1
|
Sun J, Liu C, Wang L, Song L. The Establishment of Complement System Is from Gene Duplication and Domain Shuffling. Int J Mol Sci 2024; 25:8119. [PMID: 39125697 PMCID: PMC11312191 DOI: 10.3390/ijms25158119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery. The evolutionary origin of the complement system can be traced to Coelenterata as the presence of the central component C3 and two activation proteases BF and MASP. In the present study, the main complement components were screened and analyzed from the genomes of different species in metazoan subphyla/phyla. C1q with classical domains can be traced to Annelida, and ficolin and MBL to Urochordata. C1r and C1s are only found in Chondrichthyes and even higher species, and MASP is traced to Coelenterata. In the evolutionary tree, C1r from Vertebrates is close to MASP1/2/3 from Deuterostomia and Coelenterata, and C1s from Vertebrates is close to MASP-like protease (MASPL) from Arthropoda, Mollusca, and Annelida. C2, BF, and DF can be traced to Mollusca, Coelenterata, and Porifera, respectively. There are no clear C2 and BF branches in the evolutionary tree. C3 can be traced to Coelenterata, and C4 and C5 are only in Chondrichthyes and even higher species. There are three clear C3, C4, and C5 branches in the evolutionary tree. C6-like (C6L) and C8 can be traced to Urochordata, and C7-like (C7L) can be traced to Cephalochordara. C6L, C7L, and C8 from Urochordata and Cephalochordara provide the structural conditions for the formation of Vertebrate MAC components. The findings unveil the evolutionary principles of the complement system and provide insight into its sophistication.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Dalian Key Laboratory of Aquatic Animal Diseases Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; (J.S.); (C.L.); (L.W.)
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
2
|
Fu YW, Zhu CK, Zhang QZ, Hou TL. Molecular characterization, expression analysis, and ontogeny of complement component C9 in southern catfish (Silurus meridionalis). FISH & SHELLFISH IMMUNOLOGY 2019; 86:449-458. [PMID: 30508672 DOI: 10.1016/j.fsi.2018.11.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/07/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The complement system plays an important role in host defense against invading microorganisms. Complement component C9 is the last component that is involved in the formation of the membrane attack complex (MAC) on the surface of target cells. In the present study, the full length C9 cDNA sequence of 1984 bp with an open reading frame (ORF) of 1809 bp was cloned from southern catfish (Silurus meridionalis). The deduced amino acid sequence showed similarity with other teleost fish. The mRNA expression of C9 was detected in the liver, spleen, stomach, intestine, and head kidney, with highest levels detected in the liver. The mRNA of C9 was first detected in the yolk syncytial layer at 34 h post fertilization (hpf) with whole mount in situ hybridization, followed by the liver at 36 h post hatching (hph). The mRNA expression of C9 was upregulated significantly in the liver, spleen, and intestine following the injection with Aeromonas hydrophila, suggesting that C9 played an important role in defense against invading pathogens in southern catfish. Therefore, these results provide important information to understand the functions of C9 during fish early development in fish.
Collapse
Affiliation(s)
- Yao-Wu Fu
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Cheng-Ke Zhu
- College of Animal Science, Southwest University Rongchang Campus, 160 Xueyuan Road, Rongchang District, Chongqing, 402460, People's Republic of China
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China.
| | - Ting-Long Hou
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
3
|
Yang G, Xiu Y, Chen Y, Bai L, Sha Z. Identification and expression of complement component C8α, C8β and C8γ gene in half-smooth tongue sole (Cynoglossus semilaevis) and C8α recombinant protein antibacterial activity analysis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:658-669. [PMID: 29146450 DOI: 10.1016/j.fsi.2017.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 11/03/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Complement component C8, which mediates membrane attack complex formation and bacterial lysis, plays important roles in the complement system. The cDNA sequences of the C8α, C8β and C8γ genes were cloned from half-smooth tongue sole (Cynoglossus semilaevis). Full-length cDNA of CsC8α (C8α of C. semilaevis), CsC8β and CsC8γ was 1990, 2219 and 886 bp, respectively, which contained open reading frames of 1797, 1749 and 666 bp, encoding 598, 582 and 221 amino acids, respectively. The deduced proteins of CsC8α, CsC8β and CsC8γ showed the closest amino acid similarity to C8α (73%) of Siniperca chuatsi, C8β (76%) of Oryzias latipes and C8γ (72%) of Takifugu rubripes, respectively. The highest expression level of CsC8α, CsC8β and CsC8γ among the 13 normal tissues was observed in liver tissue, followed by much lower levels in other tissues. After infection with Vibrio anguillarum, CsC8α, CsC8β and CsC8γ were significantly up-regulated in all of the detected tissues, including the intestine, liver, gill, head kidney, blood and spleen. Then, a recombinant expression plasmid was constructed, and the recombinant CsC8α protein was expressed in GS115 pichia pastoris yeast. Furthermore, to investigate the biological functions of recombinant CsC8α, an antibacterial assay was performed, and the results showed that recombinant CsC8α obviously inhibited growth of V. anguillarum, Edwardsiella tarda and Vibrio parahaemolyticus. Taken together, these results suggest that CsC8α, CsC8β and CsC8γ may play important roles in the immune defense of C. semilaevis.
