1
|
Pleiotropic pituitary adenylate cyclase-activating polypeptide (PACAP): Novel insights into the role of PACAP in eating and drug intake. Brain Res 2019; 1729:146626. [PMID: 31883848 PMCID: PMC6953419 DOI: 10.1016/j.brainres.2019.146626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 01/30/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was discovered thirty years ago, but its role in eating and drug use disorders has only recently begun to be investigated. The present review develops the hypothesis that, although PACAP normally functions to tightly regulate intake, inhibiting it through negative feedback, this relationship can become dysregulated with the development of dependence, such that PACAP instead acts through positive feedback to promote excessive intake. We propose that repeated exposure to palatable food and drugs of abuse can alter the downstream responses of specific populations of neurons to stimulation by PACAP, leading to the perpetuation of the addiction cycle. Thus, this review will first describe published literature on homeostatic food intake, which shows that PACAP suppresses food intake, while its levels are themselves increased by overfeeding. Next, it will present literature on palatable food, cocaine, alcohol, and nicotine, which overall demonstrates that PACAP in specific limbic brain regions can promote their seeking and intake and itself is stimulated by their intake. Then, it will present literature on affective behavior, which shows that chronic stress increases levels of PACAP, which then promotes anxiety and depression, factors that can trigger substance seeking. Finally, the review will address mechanisms through which chronic substance exposure may dysregulate the PACAP system, proposing that it alters expression of PACAP receptor splice variants. While many questions remain to be addressed, the current evidence suggests that PACAP could be a viable medication target for the treatment of binge eating and drug and alcohol use disorders.
Collapse
|
2
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
3
|
Cunha-Reis D, Ribeiro JA, de Almeida RFM, Sebastião AM. VPAC 1 and VPAC 2 receptor activation on GABA release from hippocampal nerve terminals involve several different signalling pathways. Br J Pharmacol 2017; 174:4725-4737. [PMID: 28945273 DOI: 10.1111/bph.14051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND AND PURPOSE Vasoactive intestinal peptide (VIP) is an important modulator of hippocampal synaptic transmission that influences both GABAergic synaptic transmission and glutamatergic cell excitability through activation of VPAC1 and VPAC2 receptors. Presynaptic enhancement of GABA release contributes to VIP modulation of hippocampal synaptic transmission. EXPERIMENTAL APPROACH We investigated which VIP receptors and coupled transduction pathways were involved in VIP enhancement of K+ -evoked [3 H]-GABA release from isolated nerve terminals of rat hippocampus. KEY RESULTS VIP enhancement of [3 H]-GABA release was potentiated in the presence of the VPAC1 receptor antagonist PG 97-269 but converted into an inhibition in the presence of the VPAC2 receptor antagonist PG 99-465, suggesting that activation of VPAC1 receptors inhibits and activation of VPAC2 receptors enhances, GABA release. A VPAC1 receptor agonist inhibited exocytotic voltage-gated calcium channel (VGCC)-dependent [3 H]-GABA release through activation of protein Gi/o , an effect also dependent on PKC activity. A VPAC2 receptor agonist enhanced both exocytotic VGCC-dependent release through protein Gs -dependent, PKA-dependent and PKC-dependent mechanisms and GABA transporter 1-mediated [3 H]-GABA release through a Gs protein-dependent and PKC-dependent mechanism. CONCLUSIONS AND IMPLICATIONS Our results show that VPAC1 and VPAC2 VIP receptors have opposing actions on GABA release from hippocampal nerve terminals through activation of different transduction pathways. As VPAC1 and VPAC2 receptors are located in different layers of Ammon's horn, our results suggest that these VIP receptors underlie different modulation of synaptic transmission to pyramidal cell dendrites and cell bodies, with important consequences for their possible therapeutic application in the treatment of epilepsy.
