.
| |
Collapse
|
24
|
Kim HJ, Reddi Y, Cramer CJ, Hillmyer MA, Ellison CJ. Readily Degradable Aromatic Polyesters from Salicylic Acid. ACS Macro Lett 2020; 9:96-102. [PMID: 35638662 DOI: 10.1021/acsmacrolett.9b00890] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polyesters constitute around 10% of the global plastic market with aromatic polyesters, such as poly(ethylene terephthalate) (PET), being the most prevalent because of their attractive properties. As for most commercial plastics, polyesters are primarily derived from fossil resources and are not readily degradable, which raises a number of sustainability concerns. Designing polymers with competitive properties from sustainable feedstocks that rapidly degrade under mild conditions is an attractive strategy for addressing the current plastic waste problem. Here, the detailed synthesis and characterization of degradable, high molar mass aromatic polyesters derived from salicylic acid, poly(salicylic glycolide) (PSG), and poly(salicylic methyl glycolide) (PSMG) are described. The synthesis of polymers was investigated through mechanistic experiments and complementary computational studies. The glass transition temperature (Tg ≈ 85 °C) and Young's modulus (E ≈ 2.3 GPa) of these polyesters are comparable to those of PET. In contrast to the poor hydrolytic degradability of PET, both PSG and PSMG are readily degradable in neutral aqueous solutions (e.g., complete degradation in seawater at 50 °C in 60 days). These aromatic polyesters derived from salicylic acid have potential as future high-performance, sustainable, and degradable plastics.
Collapse
|
25
|
Acri TM, Laird NZ, Hong L, Chakka JL, Shin K, Elangovan S, Salem AK. Inhibition of BMP9 Induced Bone Formation by Salicylic-acid Polymer Capping. MRS ADVANCES 2019; 4:3505-3512. [PMID: 33912355 PMCID: PMC8078835 DOI: 10.1557/adv.2020.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
This work focuses on the development of a system to control the formation of bone to complement developments that have enabled potent regeneration of bony tissue. Scaffolds were fabricated with chemically modified RNA encoding for bone morphogenetic protein-9 (cmBMP9) and capped with salicylic acid (SA)-containing polymer (SAPAE). The goal was to determine if SAPAE could inhibit the formation of bone in a pilot animal study since cmBMP9 has been demonstrated to be highly effective in regenerating bone in a rat calvarial defect model. The results indicated that cmBMP9 increased bone formation (30% increase in area covered compared to control) and that SAPAE trended toward reducing the bone formation. These results suggest SAPAE could be useful as a chemical agent in reducing unwanted bone formation in implants loaded with cmBMP9.
Collapse
Affiliation(s)
- Timothy M Acri
- University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa
| | - Noah Z Laird
- University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa
| | - Liu Hong
- University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
| | - Jaidev L Chakka
- University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa
| | - Kyungsup Shin
- University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
| | - Satheesh Elangovan
- University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
| | - Aliasger K Salem
- University of Iowa, College of Pharmacy, 115 S. Grand Avenue Iowa City, Iowa
- University of Iowa, College of Dentistry, 801 Newton Road Iowa City, Iowa
| |
Collapse
|
26
|
Wang L, Zhang M, Lawson T, Kanwal A, Miao Z. Poly(butylene succinate- co-salicylic acid) copolymers and their effect on promoting plant growth. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190504. [PMID: 31417748 PMCID: PMC6689653 DOI: 10.1098/rsos.190504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Biodegradable random copolymers were successfully synthesized by melt polycondensation of poly(butylene succinate) (PBS) and salicylic acid (SA). The obtained copolymers were characterized by proton nuclear magnetic resonance spectroscopy. The effect of different SA contents on the properties of copolymers was investigated by universal testing machine, thermogravimetric analyser, differential scanning calorimetry and X-ray diffraction analysis. The results showed that the copolymers with 0.5% SA contents exhibited excellent elastic modulus (1413.0 MPa) and tensile strength (192.8 MPa), and similar thermal decomposition temperature (≈320°C) compared with pure PBS. By molecular docking simulations, it was proved that the degradability of copolymers was more effective than that of pure PBS with a binding energy of -5.77 kcal mol-1. PBS copolymers with a small amount of SA were not only biodegradable but could stimulate the growth of green vegetables. So biodegradable copolymers can be used over a wide range as they are environmentally friendly.
