1
|
Sornsuwan K, Pamonsupornwichit T, Juntit OA, Thongkum W, Takheaw N, Kodchakorn K, Tayapiwatana C. Plasticity of BioPhi-driven humanness optimization in ScFv-CD99 binding affinity validated through AlphaFold, HADDOCK, and MD simulations. Comput Struct Biotechnol J 2025; 27:369-382. [PMID: 39897056 PMCID: PMC11786912 DOI: 10.1016/j.csbj.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 02/04/2025] Open
Abstract
BioPhi-guided humanization was utilized to enhance the humanness of a humanized single-chain variable fragment targeting CD99, leading to the development of two variants: HuScFvMT99/3BP and HuScFvMT99/3HY. The HuScFvMT99/3BP variant incorporated framework region modifications, leading to modest improvements in humanness, particularly in the VH domain, although the VL domain remained suboptimal. To address this limitation, HuScFvMT99/3HY was designed by combining the VL domain of wild-type with the VH domain of HuScFvMT99/3BP. Molecular dynamics simulations employing AlphaFold2, AlphaFold3, and HADDOCK were performed to evaluate the HuScFv-CD99 peptide complexes. AF2-based simulations demonstrated enhanced binding free energy (ΔGbinding) for both variants compared to HuScFvMT99/3WT. However, ΔGbinding values obtained from AF3 and HD simulations were inconsistent, with HuScFvMT99/3BP exhibiting the weakest binding affinity. While ΔGbinding patterns derived from AlphaFold3 and HADDOCK simulations aligned, amino acid decomposition analysis revealed variations in the interaction coordinates of the predicted complexes. Root-mean-square deviation analysis indicated improved structural stability for HuScFvMT99/3BP (0.975 Å) and HuScFvMT99/3HY (1.075 Å) relative to HuScFvMT99/3WT (1.225 Å). Biolayer interferometry further confirmed that HuScFvMT99/3WT exhibited the highest binding affinity (KD = 1.35 × 10⁻⁷ M) compared to HuScFvMT99/3BP (KD = 2.64 × 10⁻⁷ M) and HuScFvMT99/3HY (KD = 3.95 × 10⁻⁷ M). Supporting evidence was provided by ELISA and flow cytometry experiments. PITHA analysis revealed a high immunogenicity risk for all variants, despite HuScFvMT99/3HY displaying improved humanness, a larger complementarity-determining region (CDR) cavity, and a more hydrophobic CDR-H3 loop. These findings highlight the delicate balance between enhancing humanness and preserving the structural and functional integrity critical for therapeutic antibody development.
Collapse
Affiliation(s)
- Kanokporn Sornsuwan
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanathat Pamonsupornwichit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - On-anong Juntit
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Weeraya Thongkum
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nuchjira Takheaw
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanchanok Kodchakorn
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
3
|
Aguilar MF, Garay AS, Attallah C, Rodrigues DE, Oggero M. Changes in antibody binding and functionality after humanizing a murine scFv anti-IFN-α2: From in silico studies to experimental analysis. Mol Immunol 2022; 151:193-203. [PMID: 36166900 DOI: 10.1016/j.molimm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/21/2022] [Accepted: 09/11/2022] [Indexed: 11/26/2022]
Abstract
The structural and dynamic changes introduced during antibody humanization continue to be a topic open to new contributions. For this reason, the study of structural and functional changes of a murine scFv (mu.scFv) anti-rhIFN-α2b after humanization was carried out. As it was shown by long molecular dynamics simulations and circular dichroism analysis, changes in primary sequence affected the tertiary structure of the humanized scFv (hz.scFv): the position of the variable domain of light chain (VL) respective to the variable domain of heavy chain (VH) in each scFv molecule was different. This change mainly impacted on conformation and dynamics of the complementarity-determining region 3 of VH (CDR-H3) which led to changes in the specificity and affinity of humanized scFv (hz.scFv). These observations agree with experimental results that showed a decrease in the antigen-binding strength of hz.scFv, and different capacities of these molecules to neutralize the in vitro rhIFN-α2b biological activity. Besides, experimental studies to characterize antigen-antibody binding showed that mu.scFv and hz.scFv bind to the same antigen area and recognize a conformational epitope, which is evidence of docking results. Finally, the differences between these molecules to neutralize the in vitro rhIFN-α2b biological activity were described as a consequence of the blockade of certain functionally relevant amino acids of the cytokine, after scFv binding. All these observations confirmed that humanization affected the affinity and specificity of hz.scFv and pointed out that two specific changes in the frameworks would be responsible.