Collapse
Affiliation(s)
- Diana Cunha-Reis
- Instituto de Farmacologia e Neurociências e, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Joaquim Alexandre Ribeiro
- Instituto de Farmacologia e Neurociências e, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rodrigo F M de Almeida
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências e, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Jóźwiak-Bębenista M, Kowalczyk E. Neuroleptic Drugs and PACAP Differentially Affect the mRNA Expression of Genes Encoding PAC1/VPAC Type Receptors. Neurochem Res 2016; 42:943-952. [PMID: 27900577 PMCID: PMC5375968 DOI: 10.1007/s11064-016-2127-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/17/2016] [Accepted: 11/25/2016] [Indexed: 01/19/2023]
Abstract
Several lines of evidence suggest that pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide playing an important role as a neuromodulator. It has been indicated that PACAP is associated with mental diseases, and that regulation of the PACAPergic signals could be a potential target for the treatment of such psychiatric states as schizophrenia. Recent studies have suggested that action of neuroleptic drugs is mediated not only by dopaminergic and serotonergic neurotransmission, but also via neuropeptides which may act both as neurotransmitters and as neuromodulators. The present study examines whether currently-used neuroleptics influence the action of PACAP receptors, whose expression is altered in a schizophrenic patient. Real-time polymerase chain reaction (PCR) was used to examine the effects of haloperidol, olanzapine and amisulpride on the expression of genes coding PAC1/VPAC type receptors in the T98G glioblastoma cell line, as an example of an in vitro model of glial cells. PAC1 mRNA expression fell after 24-h incubation with haloperidol or olanzapine; however the effect was not maintained after 72 h, and haloperidol even up-regulated PAC1 mRNA expression in a dose-dependent manner. All the examined drugs decreased VPAC2 mRNA expression, especially after 72-h incubation. Haloperidol (typical neuroleptic) was distinctly more potent than atypical neuroleptic drugs (olanzapine and amisulpride). In addition, PACAP increased PAC1 and VPAC2 mRNA expression. In conclusion, our findings suggest PACAP receptors may be involved in the mechanism of typical and atypical neuroleptic drugs.
Collapse
Affiliation(s)
- Marta Jóźwiak-Bębenista
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland.
| | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, The Interfaculty Chair of Basic and Clinical Pharmacology and Toxicology, Medical University of Lodz, Zeligowskiego 7/9, 90-752, Lodz, Poland
| |
Collapse
|
5
|
Moody TW, Nuche-Berenguer B, Jensen RT. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr Opin Endocrinol Diabetes Obes 2016; 23:38-47. [PMID: 26702849 PMCID: PMC4844466 DOI: 10.1097/med.0000000000000218] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To summarize the roles of vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase activating polypeptide (PACAP) and their receptors (VPAC1, VPAC2, PAC1) in human tumors as well as their role in potential novel treatments. RECENT FINDINGS Considerable progress has been made in understanding of the effects of VIP/PACAP on growth of various tumors as well as in the signaling cascades involved, especially in the role of transactivation of the epidermal growth factor family. The overexpression of VPAC1/2 and PAC1 on a number of common neoplasms (breast, lung, prostate, central nervous system and neuroblastoma) is receiving increased attention both as a means of tumor imaging the location and extent of these tumors, as well as for targeted directed treatment, by coupling cytotoxic agents to VIP/PACAP analogues. SUMMARY VIP/PACAP has prominent growth effects on a number of common neoplasms, which frequently overexpressed the three subtypes of their receptors. The increased understanding of their signaling cascades, effect on tumor growth/differentiation and the use of the overexpression of these receptors for localization/targeted cytotoxic delivery are all suggesting possible novel tumor treatments.
Collapse
Affiliation(s)
- Terry W Moody
- aDepartment of Health and Human Services, National Cancer Institute, Center for Cancer Research, Office of the Director bNational Institutes of Health, National Institute of Diabetes, Digestive and Kidney Disease, Digestive Diseases Branch, Bethesda, Maryland, USA
| | | | | |
Collapse
|
6
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 860] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ghzili H, Grumolato L, Thouënnon E, Tanguy Y, Turquier V, Vaudry H, Anouar Y. Role of PACAP in the physiology and pathology of the sympathoadrenal system. Front Neuroendocrinol 2008; 29:128-41. [PMID: 18048093 DOI: 10.1016/j.yfrne.2007.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 08/24/2007] [Accepted: 10/01/2007] [Indexed: 01/09/2023]
Abstract
Sympathetic neurons and chromaffin cells derive from common sympathoadrenal precursors which arise from the neural crest. Cells from this lineage migrate to their final destination and differentiate by acquiring a catecholaminergic phenotype in response to different environmental factors. It has been shown that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its PAC1 receptor are expressed at early stages of sympathetic development, and participate to the control of neuroblast proliferation and differentiation. PACAP also acts as a neurotransmitter to stimulate catecholamine and neuropeptide biosynthesis and release from sympathetic neurons and chromaffin cells, during development and in adulthood. In addition, PACAP and its receptors have been described in neuroblastoma and pheochromocytoma, and the neuropeptide regulates the differentiation and activity of sympathoadrenal-derived tumoral cell lines, suggestive of an important role in the pathophysiology of the sympathoadrenal lineage. Transcriptome studies uncovered genes and pathways of known and unknown roles that underlie the effects of PACAP in the sympathoadrenal system.