Collapse
Affiliation(s)
- Guang Yang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yunji Xiu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Marine Science and Engineering College, Qingdao Agricultural University, Qingdao 266109, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yadong Chen
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Li Bai
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhenxia Sha
- College of Life Sciences, Qingdao University, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Molecular Characterization and Expression Analyses of the Complement Component C8α, C8β and C9 Genes in Yellow Catfish (Pelteobagrus fulvidraco) after the Aeromonas hydrophila Challenge. Int J Mol Sci 2016; 17:345. [PMID: 27005612 PMCID: PMC4813206 DOI: 10.3390/ijms17030345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 12/30/2022] Open
Abstract
The complement components C8α, C8β and C9 have important roles in the innate immune system against invading microorganisms. Partial cDNA sequences of the Pf_C8α, Pf_C8β and Pf_C9 genes (Pf: abbreviation of Pelteobagrusfulvidraco) were cloned from yellow catfish. The Pf_C8α, Pf_C8β and Pf_C9 genes showed the greatest amino acid similarity to C8α (54%) and C8β (62%) of zebrafish and to C9 (52%) of grass carp, respectively. Ontogenetic expression analyses using real-time quantitative PCR suggested that the three genes may play crucial roles during embryonic and early larval development. The mRNA expressions of the three genes were all at the highest levels in liver tissue, and at lower or much lower levels in 16 other tissues, demonstrating that the liver is the primary site for the protein synthesis of Pf_C8α, Pf_C8β and Pf_C9. Injection of Aeromonashydrophila led to up-regulation of the three genes in the spleen, head kidney, kidney, liver and blood tissues, indicating that the three genes may contribute to the host’s defense against invading pathogenic microbes. An increased understanding of the functions of the Pf_C8α, Pf_C8β and Pf_C9 genes in the innate immunity of yellow catfish will help enhance production of this valuable freshwater species.
Collapse
|
5
|
Wang YD, Huang SJ, Chou HN, Liao WL, Gong HY, Chen JY. Transcriptome analysis of the effect of Vibrio alginolyticus infection on the innate immunity-related complement pathway in Epinephelus coioides. BMC Genomics 2014; 15:1102. [PMID: 25496447 PMCID: PMC4407539 DOI: 10.1186/1471-2164-15-1102] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022] Open
Abstract
Background Orange-spotted grouper (Epinephelus coioides) with protogynous hermaphroditic features are one of the most economically important aquaculture species in Taiwan. However, larvae stage grouper are susceptible to infection by the bacterial pathogen Vibrio alginolyticus. To better understand the molecular mechanisms of the immune response to V. alginolyticus in Epinephelus coioides larvae, we used high-throughput deep sequencing technology to study the effect of infection on gene expression. Results A total of 114,851,002 reads were assembled, consisting of 9,687,355,560 nucleotides; these were further assembled into 209,082 contigs with a mean length of 372 bp. Gene ontology (GO) analysis of the transcriptome revealed 12 cellular component subcategories, 16 molecular function subcategories, and 42 biological process subcategories (P value <0.05). A total of 32664 Epinephelus coioides genes were mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG); 1504 differentially expressed genes (DEGs) were subsequently identified, in 12 categories (P value <0.05). Vibrio infection affected the expression of genes involved in complementation, coagulation cascades, pathogen (Staphylococcus aureus) infection, phagosome activity, antigen processing, and the antigen presentation pathway. Conclusion We conclude that the complement pathway of innate immunity and the hepicidin antimicrobial peptide may play important roles in the defense of Epinephelus coioides larvae against V. alginolyticus, and the immune response may activate at 4 h after bacterial infection. These results implicate the complement pathway signal pathway in immunity during V. alginolyticus infection at early developmental stages, enhancing our understanding of the mechanisms underlying the immune response to Vibrio infection in Epinephelus coioides. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1102) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Jyh-Yih Chen
- Institute of Fisheries Science, National Taiwan University, 1 Roosevelt Road, Sec, 4, Taipei 106, Taiwan.
| |
Collapse
|
6
|
Abstract
The mammalian complement system constitutes a highly sophisticated body defense machinery comprising more than 30 components. Research into the evolutionary origin of the complement system has identified a primitive version composed of the central component C3 and two activation proteases Bf and MASP in cnidaria. This suggests that the complement system was established in the common ancestor of eumetazoa more than 500 million years ago. The original activation mechanism of the original complement system is believed to be close to the mammalian lectin and alternative activation pathways, and its main role seems to be opsonization and induction of inflammation. This primitive complement system has been retained by most deuterostomes without major change until the appearance of jawed vertebrates. At this stage, duplication of the C3, Bf and MASP genes as well as recruitment of membrane attack components added the classical and lytic pathways to the primitive complement system, converting it to the modern complement system. In contrast, the complement system was lost multiple times independently in the protostome lineage.