Collapse
Affiliation(s)
- Lei Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Min Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Tom Lawson
- ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Aqsa Kanwal
- College of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
| | - Zongcheng Miao
- Key Laboratory of Organic Polymer Photoelectric Materials, Xijing University, Xi'an 710123, People's Republic of China
| |
Collapse
|
27
|
Lee J, Jeong L, Jung E, Ko C, Seon S, Noh J, Lee D. Thrombus targeting aspirin particles for near infrared imaging and on-demand therapy of thrombotic vascular diseases. J Control Release 2019; 304:164-172. [DOI: 10.1016/j.jconrel.2019.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/10/2019] [Accepted: 05/06/2019] [Indexed: 12/17/2022]
|
28
|
Snyder SS, Cao Y, Uhrich KE. Extrudable salicylic acid-based poly(anhydride-esters) for injectable drug releasing applications. J BIOACT COMPAT POL 2019. [DOI: 10.1177/0883911519834808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Injectable biomaterials have attracted more and more interest owing to their advantages over traditional open surgeries: minimal invasive procedure and ease of handling. Commonly used synthetic injectable polymers exhibited low drug loading and poor biodegradability. In this work, we describe a novel series of degradable copolymers comprising salicylic acid–based poly(anhydride-esters) and poly(ethylene glycol) subunits suitable for injectable drug releasing applications. By tuning the rheology properties, these salicylic acid–based poly(anhydride-esters) and poly(ethylene glycol) copolymers may function as injectable drug delivery vehicles that deliver salicylic acid at the injury site. These copolymers were designed to have glass transition temperatures (Tg) below 0ºC, resulting in extrudable polymers that behave like viscous fluids at room temperature. Salicylic acid–based poly(anhydride-esters) and poly(ethylene glycol) copolymers of different ratios (2:1, 1:1, and 1:2 salicylic acid–based poly(anhydride-esters) and poly(ethylene glycol)) were synthesized and characterized by nuclear magnetic resonance and Fourier-transform infrared spectroscopies. Their shear viscosities were determined both at room and physiological temperatures. The in vitro drug release profiles, cytotoxicity, and anti-inflammatory activities were assessed. The shear viscosities were found to compare favorably with current injectable barrier materials on the market.
Collapse
Affiliation(s)
- Sabrina S Snyder
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Yue Cao
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| | - Kathryn E Uhrich
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
- Department of Chemistry, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
29
|
Berwin Singh SV, Jung E, Noh J, Yoo D, Kang C, Hyeon H, Kim GW, Khang G, Lee D. Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:45-55. [DOI: 10.1016/j.nano.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/09/2018] [Accepted: 11/07/2018] [Indexed: 01/23/2023]
|
30
|
Alasvand N, Kargozar S, Milan PB, Chauhan NPS, Mozafari M. Functionalized polymers for drug/gene-delivery applications. ADVANCED FUNCTIONAL POLYMERS FOR BIOMEDICAL APPLICATIONS 2019:275-299. [DOI: 10.1016/b978-0-12-816349-8.00014-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Brenza TM, Schlichtmann BW, Bhargavan B, Ramirez JEV, Nelson RD, Panthani MG, McMillan JM, Kalyanaraman B, Gendelman HE, Anantharam V, Kanthasamy AG, Mallapragada SK, Narasimhan B, Kanmogne GD. Biodegradable polyanhydride-based nanomedicines for blood to brain drug delivery. J Biomed Mater Res A 2018; 106:2881-2890. [PMID: 30369055 PMCID: PMC6366942 DOI: 10.1002/jbm.a.36477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/25/2018] [Accepted: 06/01/2018] [Indexed: 11/10/2022]
Abstract
An urgent need to deliver therapeutics across the blood-brain barrier (BBB) underlies a paucity of effective therapies currently available for treatment of degenerative, infectious, traumatic, chemical, and metabolic disorders of the nervous system. With an eye toward achieving this goal, an in vitro BBB model was employed to simulate biodegradable polyanhydride nanoparticle-based drug delivery to the brain. Using a combination of confocal microscopy, flow cytometry, and high performance liquid chromatography, we examined the potential of polyanhydride nanoparticles containing the anti-oxidant, mito-apocynin, to be internalized and then transferred from monocytes to human brain microvascular endothelial cells. The efficacy of this nanoparticle-based delivery platform was demonstrated by neuronal protection against oxidative stress. Taken together, this polyanhydride nanoparticle-based delivery system holds promise for enhancing neuroprotection by facilitating drug transport across the BBB. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2881-2890, 2018.
