1
|
Aulia F, Matsuba H, Adachi S, Yamada T, Nakase I, Nii T, Mori T, Katayama Y, Kishimura A. Effective design of PEGylated polyion complex (PIC) nanoparticles for enhancing PIC internalisation in cells utilising block copolymer combinations with mismatched ionic chain lengths. J Mater Chem B 2024; 12:1826-1836. [PMID: 38305408 DOI: 10.1039/d3tb02049e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
In nanomedicine, PEGylation of nanomaterials poses a dilemma since it inhibits their interaction with target cells and enables their retention in target tissues despite its biocompatibility and nonspecific internalisation suppression. PEGylated polypeptide-based polyion complexes (PICs) are fabricated via the self-assembly of PEGylated aniomers and homocatiomers based on electrostatic interactions. We propose that various parameters like block copolymer design and PIC domain characteristics can enhance the cell-PEGylated PIC interactions. Remarkably, the properties of the PIC domain were tuned by the matched/mismatched ionomer chain lengths, PIC domain crosslinking degree, chemical modification of cationic species after crosslinking, PIC morphologies (vesicles/micelles) and polyethylene glycol (PEG) chain lengths. Cellular internalisation of the prepared PICs was evaluated using HeLa cells. Consequently, mismatched ionomer chain lengths and vesicle morphology enhanced cell-PIC interactions, and the states of ion pairing, particularly cationic residues, affected the internalisation behaviours of PICs via acetylation or guanidinylation of amino groups on catiomers. This treatment attenuated the cell-PIC interactions, possibly because of reduced interaction of PICs with negatively charged species on the cell-surface, glycosaminoglycans. Moreover, morphology and PEG length were correlated with PIC internalisation, in which PICs with longer and denser PEG were internalised less effectively. Cell line dependency was tested using RAW 264.7 macrophage cells; PIC recognition could be maintained after capping amino groups on catiomers, indicating that the remaining anionic groups were still effectively recognised by the scavenger receptors of macrophages. Our strategy for tuning the physicochemical properties of the PEGylated PIC nanocarriers is promising for overcoming the PEG issue.
Collapse
Affiliation(s)
- Fadlina Aulia
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroaki Matsuba
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shoya Adachi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takumi Yamada
- Graduate School of Systems Life Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ikuhiko Nakase
- Department of Biological Chemistry, Graduate School of Science, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai-shi, Osaka 599-8531, Japan
| | - Teruki Nii
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Advanced Medical Open Innovation, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, Taiwan, 32023, ROC
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Heo TY, Choi SH. Ionic Strength-Dependent Structure of Complex Coacervate Core Micelles. J Phys Chem B 2024; 128:1256-1265. [PMID: 38288748 DOI: 10.1021/acs.jpcb.3c06004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Salt concentration-dependent structure of complex coacervate core micelles (C3Ms), formed by polyether-based block copolyelectrolytes containing cationic ammonium (A) or anionic sulfonate (S) groups in aqueous media, is investigated by light scattering and small-angle X-ray/neutron scattering (SAX/NS). As the salt concentration increases, both a core radius (Rcore) and an aggregation number (Nagg) significantly decrease, but a corona thickness (Lcorona) is nearly unchanged. Larger salt concentrations can lower the interfacial tension between the coacervate cores and aqueous media, resulting in an increased interfacial area per chain and a more relaxed conformation of the core blocks. Based on the structure characterization, the scaling relationship between structure parameters (i.e., Rcore, Nagg, and Lcorona) and salt concentration is obtained and compared to the theoretical description estimated by the free energy balance between the entropic penalty of core stretching and the interfacial energy. We propose that the free energy contribution of the core block stretching is not negligible in C3Ms because of the highly swollen cores caused by water.
Collapse
Affiliation(s)
- Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
3
|
Drago SE, Cabibbo M, Craparo EF, Cavallaro G. TAT decorated siRNA polyplexes for inhalation delivery in anti-asthma therapy. Eur J Pharm Sci 2023; 190:106580. [PMID: 37717668 DOI: 10.1016/j.ejps.2023.106580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
In this work, a novel protonable copolymer was designed to deliver siRNA through the inhalation route, as an innovative formulation for the management of asthma. This polycation was synthesized by derivatization of α,β-poly(N-2-hydroxyethyl)D,L-aspartamide (PHEA) first with 1,2-Bis(3-aminopropylamino)ethane (bAPAE) and then with a proper amount of maleimide terminated poly(ethylene glycol) (PEG-MLB), with the aim to increase the superficial hydrophilicity of the system, allowing the diffusion trough the mucus layer. Once the complexation ability of the copolymer has been evaluated, obtaining nanosized polyplexes, polyplexes were functionalized on the surface with a thiolated TAT peptide, a cell-penetrating peptide (CPP), exploiting a thiol-ene reaction. TAT decorated polyplexes result to be highly cytocompatible and able to retain the siRNA with a suitable complexation weight ratio during the diffusion process through the mucus. Despite polyplexes establish weak bonds with the mucin chains, these can diffuse efficiently through the mucin layer and therefore potentially able to reach the bronchial epithelium. Furthermore, through cellular uptake studies, it was possible to observe how the obtained polyplexes penetrate effectively in the cytoplasm of bronchial epithelial cells, where they can reduce IL-8 gene expression, after LPS exposure. In the end, in order to obtain a formulation administrable as an inhalable dry powder, polyplexes were encapsulated in mannitol-based microparticles, by spray freeze drying, obtaining highly porous particles with proper technological characteristics that make them potentially administrable by inhalation route.
Collapse
Affiliation(s)
- Salvatore Emanuele Drago
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Marta Cabibbo
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Emanuela Fabiola Craparo
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) of Palermo, Palermo, Italy; Advanced Technology and Network Center (ATeN Center), Università di Palermo, Palermo 90133, Italy.
| |
Collapse
|
4
|
Debais G, Missoni LL, Perez Sirkin YA, Tagliazucchi M. Theoretical treatment of complex coacervate core micelles: structure and pH-induced disassembly. SOFT MATTER 2023; 19:7602-7612. [PMID: 37756111 DOI: 10.1039/d3sm01047c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Complex coacervate core micelles (C3Ms) are supramolecular soft nanostructures formed by the assembly of a block copolymer and an oppositely charged homopolymer. The coacervation of the charged segments in both macromolecules drives the formation of the core of the C3M, while the neutral block of the copolymer forms the corona. This work introduces a molecular theory (MOLT) that predicts the internal structure and stimuli-responsive properties of C3Ms and explicitly considers the chemical architecture of the polyelectrolytes, their acid-based equilibria and electrostatic and non-electrostatic interactions. In order to accurately predict complex coacervation, the correlations between charged species are incorporated into MOLT as ion-pairing processes, which are modeled using a coupled chemical equilibrium formalism. Very good agreement was observed between the experimental results in the literature and MOLT predictions for the scaling relationships that relate the dimensions of the micelle (aggregation number and sizes of the micelle and the core) to the lengths of the different blocks. MOLT was used to study the disassembly of the micelles when the solution pH is driven away from the value that guarantees the charge stoichiometry of the core. This study reveals that very sharp disassembly transitions can be obtained by tuning the length or architecture of the copolymer component, thereby suggesting potential routes to design C3Ms capable of releasing their components at very precise pH values.