Collapse
Affiliation(s)
- Masaru Nonaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan,
| |
Collapse
|
7
|
Wickramaarachchi WDN, Whang I, Kim E, Lim BS, Jeong HB, De Zoysa M, Oh MJ, Jung SJ, Yeo SY, Kim SY, Park HC, Lee J. Genomic characterization and transcriptional evidence for the involvement of complement component 7 in immune response of rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:44-49. [PMID: 23603298 DOI: 10.1016/j.dci.2013.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
The complement component 7 (C7) is the central mediator of pathogenic attack at the membrane surface and its binding to the C5b-7 complex triggers cytolytic signaling. In this study, C7 of rock bream (Oplegnathus fasciatus) was identified (Rb-C7) and characterized at the genomic level. The Rb-C7 gene contains 18 exons and 17 introns and is composed of a 2490 bp complete open reading frame (ORF). The encoded polypeptide (830 amino acids) contains a number of well-conserved C7 signature domains. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, are present in the 5'-flanking region of Rb-C7. Phylogenetic analysis revealed a close proximity of Rb-C7 with the orthologues in tilapia and Japanese flounder. Quantitative real-time PCR (qPCR) analysis confirmed constitutive Rb-C7 expression throughout all the examined tissue of healthy rock bream, with highest expression in liver. In immune challenge experiment, Rb-C7 expression was up-regulated in head kidney and liver in response to Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide and rock bream iridovirus (RBIV). Furthermore, significant increases of both intracellular expression level and the number of Rb-C7-expressing cells were detected by in situ hybridization assay in head kidney and liver tissues upon E. tarda infection. These results suggested that Rb-C7 is lytic pathway gene in complement system and its transcriptional regulation may be an important immune response in pathogenic defense mechanism of rock bream.
Collapse
Affiliation(s)
- W D Niroshana Wickramaarachchi
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wickramaarachchi WDN, Whang I, Wan Q, Bathige SDNK, De Zoysa M, Lim BS, Yeo SY, Park MA, Lee J. Genomic characterization and expression analysis of complement component 8α and 8β in rock bream (Oplegnathus fasciatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:279-292. [PMID: 23059376 DOI: 10.1016/j.dci.2012.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/07/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
The complement component 8α and 8β are glycoproteins that mediate formation of the membrane attack complex (MAC) on the surface of target cells. Full-length complement C8α (Rb-C8α) and C8β (Rb-C8β) sequences were identified from a cDNA library of rock bream (Oplegnathus fasciatus), and their genomic sequences were obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The Rb-C8α gene contains 64bp of 5'-UTR, open reading frame (ORF) of 1794bp, which encodes a polypeptide of 598 amino acids, 212bp of 3'-UTR. The Rb-C8β gene contains 5'-UTR of 27bp, open reading frame (ORF) of 1761bp, which encodes a polypeptide of 587 amino acids, 3'-UTR of 164bp. Rb-C8α consists of 11 exons interrupted by 10 introns and Rb-C8β consists of 12 exons interrupted by 11 introns. Sequence analysis revealed that both Rb-C8α and Rb-C8β contain thrombospondin type-1, a low-density lipoprotein receptor domain class A, membrane attack complex/perforin (MACPF) domain and epidermal growth factor like domain. The promoter regions of both genes contain important putative transcription factor binding sites including those for NF-κB, SP-1, C/EBP, AP-1, and OCT-1. Rb-C8α and Rb-C8β showed the highest amino acid identity of 62% and 83% to rainbow trout C8α and Japanese flounder C8β respectively. Quantitative real-time PCR analysis confirmed that Rb-C8α and Rb-C8β were constitutively expressed in all examined tissues, isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, and rock bream iridovirus led to up regulation of Rb-C8α and Rb-C8β in liver. Positive regulations upon bacterial and viral challenges, and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C8α and Rb-C8β important immune genes, likely involved in the complement system lytic pathway of rock bream.