Collapse
Affiliation(s)
- Timothy M. Brenza
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | | | - Biju Bhargavan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julia E. Vela Ramirez
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Rainie D. Nelson
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Matthew G. Panthani
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - JoEllyn M. McMillan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vellareddy Anantharam
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Anumantha G. Kanthasamy
- Department of Biomedical Sciences, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Surya K. Mallapragada
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- Nanovaccine Institute, Iowa State University, Ames, IA, USA
| | - Georgette D. Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
32
|
Klahan B, Seidi F, Crespy D. Oligo(thioether-ester)s Blocks in Polyurethanes for Slowly Releasing Active Payloads. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800392] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Butsabarat Klahan
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology; Rayong 21210 Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology; Rayong 21210 Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering; School of Molecular Science and Engineering; Vidyasirimedhi Institute of Science and Technology; Rayong 21210 Thailand
| |
Collapse
|
33
|
Abstract
Strategies to refine the degradation behavior of polyester biomaterials, particularly to overcome the limitations of slow hydrolytic degradation, would broaden their utility. Herein, we examine the complexities of polyester degradation behavior, its assessment and strategies for refinement. The factors governing polyester degradation are strikingly complex. In addition to the half-life of the hydrolytically-labile bond, a series of interdependent material properties must be considered. Thus, methods used to characterize such material properties, both before and during degradation, must be carefully selected. Assessment of degradation behavior is further complicated by the variability of reported test protocols and the need for accelerated rather than real-time in vitro testing conditions. Ultimately, through better control of degradation behavior and correlation of in vitro, simulated degradation to that observed in vivo, the development of superior devices prepared with polyester biomaterials may be achieved.
Collapse
Affiliation(s)
- Lindsay N. Woodard
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
34
|
|
35
|
Abstract
The human body is endowed with an uncanny ability to distinguish self from foreign. The implantation of a foreign object inside a mammalian host activates complex signaling cascades, which lead to biological encapsulation of the implant. This reaction by the host system to a foreign object is known as foreign body response (FBR). Over the last few decades, it has been increasingly important to have a deeper insight into the mechanisms of FBR is needed to develop biomaterials for better integration with living systems. In the light of recent advances in tissue engineering and regenerative medicine, particularly in the field of biosensors and biodegradable tissue engineering scaffolds, the classical concepts related to the FBR have acquired new dimensions. The aim of this review is to provide a holistic view of the FBR, while critically analyzing the challenges, which need to be addressed in the future to overcome this innate response. In particular, this review discusses the relevant experimental methodology to assess the host response. The role of erosion and degradation behavior on FBR with biodegradable polymers is largely explored. Apart from the discussion on temporal progression of FBR, an emphasis has been given to the design of next-generation biomaterials with favorable host response.
Collapse
|
36
|
Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang CH. Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 2018; 132:104-138. [PMID: 30415656 DOI: 10.1016/j.addr.2018.07.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 07/02/2018] [Indexed: 01/06/2023]
Abstract
With the advancement in medical science and understanding the importance of biodistribution and pharmacokinetics of therapeutic agents, modern drug delivery research strives to utilize novel materials and fabrication technologies for the preparation of robust drug delivery systems to combat acute and chronic diseases. Compared to traditional drug carriers, which could only control the release of the agents in a monotonic manner, the new drug carriers are able to provide a precise control over the release time and the quantity of drug introduced into the patient's body. To achieve this goal, scientists have introduced "programmed" and "on-demand" approaches. The former provides delivery systems with a sophisticated architecture to precisely tune the release rate for a definite time period, while the latter includes systems directly controlled by an operator/practitioner, perhaps with a remote device triggering/affecting the implanted or injected drug carrier. Ideally, such devices can determine flexible release pattern and intensify the efficacy of a therapy via controlling time, duration, dosage, and location of drug release in a predictable, repeatable, and reliable manner. This review sheds light on the past and current techniques available for fabricating and remotely controlling drug delivery systems and addresses the application of new technologies (e.g. 3D printing) in this field.