Collapse
Affiliation(s)
- Gabriel Debais
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Leandro L Missoni
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Yamila A Perez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica Analítica y Química Física y CONICET-Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Química de los Materiales, Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428, Argentina.
| |
Collapse
|
5
|
Birkeness LB, Banerjee S, Quadir M, Banerjee SK. The role of CCNs in controlling cellular communication in the tumor microenvironment. J Cell Commun Signal 2023; 17:35-45. [PMID: 35674933 PMCID: PMC10030743 DOI: 10.1007/s12079-022-00682-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
The Cellular communication network (CCN) family of growth regulatory factors comprises six secreted matricellular proteins that promote signal transduction through cell-cell or cell-matrix interaction. The diversity of functionality between each protein is specific to the many aspects of healthy and cancer biology. For example, CCN family proteins modulate cell adhesion, proliferation, migration, invasiveness, apoptosis, and survival. In addition, the expression of each protein regulates many biological and pathobiological processes within its microenvironment to regulate angiogenesis, inflammatory response, chondrogenesis, fibrosis, and mitochondrial integrity. The collective range of CCN operation remains fully comprehended; however, understanding each protein's microenvironment may draw more conclusions about the abundance of interactions and signaling cascades occurring within such issues. This review observes and distinguishes the various roles a CCN protein may execute within distinct tumor microenvironments and the biological associations among them. Finally. We also review how CCN-family proteins can be used in nano-based therapeutic implications.
Collapse
Affiliation(s)
- Lauren B Birkeness
- Cancer Research Unit, Research Division, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA
| | - Snigdha Banerjee
- Cancer Research Unit, Research Division, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66106, USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Sushanta K Banerjee
- Cancer Research Unit, Research Division, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66106, USA.
| |
Collapse
|
6
|
Guanidinium-functionalized Block Copolyelectrolyte Micelleplexes for Safe and Efficient siRNA Delivery. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Lin M, Wang M, Liu D, Zuckermann RN, Sun J. Nanoscale Polyelectrolyte Complex Vesicles from Bioinspired Peptidomimetic Homopolymers with Zwitterionic Property and Extreme Stability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Meiyao Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Dandan Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Ronald N. Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
8
|
Horn JM, Zhu Y, Ahn SY, Obermeyer AC. Self-assembly of globular proteins with intrinsically disordered protein polyelectrolytes and block copolymers. SOFT MATTER 2022; 18:5759-5769. [PMID: 35912826 PMCID: PMC9446422 DOI: 10.1039/d2sm00415a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intrinsically disordered polypeptides are a versatile class of materials, combining the biocompatibility of peptides with the disordered structure and diverse phase behaviors of synthetic polymers. Synthetic polyelectrolytes are capable of complex phase behavior when mixed with oppositely charged polyelectrolytes, facilitating nanoparticle formation and bulk phase separation. However, there has been limited exploration of intrinsically disordered protein polyelectrolytes as potential bio-based replacements for synthetic polyelectrolytes. Here, we produce negatively charged, intrinsically disordered polypeptides, capable of high-yield expression in E. coli and use this intrinsically disordered peptide to produce entirely protein-based polyelectrolyte complexes. The complexes display rich phase behavior, showing sensitivity to charge density, salt concentration, temperature, and charge fraction. We characterize this behavior through a combination of turbidity assays, dynamic light scattering, and transmission electron microscopy. The robust expression profile and stimuli-responsive phase behavior of the intrinsically disordered peptides demonstrates their potential as easily producible, biocompatible substitutes for synthetic polyelectrolytes.
Collapse
Affiliation(s)
- Justin M Horn
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Yuncan Zhu
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - So Yeon Ahn
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
9
|
Yoshinaga N, Uchida S, Dirisala A, Naito M, Koji K, Osada K, Cabral H, Kataoka K. Bridging mRNA and Polycation Using RNA Oligonucleotide Derivatives Improves the Robustness of Polyplex Micelles for Efficient mRNA Delivery. Adv Healthc Mater 2022; 11:e2102016. [PMID: 34913604 DOI: 10.1002/adhm.202102016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/15/2021] [Indexed: 01/20/2023]
Abstract
Polyplex for messenger RNA (mRNA) delivery requires strong yet reversible association between mRNA and polycation for extracellular robustness and selective intracellular disintegration. Herein, RNA oligonucleotide (OligoRNA) derivatives that bridge mRNA and polycation are developed to stabilize polyplex micelles (PMs). A set of the OligoRNAs introduced with a polyol moiety in their 5' end is designed to hybridize to fixed positions along mRNA strand. After PM preparation from the hybridized mRNA and poly(ethylene glycol)-polycation block copolymer derived with phenylboronic acid (PBA) moieties in its cationic segment, PBA moieties form reversible phenylboronate ester linkages with a polyol moiety at 5' end of OligoRNAs and a diol moiety at their 3' end ribose, in the PM core. The OligoRNAs work as a node to bridge ionically complexed mRNA and polycation, thereby improving PM stability against polyion exchange reaction and ribonuclease attack in extracellular environment. After cellular uptake, intracellular high concentration of adenosine triphosphate triggers the cleavage of phenylboronate ester linkages, resulting in mRNA release from PM. Ultimately, the PM provides efficient mRNA introduction in cultured cells and mouse lungs after intratracheal administration, demonstrating the potential of the bridging strategy in polyplex-based mRNA delivery.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐8656 Japan
- Biomacromolecule Research Team RIKEN Center for Sustainable Resource Science 2‐1 Hirosawa, Wakoshi Saitama 351‐0198 Japan
| | - Satoshi Uchida
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐8656 Japan
- Medical Chemistry Graduate School of Medical Science Kyoto Prefectural University of Medicine 1‐5 Shimogamohangi‐cho Sakyo‐ku Kyoto 606‐0823 Japan
- Innovation Center of NanoMedicine (iCONM) Kanagawa Institute of Industrial Promotion 3‐25‐14 Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Anjaneyulu Dirisala
- Innovation Center of NanoMedicine (iCONM) Kanagawa Institute of Industrial Promotion 3‐25‐14 Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine Graduate School of Medicine The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐0033 Japan
| | - Kyoko Koji
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kensuke Osada
- Institute for Quantum Medical Science National Institutes for Quantum Science and Technology (QST) 4‐9‐1 Anagawa, Inage‐ku Chiba‐shi Chiba 263‐8555 Japan
| | - Horacio Cabral
- Department of Bioengineering Graduate School of Engineering The University of Tokyo 7‐3‐1 Hongo Bunkyo‐ku Tokyo 113‐8656 Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM) Kanagawa Institute of Industrial Promotion 3‐25‐14 Tonomachi, Kawasaki‐ku Kawasaki 210‐0821 Japan
| |
Collapse
|
10
|
Xie L, Liu R, Chen X, He M, Zhang Y, Chen S. Micelles Based on Lysine, Histidine, or Arginine: Designing Structures for Enhanced Drug Delivery. Front Bioeng Biotechnol 2021; 9:744657. [PMID: 34646819 PMCID: PMC8503256 DOI: 10.3389/fbioe.2021.744657] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Natural amino acids and their derivatives are excellent building blocks of polymers for various biomedical applications owing to the non-toxicity, biocompatibility, and ease of multifunctionalization. In the present review, we summarized the common approaches to designing and constructing functional polymeric micelles based on basic amino acids including lysine, histidine, and arginine and highlighted their applications as drug carriers for cancer therapy. Different polypeptide architectures including linear polypeptides and dendrimers were developed for efficient drug loading and delivery. Besides, polylysine- and polyhistidine-based micelles could enable pH-responsive drug release, and polyarginine can realize enhanced membrane penetration and gas therapy by generating metabolites of nitric oxide (NO). It is worth mentioning that according to the structural or functional characteristics of basic amino acids and their derivatives, key points for designing functional micelles with excellent drug delivery efficiency are importantly elaborated in order to pave the way for exploring micelles based on basic amino acids.