Collapse
Affiliation(s)
- Hafida Ghzili
- INSERM, U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP23), University of Rouen, 76821 Mont-Saint-Aignan, France
| | | | | | | | | | | | | |
Collapse
|
8
|
Isobe K, Kaneko M, Kaneko S, Nissato S, Nanmoku T, Takekoshi K, Okuda Y, Kawakami Y. Expression of mRNAs for PACAP and its receptor in human neuroblastomas and their relationship to catecholamine synthesis. ACTA ACUST UNITED AC 2005; 123:29-32. [PMID: 15518890 DOI: 10.1016/j.regpep.2004.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Pituitary adenylate cyclase-activating polypeptide (PACAP), a member of the secretin/glucagon/vasoactive intestinal peptide family, induces the expression of catecholamine-synthesizing enzymes in adrenal medullary cells. In addition, PACAP and its receptor have been detected in human neuroblastoma tissues and cell lines, though it is not yet known whether PACAP enhances the expression of genes encoding catecholamine-synthesizing enzymes. To address this question, we analyzed PACAP, PACAP receptor and tyrosine hydroxylase (TH) mRNAs in neuroblastomas. METHODS The levels of mRNA for PACAP and vasoactive intestinal peptide (VIP), as well as their receptors and the mRNA for TH were measured by RT-PCR or real-time PCR analysis. RESULTS VPAC1R mRNA was detected in all of 16 tissues and 3 cell lines that were examined, while VPAC2R mRNA was detected in 5 of 16 (31%) tissue and 2 of 3 cell lines. PAC1R mRNA was detected in 6 out of 16 (38%) tissues and none of 3 cell lines. mRNA expression of PACAP and TH were detected in many tissues (10/16 and 16/16, respectively). However, neither in tissues nor cell lines did PACAP mRNA expression correlate with TH mRNA expression. CONCLUSION Our findings suggest that PACAP is not involved in the regulation of expression of TH in neuroblastomas.
Collapse
MESH Headings
- Base Sequence
- Catecholamines/biosynthesis
- Cell Line, Tumor
- Child, Preschool
- DNA Primers/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Infant
- Male
- Nerve Growth Factors/genetics
- Neuroblastoma/genetics
- Neuroblastoma/metabolism
- Neuropeptides/genetics
- Neurotransmitter Agents/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Reverse Transcriptase Polymerase Chain Reaction
- Tyrosine 3-Monooxygenase/genetics
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- Kazumasa Isobe
- Department of Clinical Pathology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Héraud C, Hilairet S, Muller JM, Leterrier JF, Chadéneau C. Neuritogenesis induced by vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and peptide histidine methionine in SH-SY5y cells is associated with regulated expression of cytoskeleton mRNAs and proteins. J Neurosci Res 2004; 75:320-9. [PMID: 14743445 DOI: 10.1002/jnr.10866] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vasoactive intestinal peptide (VIP) and the related peptides pituitary adenylate cyclase-activating polypeptide (PACAP) and peptide histidine methionine (PHM) are known to regulate proliferation and/or differentiation in normal and tumoral cells. In this study, neuritogenesis in human neuroblastoma SH-SY5Y cells cultured in serum-free medium was induced by VIP, PACAP, and PHM. The establishment of this process was followed by the quantification of neurite length and branching and the expression of neurofilament mRNAs, neurofilament proteins, and other cytoskeletal protein markers of neuronal differentiation: neuron-specific MAPs and beta-tubulin III. Neurite length and branching and the expression of most markers tested were increased by VIP and PACAP in a similar, although slightly different, fashion. In contrast, neuritic elongation induced by PHM was correlated with neither an increase in branching or neurofilament mRNAs nor a clear change in the expression of cytoskeleton proteins, with the exception of the stimulation by PHM of doublecortin, a microtubule-associated marker of migrating neuroblasts. These findings are the first evidence from a human neuron-like cell line for 1) a direct regulation of the metabolism of neurofilaments by VIP and PACAP and 2) the induction by PHM of neuritic processes of an apparent immature character.
