1
|
Rojczyk E, Pałasz A, Wiaderkiewicz R. Effect of short and long-term treatment with antipsychotics on orexigenic/anorexigenic neuropeptides expression in the rat hypothalamus. Neuropeptides 2015; 51:31-42. [PMID: 25888224 DOI: 10.1016/j.npep.2015.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Among numerous side effects of antipsychotic drugs (neuroleptics), one of the leading problems is a significant weight gain caused by disturbances in energy homeostasis. The hypothalamus is considered an important target for neuroleptics and contains some neuronal circuits responsible for food intake regulation, so we decided to study which hypothalamic signaling pathways connected with energy balance control are modified by antipsychotic drugs of different generations. We created an expression profile of different neuropeptides after single-dose and chronic neuroleptic administration. Experiments were carried out on adult male Sprague-Dawley rats injected intraperitoneally for 1 day or for 28 days by three neuroleptics: olanzapine, chlorpromazine and haloperidol. Hypothalami were isolated in order to perform PCR reactions and also whole brains were sliced for immunohistochemical analysis. We assessed the expression of orexigenic/anorexigenic neuropeptides and their receptors--neuropeptide Y (NPY), NPY receptor type 1 (Y1R), preproorexin (PPOX), orexin A, orexin receptor type 1 (OX1R) and 2 (OX2R), nucleobindin 2 (NUCB2), nesfatin-1, proopiomelanocortin (POMC), alpha-melanotropin (α-MSH) and melanocortin receptor type 4 (MC4R)--both on the mRNA and protein levels. We have shown that antipsychotics of different generations administered chronically have the ability to upregulate PPOX, orexin A and Y1R expression with little or no effect on orexigenic receptors (OX1R, OX2R) and NPY. Interestingly, antipsychotics also increased the level of some anorexigenic factors (POMC, α-MSH and MC4R), but at the same time strongly downregulated NUCB2 and nesfatin-1 signaling--a newly discovered neuropeptide known as a food-intake inhibiting factor. Our results may contribute to a better understanding of mechanisms responsible for antipsychotics' side effects. They also underline the complex nature of interactions between classical monoamine receptors and hypothalamic peptidergic pathways, which has potential clinical applications.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland.
| | - Artur Pałasz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| | - Ryszard Wiaderkiewicz
- Department of Histology, Faculty of Medicine in Katowice, Medical University of Silesia, 18 Medyków Street, 40-752 Katowice, Poland
| |
Collapse
|
2
|
Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One 2012; 7:e33548. [PMID: 22438946 PMCID: PMC3306411 DOI: 10.1371/journal.pone.0033548] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/11/2012] [Indexed: 12/30/2022] Open
Abstract
Background/Aim Second generation antipsychotics (SGAs) are used to treat schizophrenia but can cause serious metabolic side-effects, such as obesity and diabetes. This study examined the effects of low to high doses of olanzapine on appetite/metabolic regulatory signals in the hypothalamus and brainstem to elucidate the mechanisms underlying olanzapine-induced obesity. Methodology/Results Levels of pro-opiomelanocortin (POMC), neuropeptide Y (NPY) and glutamic acid decarboxylase (GAD65, enzyme for GABA synthesis) mRNA expression, and cannabinoid CB1 receptor (CB1R) binding density (using [3H]SR-141716A) were examined in the arcuate nucleus (Arc) and dorsal vagal complex (DVC) of female Sprague Dawley rats following 0.25, 0.5, 1.0 or 2.0 mg/kg olanzapine or vehicle (3×/day, 14-days). Consistent with its weight gain liability, olanzapine significantly decreased anorexigenic POMC and increased orexigenic NPY mRNA expression in a dose-sensitive manner in the Arc. GAD65 mRNA expression increased and CB1R binding density decreased in the Arc and DVC. Alterations to neurotransmission signals in the brain significantly correlated with body weight and adiposity. The minimum dosage threshold required to induce weight gain in the rat was 0.5 mg/kg olanzapine. Conclusions Olanzapine-induced weight gain is associated with reduced appetite-inhibiting POMC and increased NPY. This study also supports a role for the CB1R and GABA in the mechanisms underlying weight gain side-effects, possibly by altering POMC transmission. Metabolic dysfunction can be modelled in the female rat using low, clinically-comparable olanzapine doses when administered in-line with the half-life of the drug.