Collapse
Affiliation(s)
- Li Xie
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Rong Liu
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Xin Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Mei He
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Yi Zhang
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| | - Shuyi Chen
- School of Medicine and Nursing, Chengdu University, Chengdu, China
| |
Collapse
|
11
|
Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112186. [PMID: 34082985 DOI: 10.1016/j.msec.2021.112186] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.
Collapse
|
12
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Lopukhov AV, Yang Z, Haney MJ, Bronich TK, Sokolsky-Papkov M, Batrakova EV, Klyachko NL, Kabanov AV. Mannosylated Cationic Copolymers for Gene Delivery to Macrophages. Macromol Biosci 2021; 21:e2000371. [PMID: 33615675 PMCID: PMC8126558 DOI: 10.1002/mabi.202000371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/27/2021] [Indexed: 12/17/2022]
Abstract
Macrophages are desirable targets for gene therapy of cancer and other diseases. Cationic diblock copolymers of polyethylene glycol (PEG) and poly-L-lysine (PLL) or poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (pAsp(DET)) are synthesized and used to form polyplexes with a plasmid DNA (pDNA) that are decorated with mannose moieties, serving as the targeting ligands for the C type lectin receptors displayed at the surface of macrophages. The PEG-b-PLL copolymers are known for its cytotoxicity, so PEG-b-PLL-based polyplexes are cross-linked using reducible reagent dithiobis(succinimidyl propionate) (DSP). The cross-linked polyplexes display low toxicity to both mouse embryonic fibroblasts NIH/3T3 cell line and mouse bone marrow-derived macrophages (BMMΦ). In macrophages mannose-decorated polyplexes demonstrate an ≈8 times higher transfection efficiency. The cross-linking of the polyplexes decrease the toxicity, but the transfection enhancement is moderate. The PEG-b-pAsp(DET) copolymers display low toxicity with respect to the IC-21 murine macrophage cell line and are used for the production of non-cross-linked pDNA-contained polyplexes. The obtained mannose modified polyplexes exhibit ca. 500-times greater transfection activity in IC-21 macrophages compared to the mannose-free polyplexes. This result greatly exceeds the targeting gene transfer effects previously described using mannose receptor targeted non-viral gene delivery systems. These results suggest that Man-PEG-b-pAsp(DET)/pDNA polyplex is a potential vector for immune cells-based gene therapy.
Collapse
Affiliation(s)
- Anton V Lopukhov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia
| | - Zigang Yang
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew J Haney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Tatiana K Bronich
- Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Marina Sokolsky-Papkov
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Elena V Batrakova
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Natalia L Klyachko
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Alexander V Kabanov
- Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia
- Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA
| |
Collapse
|
14
|
Andreana I, Repellin M, Carton F, Kryza D, Briançon S, Chazaud B, Mounier R, Arpicco S, Malatesta M, Stella B, Lollo G. Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics 2021; 13:278. [PMID: 33669654 PMCID: PMC7922331 DOI: 10.3390/pharmaceutics13020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.
Collapse
Affiliation(s)
- Ilaria Andreana
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Mathieu Repellin
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - David Kryza
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Hospices Civils de Lyon, 69437 Lyon, France
| | - Stéphanie Briançon
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Rémi Mounier
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| |
Collapse
|
15
|
Mori A, Kobayashi Y, Nirasawa K, Negishi Y, Asayama S. Structure-Activity Relationship of Mono-Ion Complexes for Plasmid DNA Delivery by Muscular Injection. Pharmaceutics 2021; 13:pharmaceutics13010078. [PMID: 33430003 PMCID: PMC7828051 DOI: 10.3390/pharmaceutics13010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 11/16/2022] Open
Abstract
The structure-activity relationship of mono-ion complexes (MICs) for plasmid DNA (pDNA) delivery by muscular injection is demonstrated. MICs were formed between pDNA and monocationic poly(ethylene glycol) (PEG) macromolecules. As monocationic PEGs, the ω-amide-pentylimidazolium (APe-Im) end-modified PEGs with a stable amide (Am) and hydrolytic ester (Es) bond, that is, APe-Im-Am-PEG and APe-Im-Es-PEG, respectively, are synthesized. The difference between the APe-Im-Am-PEG and APe-Im-Es-PEG was only a spacer structure between a terminal cation and a PEG chain. The resulting pDNA MICs with APe-Im-Am-PEG at a charge ratio (+/-) of 32 or 64 were more stable than those with APe-Im-Es-PEG in the presence of serum proteins. The highest gene expression by muscular injection was achieved using the APe-Im-Am-PEG/pDNA MIC at a charge ratio (+/-) of 32 with a smaller particle diameter of approximately 50 nm, as compared to that charge ratio of 64. Consequently, the pDNA MIC with the monocationic PEG with a stable amide spacer, as compared to a hydrolytic ester spacer, is considered to be suitable for the highest gene expression by muscular injection.
Collapse
Affiliation(s)
- Amika Mori
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (A.M.); (Y.K.)
| | - Yuki Kobayashi
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (A.M.); (Y.K.)
| | - Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.N.); (Y.N.)
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (K.N.); (Y.N.)
| | - Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (A.M.); (Y.K.)