Collapse
Affiliation(s)
- W D Niroshana Wickramaarachchi
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wickramaarachchi WDN, Wan Q, Lee Y, Lim BS, De Zoysa M, Oh MJ, Jung SJ, Kim HC, Whang I, Lee J. Genomic characterization and expression analysis of complement component 9 in rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2012; 33:707-717. [PMID: 22796422 DOI: 10.1016/j.fsi.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
The complement component 9 (C9) is a single-chain glycoprotein that mediates formation of the membrane attack complex (MAC) on the surface of target cells. Full-length C9 sequence was identified from a cDNA library of rock bream (Oplegnathus fasciatus), and its genomic sequence was obtained by screening and sequencing of a bacterial artificial chromosome (BAC) genomic DNA library of rock bream. The rock bream complement component 9 (Rb-C9) gene contains 11 exons and 10 introns and is composed of a 1782 bp complete open reading frame (ORF) that encodes a polypeptide of 593 amino acids. Sequence analysis revealed that the Rb-C9 protein contains two thrombospondin type-1domains, a low-density lipoprotein receptor domain class A, a membrane attack complex & perforin (MACPF) domain, and an epidermal growth factor (EGF)-like domain. Important putative transcription factor binding sites, including those for NF-κB, SP-1, C/EBP, AP-1 and OCT-1, were found in the 5' flanking region. Phylogenetic analysis revealed a close proximity of Rb-C9 with the orthologues in puffer fish, and Japanese flounder. Quantitative real-time RT-PCR analysis confirmed that Rb-C9 was constitutively expressed in all the examined tissues isolated from healthy rock bream, with highest expression occurring in liver. Pathogen challenge, including Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide endotoxin and rock bream iridovirus led to up-regulation of Rb-C9 in liver but no change in peripheral blood cells. The observed response to bacterial and viral challenges and high degree of evolutionary relationship to respective orthologues, confirmed that Rb-C9 is an important immune gene, likely involved in the complement system lytic pathway of rock bream.
Collapse
|
10
|
Li L, Chang MX, Nie P. Molecular cloning, promoter analysis and induced expression of the complement component C9 gene in the grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol 2007; 118:270-82. [PMID: 17604124 DOI: 10.1016/j.vetimm.2007.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/11/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
Complement-mediated killing of pathogens through lytic pathway is an important effector mechanism of innate immune response. C9 is the ninth member of complement components, creating the membrane attack complex (MAC). In the present study, a putative cDNA sequence encoding the 650 amino acids of C9 and its genomic organization were identified in grass carp Ctenopharyngodon idella. The deduced amino acid sequence of grass carp C9 (gcC9) showed 48% and 38.5% identity to Japanese flounder and human C9, respectively. Domain search revealed that gcC9 contains a LDL receptor domain, an EGF precursor domain, a MACPF domain and two TSP domain located in the N-terminal and C-terminal, respectively. Phylogenetic analysis demonstrated that gcC9 is clustered in a same clade with Japanese flounder, pufferfish and rainbow trout C9. The gcC9 gene consists of 11 exons with 10 introns, spacing over approximately 7 kb of genomic sequence. Analysis of gcC9 promoter region revealed the presence of a TATA box and some putative transcription factor such as C/EBP, HSF, NF-AT, CHOP-C, HNF-3B, GATA-2, IK-2, EVI-1, AP-1, CP2 and OCT-1 binding sites. The first intron region contains C/EBPb, HFH-1 and Oct-1 binding sites. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcC9 gene have similar expression patterns, being constitutively expressed in all organs examined of healthy fish, with the highest level in hepatopancreas. By real-time quantitative RT-PCR analysis, gcC9 transcripts were significantly up-regulated in head kidney, spleen, hepatopancreas and down-regulated in intestine from inactivated fish bacterial pathogen Flavobacterium columnare-stimulated fish, demonstrating the role of C9 in immune response.
Collapse
Affiliation(s)
- L Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | | | | |
Collapse
|
11
|
Liu G, Zhang J, Chen X. Molecular and functional characterization of a CD59 analogue from large yellow croaker Pseudosciana crocea. Mol Immunol 2007; 44:3661-71. [PMID: 17531319 DOI: 10.1016/j.molimm.2007.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 04/02/2007] [Accepted: 04/06/2007] [Indexed: 10/23/2022]
Abstract
CD59 is a widely distributed membrane-bound inhibitor of the cytolytic membrane attack complex (MAC) of complement. Here, the cDNA of a CD59 analogue was cloned from large yellow croaker (Pseudosciana crocea), a marine fish (LycCD59), by expressed sequence tags (EST) and RACE techniques. The open reading frame (ORF) of 351 nucleotides (nt) of LycCD59 encodes a polypeptide of 117 amino acids (aa), which includes a putative 20-aa NH(2)-signal peptide and a 97-aa coding region with a putative GPI-anchoring site at Asn(71). The deduced LycCD59 protein shared the structural feature of mammalian CD59, including a conserved cysteine skeleton responsible for the formation of disulfide bonds, and a similar pattern of hydrophobic termini. RT-PCR analysis showed that LycCD59 mRNA was broadly expressed in various tissues examined, except for intestine. And Northern blot analysis revealed a single LycCD59 transcript of approximately 1.0kb. LycCD59 expression in blood, spleen, and kidney was significantly up-regulated during 24h of induction with poly(I:C) or inactivated trivalent bacterial vaccine as determined by a relative quantitative real-time PCR analysis, and a coordinated up-regulation of LycCD59 and complement C3 and C7 mRNA was also found in these three tissues post-induction although their up-regulation pattern and extent were somewhat different in various tissues with poly(I:C) or bacterial vaccine. The recombinant protein of LycCD59 produced in E. coli was shown to significantly inhibit the erythrocyte lysis of tilapia (Oreochromis niloticus) in an in vitro hemolytic system, which was mediated by serum from large yellow croaker and tilapia, respectively, but not from mouse and chicken, suggesting that LycCD59 has a species-selective inhibition of complement activation. These results represent the first functional identification of a CD59 analogue in teleost fish, strongly suggesting the presence of regulatory mechanism for terminal complement pathway in teleost fish.