Collapse
Affiliation(s)
- Katrina Weston-Green
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
| | - Chao Deng
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Wollongong, Australia
- Schizophrenia Research Institute, Darlinghurst, Australia
- * E-mail:
| |
Collapse
|
3
|
Roerig JL, Steffen KJ, Mitchell JE. Atypical antipsychotic-induced weight gain: insights into mechanisms of action. CNS Drugs 2011; 25:1035-59. [PMID: 22133326 DOI: 10.2165/11596300-000000000-00000] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prescriptions for second-generation antipsychotics (SGAs) have surpassed those for first-generation agents in the treatment of schizophrenia and bipolar disorder. While SGAs have the benefit of a much reduced risk of causing movement disorders, they have been associated with weight gain and metabolic effects. These adverse reactions are not uncommon, and threaten to have a significant impact on the patient's health over the long-term treatment that the patient requires. Currently, the aetiology of these effects is not known. This article reviews the data exploring the weight gain phenomenon. The literature was reviewed from searches of PubMed and the references of major articles in the field. The SGAs present a heterogeneous risk for weight gain. In addition, different individuals receiving the same drug can exhibit substantially different weight changes. This pattern suggests that a group of factors are associated with the weight gain phenomenon rather than a single mechanism. Coupled with the genetic profile that the patient brings to the treatment, the risk for SGA-induced weight gain will be different for different drugs and different individuals. Targets for exploration of the weight gain phenomenon include receptor interactions involving serotonin, histamine, dopamine, adrenergic, cannabinoid and muscarinic receptors. The association of SGA-induced weight gain and the role of orexigenic and anorexigenic peptides are reviewed. Also, a brief discussion of genetic factors associated with SGA-induced weight gain is presented, including that of the serotonin 5-HT(2C) receptor gene (HTR2C) and the cannabinoid 1 receptor gene (CNR1). The most promising data associated with SGA-induced weight gain include investigations of the histamine H(1), 5-HT(2A), 5-HT(2C), muscarinic M(3) and adrenergic receptors. In addition, work in the genetic area promises to result in a better understanding of the variation in risk associated with different individuals.
Collapse
Affiliation(s)
- James L Roerig
- Department of Clinical Neuroscience, University of North Dakota School of Medicine and Health Sciences, Fargo, ND, USA
| | | | | |
Collapse
|
4
|
Hyperphagia and increased meal size are responsible for weight gain in rats treated sub-chronically with olanzapine. Psychopharmacology (Berl) 2009; 203:693-702. [PMID: 19052729 DOI: 10.1007/s00213-008-1415-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Atypical antipsychotic-induced weight gain is a significant impediment in the treatment of schizophrenia. OBJECTIVES In a putative model of antipsychotic drug-induced weight gain, we investigated the effects of sub-chronic olanzapine on body weight, meal patterns, the expression of genes encoding for hypothalamic feeding-related neuropeptides and the contribution of hyperphagia to olanzapine-induced weight gain in rats. MATERIALS AND METHODS In experiment 1, female rats received either olanzapine (1 mg/kg, p.o.) or vehicle, twice daily for 7 days, while meal patterns were recorded. At the end of the treatment regimen, we measured the levels of hypothalamic messenger RNAs (mRNAs) encoding neuropeptide-Y (NPY), hypocretin/orexin (HCRT), melanin concentrating hormone and pro-opiomelanocortin. NPY and HCRT mRNA levels were also assessed in a separate cohort of female rats treated acutely with olanzapine (1 mg/kg, p.o.). In experiment 2, we investigated the effect of a pair-feeding paradigm on sub-chronic (1 mg/kg, p.o.) olanzapine-induced weight gain. RESULTS In experiment 1, sub-chronic olanzapine increased body weight, food intake and meal size. Hypothalamic neuropeptide mRNA levels were unchanged after both acute and sub-chronic olanzapine treatment. In experiment 2, the restriction of food intake to the level of vehicle-treated controls abolished the sub-chronic olanzapine-induced increase in body weight. CONCLUSIONS Hyperphagia mediated by drug-induced impairments in satiety (as evidenced by increased meal size) is a key requirement for olanzapine-induced weight gain in this paradigm. However, olanzapine-induced hyperphagia and weight gain may not be mediated via alterations in the expression of the feeding-related hypothalamic neuropeptides examined in this study.