- Correspondence: ; Tel.: +81-42-677-1111 (ext. 4976)
| |
Collapse
|
16
|
Ferreira RG, Narvaez LEM, Espíndola KMM, Rosario ACRS, Lima WGN, Monteiro MC. Can Nimesulide Nanoparticles Be a Therapeutic Strategy for the Inhibition of the KRAS/PTEN Signaling Pathway in Pancreatic Cancer? Front Oncol 2021; 11:594917. [PMID: 34354940 PMCID: PMC8329661 DOI: 10.3389/fonc.2021.594917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is an aggressive, devastating disease due to its invasiveness, rapid progression, and resistance to surgical, pharmacological, chemotherapy, and radiotherapy treatments. The disease develops from PanINs lesions that progress through different stages. KRAS mutations are frequently observed in these lesions, accompanied by inactivation of PTEN, hyperactivation of the PI3K/AKT pathway, and chronic inflammation with overexpression of COX-2. Nimesulide is a selective COX-2 inhibitor that has shown anticancer effects in neoplastic pancreatic cells. This drug works by increasing the levels of PTEN expression and inhibiting proliferation and apoptosis. However, there is a need to improve nimesulide through its encapsulation by solid lipid nanoparticles to overcome problems related to the hepatotoxicity and bioavailability of the drug.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Luis Eduardo Mosquera Narvaez
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Kaio Murilo Monteiro Espíndola
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Amanda Caroline R. S. Rosario
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Wenddy Graziela N. Lima
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
| | - Marta Chagas Monteiro
- Neuroscience and Cell Biology Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Laboratory of In Vitro Tests, Immunology and Microbiology-LABEIM, Health Science Institute, Federal University of Pará/UFPA, Belém, Brazil
- *Correspondence: Marta Chagas Monteiro,
| |
Collapse
|
17
|
Porfiryeva NN, Moustafine RI, Khutoryanskiy VV. PEGylated Systems in Pharmaceutics. POLYMER SCIENCE SERIES C 2020. [DOI: 10.1134/s181123822001004x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Parekh P, Ohno S, Yusa S, Lv C, Du B, Ray D, Aswal VK, Bahadur P. Synthesis, aggregation and adsorption behaviour of a thermoresponsive pentablock copolymer. POLYM INT 2020. [DOI: 10.1002/pi.5967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Paresh Parekh
- Chemistry Department Veer Narmad South Gujarat University Surat India
| | - Sayaka Ohno
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Shin‐ichi Yusa
- Graduate School of Engineering University of Hyogo Hyogo Japan
| | - Chao Lv
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Binyang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Debes Ray
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Vinod Kumar Aswal
- Solid State Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Pratap Bahadur
- Chemistry Department Veer Narmad South Gujarat University Surat India
| |
Collapse
|
19
|
Asayama S. Molecular Design of Polymer-based Carriers for Plasmid DNA Delivery In Vitro and In Vivo. CHEM LETT 2020. [DOI: 10.1246/cl.190696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shoichiro Asayama
- Department of Applied Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
20
|
Bravo-Anaya L, Garbay B, Nando-Rodríguez J, Carvajal Ramos F, Ibarboure E, Bathany K, Xia Y, Rosselgong J, Joucla G, Garanger E, Lecommandoux S. Nucleic acids complexation with cationic elastin-like polypeptides: Stoichiometry and stability of nano-assemblies. J Colloid Interface Sci 2019; 557:777-792. [DOI: 10.1016/j.jcis.2019.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/01/2023]
|
21
|
Oligo-guanidyl targeted bioconjugates forming rod shaped polyplexes as a new nanoplatform for oligonucleotide delivery. J Control Release 2019; 310:58-73. [PMID: 31400381 DOI: 10.1016/j.jconrel.2019.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022]
Abstract
Novel bioconjugates (Agm6-M-PEG-FA) for active oligonucleotide (ON) delivery have been developed by conjugating a cationic oligo-guanidyl star-like shaped "head" (Agm6-M) to a polymeric "tail" (PEG) terminating with folic acid (FA) as targeting agent or methoxy group (Agm6-M-PEG-FA and Agm6-M-PEG-OCH3, respectively). Gel electrophoresis showed that the bioconjugates completely associated with ONs at 3 nitrogen/phosphate (N/P) ratio. Studies performed with folate receptor (FR)-overexpressing HeLa cells, showed that optimal cell up-take was obtained with the 75:25 w/w Agm6-M-PEG-OCH3:Agm6-M-PEG-FA mixture. Dynamic light scattering and transmission electron microscopy showed that the polyplexes had size <80 nm with narrow polydispersity and rod-shaped morphology. The polyplexes were stable for several hours in plasma while ON was released in the presence of heparin concentration 16-times higher than the physiological one. The polyplexes displayed negligible cytotoxicity, hemolysis and low pro-inflammatory TNF-α release. Studies performed with FR-overexpressing HeLa and MDA-MB-231 cells using siRac1 revealed that the folated polyplexes caused significantly higher gene silencing (86.1 ± 9.6%) and inhibition of cell migration (40%) than the non-folated polyplexes obtained with Agm6-M-PEG-OCH3 only. Although cytofluorimetric analyses showed similar cell uptake for both folated and non-folated polyplexes, confocal, TEM and competition studies showed that the folated polyplexes were taken-up by lysosome escaping caveolin-mediated pathway with final polyplex localization within cytosol, while non-folated polyplexes were preferentially taken-up via clathrin-mediated pathway to localize in the lysosomes. Finally, preliminary in vivo studies carried out in mice revealed that the folated polyplexes dispose in the tumor mass.
Collapse
|
22
|
Park JW, Park KH, Seo S. Natural polyelectrolyte complex‐based pH‐dependent delivery carriers using alginate and chitosan. J Appl Polym Sci 2019. [DOI: 10.1002/app.48143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jun Woo Park
- Department of Biomaterials Science, Life and Industry Convergence InstitutePusan National University Miryang 50463 Republic of Korea
| | - Kyu Ha Park
- Department of Biomaterials Science, Life and Industry Convergence InstitutePusan National University Miryang 50463 Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science, Life and Industry Convergence InstitutePusan National University Miryang 50463 Republic of Korea
| |
Collapse
|
23
|
Dirisala A, Uchida S, Tockary TA, Yoshinaga N, Li J, Osawa S, Gorantla L, Fukushima S, Osada K, Kataoka K. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimising extracellular and intracellular nuclease tolerability. J Drug Target 2019; 27:670-680. [PMID: 30499743 DOI: 10.1080/1061186x.2018.1550646] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The major issues in messenger (m)RNA delivery are rapid mRNA degradation in the extracellular and intracellular spaces, which decreases the efficiency and duration for protein expression from mRNA. Stabilization of mRNA carriers using environment-responsive crosslinkings has promises to overcome these issues. Herein, we fine-tuned the structure of disulphide crosslinkings, which are selectively cleaved in the intracellular reductive environment, using the mRNA-loaded polyplex micelles (PMs) prepared from poly(ethylene glycol)-poly(L-lysine) (PEG-PLys) block copolymers, particularly by focussing on cationic charge density after the crosslinking. Primary amino groups in PLys segment were partially thiolated in two ways: One is to introduce 3-mercaptopropionyl (MP) groups via amide linkage, resulting in the decreased cationic charge density [PEG-PLys(MP)], and the other is the conversion of amino groups to 1-amidine-3-mercaptopropyl (AMP) groups with preserving cationic charge density [PEG-PLys(AMP)]. Compared to non-crosslinked and PEG-PLys(MP) PMs, PEG-PLys(AMP) PM attained tighter mRNA packaging in the PM core, thereby improving mRNA nuclease tolerability in serum and intracellular spaces, and providing enhanced protein expression in cultured cells at the optimal crosslinking density. These findings highlight the importance of cationic charge preservation in installing crosslinking moieties, providing a rationale for mRNA carrier design in the molecular level.
Collapse
Affiliation(s)
- Anjaneyulu Dirisala
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Satoshi Uchida
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan.,b Department of Bioengineering , Graduate School of Engineering, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Theofilus A Tockary
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Naoto Yoshinaga
- b Department of Bioengineering , Graduate School of Engineering, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Junjie Li
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Shigehito Osawa
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Lahari Gorantla
- c Department of Bioengineering , College of Engineering, University of Washington , Washington , USA
| | - Shigeto Fukushima
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan
| | - Kensuke Osada
- d National Institutes for Quantum and Radiology Science and Technology , Inage , Chiba , Japan
| | - Kazunori Kataoka
- a Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion , Kawasaki , Kanagawa , Japan.,e Policy Alternatives Research Institute, The University of Tokyo , Bunkyo , Tokyo , Japan
| |
Collapse
|
24
|
Hernández M, Leyva G, Magaña JJ, Guzmán-Vargas A, Felipe C, Lara V, Lima E. New copolymers as hosts of ribosomal RNA. BMC Chem 2019; 13:33. [PMID: 31384781 PMCID: PMC6661956 DOI: 10.1186/s13065-019-0555-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 03/08/2019] [Indexed: 12/14/2022] Open
Abstract
Functionalized copolymers were synthesized and are proposed as hosts of RNA. The copolymers are based on carboxymethyl cellulose and poly-(ethylene glycol)-OH. These copolymers were functionalized with two amino acids, either lysine or histidine, through amide bond formation. The functionalized copolymer was then used to adsorb ribosomal RNA. The RNA loading was based on the nature of the amino acid functionalization of the copolymer. The array of RNA-copolymers was observed to be soft sphere-like, where the density of spheres was a function of the molecular weight of the carboxymethyl cellulose and the nature of the amino acid. Such RNA-copolymer systems are very sensitive to changes in pH.