Collapse
|
37
|
Zhang T, Howell BA, Zhang D, Zhu B, Smith PB. Hyperbranched poly (ester) s for delivery of small molecule therapeutics. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tracy Zhang
- Michigan State University; St. Andrew Campus, 1910 W. St. Andrew Rd Midland MI 48640 USA
| | - Bob A. Howell
- Center for Applications in Polymer Science, Department of Chemistry; Central Michigan University; Mt. Pleasant MI 48859 USA
| | - Daniel Zhang
- Michigan State University; St. Andrew Campus, 1910 W. St. Andrew Rd Midland MI 48640 USA
| | - Brandon Zhu
- Michigan State University; St. Andrew Campus, 1910 W. St. Andrew Rd Midland MI 48640 USA
| | - Patrick B. Smith
- Michigan State University; St. Andrew Campus, 1910 W. St. Andrew Rd Midland MI 48640 USA
| |
Collapse
|
38
|
Akkad S, Serpell CJ. Degradable Polymers and Nanoparticles Built from Salicylic Acid. Macromol Rapid Commun 2018; 39:e1800182. [PMID: 29786901 DOI: 10.1002/marc.201800182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/23/2018] [Indexed: 12/19/2022]
Abstract
As more evidence emerges supporting the possibility that nonsteroidal anti-inflammatory drugs, especially aspirin (acetyl salicylic acid), might have a role in the prevention and management of certain types of cancer, there have been several attempts to fabricate salicylic acid-based polymers that can be employed in the targeted therapy of tumors. The primary disadvantage so far has been in use of nontherapeutic polymeric backbones that constitute the majority of the therapeutic particle's size. The focus of this research is the creation of a biodegradable polymer consisting only of salicylic acid, and its use as the main building block in targeted nanotherapeutics that would consequently provide both high local dose and sustained release of the active moiety. This work demonstrates the synthesis and degradation of polysalicylates, and modulation of their size and hydrolytic stability through the formation of nanostructures.
Collapse
Affiliation(s)
- Saeed Akkad
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, CT2 7NH, UK
| | - Christopher J Serpell
- School of Physical Sciences, Ingram Building, University of Kent, Canterbury, CT2 7NH, UK
| |
Collapse
|
39
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
40
|
Reactive Oxygen Species Responsive Naturally Occurring Phenolic-Based Polymeric Prodrug. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:291-301. [PMID: 30357629 DOI: 10.1007/978-981-13-0950-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactive Oxygen Species (ROS) play a vital role in the biological system. Exaggerated, ROS have devastating effects on the human body leading to the pathophysiological condition including the transformation of a normal cell into a cancer phenotype. Nature has blessed us with various biomolecules that we use along with our dietary supplements. Using such therapeutic small molecules covalently incorporated into biodegradable polyoxalate polymer backbone with a responsive group forms an efficient drug delivery vehicle. This chapter "Reactive oxygen species responsive naturally occurring phenolic-based polymeric prodrug" will be focusing on redox-responsive polymers incorporated with naturally occurring phenolics and clinical application.