Collapse
|
5
|
Meena H, Nakhate KT, Kokare DM, Subhedar NK. GABAA receptors in nucleus accumbens shell mediate the hyperphagia and weight gain following haloperidol treatment in rats. Life Sci 2009; 84:156-63. [DOI: 10.1016/j.lfs.2008.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/26/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
|
6
|
Meurs A, Clinckers R, Ebinger G, Michotte Y, Smolders I. Sigma 1 receptor-mediated increase in hippocampal extracellular dopamine contributes to the mechanism of the anticonvulsant action of neuropeptide Y. Eur J Neurosci 2007; 26:3079-92. [PMID: 18005069 DOI: 10.1111/j.1460-9568.2007.05911.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent anticonvulsant properties of neuropeptide Y (NPY) are generally attributed to a Y2 receptor-mediated inhibition of glutamatergic synaptic transmission. Independent studies have shown that NPY increases brain dopamine content, possibly via interaction with sigma 1 receptors. Recently, we showed that increased extracellular hippocampal dopamine attenuates pilocarpine-induced limbic seizures via activation of hippocampal D2 receptors. Our aim in this study was to elucidate the role of increased hippocampal dopamine in the mechanism of the anticonvulsant action of NPY and to investigate the involvement of Y2 and sigma 1 receptors in this process. Limbic seizures were evoked in freely moving rats by intrahippocampal administration of pilocarpine via a microdialysis probe. NPY was administered intracerebroventricularly, intrahippocampally via the microdialysis probe, or coadministered intrahippocampally with the D2 receptor antagonist remoxipride, the Y2 receptor antagonist BIIE0246 or the sigma 1 receptor antagonist BD1047. Changes in hippocampal extracellular dopamine were monitored, and behavioural changes indicative of seizure activity were scored. Intracerebroventricular (10 nmol/3 microL) and intrahippocampal (20-50 microm) NPY administration increased hippocampal dopamine and attenuated pilocarpine-induced seizures. Hippocampal D2 receptor blockade (4 microm remoxipride) reversed the anticonvulsant effect of NPY. Y2 receptor blockade (1 microm BIIE0246) reversed the anticonvulsant effect of NPY but did not prevent NPY-induced increases in hippocampal dopamine. Sigma 1 receptor blockade (10 microm BD1047) abolished NPY-induced increases in hippocampal dopamine and reversed the anticonvulsant effect of NPY. Our results indicate that NPY-induced increases in hippocampal dopamine are mediated via sigma 1 receptors and contribute to the anticonvulsant effect of NPY via increased activation of hippocampal D2 receptors. This novel mechanism of anticonvulsant action of NPY is separate from, and may be complementary to, the well established Y2 receptor-mediated inhibition of hippocampal excitability.