Collapse
Affiliation(s)
- Magali Hernández
- 1Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510 Mexico City, CDMX Mexico
| | - Gerardo Leyva
- 2Facultad de Química, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510 Mexico City, CDMX Mexico
| | - Jonathan J Magaña
- 3Departamento de Genética, Instituto Nacional de Rehabilitación, Calz. México Xochimilco No 289, CP 14389 Mexico City, CDMX Mexico
| | - Ariel Guzmán-Vargas
- 4Instituto Politécnico Nacional - ESIQIE, Avenida IPN UPALM Edificio 7, Zacatenco, 07738 Mexico City, CDMX Mexico
| | - Carlos Felipe
- 5Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Instituto Politécnico Nacional, Calle 30 de Junio de 1520 s/n, Barrio la Laguna Ticomán, 07340 Mexico City, CDMX Mexico
| | - Víctor Lara
- 6Universidad Autónoma Metropolitana, Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, CP 09340 Mexico City, CDMX Mexico
| | - Enrique Lima
- 1Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP 04510 Mexico City, CDMX Mexico
| |
Collapse
|
25
|
Malfanti A, Mastrotto F, Han Y, Král P, Balasso A, Scomparin A, Pozzi S, Satchi-Fainaro R, Salmaso S, Caliceti P. Novel Oligo-Guanidyl-PEG Carrier Forming Rod-Shaped Polyplexes. Mol Pharm 2019; 16:1678-1693. [PMID: 30860853 DOI: 10.1021/acs.molpharmaceut.9b00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel unconventional supramolecular oligo-cationic structure (Agm6-M-PEG-OCH3) has been synthesized to yield high efficiency therapeutic oligonucleotide (ON) delivery. Agm6-M-PEG-OCH3 was obtained by a multistep protocol that included the conjugation of agmatine (Agm) moieties to maltotriose (M), which was further derivatized with one poly(ethylene glycol) (PEG) chain. Gel electrophoresis analysis showed that the 19 base pairs dsDNA model ON completely associates with Agm6-M-PEG-OCH3 at 3 N/P molar ratio, which is in agreement with the in silico molecular predictions. Isothermal titration calorimetry (ITC) analyses showed that the Agm6-M-PEG-OCH3/ON association occurs through a combination of mechanisms depending on the N/P ratios resulting in different nanostructures. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) revealed that the Agm6-M-PEG-OCH3/ON polyplexes have rod-shape structure with a mean diameter of 50-75 nm and aspect ratio depending on the N/P ratio. The polyplexes were stable over time in buffer, while a slight size increase was observed in the presence of serum proteins. Cell culture studies showed that neither Agm6-M-PEG-OCH3 nor polyplexes displayed cytotoxic effects. Cellular uptake depended on the cell line and polyplex composition: cellular internalization was higher in the case of MCF-7 and KB cells compared to MC3T3-E1 cells and polyplexes with smaller aspect ratio were taken-up by cells more efficiently than polyplexes with higher aspect ratio. Finally, preliminary studies showed that our novel carrier efficiently delivered ONs into cells providing gene silencing.
Collapse
Affiliation(s)
- Alessio Malfanti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Yanxiao Han
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States
| | - Petr Král
- Department of Chemistry and Department of Physics , University of Illinois at Chicago , Chicago , Illinois 60607 , United States.,Department of Biopharmaceutical Sciences , University of Illinois at Chicago , Chicago , Illinois 60612 , United States
| | - Anna Balasso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel.,Department of Drug Science and Technology , University of Turin , Via P. Giuria 9 , 10125 Turin , Italy
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine , Tel Aviv University 69978 Tel Aviv , Israel
| | - Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , Via F. Marzolo 5 35131 Padova , Italy
| |
Collapse
|
26
|
Miyamoto T, Tsuchiya K, Numata K. Block Copolymer/Plasmid DNA Micelles Postmodified with Functional Peptides via Thiol-Maleimide Conjugation for Efficient Gene Delivery into Plants. Biomacromolecules 2019; 20:653-661. [PMID: 30257560 DOI: 10.1021/acs.biomac.8b01304] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introducing exogenous genes into plant cells is essential for a wide range of applications in agriculture and plant biotechnology fields. Cationic peptide carriers with cell-penetrating and DNA-binding domains successfully deliver exogenous genes into plants. However, their cell-penetrating activity may be attenuated by undesired electrostatic interactions between the cell-penetrating peptide (CPP) domain and DNA cargo, resulting in limited gene delivery efficiency. Here, we developed the block copolymer maleimide-conjugated tetra(ethylene glycol) and poly(l-lysine) (MAL-TEG-PLL). Through electrostatic interactions with plasmid DNA (pDNA), MAL-TEG-PLL formed a micelle that presented maleimide groups on its surface. The micelle enabled postmodification with cysteine-containing functional peptides, including a CPP (BP100-Cys) and nuclear localization signal (Cys-NLS) via thiol-maleimide conjugation, thereby avoiding undesired interactions. According to a comparison of gene delivery efficiencies among the peptide-postmodified micelles, the amount of BP100-Cys on the micelle surface was key for efficient gene delivery. The BP100-postmodified micelle showed more efficient delivery compared with that of the BP100-premodified micelle. Thus, postmodification of polymeric micelles with functional peptides opens the door to designing highly efficient plant gene delivery systems.
Collapse
Affiliation(s)
- Takaaki Miyamoto
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| | - Kousuke Tsuchiya
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| | - Keiji Numata
- Biomacromolecules Research Team , RIKEN Center for Sustainable Resource Science , 2-1 Hirosawa , Wako-shi , Saitama 351-0198 , Japan
| |
Collapse
|
27
|
Yoshinaga N, Uchida S, Naito M, Osada K, Cabral H, Kataoka K. Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials 2019; 197:255-267. [PMID: 30669016 DOI: 10.1016/j.biomaterials.2019.01.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/23/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022]
Abstract
There has been a progressive interest in the molecular design of polymers and lipids as synthetic carriers for targeting therapeutic mRNA in vivo with the ability to circumvent nuclease attack for treating intractable diseases. Herein, we developed a simple approach to attain one order of magnitude higher nuclease tolerability of mRNA through the formation of polyplex micelles (PMs) by combining ω-cholesteryl (ω-Chol)-poly (ethylene-glycol) (PEG)-polycation block copolymers with mRNA pre-hybridized with cholesterol (Chol)-tethered RNA oligonucleotides (Chol (+)-OligoRNA). Even one or a few short Chol (+)-OligoRNA anchors harboring along the 46-fold longer mRNA strand was sufficient to induce tight mRNA packaging in the PM core, as evidenced by Förster resonance energy transfer (FRET) measurement as well as by a longitudinal relaxation time (T1) measurement using NMR. These results suggest that Chol (+)-OligoRNA on mRNA strand serves as a node to attract ω-Chol moiety of the block copolymers to tighten the mRNA packaging in the PM core. These mRNA loaded PMs showed high tolerability against nuclease attack, and exerted appreciable protein translational activity in cultured cells without any inflammatory responses, achieved by shortening of the length of hybridizing Chol (+)-OligoRNAs to 17 nucleotides. Finally, the Chol (+)-OligoRNA-stabilized PM revealed efficient mRNA introduction into the mouse lungs via intratracheal administration, demonstrating in vivo utility of this formulation.