Collapse
|
41
|
Natarajan J, Madras G, Chatterjee K. Poly(ester amide)s from Poly(ethylene terephthalate) Waste for Enhancing Bone Regeneration and Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28281-28297. [PMID: 28766935 DOI: 10.1021/acsami.7b09299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The present study elucidates the facile synthesis and exceptional properties of a family of novel poly(ester amide)s (PEAs) based on bis(2-hydroxy ethylene) terephthalamide that was obtained from the poly(ethylene terephthalate) waste. Fourier transform infrared and 1H NMR were used to verify the presence of ester and amide in the polymer backbone. Differential scanning calorimetry data showed that the glass transition temperature decreased with as the chain length of dicarboxylic acids increased. Dynamic mechanical analysis and contact angle studies proved that the modulus values and hydrophobicity increased with as the chain lengths of dicarboxylic acids increased. In vitro hydrolytic degradation and dye release studies demonstrated that the degradation and release decreased with as the chain lengths of dicarboxylic acids increased. Modeling these data illustrated that degradation and release follow first-order degradation and zero-order release, respectively. The in vitro cytocompatibility studies confirmed the minimal toxicity characteristic of these polymers. Osteogenic studies proved that these polymers can be highly influential in diverting the cells toward osteogenic lineage. Alizarin red staining evinced the presence of twice the amount of calcium phosphate deposits by the cells on these polymers when compared to the control. The observed result was also corroborated by the increased expression of alkaline phosphatase. These findings were further validated by the markedly higher mRNA expressions for known osteogenic markers using real time polymerase chain reaction. Therefore, these polymers efficiently promoted osteogenesis. This study demonstrates that the physical properties, degradation, and release kinetics can be altered to meet the specific requirements in organ regeneration as well as facilitate simultaneous polymer resorption through control of the chain length of the monomers. The findings of this study have significant implications for designing cost-effective biodegradable polymers for tissue engineering.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering, ‡Department of Chemical Engineering, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Giridhar Madras
- Centre for Nano Science and Engineering, ‡Department of Chemical Engineering, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for Nano Science and Engineering, ‡Department of Chemical Engineering, and §Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
42
|
Murray-Stewart T, Ferrari E, Xie Y, Yu F, Marton LJ, Oupicky D, Casero RA. Biochemical evaluation of the anticancer potential of the polyamine-based nanocarrier Nano11047. PLoS One 2017; 12:e0175917. [PMID: 28423064 PMCID: PMC5396973 DOI: 10.1371/journal.pone.0175917] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Synthesizing polycationic polymers directly from existing drugs overcomes the drug-loading limitations often associated with pharmacologically inert nanocarriers. We recently described nanocarriers formed from a first-generation polyamine analogue, bis(ethyl)norspermine (BENSpm), that could simultaneously target polyamine metabolism while delivering therapeutic nucleic acids. In the current study, we describe the synthesis and evaluation of self-immolative nanocarriers derived from the second-generation polyamine analogue PG-11047. Polyamines are absolutely essential for proliferation and their metabolism is frequently dysregulated in cancer. Through its effects on polyamine metabolism, PG-11047 effectively inhibits tumor growth in cancer cell lines of multiple origins as well as in human tumor mouse xenografts. Promising clinical trials have been completed verifying the safety and tolerance of this rotationally restricted polyamine analogue. We therefore used PG-11047 as the basis for Nano11047, a biodegradable, prodrug nanocarrier capable of targeting polyamine metabolism. Following exposure of lung cancer cell lines to Nano11047, uptake and intracellular degradation into the parent compound PG-11047 was observed. The release of PG-11047 highly induced the polyamine catabolic enzyme activities of spermidine/spermine N1-acetyltransferase (SSAT) and spermine oxidase (SMOX). By contrast, the activity of ornithine decarboxylase (ODC), a rate-limiting enzyme in polyamine biosynthesis and a putative oncogene, was decreased. Consequently, intracellular levels of the natural polyamines were depleted concurrent with tumor cell growth inhibition. This availability of Nano11047 as a novel drug form and potential nucleic acid delivery vector will potentially benefit and encourage future clinical studies.