Collapse
Affiliation(s)
- Alfred Meurs
- Department of Neurology, U. Z. Brussel, Laarbeeklaan 101,1090 Brussels, Belgium
| | | | | | | | | |
Collapse
|
7
|
Cao G, Gardner A, Westfall TC. Mechanism of dopamine mediated inhibition of neuropeptide Y release from pheochromocytoma cells (PC12 cells). Biochem Pharmacol 2007; 73:1446-54. [PMID: 17286966 PMCID: PMC2709075 DOI: 10.1016/j.bcp.2007.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/21/2006] [Accepted: 01/03/2007] [Indexed: 12/30/2022]
Abstract
In rat pheochromocytoma (PC12) cells the dopamine D(2) receptor agonists apomorphine (APO) and n-propylnorapomorphine (NPA) produced a concentration dependent inhibition of K(+)-evoked neuropeptide Y release (NPY-ir). The effect of APO was blocked by the dopamine D(2)-receptor antagonist, eticlopride, but not the D(1)/D(3) or the D(4)/D(2) antagonists, SCH23390 or clozapine, respectively. The D(1)/D(5) receptor agonist, SKF38393 or the D(3) agonists PD128907 and 7-OH DPAT had no effect. Selective N and L-type voltage gated Ca(2+) channel blockers, omega-conotoxin GVIa (Ctx-GVIa) and nifedipine, respectively, produced a concentration dependent inhibition of NPY-ir release but were not additive with APO. The Ca(2+)/calmodulin-dependent protein kinase (CaM kinase) II inhibitor KN-62 produced a concentration-dependent inhibition of NPY-ir release but the combination of KN-62 and APO produced no further inhibition. PMA-mediated protein kinase C stimulation significantly increased both basal and K(+)-evoked release of NPY-ir, and in the presence of PMA APO had no inhibitory effect. The PKC antagonist, chelerythrine, inhibited K(+)-evoked NPY-ir release but was not additive with APO. Neither forskolin-mediated adenylate cyclase activation and the active cAMP analog Sp-cAMPS, nor the adenylate cyclase inhibitor SQ 22536, and the competitive inhibitor of cAMP-dependent protein kinases Rp-cAMPS, had any significant effect on K(+)-evoked NPY-ir release. This suggests the inhibitory effect of APO on K(+)-evoked release of NPY-ir from PC12 cells is most likely mediated through activation of dopamine D(2) receptors leading to direct inhibition of N and L-type voltage gated Ca(2+) channels, or indirect inhibition of PKC, both of which would reduce [Ca(2+)](i) and inactivate CaM kinase.
Collapse
Affiliation(s)
| | - Alice Gardner
- Corresponding author at: Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy - Worcester, 19 Foster St., Worcester, MA 01608, United States, Tel: + 1 508 373 5665; FAX: + 1 508 890 5618, Email address:
| | | |
Collapse
|
8
|
Kirk SL, Cahir M, Reynolds GP. Clozapine, but not haloperidol, increases neuropeptide Y neuronal expression in the rat hypothalamus. J Psychopharmacol 2006; 20:577-9. [PMID: 16401646 DOI: 10.1177/0269881106061199] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many atypical antipsychotic drugs, such as clozapine, can induce significant weight gain which can have serious implications for drug compliance and morbidity. Food intake and weight gain are regulated primarily by the hypothalamus; the arcuate nucleus (ARC) of the hypothalamus is the region initially mediating the effects of circulating hormones on food intake. Neuropeptide Y (NPY) is an important hypothalamic peptide involved in body weight regulation. Immunohistochemical staining of NPY in the ARC was carried out in male Sprague-Dawley rats treated with haloperidol (1.5 mg/kg, i.p.) or clozapine (25 mg/kg, i.p.) for 3 weeks. Clozapine, but not haloperidol, produced an increase in NPY immunoreactivity in the ARC, suggesting that effects on NPY may be involved in increases in body weight following clozapine treatment.