Collapse
Affiliation(s)
- Guozhu Liu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, 178 Daxue Road, Xiamen 361005, PR China
| | | | | |
Collapse
|
12
|
Nakao M, Kato-Unoki Y, Nakahara M, Mutsuro J, Somamoto T. Diversified Components of the Bony Fish Complement System: More Genes for Robuster Innate Defense? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 586:121-38. [PMID: 16893069 DOI: 10.1007/0-387-34134-x_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
13
|
Nakao M, Kajiya T, Sato Y, Somamoto T, Kato-Unoki Y, Matsushita M, Nakata M, Fujita T, Yano T. Lectin Pathway of Bony Fish Complement: Identification of Two Homologs of the Mannose-Binding Lectin Associated with MASP2 in the Common Carp (Cyprinus carpio). THE JOURNAL OF IMMUNOLOGY 2006; 177:5471-9. [PMID: 17015733 DOI: 10.4049/jimmunol.177.8.5471] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The lectin pathway of complement is considered to be the most ancient complement pathway as inferred from identification of ancient homologs of mannose-binding lectin (MBL) and MBL-associated serine proteases (MASPs) in some invertebrates. MBL homologs with galactose selectivity and an MASP3-like sequence also occur in bony fish, linking the evolution of the lectin complement pathway from invertebrates to higher vertebrates. However, these cannot be considered authentic complement components until confirmatory functional evidence is obtained. Here, we report the isolation and characterization of two MBL homologs from a cyprinid teleost, the common carp, Cyprinus carpio. One, designated GalBL, corresponds to the MBL-like molecule with the galactose specificity. The other is an authentic MBL with mannose specificity. Both were found to associate with a serine protease that cleaves native human C4 into C4b but not C4i with a hydrolyzed thioester. Molecular cloning and phylogenetic analysis revealed this C4-activating protease to be carp MASP2, indicating that MASP2 arose before the emergence of bony fish. Database mining of MBL-like genes reveals that MBL and GalBL genes are arranged in tandem in the zebrafish genome and that both lectins are conserved in the distantly related puffer fish. These results imply that bony fish have developed a diverged set of MBL homologs that function in the lectin complement pathway.
Collapse
Affiliation(s)
- Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Kyushu University, Hakozaki, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Boshra H, Li J, Sunyer JO. Recent advances on the complement system of teleost fish. FISH & SHELLFISH IMMUNOLOGY 2006; 20:239-62. [PMID: 15950490 DOI: 10.1016/j.fsi.2005.04.004] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/04/2005] [Indexed: 05/02/2023]
Abstract
The complement system plays an essential role in alerting the host of the presence of potential pathogens, as well as in their clearing. In addition, activation of the complement system contributes significantly in the orchestration and development of an acquired immune response. Although the complement system has been studied extensively in mammals, considerably less is known about complement in lower vertebrates, in particular teleost fish. Here we review our current understanding of the role of fish complement in phagocytosis, respiratory burst, chemotaxis and cell lysis. We also thoroughly review the specific complement components characterized thus far in various teleost fish species. In addition, we provide a comprehensive compilation on complement host-pathogen interactions, in which we analyze the role of fish complement in host defense against bacteria, viruses, fungi and parasites. From a more physiological perspective, we evaluate the knowledge accumulated on the influence of stress, nutrition and environmental factors on levels of complement activity and components, and how the use of this knowledge can benefit the aquaculture industry. Finally, we propose future directions that are likely to advance our understanding of the molecular evolution, structure and function of complement proteins in teleosts. Such studies will be pivotal in providing new insights into complement-related mechanisms of recognition and defense that are essential to maintaining fish homeostasis.
Collapse
Affiliation(s)
- H Boshra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 413 Rosenthal, 3800 Spruce St., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
15
|
Plouffe DA, Hanington PC, Walsh JG, Wilson EC, Belosevic M. Comparison of select innate immune mechanisms of fish and mammals. Xenotransplantation 2005; 12:266-77. [PMID: 15943775 DOI: 10.1111/j.1399-3089.2005.00227.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The study of innate immunity has become increasingly popular since the discovery of homologs of many of the innate immune system components and pathways in lower organisms including invertebrates. As fish occupy a key position in the evolution of the innate and adaptive immune responses, there has been a great deal of interest regarding similarities and differences between their defense mechanisms and those of higher vertebrates. This review focuses on describing select mechanisms of the innate immune responses of fish and the implications for evolution of immunity in higher vertebrates.