Collapse
Affiliation(s)
- Naoto Yoshinaga
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Mitsuru Naito
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kensuke Osada
- National Institute of Radiological Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
28
|
Matsui H, Tamura A, Osawa M, Tonegawa A, Arisaka Y, Matsumura M, Miura H, Yui N. Scavenger Receptor A-Mediated Targeting of Carboxylated Polyrotaxanes to Macrophages and the Impacts of Supramolecular Structure. Macromol Biosci 2018; 18:e1800059. [PMID: 29900668 DOI: 10.1002/mabi.201800059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/14/2018] [Indexed: 01/18/2023]
Abstract
Because macrophages are involved in the pathology of many diseases, targeting delivery of therapeutic molecules to macrophages is important issue. Polyrotaxanes (PRXs) composed of multiple cyclodextrins threaded with a linear polymer were utilized as a therapeutic agent for metabolic disease and for regulating cellular metabolism. For targeting delivery of PRXs to macrophages, carboxyethyl ether group-modified PRXs (CEE-PRXs) are designed for promoting interaction to macrophage scavenger receptor class A (SR-A). The cellular internalization of anionic CEE-PRXs in SR-A-positive macrophage-like cells (RAW264.7) is remarkably higher than that of nonionic PRX, whereas the cellular internalization efficiency in SR-A-negative cells is comparable between anionic and nonionic PRX. Furthermore, the molecular weight of axle polymer and the number of CEE groups modified on PRX are found to be the predominant factors governing cellular internalization efficiency in SR-A-positive RAW264.7 cells. Thus, CEE-PRXs are a promising design for targeting delivery of PRXs to macrophages.
Collapse
Affiliation(s)
- Hideto Matsui
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Mamoru Osawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Asato Tonegawa
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| | - Mitsuaki Matsumura
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Hiroyuki Miura
- Department of Restorative Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo, Tokyo, 113-8549, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo, 101-0062, Japan
| |
Collapse
|
29
|
Hsiao F, Huang PY, Aoyagi T, Chang SF, Liaw J. In vitro and in vivo assessment of delivery of hydrophobic molecules and plasmid DNAs with PEO–PPO–PEO polymeric micelles on cornea. J Food Drug Anal 2018; 26:869-878. [PMID: 29567259 PMCID: PMC9322236 DOI: 10.1016/j.jfda.2017.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 12/23/2022] Open
Abstract
The stability and bio-distribution of genes or drug complexes with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO–PPO–PEO, Pluronic F-68) polymeric micelles (PM) are essential for an effective nanosized PM delivery system. We used Förster resonance energy transfer (FRET) pairs with PM and measured the FRET ratio to assess the stability of PM in vitro and in vivo on the cornea. The FRET ratio reached a plateau at 0.8 with 3% PM. Differential scanning calorimetry measurement confirmed the complex formation of FRET pairs with PM. Confocal imaging with the fluorophores fluorescein isothiocyanate isomer I (FITC) and rhodamine B base (RhB) also showed the occurrence of FRET pairs in vitro. The fluorophores were mixed with 3% PM solution or the FITC-labeled PEO–PPO–PEO polymers (FITC-P) were mixed with RhB-labeled plasmids (RhB–DNA). In addition, the in vitro corneal permeation of FRET pair complexes with PM reached a 0.8 FRET ratio. One hour after eye drop administration, FRET pairs colocalized in the cytoplasm, and surrounded and entered the nuclei of cells in the cornea, and the polymers were located in the corneal epithelial layers, as detected through anti-PEG immunohistochemistry. Furthermore, fluorescence colocalization in the cytoplasm and cell nucleus of the corneal epithelium was confirmed in tissues where RhB or RhB–DNA complexed with FITC-P was found to accumulate. We demonstrate that at a concentration of 3%, PM can encapsulate FRET pairs or RhB–DNA and retain their integrity within the cornea 1 h after administration, suggesting the feasibility and stability of PEO–PPO–PEO polymers as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Feichin Hsiao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031,
Taiwan
| | - Po-Yang Huang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031,
Taiwan
| | - Takao Aoyagi
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo 101-8308,
Japan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031,
Taiwan
| | - Jiahorng Liaw
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031,
Taiwan
- Corresponding author. Fax: +886 2 23779873. E-mail address: (J. Liaw)
| |
Collapse
|
30
|
Morelli P, Bartolami E, Sakai N, Matile S. Glycosylated Cell‐Penetrating Poly(disulfide)s: Multifunctional Cellular Uptake at High Solubility. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Paola Morelli
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| | - Eline Bartolami
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| | - Stefan Matile
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH‐1211 Geneva 4 Switzerland
| |
Collapse
|
31
|
Fan M, Zeng Y, Ruan H, Zhang Z, Gong T, Sun X. Ternary Nanoparticles with a Sheddable Shell Efficiently Deliver MicroRNA-34a against CD44-Positive Melanoma. Mol Pharm 2017; 14:3152-3163. [PMID: 28759238 DOI: 10.1021/acs.molpharmaceut.7b00377] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Minmin Fan
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Polymer Materials
Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ye Zeng
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huitong Ruan
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of
Drug Targeting and Drug Delivery Systems, Ministry of Education, West
China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Agarwal NP, Matthies M, Gür FN, Osada K, Schmidt TL. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angew Chem Int Ed Engl 2017; 56:5460-5464. [DOI: 10.1002/anie.201608873] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 01/01/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Nayan P. Agarwal
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Michael Matthies
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Fatih N. Gür
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Kensuke Osada
- Department of Bioengineering; University of Tokyo; Japan
| | - Thorsten L. Schmidt
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
33
|
Agarwal NP, Matthies M, Gür FN, Osada K, Schmidt TL. Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201608873] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nayan P. Agarwal
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Michael Matthies
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Fatih N. Gür
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| | - Kensuke Osada
- Department of Bioengineering; University of Tokyo; Japan
| | - Thorsten L. Schmidt
- Center for Advancing Electronics Dresden (cfaed); Technische Universität Dresden; 01062 Dresden Germany
| |
Collapse
|
34
|
Srivastava S, Andreev M, Levi AE, Goldfeld DJ, Mao J, Heller WT, Prabhu VM, de Pablo JJ, Tirrell MV. Gel phase formation in dilute triblock copolyelectrolyte complexes. Nat Commun 2017; 8:14131. [PMID: 28230046 PMCID: PMC5331217 DOI: 10.1038/ncomms14131] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/01/2016] [Indexed: 01/03/2023] Open
Abstract
Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.