Collapse
Affiliation(s)
- Shona L Kirk
- Division of Psychiatry and Neuroscience, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
9
|
Cannon CM, Abdallah L, Tecott LH, During MJ, Palmiter RD. Dysregulation of striatal dopamine signaling by amphetamine inhibits feeding by hungry mice. Neuron 2005; 44:509-20. [PMID: 15504330 DOI: 10.1016/j.neuron.2004.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 07/01/2004] [Accepted: 09/16/2004] [Indexed: 01/06/2023]
Abstract
Amphetamine (AMPH) releases monoamines, transiently stimulates locomotion, and inhibits feeding. Using a genetic approach, we show that mice lacking dopamine (DA-deficient, or DD, mice) are resistant to the hypophagic effects of a moderate dose of AMPH (2 microg/g) but manifest normal AMPH-induced hypophagia after restoration of DA signaling in the caudate putamen by viral gene therapy. By contrast, AMPH-induced hypophagia in response to the same dose of AMPH is not blunted in mice lacking the ability to make norepinephrine and epinephrine (Dbh(-/-)), dopamine D(2) receptors (D2r(-/-)), dopamine D(1) receptors (D1r(-/-)), serotonin 2C receptors (Htr2c(-/Y)), neuropeptide Y (Npy(-/-)), and in mice with compromised melanocortin signaling (A(y)). We suggest that, at this moderate dose of AMPH, dysregulation of striatal DA is the primary cause of AMPH-induced hypophagia and that regulated striatal dopaminergic signaling may be necessary for normal feeding behaviors.
Collapse
MESH Headings
- Amphetamine/pharmacology
- Analysis of Variance
- Animals
- Behavior, Animal
- Corpus Striatum/drug effects
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Dopamine beta-Hydroxylase/deficiency
- Dopamine beta-Hydroxylase/genetics
- Dose-Response Relationship, Drug
- Eating/drug effects
- Feeding Behavior/drug effects
- Feeding and Eating Disorders/chemically induced
- Feeding and Eating Disorders/genetics
- Feeding and Eating Disorders/physiopathology
- Feeding and Eating Disorders/therapy
- Genetic Therapy/methods
- Hunger/drug effects
- Hunger/physiology
- Levodopa/pharmacology
- Locomotion/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuropeptide Y/deficiency
- Neuropeptide Y/genetics
- Receptor, Serotonin, 5-HT2C
- Receptors, Dopamine D1/deficiency
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D2/deficiency
- Receptors, Dopamine D2/genetics
- Time Factors
- Tyrosine 3-Monooxygenase/deficiency
- Tyrosine 3-Monooxygenase/genetics
Collapse
Affiliation(s)
- Claire Matson Cannon
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
10
|
Khan HA. CalcDose: a software for drug dosage conversion using metabolically active mass of animals. Drug Chem Toxicol 2003; 26:51-58. [PMID: 12643040 DOI: 10.1081/dct-120017557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This Visual Basic computer program has been developed for drug dosage conversions using metabolically active mass (MAM) of the animals. The two body weights (one with known dosage and the other, for which the dosage has to be calculated) and the known dosage are entered in the respective input boxes and the appropriate units are selected using the option buttons. The program displays the report in the form of both the animals' body weights and the respective dosages in milligram per kilogram body weight as well as the total actual doses in milligrams. The object oriented layout, flexible data entry and comprehensive report format render the CalcDose software a convenient and handy tool for dosage conversions.
Collapse
Affiliation(s)
- Haseeb Ahmad Khan
- Department of Medical Research, Research Center, Armed Forces Hospital, P.O. Box 7897 (T-835), Riyadh 11159, Saudi Arabia.