Collapse
Affiliation(s)
- Tracy Murray-Stewart
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Elena Ferrari
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Laurence J. Marton
- Department of Laboratory Medicine, University of California, San Francisco, California, United States of America
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
43
|
Faig JJ, Moretti A, Joseph LB, Zhang Y, Nova MJ, Smith K, Uhrich KE. Biodegradable Kojic Acid-Based Polymers: Controlled Delivery of Bioactives for Melanogenesis Inhibition. Biomacromolecules 2017; 18:363-373. [PMID: 28026947 DOI: 10.1021/acs.biomac.6b01353] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Kojic acid (KA) is a naturally occurring fungal metabolite that is utilized as a skin-lightener and antibrowning agent owing to its potent tyrosinase inhibition activity. While efficacious, KA's inclination to undergo pH-mediated, thermal-, and photodegradation reduces its efficacy, necessitating stabilizing vehicles. To minimize degradation, poly(carbonate-esters) and polyesters comprised of KA and natural diacids were prepared via solution polymerization methods. In vitro hydrolytic degradation analyses revealed KA release was drastically influenced by polymer backbone composition (e.g., poly(carbonate-ester) vs polyester), linker molecule (aliphatic vs heteroatom-containing), and release conditions (physiological vs skin). Tyrosinase inhibition assays demonstrated that aliphatic KA dienols, the major degradation product under skin conditions, were more potent then KA itself. All dienols were found to be less toxic than KA at all tested concentrations. Additionally, the most lipophilic dienols were statistically more effective than KA at inhibiting melanin biosynthesis in cells. These KA-based polymer systems deliver KA analogues with improved efficacy and cytocompatible profiles, making them ideal candidates for sustained topical treatments in both medical and personal care products.
Collapse
Affiliation(s)
- Jonathan J Faig
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Alysha Moretti
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Laurie B Joseph
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Yingyue Zhang
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Mary Joy Nova
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Kervin Smith
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, ‡Ernest Mario School of Pharmacy, and §Department of Chemical & Biochemical Engineering, Rutgers University , Piscataway, New Jersey 08854, United States
| |
Collapse
|
44
|
Weintraub S, Shpigel T, Harris LG, Schuster R, Lewis EC, Lewitus DY. Astaxanthin-based polymers as new antimicrobial compounds. Polym Chem 2017. [DOI: 10.1039/c7py00663b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we describe the development of a library of polyastaxanthin, new polyester compounds with significant antimicrobial activity.
Collapse
Affiliation(s)
- S. Weintraub
- Plastics and Polymer Engineering Department
- Shenkar – Engineering Art Design
- Ramat-Gan
- Israel
| | - T. Shpigel
- Plastics and Polymer Engineering Department
- Shenkar – Engineering Art Design
- Ramat-Gan
- Israel
| | - L. G. Harris
- Microbiology and Infectious Diseases
- Institute of Life Science
- Swansea University Medical School
- Swansea
- UK
| | - R. Schuster
- Department of Clinical Biochemistry and Pharmacology
- Faculty of Health Sciences
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - E. C. Lewis
- Department of Clinical Biochemistry and Pharmacology
- Faculty of Health Sciences
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - D. Y. Lewitus
- Plastics and Polymer Engineering Department
- Shenkar – Engineering Art Design
- Ramat-Gan
- Israel
| |
Collapse
|
45
|
Bronze-Uhle ES, Costa BC, Ximenes VF, Lisboa-Filho PN. Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol Sci Appl 2016; 10:11-21. [PMID: 28096662 PMCID: PMC5207451 DOI: 10.2147/nsa.s117018] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bovine serum albumin (BSA) is highly water soluble and binds drugs or inorganic substances noncovalently for their effective delivery to various affected areas of the body. Due to the well-defined structure of the protein, containing charged amino acids, albumin nanoparticles (NPs) may allow electrostatic adsorption of negatively or positively charged molecules, such that substantial amounts of drug can be incorporated within the particle, due to different albumin-binding sites. During the synthesis procedure, pH changes significantly. This variation modifies the net charge on the surface of the protein, varying the size and behavior of NPs as the drug delivery system. In this study, the synthesis of BSA NPs, by a desolvation process, was studied with salicylic acid (SA) as the active agent. SA and salicylates are components of various plants and have been used for medication with anti-inflammatory, antibacterial, and antifungal properties. However, when administered orally to adults (usual dose provided by the manufacturer), there is 50% decomposition of salicylates. Thus, there has been a search for some time to develop new systems to improve the bioavailability of SA and salicylates in the human body. Taking this into account, during synthesis, the pH was varied (5.4, 7.4, and 9) to evaluate its influence on the size and release of SA of the formed NPs. The samples were analyzed using field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared, zeta potential, and dynamic light scattering. Through fluorescence, it was possible to analyze the release of SA in vitro in phosphate-buffered saline solution. The results of chemical morphology characterization and in vitro release studies indicated the potential use of these NPs as drug carriers in biological systems requiring a fast release of SA.