Collapse
Affiliation(s)
- Céline Héraud
- Laboratoire des Biomembranes et Signalisation Cellulaire, Poitiers, France
| | | | | | | | | |
Collapse
|
10
|
Dufes C, Alleaume C, Montoni A, Olivier JC, Muller JM. Effects of the vasoactive intestinal peptide (VIP) and related peptides on glioblastoma cell growth in vitro. J Mol Neurosci 2004; 21:91-102. [PMID: 14593209 DOI: 10.1385/jmn:21:2:91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Accepted: 03/29/2003] [Indexed: 11/11/2022]
Abstract
The growth rate of numerous cancer cell lines is regulated in part by actions of neuropeptides of the vasoactive intestinal peptide (VIP) family, which also includes pituitary adenylate cyclase-activating peptide (PACAP), glucagon, and peptide histidine/isoleucine (PHI). The aim of this work was to investigate the effect of these peptides on the growth of the rat glioblastoma cell line C6 in vitro. We also sought to determine which binding sites were correlated with the effects observed. Proliferation studies performed by means of a CyQuant trade mark assay showed that VIP and PACAP strongly stimulated C6 cell proliferation at most of the concentrations tested, whereas PHI increased cell proliferation only when associated with VIP. Two growth hormone-releasing factor (GRF) derivatives and the VIP antagonist hybrid peptide neurotensin-VIP were able to inhibit VIP-induced cell growth stimulation, even at very low concentrations. Binding experiments carried out on intact cultured C6 cells, using 125I-labeled VIP and PACAP as tracers, revealed that the effects of the peptides on cell growth were correlated with the expression on C6 cells of polyvalent high-affinity VIP-PACAP binding sites and of a second subtype corresponding to very high-affinity VIP-selective binding species. The latter subtype, which interacted poorly with PACAP with a 10,000-fold lower affinity than VIP, might mediate the antagonist effects of neurotensin- VIP and of both GRF derivatives on VIP-induced cell growth stimulation.
Collapse
Affiliation(s)
- Christine Dufes
- Laboratoire de Biologie des Interactions Cellulaires, CNRS UMR 6558, Faculté de Sciences, Université de Poitiers, 86022 Poitiers, France
| | | | | | | | | |
Collapse
|
11
|
Balster DA, O'Dorisio MS, Albers AR, Park SK, Qualman SJ. Suppression of tumorigenicity in neuroblastoma cells by upregulation of human vasoactive intestinal peptide receptor type 1. REGULATORY PEPTIDES 2002; 109:155-65. [PMID: 12409228 DOI: 10.1016/s0167-0115(02)00199-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We hypothesize that vasoactive intestinal peptide (VIP) promotes neural crest differentiation through VIP receptor type I (VPAC1). In order to test this hypothesis, SKNSH neuroblastoma cells were stably transfected with VPAC1 and receptor expression was verified by real-time RT-PCR. Overexpression of VPAC1 in SKNSH cells resulted in upregulation of endogenous retinoic acid receptor expression for both RARalpha and RXRalpha with no change in expression of RARbeta. Transfected cells demonstrated high affinity binding of VIP (K(D)=0.2 nM) and VIP-mediated stimulation of adenylate cyclase and a shift in cell cycle kinetics to a near triploid DNA index in G1. SKNSH/VPAC1 cells treated with VIP were observed to express a more differentiated phenotype compared to wild type cells as characterized by an increase in tissue transglutaminase II and a decrease in bcl-2 immunostaining. VIP-induced differentiation effects were potentiated by retinoic acid. This differentiation resulted in decreased proliferative potential in a xenograft model. Whereas, wild type SKNSH cells induced tumor growth in 100% of nude mice within 13 days post-injection, SKNSH transfected with VPAC1 demonstrated no tumor formation in xenografts followed for 6 months. Taken together, these data support the hypothesis that VIP modulation of neural crest differentiation is mediated via VPAC1 and that high expression of VPAC1 induces differentiation in and decreases tumorigenicity of neuroblastoma cells.
Collapse
Affiliation(s)
- Douglas A Balster
- Department of Pathology, The Ohio State University, Columbus, OH 43205, USA
| | | | | | | | | |
Collapse
|