| |
Collapse
|
11
|
Kaur G, Kulkarni SK. Studies on modulation of feeding behavior by atypical antipsychotics in female mice. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26:277-85. [PMID: 11817504 DOI: 10.1016/s0278-5846(01)00266-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study was to examine the effects of different doses of typical antipsychotics, chlorpromazine (0.25-1 mg/kg) and haloperidol (0.25-1 mg/kg), and atypical antipsychotics, clozapine (0.5-2 mg/kg), olanzapine (0.25-1 mg/kg), risperidone (0.5-2 mg/kg), sulpiride (10-40 mg/kg) and dopamine D1 antagonist, SCH 23390 (0.25-1 mg/kg) on feeding behavior at different time intervals after acute administration. The study further investigated the central dopamine and serotonergic receptor involvement in clozapine-induced hyperphagia using SKF 38393, quinpirole and quipazine. Then, the authors also examined the effect of subchronic treatment for 21 days with fluoxetine on clozapine-induced hyperphagia and modulation of body weight and fat pad weights. The feeding behavior was assessed in nondeprived mice by presenting the palatable chow to different groups of mice in glass petri dishes and recording the food consumed at different time intervals. After acute administration, significant (P<.05) increase in food intake was observed at different time intervals with different doses of both typical and atypical antipsychotics. Further, clozapine-induced hyperphagia was significantly (P<.05) reversed after treatment with SKF 38393 (dopamine D1 agonist), quinpirole (dopamine D2 agonist) and quipazine (5-HT1B, 5-HT2 and 5-HT3 agonist). In subchronic study, treatment with fluoxetine (10 mg/kg) significantly (P<.05) antagonized the increase in body weight and food intake induced by clozapine (2 mg/kg). The current investigations underscore the reported increases in food intake and body weight gain observed with antipsychotics. The study further confirms the involvement of dopamine D1, D2 and serotonergic receptor involvement in clozapine-mediated hyperphagia. Further, the serotonergic agents may prove useful to counteract antipsychotic-induced obesity.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
12
|
Pawłowski J, Kmieciak-Kołada K, Obuchowicz E, Krysiak R, Herman ZS. Effect of substituted benzamides on feeding and hypothalamic neuropeptide Y-like immunoreactivity (NPY-LI) in rats. Neuropeptides 2001; 35:204-10. [PMID: 12030803 DOI: 10.1054/npep.2002.0879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The study was conducted: (i) to evaluate the effects of three substituted benzamides on feeding behaviour in rats with free access to food and in those with access to food limited either to the light or to the dark phase of the diurnal cycle; and (ii) to determine whether the hypothalamic neuropeptide Y (NPY) system is involved in the action of these drugs on feeding. In free-feeding rats, a single dose of eticlopride (1 mg/kg, i.p.) or raclopride (1 mg/kg, i.p.) decreased 24-h food intake, whereas remoxipride (3 mg/kg, i.p.) produced no effect. Single doses of eticlopride and raclopride but not of remoxipride decreased hypothalamic neuropeptide Y-like immunoreactivity (NPY-LI). Eticlopride administered once daily for 14 days decreased both food intake and hypothalamic NPY-LI. When given for 14 days, raclopride and remoxipride decreased food intake in rats with access to food in the dark (19.00-07.00) but not in thelight (07.00-19.00) phase of the diurnal cycle; both these compounds decreased hypothalamic NPY-LI only in the former group of rats. The results suggest that the effects of substituted benzamides on feeding behaviour depend on the drug and the time of administration and that these effects are related to the altered function of the hypothalamic NPY system.