Collapse
Affiliation(s)
- María Fernanda Aguilar
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - A Sergio Garay
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina.
| | - Carolina Attallah
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina
| | - Daniel E Rodrigues
- UNL, FBCB, Departamento de Física, Ciudad Universitaria UNL, Pje. "El Pozo" - C.C. 242, S3000ZAA Santa Fe, Argentina; INTEC, CONICET-UNL, Predio CONICET Santa Fe, Pje. "El Pozo", S3000 Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB, Centro Biotecnológico del Litoral, Santa Fe, Pcia. Santa Fe S3000ZAA, Argentina.
| |
Collapse
|
4
|
Attallah C, Aguilar MF, Forno G, Etcheverrigaray M, Brigido MDM, Maranhão AQ, Oggero M. The glycosylation of anti-rhIFN-α2b recombinant antibodies influences the antigen-neutralizing activity. Biotechnol Lett 2020; 42:1369-1381. [PMID: 32285235 DOI: 10.1007/s10529-020-02879-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/29/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The influence of glycosylation on the antigen-neutralizing ability of two potential biotherapeutic anti-human IFN-α2b antibodies composed by murine and humanized single-chain Fv fused to human Fcγ1 (chimeric and humanized scFv-Fc, respectively) was studied. RESULTS Chimeric antibodies produced in CHO-K1 and HEK293 mammalian cells showed no differences in the antigen-antibody affinity but demonstrated differences in the in vitro neutralization of IFN-α2b activity. On the other hand, the humanized antibodies produced in the same cell types showed differences in both the antigen-antibody affinity and the antigen-neutralizing ability. These differences are due to the scFv domain, as evidenced by its expression in CHO-K1 and HEK293 cells. In order to determine if the Fc glycosylation influences the antigen binding ability, both parameters were analyzed on chimeric and humanized deglycosylated scFv-Fc. Surprisingly, no differences in the antigen-antibody affinity were observed, but differences in the antigen-neutralizing ability of both chimeric and humanized antibodies, and their respectively deglycosylated glycoforms were found. CONCLUSIONS Fc glycosylation influences the antigen neutralization ability of two anti-rhIFN-α2b recombinant antibodies. Although affinity is the widely accepted parameter to analyze antibody antigen binding, it does not appear to be sufficient to describe the behavior of recombinant antibodies in vitro. This work contributes with a high impact knowledge to develop therapeutic recombinant antibodies where glycosylation and producer cell lines must be taken into account for their influence on the antigen binding capacity and not only for their impact on the effector properties as it has been historically considered for antibodies.
Collapse
Affiliation(s)
- Carolina Attallah
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - María Fernanda Aguilar
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Guillermina Forno
- R&D Zelltek S.A., UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marcelo De Macedo Brigido
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Immunology Investigation Institute - iii - INCT, MCTIC, Brasilia, Brazil
| | - Andrea Queiroz Maranhão
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Immunology Investigation Institute - iii - INCT, MCTIC, Brasilia, Brazil
| | - Marcos Oggero
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168 - Km 472.4 - C.C. 242, S3000ZAA, Santa Fe, Argentina.
| |
Collapse
|
5
|
Piazza RM, Caetano BA, Henrique CP, Luz D, Munhoz DD, Polatto JM, Rocha LB, Silva MA, Mitsunari T. Immunological tests for diarrhoea caused by diarrhoeagenic Escherichia coli targeting their main virulence factors. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
de Almeida JRF, Santiago KL, Kaihami GH, Maranhão AQ, de Macedo Brígido M, de Almeida SR. The Efficacy of Humanized Antibody against the Sporothrix Antigen, gp70, in Promoting Phagocytosis and Reducing Disease Burden. Front Microbiol 2017; 8:345. [PMID: 28316596 PMCID: PMC5334357 DOI: 10.3389/fmicb.2017.00345] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 01/18/2023] Open
Abstract
Sporotrichosis is a subcutaneous mycosis distributed worldwide and is frequently reported in countries with tropical climates, as Latin America countries. We previously demonstrated that mice with sporotrichosis produce specific antibodies against a 70-kDa fungal protein, indicating that specific antibodies against this molecule may help to control the sporotrichosis. IgG1 monoclonal antibody was generated, and called mAbP6E7, in mice against a 70-kDa glycoprotein (gp70) of S. schenckii. The mAbP6E7 showed prophylactic and therapeutic activity against sporotrichosis. However, this antibody has a murine origin, and this can generate an immune response when administered to humans, precluding its use for a prolonged time. For its possible use in the treatment of human sporotrichosis, we humanized the mAbP6E7 by genetic engineering. Once expressed, the humanized antibodies had good stability and were able to bind to the 70-kDa cell wall antigens of Sporothrix schenckii and S. brasiliensis. The humanized P6E7 were able to opsonize S. schenckii yeasts, thus increasing the phagocytic index in human monocyte-derived macrophages. The treatment with humanized P6E7 decreased fungal burden in vivo. These data suggest that humanized P6E7 may have a therapeutic role in sporotrichosis.