Collapse
Affiliation(s)
- Samanvaya Srivastava
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Marat Andreev
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Adam E. Levi
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - David J. Goldfeld
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jun Mao
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - William T. Heller
- Biology & Soft Matter Division, Oak Ridge National laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vivek M. Prabhu
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Matthew V. Tirrell
- Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Institute for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
35
|
Takeda KM, Yamasaki Y, Dirisala A, Ikeda S, Tockary TA, Toh K, Osada K, Kataoka K. Effect of shear stress on structure and function of polyplex micelles from poly(ethylene glycol)-poly(l-lysine) block copolymers as systemic gene delivery carrier. Biomaterials 2017; 126:31-38. [PMID: 28254691 DOI: 10.1016/j.biomaterials.2017.02.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 01/26/2023]
Abstract
Structural stability of polyplex micelles (PMs), prepared from plasmid DNA (pDNA) and poly(ethylene glycol)-b-poly(l-lysine) block catiomer (PEG-PLys), was evaluated in terms of their resistance against shear stress. When exposed to shear stress at magnitudes typically present in the blood stream, structural deterioration was observed in PMs owing to the partial removal of PEG-PLys strands. Eventually, impaired PEG coverage of the polyplex core led to accelerated degradation by nucleases, implying that structural deterioration by shear stress in blood stream may be a major cause of rapid clearance of PMs from blood circulation. To address this issue, introduction of disulfide crosslinking into the PM core was shown to be an efficient strategy, which successfully mitigated unfavorable effects of shear stress. Furthermore, improved in vivo blood retention profile and subsequently enhanced antitumor efficacy in systemic treatment of pancreatic adenocarcinoma were confirmed for the crosslinked PMs loaded with pDNA encoding an anti-angiogenic protein, suggesting that high stability under the shear stress during blood circulation may be a critical factor in systemically applicable gene delivery systems.
Collapse
Affiliation(s)
- Kaori M Takeda
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yuichi Yamasaki
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Anjaneyulu Dirisala
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Sorato Ikeda
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Theofilus A Tockary
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazuko Toh
- Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kensuke Osada
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| |
Collapse
|
36
|
Marciel AB, Chung EJ, Brettmann BK, Leon L. Bulk and nanoscale polypeptide based polyelectrolyte complexes. Adv Colloid Interface Sci 2017; 239:187-198. [PMID: 27418294 PMCID: PMC5205580 DOI: 10.1016/j.cis.2016.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 11/26/2022]
Abstract
Polyelectrolyte complexes (PECs) formed using polypeptides have great potential for developing new self-assembled materials, in particular for the development of drug and gene delivery vehicles. This review discusses the latest advancements in PECs formed using polypeptides as the polyanion and/or the polycation in both polyelectrolyte complexes that form bulk materials and block copolymer complexes that form nanoscale assemblies such as PEC micelles and other self-assembled structures. We highlight the importance of secondary structure formation between homogeneous polypeptide complexes, which, unlike PECs formed using other polymers, introduces additional intermolecular interactions in the form of hydrogen bonding, which may influence precipitation over coacervation. However, we still include heterogeneous complexes consisting of polypeptides and other polymers such as nucleic acids, sugars, and other synthetic polyelectrolytes. Special attention is given to complexes formed using nucleic acids as polyanions and polypeptides as polycations and their potential for delivery applications.
Collapse
Affiliation(s)
- Amanda B Marciel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Eun Ji Chung
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States; Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Blair K Brettmann
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States
| | - Lorraine Leon
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
37
|
Wu GH, Hsu SH. Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications. Colloids Surf B Biointerfaces 2016; 146:825-32. [DOI: 10.1016/j.colsurfb.2016.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/07/2016] [Accepted: 07/04/2016] [Indexed: 01/12/2023]
|
38
|
Liaw DJ, Yagudaeva E, Prostyakova A, Lazov M, Zybin D, Ischenko A, Zubov V, Chang CH, Huang YC, Kapustin D. Sorption behavior of polyaramides in relation to isolation of nucleic acids and proteins. Colloids Surf B Biointerfaces 2016; 145:912-921. [PMID: 27341305 DOI: 10.1016/j.colsurfb.2016.05.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/25/2016] [Indexed: 12/23/2022]
Abstract
The effect of chemical composition and morphology of the surface layers of new polyaramide-containing sorbents on the mechanism of selective sorption of nucleic acids and proteins was investigated as compared to the previously studied sorbents modified with fluoropolymers and polyaniline (high-throughput materials providing one-step isolation of DNA from biological mixtures). A series of silica-based sorbents modified with polyaramides having consistently varying structure and containing the set of "key" structural elements (aromatic units and nitrogen atoms in the backbone, fluorinated groups), and various donor and acceptor moieties was prepared. The chemical composition of the polymer coatings was evaluated by X-ray photoelectron spectroscopy. The surface morphology was studied by scanning probe microscopy. The sorption properties were investigated by passing the mixtures containing DNA, RNA and proteins of different nature through the cartridges containing the obtained sorbents. All the investigated materials weakly retain double-stranded DNA but effectively retain RNA and proteins. The sorption capacity of the sorbents depends on the protein nature. The observed sorption behavior was shown to be determined by the chemical structure and not by the morphology of the polymer coating. It was proposed that similarity of the sorption properties of the series of chemically different polymers could be determined by similar total input of different sorption mechanisms.
Collapse
Affiliation(s)
- Der-Jang Liaw
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Elena Yagudaeva
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna Prostyakova
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Michael Lazov
- Moscow Technological University, 119571 Moscow, Russia
| | - Dmitry Zybin
- Moscow Technological University, 119571 Moscow, Russia
| | | | - Vitaly Zubov
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; Moscow Technological University, 119571 Moscow, Russia
| | - Cheng-Hung Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Ying-Chi Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Dmitry Kapustin
- M.M. Shemyakin & Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia.
| |
Collapse
|
39
|
|
40
|
Flynn N, Topal ÇÖ, Hikkaduwa Koralege RS, Hartson S, Ranjan A, Liu J, Pope C, Ramsey JD. Effect of cationic grafted copolymer structure on the encapsulation of bovine serum albumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:524-31. [DOI: 10.1016/j.msec.2016.01.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/23/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022]
|
41
|
Liang K, Bae KH, Lee F, Xu K, Chung JE, Gao SJ, Kurisawa M. Self-assembled ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates for targeted gene delivery. J Control Release 2016; 226:205-16. [PMID: 26855049 DOI: 10.1016/j.jconrel.2016.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/08/2016] [Accepted: 02/03/2016] [Indexed: 11/25/2022]
Abstract
Nanosized polyelectrolyte complexes are attractive delivery vehicles for the transfer of therapeutic genes to diseased cells. Here we report the application of self-assembled ternary complexes constructed with plasmid DNA, branched polyethylenimine and hyaluronic acid-green tea catechin conjugates for targeted gene delivery. These conjugates not only stabilize plasmid DNA/polyethylenimine complexes via the strong DNA-binding affinity of green tea catechin, but also facilitate their transport into CD44-overexpressing cells via receptor-mediated endocytosis. The hydrodynamic size, surface charge and physical stability of the complexes are characterized. We demonstrate that the stabilized ternary complexes display enhanced resistance to nuclease attack and polyanion-induced dissociation. Moreover, the ternary complexes can efficiently transfect the difficult-to-transfect HCT-116 colon cancer cell line even in serum-supplemented media due to their enhanced stability and CD44-targeting ability. Confocal microscopic analysis demonstrates that the stabilized ternary complexes are able to promote the nuclear transport of plasmid DNA more effectively than binary complexes and hyaluronic acid-coated ternary complexes. The present study suggests that the ternary complexes stabilized with hyaluronic acid-green tea catechin conjugates can be widely utilized for CD44-targeted delivery of nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Kun Liang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | - Ki Hyun Bae
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | - Keming Xu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | - Joo Eun Chung
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | - Shu Jun Gao
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 138669, Singapore.
| |
Collapse
|
42
|
Lim C, Youn YS, Lee KS, Hoang NH, Sim T, Lee ES, Oh KT. Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers. Int J Nanomedicine 2016; 11:703-13. [PMID: 26955270 PMCID: PMC4768899 DOI: 10.2147/ijn.s99271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A polyelectrolyte ionomer complex (PIC) composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol)-poly(lactic acid)-poly(ethylene imine) triblock copolymer (PEG-PLA-PEI) and a poly(aspartic acid) (P[Asp]) homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp) blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp) blocks (C/A ratio). The doxorubicin (dox)-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8) increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy.