Collapse
Affiliation(s)
- J Pawłowski
- Department of Clinical Pharmacology, Medical University of Silesia, Katowice, Poland
| | | | | | | | | |
Collapse
|
13
|
Smiałowska M, Bajkowska M, Heilig M, Obuchowicz E, Turchan J, Maj M, Przewłocki R. Pharmacological studies on the monoaminergic influence on the synthesis and expression of neuropeptide Y and corticotropin releasing factor in rat brain amygdala. Neuropeptides 2001; 35:82-91. [PMID: 11384203 DOI: 10.1054/npep.2001.0849] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our earlier findings concerning the 6-OHDA lesion suggested dopaminergic regulation of neuropeptide Y (NPY) and corticotropin releasing factor (CRF) synthesis and expression in amygdala neurons. On the other hand, some other studies indicated that not only dopamine, but also other monoamines may modulate peptidergic neurons. Therefore the present study examined the effect of pharmacological deprivation of monoaminergic influences on NPY and CRF neurons in rat brain amygdala by means of in situ hybridization and immunohistochemical methods. It was found that NPY mRNA expression in the amygdala decreased after 24h blockade of dopaminergic D1 and D2 receptors, by haloperidol or SCH23390. At the same time the NPY-peptide expression measured immunohistochemically was not significantly changed. A prolonged, 14-day, blockade of dopaminergic receptors by haloperidol induced an opposite effect, an increase in NPY mRNA expression. Impairment of the serotonergic transmission by blockade of 5-HT synthesis using p-chlorophenylalanine, as well as attenuation of the noradrenergic transmission by NA depletion from terminals by DSP4, did not significantly change NPY mRNA expression or the mean number of NPY-immunoreactive neurons in the amygdala. Only a decrease in the staining intensity observed as a decreased number of darkly stained neurons was found after both compounds. Neither the dopamine receptor blockade nor the impairment of serotonergic or noradrenergic transmission changed CRF mRNA or the peptide expression in the amygdala. The obtained results indicate that in rat brain amygdala, of all the monoamines, dopamine seems to be the most important modulator of NPY biosynthesis and expression. The effect of blockade of dopaminergic receptors is biphasic: first it induces a decrease and then - after prolonged treatment an increase in NPY mRNA. Serotonergic and noradrenergic systems in the amygdala seem to be connected with regulation of NPY release rather than the biosynthesis.
Collapse
Affiliation(s)
- M Smiałowska
- Department of Neurobiology, Institute of Pharmacology, Kraków, Poland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kask A, Harro J. Inhibition of amphetamine- and apomorphine-induced behavioural effects by neuropeptide Y Y(1) receptor antagonist BIBO 3304. Neuropharmacology 2000; 39:1292-302. [PMID: 10760371 DOI: 10.1016/s0028-3908(99)00199-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuropeptide Y (NPY) has an important role in the regulation of stress responses and feeding behaviour. There is evidence that some effects elicited by NPY occur due to modulation of action of regular neurotransmitters. The main objective of the present study was to test behavioural effects of the novel neuropeptide Y (NPY) Y(1) receptor antagonist (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N(2)-(diphe nylacetyl)-argininamide trifluoroacetate (BIBO 3304) on dopamine-dependent behaviour. Intracerebroventricular administration of BIBO 3304 (1, 10, 50 nmol) had no effect on locomotor activity as measured by number of rearings and number of squares visited in an open field test in rats, but at 50 nmol dose defecation was significantly increased. BIBO 3304 (10 nmol) reduced amphetamine-induced increases in horizontal and vertical activity whereas its S-configurated enantiomer BIBO 3457 was inactive. In an open field test BIBO 3304 (10 nmol) inhibited purposeless running in rats sensitized to direct dopaminergic agonist apomorphine (0.5 mg/kg, s.c.). BIBO 3304 (10 nmol but not 1 nmol, i.c.v.) reduced fighting in apomorphine-induced aggression paradigm. Apomorphine-induced aggression was reduced by another, structurally similar, but less potent NPY Y(1) receptor antagonist BIBP 3226 (10 nmol, i.c.v.). A lower dose of BIBP 3226 (1 nmol, i.c.v.) was inactive. Concomitant administration of BIBO 3304 (10 nmol) with low doses of apomorphine (0.5 mg/kg s.c.) over the course of 10 days failed to prevent the development of apomorphine-induced aggressiveness. These data demonstrate that behavioural response to indirectly (amphetamine) and directly (apomorphine) acting dopaminergic stimulants is inhibited by NPY Y(1) receptor antagonists and suggest that NPY Y(1) receptor activation might be important in pathophysiology of disorders associated with hyperactivity of dopaminergic pathways, such as psychosis, schizophrenia and drug abuse. We propose that the effects of BIBO 3304 on amphetamine/apomorphine-induced locomotion and apomorphine-induced aggressiveness are due to modulation of postsynaptic dopaminergic responses rather than direct effects of NPY Y(1) receptor antagonists on dopamine or NPY release.