Collapse
Affiliation(s)
- José R F de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo, Brazil
| | - Karla L Santiago
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo, Brazil
| | - Gilberto H Kaihami
- Department of Biochemistry, Institute of Chemistry, University of São Paulo São Paulo, Brazil
| | - Andrea Q Maranhão
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia Brasilia, Brazil
| | - Marcelo de Macedo Brígido
- Department of Cell Biology, Institute of Biological Sciences, University of Brasilia Brasilia, Brazil
| | - Sandro R de Almeida
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo São Paulo, Brazil
| |
Collapse
|
7
|
Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential. Sci Rep 2016; 6:31740. [PMID: 27545199 PMCID: PMC4992835 DOI: 10.1038/srep31740] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/25/2016] [Indexed: 01/30/2023] Open
Abstract
MUC1 is a shared tumor antigen expressed on >80% of human cancers. We completed the first prophylactic cancer vaccine clinical trial based on a non-viral antigen, MUC1, in healthy individuals at-risk for colon cancer. This trial provided a unique source of potentially effective and safe immunotherapeutic drugs, fully-human antibodies affinity-matured in a healthy host to a tumor antigen. We purified, cloned, and characterized 13 IgGs specific for several tumor-associated MUC1 epitopes with a wide range of binding affinities. These antibodies bind hypoglycosylated MUC1 on human cancer cell lines and tumor tissues but show no reactivity against fully-glycosylated MUC1 on normal cells and tissues. We found that several antibodies activate complement-mediated cytotoxicity and that T cells carrying chimeric antigen receptors with the antibody variable regions kill MUC1(+) target cells, express activation markers, and produce interferon gamma. Fully-human and tumor-specific, these antibodies are candidates for further testing and development as immunotherapeutic drugs.
Collapse
|
8
|
Murata VM, Schmidt MCB, Kalil J, Tsuruta LR, Moro AM. Anti-Digoxin Fab Variants Generated by Phage Display. Mol Biotechnol 2013; 54:269-77. [DOI: 10.1007/s12033-012-9564-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Škrlj N, Vranac T, Popović M, Čurin Šerbec V, Dolinar M. Specific binding of the pathogenic prion isoform: development and characterization of a humanized single-chain variable antibody fragment. PLoS One 2011; 6:e15783. [PMID: 21283753 PMCID: PMC3024399 DOI: 10.1371/journal.pone.0015783] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 11/24/2010] [Indexed: 11/18/2022] Open
Abstract
Murine monoclonal antibody V5B2 which specifically recognizes the pathogenic form of the prion protein represents a potentially valuable tool in diagnostics or therapy of prion diseases. As murine antibodies elicit immune response in human, only modified forms can be used for therapeutic applications. We humanized a single-chain V5B2 antibody using variable domain resurfacing approach guided by computer modelling. Design based on sequence alignments and computer modelling resulted in a humanized version bearing 13 mutations compared to initial murine scFv. The humanized scFv was expressed in a dedicated bacterial system and purified by metal-affinity chromatography. Unaltered binding affinity to the original antigen was demonstrated by ELISA and maintained binding specificity was proved by Western blotting and immunohistochemistry. Since monoclonal antibodies against prion protein can antagonize prion propagation, humanized scFv specific for the pathogenic form of the prion protein might become a potential therapeutic reagent.