Collapse
Affiliation(s)
- Chaemin Lim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Yu Seok Youn
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, South Korea
- Department of Pharmaceutical Sciences, School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Kyung Soo Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Ngoc Ha Hoang
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Taehoon Sim
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, Gyeonggi-do, South Korea
| | - Kyung Taek Oh
- Department of Pharmaceutical Sciences, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
43
|
Suzuki Y, Okuda T, Okamoto H. Development of New Formulation Dry Powder for Pulmonary Delivery Using Amino Acids to Improve Stability. Biol Pharm Bull 2016; 39:394-400. [DOI: 10.1248/bpb.b15-00822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Borase T, Fox EK, Haddassi FE, Cryan SA, Brougham DF, Heise A. Glyco-copolypeptide grafted magnetic nanoparticles: the interplay between particle dispersion and RNA loading. Polym Chem 2016. [DOI: 10.1039/c6py00250a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysine-glyco-copolypeptide grafted superparamagnetic iron oxide nanoparticles were prepared through N-carboxyanhydride (NCA) copolymerization. Statistical and block copolymer arrangements were obtained while keeping the overal composition constant.
Collapse
Affiliation(s)
- T. Borase
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
| | - E. K. Fox
- National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Fadwa El Haddassi
- National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - S.-A. Cryan
- School of Pharmacy
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
- Tissue Engineering Research Group
| | - D. F. Brougham
- School of Chemistry
- University College Dublin
- Dublin 4
- Ireland
| | - A. Heise
- School of Chemical Sciences
- Dublin City University
- Dublin 9
- Ireland
- Department of Pharmaceutical and Medicinal Chemistry
| |
Collapse
|
45
|
Okuda T, Suzuki Y, Kobayashi Y, Ishii T, Uchida S, Itaka K, Kataoka K, Okamoto H. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying. Pharmaceutics 2015; 7:233-54. [PMID: 26343708 PMCID: PMC4588198 DOI: 10.3390/pharmaceutics7030233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022] Open
Abstract
In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us.
Collapse
Affiliation(s)
- Tomoyuki Okuda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Yumiko Suzuki
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Yuko Kobayashi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Takehiko Ishii
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan.
| | - Satoshi Uchida
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Keiji Itaka
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazunori Kataoka
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan.
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hirokazu Okamoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
46
|
Aono R, Nomura K, Yuba E, Harada A, Kono K. Gene expression of ternary complexes through the compaction of nanofiber-polyplexes by mixing with lipofectamine. Biomater Sci 2015. [PMID: 26222595 DOI: 10.1039/c5bm00081e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the development of an effective nonviral gene vector, ternary complexes were prepared through the compaction of nanofiber-polyplexes. These were formed using pDNA and a head-tail type polycation bearing a multi-arm poly(ethylene glycol) head and a poly(l-lysine) tail, and this strategy was based on the crowding effect of poly(ethylene glycol) in the polyplex. Mixing was carried out using a cationic lipid (lipofectamine), which is a commercially available transfection reagent. Through ternary complex formation, the elongated morphology of nanofiber-polyplexes was found to compact into a spherical shape with an average diameter of ca. 100 nm. Accompanying ternary complex formation, the compaction of the nanofiber-polyplexes can improve cellular uptake and helps the ternary complex to retain its smooth transcription/translation process, which is characteristic of nanofiber-polyplexes. As a result, ternary complexes prepared at an optimal mixing ratio exhibit a high transfection efficiency compared with lipofectamine lipoplexes.
Collapse
Affiliation(s)
- Ryuta Aono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | |
Collapse
|
47
|
Tappertzhofen K, Beck S, Montermann E, Huesmann D, Barz M, Koynov K, Bros M, Zentel R. Bioreducible Poly-l-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT-Polymerization as Efficient Polyplex-Transfection Reagents. Macromol Biosci 2015. [DOI: 10.1002/mabi.201500212] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kristof Tappertzhofen
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Simone Beck
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
- MAINZ Graduate School of Excellence (Materials Science in Mainz); Johannes Gutenberg-University; Staudingerweg 9 55128 Mainz Germany
| | - Evelyn Montermann
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - David Huesmann
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Matthias Barz
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research; Ackermannweg 10 55128 Mainz Germany
| | - Matthias Bros
- Department of Dermatology; University Medical Center of the Johannes Gutenberg-University; Langenbeckstrasse 1 55131 Mainz Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry; Johannes Gutenberg-University; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
48
|
Tappertzhofen K, Weiser F, Montermann E, Reske-Kunz A, Bros M, Zentel R. Poly-L-Lysine-Poly[HPMA] Block Copolymers Obtained by RAFT Polymerization as Polyplex-Transfection Reagents with Minimal Toxicity. Macromol Biosci 2015; 15:1159-73. [PMID: 25974845 DOI: 10.1002/mabi.201500022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/24/2015] [Indexed: 12/28/2022]
Abstract
Herein we describe the synthesis of poly-L-lysine-b-poly[N-(2-hydroxypropyl)-metha-crylamide)] (poly[HPMA]) block copolymers by combination of solid phase peptide synthesis or polymerization of α-amino acid-N-carboxy-anhydrides (NCA-polymerization) with the reversible addition-fragmentation chain transfer polymerization (RAFT). In the presence of p-DNA, these polymers form polyplex micelles with a size of 100-200 nm in diameter (monitored by SDS-PAGE and FCS). Primary in vitro studies with HEK-293T cells reveal their cellular uptake (FACS studies and CLSM) and proof successful transfection with efficiencies depending on the length of polylysine. Moreover, these polyplexes display minimal toxicity (MTT-assay and FACS-measurements) featuring a p[HPMA] corona for efficient extracellular shielding and the potential ligation with antibodies.
Collapse
Affiliation(s)
- Kristof Tappertzhofen
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Franziska Weiser
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Angelika Reske-Kunz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131 Mainz, Germany.
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
49
|
Asayama S, Nohara A, Negishi Y, Kawakami H. Plasmid DNA Mono-Ion Complex Stabilized by Hydrogen Bond for In Vivo Diffusive Gene Delivery. Biomacromolecules 2015; 16:1226-31. [DOI: 10.1021/acs.biomac.5b00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shoichiro Asayama
- Department
of Applied Chemistry, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Atsushi Nohara
- Department
of Applied Chemistry, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yoichi Negishi
- Department
of Drug Delivery and Molecular Biopharmaceutics, Tokyo University of Pharmacy and Life Sciences, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroyoshi Kawakami
- Department
of Applied Chemistry, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
50
|
Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery. Biomaterials 2015; 45:99-114. [DOI: 10.1016/j.biomaterials.2014.12.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/07/2014] [Accepted: 12/20/2014] [Indexed: 12/22/2022]
|