Collapse
Affiliation(s)
- A Kask
- Department of Pharmacology, Faculty of Medicine, University of Tartu, Ravila 19, 50411, Tartu, Estonia.
| | | |
Collapse
|
15
|
Abstract
Long-term administration of typical and atypical antipsychotic drugs (AP) induces excessive weight gain which afflicts up to 50% of patients, impairs health and interferes with treatment compliance. Basic and clinical research has shown that AP may affect body weight through diverse mechanisms. Increased appetite is probably related to the interaction of AP with neuronal receptors to dopamine, serotonin and histamine. Additional metabolic-endocrine disruption of weight regulation may be related to the effects of AP-induced hyperprolactinaemia on gonadal-adrenal steroids and insulin sensitivity. In humans, programmed physical activity, dietary restriction, anorectic agents, and drugs that counteract hyperprolactinaemia have been shown to be successful in a limited number of studies. Two novel strategies could expand the available therapeutic options. First, in preclinical experiments in female rats the estradiol antagonist/agonist drug tamoxifen or estradiol itself have been shown to completely prevent the obesity provoked by the AP sulpiride, and to induce an endocrine-metabolic milieu that seems to counteract AP-induced obesity. Secondly, it has also been shown that oral antihyperglycaemic agents such as metformin may decrease body weight and counteract insulin resistance and hyperinsulinaemia which is correlated with several metabolic abnormalities in obese subjects. Lastly, estradiol replacement, tamoxifen and/or antihyperglycaemic agents are not devoid of significant side-effects, and these drugs have not been tested in obese psychiatric patients. Therefore, further research is needed before their clinical use may be recommended.
Collapse
Affiliation(s)
- T Baptista
- Department of Physiology, Medical School, Universidad de Los Andes, Mérida, Venezuela
| |
Collapse
|
16
|
Obuchowicz E, Turchan J. Influence of typical and atypical antipsychotics on neuropeptide Y-like immunoreactivity and NPY mRNA expression in rat striatum. Neuropeptides 1998; 32:473-80. [PMID: 9845010 DOI: 10.1016/s0143-4179(98)90074-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Striatal neuropeptide Y-like immunoreactivity (NPY-LI) levels were investigated in naive rats after acute, subchronic (14 days) or chronic (28 days) intraperitoneal (i.p.) treatment with chlorpromazine (2 or 10mg/kg), haloperidol (0.5 or 2 mg/kg), (+/-)sulpiride (50 or 100 mg/kg) or clozapine (10 or 25 mg/kg), and in chronically treated rats after 8-day drug withdrawal. The most pronounced changes in NPY-LI levels were found 24 h after acute chlorpromazine or haloperidol administration (a decrease) and after withdrawal of chlorpromazine, haloperidol or sulpiride (an increase). The effect of clozapine on NPY-LI differed from those of the other antipsychotics: both single doses had no effect, the higher chronic dose increased NPY-LI levels, and its withdrawal resulted in their decrease. No significant alterations were detected in the hybridization signal of NPY mRNA in response to acute or subchronic administration of haloperidol or clozapine. Our results suggest that the effects of antipsychotics are in part mediated by blockade of dopamine D2-like (D2/D3) or serotonin 5HT2A receptors but not dopamine D1, D4 or alpha1-adrenergic receptors. The antipsychotic-induced changes in NPY system activity has been discussed in connection with adaptive alterations in the dopamine system.
Collapse
Affiliation(s)
- E Obuchowicz
- Department of Clinical Pharmacology, Silesian University School of Medicine, Katowice, Poland
| | | |
Collapse
|