Collapse
Affiliation(s)
- Nives Škrlj
- Biochemistry Chair, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Vranac
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Mara Popović
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Biochemistry Chair, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Marko Dolinar
- Biochemistry Chair, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
10
|
Silva HM, Vieira PMMM, Costa PLN, Pimentel BMS, Moro AM, Kalil J, Maranhão AQ, Coelho V, Brigido MM. Novel humanized anti-CD3 antibodies induce a predominantly immunoregulatory profile in human peripheral blood mononuclear cells. Immunol Lett 2009; 125:129-36. [PMID: 19573559 DOI: 10.1016/j.imlet.2009.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/15/2009] [Accepted: 06/22/2009] [Indexed: 01/12/2023]
Abstract
Strategies to minimize the immunogenicity and toxicity of murine anti-CD3 antibodies (e.g. OKT3) are of special interest for organ transplantation and for the treatment of autoimmune diseases. In the present work, we have developed two humanized anti-CD3 antibodies. These molecules were shown to bind to human CD3, though less efficiently, and display less mitogenic activity than OKT3. These results prompted us to investigate whether this reduced mitogenic potential was associated with the development of anti-inflammatory properties. Indeed, in peripheral blood mononuclear cells (PBMCs), the humanized antibody versions induced a predominantly anti-inflammatory cytokine profile, in contrast with the pro-inflammatory profile induced by OKT3. Neither OKT3 nor the humanized versions induced the expression of IL-4, IL-2 or TGF-beta. Both humanized antibodies induced significantly lower production of IFN-gamma and IL-5 and slightly higher production of IL-10 than OKT3. This immunomodulatory profile was most evident by the 80-fold higher ratio of IL-10/IFN-gamma production in PBMCs cultured in the presence of the humanized antibodies, compared to those stimulated with OKT3. Furthermore, these humanized anti-CD3 antibodies induced a late FOXP3 gene expression while OKT3 led to a more transient expression of FOXP3. Taken our results, we suggest that these humanized anti-CD3 antibodies may promote the development of T cells with immunoregulatory activity.
Collapse
Affiliation(s)
- Hernandez M Silva
- Departamento de Biologia Celular, Universidade de Brasília, 70910-900 Brasília, DF, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Muzard J, Bouabdelli M, Zahid M, Ollivier V, Lacapère JJ, Jandrot-Perrus M, Billiald P. Design and humanization of a murine scFv that blocks human platelet glycoprotein VI in vitro. FEBS J 2009; 276:4207-22. [PMID: 19558491 DOI: 10.1111/j.1742-4658.2009.07129.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Platelet adhesion and aggregation at the site of vascular injury is essential for hemostasis, but can also lead to arterial occlusion in thrombotic disorders. Glycoprotein (GP) VI is the major platelet membrane receptor that interacts directly with collagen, the most thrombogenic compound in the blood vessels. GPVI could therefore be a major therapeutic target. Fab fragments of the anti-GPVI murine monoclonal IgG 9O12 have previously been shown to completely block collagen-induced platelet aggregation, to inhibit the procoagulant activity of collagen-stimulated platelets, and to prevent thrombus formation under arterial flow conditions without significantly prolonging the bleeding time. Here, we engineered recombinant scFvs that preserve the functional properties of 9O12, and could constitute building blocks for designing new compounds with potentially therapeutic antithrombotic properties. First, the 9O12 variable domains were cloned, sequenced, and expressed as a recombinant murine scFv, which was fully characterized. This scFv preserved all the characteristics that make 9O12 Fab potentially useful for therapeutic applications, including its high affinity for GPVI, ability to inhibit platelet adhesion, and aggregation with collagen under arterial flow conditions. A humanized version of this scFv was also designed after complementarity-determining region grafting and structural refinements using homology-based modeling. The final product was produced in recombinant bacteria. It retained GPVI-binding specificity and high affinity, which are the main parameters usually impaired by humanization procedures. This is a simple, efficient and straightforward method that could also be used for humanizing other antibodies.