Collapse
Affiliation(s)
- Debbie A Plouffe
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
16
|
Kato Y, Nakao M, Mutsuro J, Zarkadis IK, Yano T. The complement component C5 of the common carp (Cyprinus carpio): cDNA cloning of two distinct isotypes that differ in a functional site. Immunogenetics 2003; 54:807-15. [PMID: 12618914 DOI: 10.1007/s00251-002-0528-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Revised: 11/11/2002] [Indexed: 10/25/2022]
Abstract
The complement component C5 plays important roles in inflammatory responses and complement-mediated cytolysis. In bony fish, although C5 has been identified at the DNA or the protein level in trout, carp and gilthead seabream, only partial C5 sequences are available. The present study was designed to obtain the complete primary structure of C5 from the common carp ( Cyprinus carpio) and to examine its possible structural diversity. Reverse-transcribed polymerase chain reaction amplification from carp hepatopancreatic RNA resulted in isolation of six distinct C5-like cDNA segments, which were grouped into two divergent types (type I and type II). Using two sequences representative of the two types as probes, two distinct full-length cDNA clones (C5-1 and C5-2) were isolated, in addition to a truncated isoform of C5-1 (C5-1'). The deduced amino acid sequences of C5-1 and C5-2 share 83% identity and predict a typical two-chain structure of the mature protein that lacks the thioester bond, as in C5 from other animals. Southern hybridization of genomic DNA suggested the presence of multiple genes encoding C5-type I and a single gene encoding C5-type II. Interestingly, carp C5-type I contains novel subtypes like C5-1 that have a histidine instead of the well-conserved arginine at the cleavage site for the C5 convertase, both in the complete and truncated forms. Northern blotting analysis suggested that C5-type I and C5-type II are mainly expressed in hepatopancreas, and the expression levels are significantly increased by stimulating carp with lipopolysaccharide or beta-1,3-glucan. Possible functional divergence among the C5 isotypes in carp is discussed.
Collapse
Affiliation(s)
- Yoko Kato
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki, 812-8581 Fukuoka, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Complement, an important component of the innate immune system, is comprised of about 35 individual proteins. In mammals, activation of complement results in the generation of activated protein fragments that play a role in microbial killing, phagocytosis, inflammatory reactions, immune complex clearance, and antibody production. Fish appear to possess activation pathways similar to those in mammals, and the fish complement proteins identified thus far show many homologies to their mammalian counterparts. Because information about complement proteins, regulatory proteins, and complement receptors in fish is far from complete, it is unclear whether all the complement functions that have been identified in mammals also occur in fish. However, it has been clearly demonstrated that fish complement can lyse foreign cells and opsonise foreign organisms for destruction by phagocytes. There are also indications that complement fragments participate in inflammatory reactions. Fish possess multiple isoforms of several complement proteins, such as C3 and factor B. It has been hypothesised that the function of this diversity in complement proteins serves to expand their innate immune recognition capacity and response. Understanding the functions of complement in fish and the roles the individual proteins, including the various isoforms, play in host defence, is important not only for understanding the evolution of this system but also for the development of new strategies in fish health management.
Collapse
Affiliation(s)
- M Claire H Holland
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar Chance Laboratories, Philadelphia, PA 19014, USA
| | | |
Collapse
|
18
|
Zarkadis IK, Mastellos D, Lambris JD. Phylogenetic aspects of the complement system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:745-762. [PMID: 11602194 DOI: 10.1016/s0145-305x(01)00034-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
During evolution two general systems of immunity have emerged: innate or, natural immunity and adaptive (acquired), or specific immunity. The innate system is phylogenetically older and is found in some form in all multicellular organisms, whereas the adaptive system appeared about 450 million years ago and is found in all vertebrates except jawless fish. The complement system in higher vertebrates plays an important role as an effector of both the innate and the acquired immune response, and also participates in various immunoregulatory processes. In lower vertebrates complement is activated by the alternative and lectin pathways and is primarily involved in the opsonization of foreign material. The Agnatha (the most primitive vertebrate species) possess the alternative and lectin pathways while cartilaginous fish are the first species in which the classical pathway appears following the emergence of immunoglobulins. The rest of the poikilothermic species, ranging from teleosts to reptilians, appear to contain a well-developed complement system resembling that of the homeothermic vertebrates. It seems that most of the complement components have appeared after the duplication of primordial genes encoding C3/C4/C5, fB/C2, C1s/C1r/MASP-1/MASP-2, and C6/C7/C8/C9 molecules, in a process that led to the formation of distinct activation pathways. However, unlike homeotherms, several species of poikilotherms (e.g. trout) have recently been shown to possess multiple forms of complement components (C3, factor B) that are structurally and functionally more diverse than those of higher vertebrates. We hypothesize that this remarkable diversity has allowed these animals to expand their innate capacity for immune recognition and response. Recent studies have also indicated the possible presence of complement receptors in protochordates and lower vertebrates. In conclusion, there is considerable evidence suggesting that the complement system is present in the entire lineage of deuterostomes, and regulatory complement components have been identified in all species beyond the protochordates, indicating that the mechanisms of complement activation and regulation have developed in parallel.