Collapse
Affiliation(s)
- ES Bronze-Uhle
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - BC Costa
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - VF Ximenes
- Department of Chemistry, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| | - PN Lisboa-Filho
- Department of Physics, São Paulo State University (Unesp), School of Sciences, Bauru, São Paulo, Brazil
| |
Collapse
|
46
|
Bhaskar N, Padmavathy N, Jain S, Bose S, Basu B. Modulated in Vitro Biocompatibility of a Unique Cross-Linked Salicylic Acid-Poly(ε-caprolactone)-Based Biodegradable Polymer. ACS APPLIED MATERIALS & INTERFACES 2016; 8:29721-29733. [PMID: 27726328 DOI: 10.1021/acsami.6b10711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we report the development of a unique architecture by chemically cross-linking salicylic acid (SA)-based poly(anhydride ester) onto a biodegradable amine-functionalized poly(caprolactone) (PCL), using lactic acid as a spacer. The ester and amide linkages in the SA-PCL polymer, synthesized through melt condensation, were confirmed by NMR and FT-IR spectroscopic techniques. The enzymatic and nonenzymatic hydrolytic degradation profile exhibited linear degradation kinetics over an extended time period (>5 weeks). The compatibility and growth of C2C12 myoblast cells were found to be significantly improved on the fast-degrading SA-PCL substrates compared to those over neat PCL and amine-functionalized PCL. Further, the decreased red blood cell damage, illustrated by 0.39% hemolysis activity and a minimal number of platelet adhesion on a SA-PCL polymeric surface confirmed good hemocompatibility of the as-synthesized polymer. Together with a moderate bactericidal property, the spectrum of properties of this novel polymer can be attributed to the synergistic effect of the presence of chemical moieties of SA and amine groups in PCL. In summary, it is considered that a SA-PCL-based cross-linked composite can be utilized as a new biodegradable polymer.
Collapse
Affiliation(s)
- Nitu Bhaskar
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Nagarajan Padmavathy
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Shubham Jain
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Suryasarathi Bose
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, ‡Department of Materials Engineering, and ⊥Center for Biosystems Science and Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
47
|
Yu W, Bajorek J, Jayade S, Miele A, Mirza J, Rogado S, Sundararajan A, Faig J, Ferrage L, Uhrich KE. Salicylic acid (SA)-eluting bone regeneration scaffolds with interconnected porosity and local and sustained SA release. J Biomed Mater Res A 2016; 105:311-318. [DOI: 10.1002/jbm.a.35904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/11/2016] [Accepted: 09/14/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Weiling Yu
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Jennifer Bajorek
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Sayeli Jayade
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Alyssa Miele
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Javad Mirza
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Sarah Rogado
- Department of Pharmaceutics, Ernest Mario School of Pharmacy; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Aravind Sundararajan
- Department of Biomedical Engineering; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Jonathan Faig
- Department of Chemistry and Chemical Biology; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| | - Loïc Ferrage
- Department of Materials Science Engineering; ENSIACET; 31030 Toulouse France
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology; Rutgers, The State University of New Jersey; Piscataway New Jersey 08854
| |
Collapse
|
48
|
Stebbins ND, Moy MM, Faig JJ, Uhrich KE. Sugar-based poly (anhydride-ester) containing natural antioxidants and antimicrobials: Synthesis and formulation into polymer blends. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516664819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thymol, a naturally occurring antioxidant and antimicrobial, is commonly researched for active packaging applications to deter food spoilage and bacterial growth. However, the high temperature necessary for processing often volatilizes the thymol, reducing its utility. To overcome this processing limitation, sugar-based poly(anhydride-esters) comprising thymol and compounds generally regarded as safe (succinic and tartaric acid) were successful prepared via mild solution polymerization methods. In vitro release studies demonstrated a sustained thymol release over 3 weeks at therapeutically relevant concentrations. Furthermore, the released thymol displayed antioxidant and antimicrobial activities as indicated by a 2,2-diphenyl-1-picrylhydrazyl radical scavenging and Kirby–Bauer disk diffusion assays, respectively. High-temperature melt blending with low-density polyethylene revealed that the chemical incorporation of thymol into a polymer backbone overcame volatility issues and maintained relevant bioactivity.