Collapse
Affiliation(s)
- Julien Muzard
- Muséum national d'Histoire naturelle, CNRS FRE 3206, Paris, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Wark KL, Hudson PJ. Latest technologies for the enhancement of antibody affinity. Adv Drug Deliv Rev 2006; 58:657-70. [PMID: 16828920 DOI: 10.1016/j.addr.2006.01.025] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 05/06/2006] [Indexed: 11/24/2022]
Abstract
High affinity antibodies are crucial both for the discovery and validation of biomarkers for human health and disease and as clinical diagnostic and therapeutic reagents. This review describes some of the latest technologies for the design, mutation and selection of high affinity antibodies that provide a paradigm for molecular evolution of a far wider range of proteins including enzymes. Strategies include both in vivo and in vitro methods and embrace the latest concepts for antibody display and selection. Specifically, affinity enhancement can be tailored to the target-binding surface, typically the complementary determining region (CDR) loops in antibodies, whereas enhanced stability, expression or catalytic properties can be affected by selected changes to the core protein scaffold. Together, these technologies provide a rapid and powerful strategy to drive the next generation of protein-based reagents for numerous clinical, environmental and agribusiness applications.
Collapse
Affiliation(s)
- Kim L Wark
- CRC for Diagnostics at CSIRO Molecular and Health Technologies, 343 Royal Parade, Parkville 3052, Australia.
| | | |
Collapse
|
13
|
Nishibori N, Horiuchi H, Furusawa S, Matsuda H. Humanization of chicken monoclonal antibody using phage-display system. Mol Immunol 2006; 43:634-42. [PMID: 16360012 DOI: 10.1016/j.molimm.2005.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Indexed: 12/18/2022]
Abstract
We describe a simple method for humanizing chicken monoclonal antibody (mAb). Humanization of mAbs by simple CDR-grafting often results in loss of affinity because certain framework residues of the antibody variable regions can participate in antigen-antibody interaction. In this study, humanization of chicken mAbs was achieved by CDR-grafting, followed by framework fine-tuning using a chicken phage-displayed mAb, phAb4-31, as a model antibody. In order to fine-tune the framework, we used the phage-displayed combinatorial library with permutation of important framework residues. After panning the humanized library, the "most humanized" variants were selected and analyzed for antigen-binding activity. All of these clones retained affinity comparable to the parental chicken mAb. These results suggest that chicken mAbs can easily be humanized, and thus humanized chicken mAbs may be practically applied as therapeutic agents.
Collapse
Affiliation(s)
- Nahoko Nishibori
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | | | | | | |
Collapse
|
14
|
Gonzales NR, Padlan EA, De Pascalis R, Schuck P, Schlom J, Kashmiri SVS. SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity. Mol Immunol 2004; 41:863-72. [PMID: 15261458 DOI: 10.1016/j.molimm.2004.03.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2004] [Accepted: 03/29/2004] [Indexed: 12/16/2022]
Abstract
The humanization of mAbs by complementarity-determining region (CDR)-grafting has become a standard procedure to improve the clinical utility of xenogeneic Abs by reducing human anti-murine Ab (HAMA) responses elicited in patients. However, CDR-grafted humanized Abs may still evoke anti-V region responses when administered in patients. To minimize anti-V region responses, the Ab may be humanized by grafting onto the human templates only the specificity-determining residues (SDRs), the residues that are essential for the surface complementarity of the Ab and its ligand. Typically, humanization of an Ab, whether by CDR or SDR grafting, involves the use of a single human template for the entire VL or VH domain of an Ab. We hypothesized, however, that the homology between the human template sequences and mAb to be humanized may be maximized by using templates from multiple human germline sequences corresponding to the different segments of the variable domain. This could be more advantageous in reducing the potential immunogenicity of the humanized Ab. This report describes the SDR grafting of the murine anti-carcinoembryonic antigen (CEA) mAb COL-1 using three different human germline V-kappa sequences as templates for the VL CDRs and another human template for the VL frameworks. In competition RIAs, the SDR-grafted COL-1 (HuCOL-1SDR) completely inhibited the binding of radiolabeled murine COL-1 (mCOL-1) to CEA, and showed that its binding affinity is comparable to that of the CDR-grafted Ab (HuCOL-1). The HuCOL-1SDR showed similar binding reactivity to the CEA expressed on the surface of a tumor cell line as the HuCOL-1. More importantly, compared to HuCOL-1 and the "abbreviated" CDR-grafted Ab, HuCOL-1SDR showed lower reactivity to patients' sera carrying anti-V region Abs to mCOL-1. HuCOL-1SDR, which shows a lower sera reactivity than that of the parental Abs while retaining its Ag-binding property, is a potentially useful clinical reagent. To the best of our knowledge, this is the first time a VL or VH domain of an Ab has been humanized by grafting the SDRs onto a human template comprised of several Ab sequences. We have shown that humanization of an Ab can be optimized using multiple human templates for a single variable domain of an Ab. This approach maximizes the homology between the target Ab and the human templates in both the frameworks and the CDRs by choosing as the template the human sequence that displays the highest local sequence identity to the frameworks and to each of the CDRs of the target Ab.