Collapse
Affiliation(s)
- I K Zarkadis
- Department of Biology, School of Medicine, University of Patras, 26500 Rion, Patra, Greece
| | | | | |
Collapse
|
19
|
Magor BG, Magor KE. Evolution of effectors and receptors of innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:651-682. [PMID: 11602189 DOI: 10.1016/s0145-305x(01)00029-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The bony fishes are derived from one of the earliest divergent vertebrate lineages to have both innate and acquired immune systems. They are considered by some to be an ideal model to study the underpinnings of immune systems precisely because of their phylogenetic position and the fact that their adaptive immune systems have not been elaborated to the extent seen in mammals. By the same token, examination of innate immune systems in invertebrates and early chordates can provide insight into how homologous systems operate in fish and higher vertebrates. Herein, we provide an overview of the molecular evidence that we hope helps clarify the evolutionary relationships of innate immune molecules identified in bony fishes. The innate immune systems being considered include select chemokines (CC and CXC chemokines and their receptors), cytokines (IL-1, IL-8, interferons, TGF-beta, TNF-alpha), acute phase proteins (SAA, SAP, CRP, alpha2M, and the complement components--C3-C9, MASP, MBL, Bf), NK cell receptors, and molecules upstream and downstream of the Toll signaling pathways.
Collapse
Affiliation(s)
- B G Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E5, Canada.
| | | |
Collapse
|
20
|
Franchini S, Zarkadis IK, Sfyroera G, Sahu A, Moore WT, Mastellos D, LaPatra SE, Lambris JD. Cloning and purification of the rainbow trout fifth component of complement (C5). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:419-430. [PMID: 11356221 DOI: 10.1016/s0145-305x(01)00010-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To gain further insight into the evolutionary history of the complement proteins C3, C4, and C5 we have now cloned the fifth component of complement from a rainbow trout (Oncorhynchus mykiss) liver cDNA library; this is the first report of C5 cloning in a species other than human and mouse. The deduced amino acid sequence of a partial cDNA clone (2.25kb), representing approximately 44% of the coding sequence, showed 60 and 58% similarity to human and mouse C5, respectively. To validate the molecular information derived from the cloning we developed an improved purification protocol. Mass spectrometric analysis of C5 tryptic digests yielded peptide signals that matched theoretical protein sequence derived from the partial cDNA. Northern blot analysis of RNA from various tissues showed the presence of a single mRNA transcript in trout liver and Southern blot analysis indicated that the gene coding for C5 is present as a single copy in the trout genome. The presence of C5 in trout suggests that C3, C4, and C5 must have diverged before the appearance of teleost fish.
Collapse
Affiliation(s)
- S Franchini
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar-Chance Laboratories, 19104, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In mammals the complement system plays an important role in innate and acquired host defense mechanisms against infection and in various immunoregulatory processes. The complement system is an ancient defense mechanism that is already present in the invertebrate deuterostomes. In these species as well as in agnathans (the most primitive vertebrate species), both the alternative and lectin pathway of complement activation are already present, and the complement system appears to be involved mainly in opsonization of foreign material. With the emergence of immunoglobulins in cartilaginous fish, the classical and lytic pathways first appear. The rest of the poikilothermic species, from teleosts to reptilians, appear to contain a well-developed complement system resembling that of homeothermic vertebrates. However, important differences remain. Unlike homeotherms, several species of poikilotherms have recently been shown to possess multiple forms of complement components (C3 and factor B) that are structurally and functionally more diverse than those of higher vertebrates. It is noteworthy that the multiple forms of C3 that have been characterized in several teleost fish are able to bind with varying efficiencies to various complement-activating surfaces. We hypothesize that this diversity has allowed these animals to expand their innate capacity for immune recognition.