Collapse
Affiliation(s)
- Nicholas D Stebbins
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Michelle M Moy
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Jonathan J Faig
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
49
|
Natarajan J, Dasgupta Q, Shetty SN, Sarkar K, Madras G, Chatterjee K. Poly(ester amide)s from Soybean Oil for Modulated Release and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25170-84. [PMID: 27599306 DOI: 10.1021/acsami.6b10382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Designing biomaterials for bone tissue regeneration that are also capable of eluting drugs is challenging. Poly(ester amide)s are known for their commendable mechanical properties, degradation, and cellular response. In this regard, development of new poly(ester amide)s becomes imperative to improve the quality of lives of people affected by bone disorders. In this framework, a family of novel soybean oil based biodegradable poly(ester amide)s was synthesized based on facile catalyst-free melt-condensation reaction. The structure of the polymers was confirmed by FTIR and (1)H -NMR, which indicated the formation of the ester and amide bonds along the polymer backbone. Thermal analysis revealed the amorphous nature of the polymers. Contact angle and swelling studies proved that the hydrophobic nature increased with increase in chain length of the diacids and decreased with increase in molar ratio of sebacic acid. Mechanical studies proved that Young's modulus decreased with decrease in chain lengths of the diacids and increase in molar ratio of sebacic acid. The in vitro hydrolytic degradation and dye release demonstrated that the degradation and release decreased with increase in chain lengths of the diacids and increased with increase in molar ratio of sebacic acid. The degradation followed first order kinetics and dye release followed Higuchi kinetics. In vitro cell studies showed no toxic effects of the polymers. Osteogenesis studies revealed that the polymers can be remarkably efficient because more than twice the amount of minerals were deposited on the polymer surfaces than on the tissue culture polystyrene surfaces. Thus, a family of novel poly(ester amide)s has been synthesized, characterized for controlled release and tissue engineering applications wherein the physical, degradation, and release kinetics can be tuned by varying the monomers and their molar ratios.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Queeny Dasgupta
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Shreya N Shetty
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kishor Sarkar
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Giridhar Madras
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| | - Kaushik Chatterjee
- Centre for Nano Science and Engineering, ‡Centre for Biosystems Science and Engineering, §Department of Chemical Engineering, and ∥Department of Materials Engineering, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
50
|
Schmeltzer RC, Uhrich KE. Synthesis and Characterization of Salicylic Acid-Based Poly(Anhydride-Ester) Copolymers. J BIOACT COMPAT POL 2016; 21:123-133. [PMID: 23956492 DOI: 10.1177/0883911506062976] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of poly(anhydride-esters) based on poly(1,10-bis(o-car-boxyphenoxy)decanoate) (CPD) and poly(1,6-bis(p-carboxyphenoxy)hexane) (p-CPH) were synthesized by melt-condensation polymerization. Poly-(anhydride-esters) that contain CPD hydrolytically degraded into salicylic acid, however, these homopolymers have mechanical and thermal characteristics that limit their use in clinical applications. The synthesis and characterization of copolymers of CPD with p-CPH, a monomer known to generate mechanically stable homopolymers, was investigated. By changing the CPD to p-CPH monomer ratios, the salicylic acid loading and thermal/mechanical properties of the copolymers was a controlling factor; increasing the CPD concentration increased the salicylate loading but decreased the polymer stability; whereas increasing the p-CPH concentration increased the thermal and mechanical stability of the copolymers. Specifically, decreasing the CPD:p-CPH ratio resulted in lower salicylate loading and increased thermal decomposition temperatures. The glass transition temperatures (°C) varied from 27 to 38°C, a desirable range for elastomeric biomedical implants.
Collapse
Affiliation(s)
- Robert C Schmeltzer
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA
| | | |
Collapse
|