Collapse
Affiliation(s)
- Noreen R Gonzales
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Room 8B09, 10 Center Drive, Building 10, Bethesda, MD 20892-1750, USA
| | | | | | | | | | | |
Collapse
|
15
|
Nicaise M, Valerio-Lepiniec M, Minard P, Desmadril M. Affinity transfer by CDR grafting on a nonimmunoglobulin scaffold. Protein Sci 2004; 13:1882-91. [PMID: 15169956 PMCID: PMC2279932 DOI: 10.1110/ps.03540504] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neocarzinostatin (NCS) is a small "all beta" protein displaying the same overall fold as immunoglobulins. This protein possesses a well-defined hydrophobic core and two loops structurally equivalent to the CDR1 and CDR3 of immunoglobulins. NCS is the most studied member of the enediynechromoprotein family, and is clinically used as an antitumoral agent. NCS has promise as a drug delivery vehicle if new binding specificities could be conferred on its protein scaffold. Previous studies have shown that the binding specificity of the crevasse can be extended to compounds completely unrelated to the natural enediyne chromophore family. We show here that it is possible to introduce new interaction capacities to obtain a protein useful for drug targeting by modifying the immunoglobulin CDR-like loops. We transferred the CDR3 of the VHH chain of camel antilysozyme immunoglobulin to the equivalent site in the corresponding loop of neocarzinostatin. We then evaluated the stability of the resulting structure and its affinity for lysozyme. The engineered NCS-CDR3 presents a structure similar to that of the wild-type NCS, and is stable and efficiently produced. ELISA, ITC, and SPR measurements demonstrated that the new NCS-CDR3 specifically bound lysozyme.
Collapse
Affiliation(s)
- Magali Nicaise
- Laboratoire de Modélisation et d'Ingénierie des Protéines, UMR8619, Université de Paris-Sud, Bât 430, F-91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
16
|
Xing JL, Yang XM, Zhang SH, Yao XY, Liang RA, Chen ZN. Construction of a universal expression vector for human-mouse chimeric Fab antibody and expression of chimeric Fab antibody against human hepatoma associated antigen HAb18G. Shijie Huaren Xiaohua Zazhi 2004; 12:271-275. [DOI: 10.11569/wcjd.v12.i2.271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct a universal expression vector for human-mouse chimeric Fab antibody and to use it for construction and expression of human-mouse chimeric Fab antibody against human hepatoma associated antigen HAb18G.
METHODS: Human IgG3 CH1 and Cκgenes were amplified by PCR with Specific primers and cloned into vector pComb3 to construct a human-mouse chimeric Fab antibody universal expression vector pComb3C. Then, the Vκ and VH genes of mAb HAb18 were amplified by PCR using Specific primers and cloned into the expression vector pComb3-cFab. After gIII was cut away, the secretory expression vector pComb3C/cFab containing chimeric Fab antibody gene of HAb18 was constructed and transfected into competent E. Coli. And then, the antibody induction expression by IPTG was conducted. The locaeization of expression products was detected by sandwich ELISA. Finally, The expression product was purified by affinity chromatography and the antigen-binding Specificity and affinity of the expression product were tested by ELISA and immunofluorescence staining.
RESULTS: Human IgG3 CH1 and Cκgenes were correctly inserted into vector pComb3 by nucleotide sequencing and restriction endonucleases digestion, with the size of 324bp and 333 bp, and chimeric Fab gene of mAb HAb18 was successfully constructed and expressed in E. Coli. The molecular mass of expression product was about 45 ku. It was mainly located in the periplasm. The results of ELISA and immunofluorescence staining showed that the expressed chimeric Fab contained human antibody fragment and had Specific antigen-binding activity, and its affinity was about 10% of parental antibody HAb18.
CONCLUSION: We have successfully constructed a universal expression vector for human-mouse chimeric Fab antibody. Based on this result, a small molecule of chimeric Fab antibody against human hepatoma is prepared, which lays a foundation for its further application into diagnosis and therapy of human hepatocellular carcinoma.
Collapse
|