Collapse
Affiliation(s)
- J O Sunyer
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
| | | |
Collapse
|
22
|
Abstract
The classical (CCP) and alternative (ACP) pathways of complement activation have been established for the nurse shark (Ginglymostoma cirratum). The isolation of a cDNA clone encoding a mannan-binding protein-associated serine protease (MASP)-1-like protein from the Japanese dogfish (Triakis scyllia) suggests the presence of a lectin pathway. The CCP consists of six functionally distinct components: C1n, C2n, C3n, C4n, C8n and C9n, and is activated by immune complexes in the presence of Ca++ and Mg++ ions. The ACP is antibody independent, requiring Mg++ ions and a heat-labile 90 kDa factor B-like protein for activity. Proteins considered homologues of C1q, C3 and C4 (C2n) of the mammalian complement system have been isolated from nurse shark serum. Shark C1q is composed of at least two chain types each showing 50% identity to human C1q chains A and B. Partial sequence of the globular domain of one of the chains shows it to be C1q-like rather than like mannan-binding protein. N-terminal amino acid sequences of the alpha and beta chain of shark C3 and C4 molecules show significant identity with corresponding human C3 and C4 chains. A sequence representing shark C4 gamma chain, shows little similarity to human C4 gamma chain. The terminal shark components C8n and C9n are functional analogues of mammalian C8 and C9. Anaphylatoxin activity has been demonstrated in activated shark serum, and porcine C5a desArg induces shark leucocyte chemotaxis. The deduced amino acid sequence of a partial C3 cDNA clone from the nurse shark shows 50%, 30% and 24% homology with the corresponding region of mammalian C3, C4 and alpha 2-macroglobulin. Deduced amino acid sequence data from partial Bf/C2 cDNA clones, two from the nurse shark and one from the Japanese dogfish, suggest that at least one species of elasmobranch has two distinct Bf/C2 genes.
Collapse
Affiliation(s)
- S L Smith
- Department of Medical Laboratory Sciences, Florida International University, Miami 33199, USA.
| |
Collapse
|
23
|
Nakao M, Yano T. Structural and functional identification of complement components of the bony fish, carp (Cyprinus carpio). Immunol Rev 1998; 166:27-38. [PMID: 9914900 DOI: 10.1111/j.1600-065x.1998.tb01250.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complement is a humoral factor of innate immunity and plays important roles in immune surveillance and clearance of invading pathogens. Mammalian complement consists of the classical (antibody-dependent), the alternative (antibody-independent) and the lectin (triggered by mannose-binding lectin) pathways of activation, and of the lytic pathway. Phylogenetically, bony fish are one of the lowest groups of vertebrates with serum that shows hemolytic activity indistinguishable from that of mammalian complement. In our series of trials to address the question "How many components constitute the bony fish complement?" Functional analyses, protein isolation, and molecular cloning revealed the presence of major components constituting each pathway, the similarity between bony fish and mammalian complement being considerable. Recent investigations on carp (Cyprinus carpio) and other fish species revealed striking features unique to bony fish complement, including a remarkable diversity in structure and function of the third component, C3, and the presence of a newly identified lineage in evolution of the factor B and C2 family. For a significant insight into the evolution of complement systems and clinical applications to aquaculture industry, further extended studies are warranted.
Collapse
Affiliation(s)
- M Nakao
- Laboratory of Marine Biochemistry, Faculty of Agriculture, Kyushu University, Japan
| | | |
Collapse
|
24
|
Lee PH, Goetz FW. Characterization of a novel cDNA obtained through differential-display PCR of phorbol ester-stimulated ovarian tissue from the brook trout (Salvelinus fontinalis). Mol Reprod Dev 1998; 49:112-8. [PMID: 9444654 DOI: 10.1002/(sici)1098-2795(199802)49:2<112::aid-mrd2>3.0.co;2-s] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A cDNA (DRC1, differentially regulated clone 1) was obtained from differential-display polymerase chain reaction (PCR) of brook trout ovarian tissue stimulated with phorbol-12-myristate-13-acetate (PMA) and A23187. Using 5' RACE (rapid amplification of cDNA ends), two full-length clones were obtained from DRC1 that were 425 and 660 base pairs long and contained the same open reading frame. On Northern blots, DRC1 hybridized with two ovarian mRNAs of 0.45 and 0.7 kb that were significantly suppressed in the presence of PMA and/or A23187. The mRNAs were not observed in ovaries prior to the resumption of meiosis but were present during ovulation and 24 hr after ovulation. Of other trout tissues tested by Northern blotting, the expression of DRC1-related transcripts also was extremely high in the liver. Based on the full-length cDNAs obtained from RACE, these mRNAs presumably encode an 88-amino-acid protein (DRTP1, differentially regulated trout protein 1) that is homologous to a gene superfamily composed of snake venom neurotoxins, a CD59 complement regulatory protein, Ly-6 alloantigens, and a urokinase-type plasminogen activator receptor. To our knowledge, this is the first description of this type of cDNA from a nonmammalian source other than snake venom. In view of the sequence homology and tissue expression of DRTP1, a possible function of this protein may be to regulate the complement system in trout.
Collapse
Affiliation(s)
- P H Lee
- Department of Biological Sciences, University of Notre Dame, IN 46556, USA
| | | |
Collapse
|