1
|
Wang L, Ma M, Li Y, Pei C, Wang J, Li J, Yang L, Liu Q, Tang L, Hao Y, Jiang H, Fu J, Xiao Y, Wang Y, Cui M, Su T, Bai J, Tang H, Wang Y, Shan H, Jiang H, Deng C, Kong L, Hui Z, Ma L. Effect of supplementation with lutein, zeaxanthin, and omega-3 fatty acids on macular pigment and visual function in young adults with long-term use of digital devices: study protocol for a randomized double-blind placebo-controlled study. Front Nutr 2024; 11:1422468. [PMID: 39494312 PMCID: PMC11528376 DOI: 10.3389/fnut.2024.1422468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Growing evidence emphasizes the importance of xanthophyll carotenoids and omega-3 fatty acids in eye health. However, the beneficial effects of such supplementation have not been thoroughly discussed among adults with high screen exposure. Current trial evidence on lutein bioavailability is contradictory, and the interactions of dietary intervention with host-related factors remain elusive. This study aims to investigate the comparative effectiveness of supplementation with macular xanthophylls and omega-3 fatty acids on macular pigment optical density (MPOD) and visual function, access the bioavailability of free lutein and lutein ester, and explore the complex interplay between genetic variations, intestinal microbiota, and the dietary intervention in Chinese adults with long-term exposure to digital devices. Methods The Lutein, Zeaxanthin, and Omega-3 (LZO) clinical trial is a 24-week multicenter, randomized, double-blind, placebo-controlled trial of 600 participants recruited from research centers, universities, and communities. Individuals are eligible to participate if they are aged over 18 years and use digital devices for over 8 h daily in the last 2 years, and will be randomized to six arms. A total of three visits will be scheduled at baseline, 12 and 24 weeks. The primary outcome is the change in MPOD over the 24-week intervention. The secondary outcomes are changes in visual function (visual acuity, best-corrected visual acuity, contrast and glare sensitivity, critical flicker fusion, reaction time, visuognosis persistence, symptoms and signs of dry eye, retinal thickness, and optical quality), and changes in serum lutein and zeaxanthin concentrations, and erythrocyte membrane omega-3 fatty acids. Genetic variations will be determined using genome-wide genotyping at baseline. 16S rRNA gene sequencing will be utilized to assess microbiome compositional changes before and after intervention. Discussion The trial is anticipated to establish early interventions to prevent photochemical ocular damage and delay the onset of vision impairment in young adults with long-term repeated exposure to screen-based electronic devices, and provide valuable insights for the development of precision nutrition strategies for maintaining eye health. Clinical trial registration www.clinicaltrials.in.th, Identifier, TCTR20220904002.
Collapse
Affiliation(s)
- Lina Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mei Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yong Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Cheng Pei
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jianming Wang
- The Second Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Juan Li
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Linjuan Yang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Qianying Liu
- The Second Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Li Tang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yang Hao
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Huili Jiang
- Shaanxi Eye Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaxuan Fu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yuyao Xiao
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yahui Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Cui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Tong Su
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jiaqi Bai
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hao Tang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yue Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hongying Shan
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Hong Jiang
- The First Affiliated Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chaoming Deng
- BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Liyun Kong
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an, China
| | - Zhaozhao Hui
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Le Ma
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an, China
| |
Collapse
|
2
|
Amari B, Merle BMJ, Korobelnik JF, Delyfer MN, Boniol M, Dore JF, Helmer C, Delcourt C, Cougnard-Gregoire A. LIFETIME AMBIENT ULTRAVIOLET RADIATION EXPOSURE AND INCIDENCE OF AGE-RELATED MACULAR DEGENERATION. Retina 2024; 44:28-36. [PMID: 38117581 DOI: 10.1097/iae.0000000000003917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
PURPOSE To investigate the link between lifelong exposure to ultraviolet radiation (UVR) and the development of age-related macular degeneration (AMD). METHODS The Alienor study is a prospective population-based cohort involving 963 residents of Bordeaux, France, older than 73 years. A subset of 614 participants for advanced AMD and 422 participants for early AMD were included in the analysis. The participants' residential history combined with UVR estimates from the EuroSun satellite were used to estimate the amount of ambient UVR they have been exposed to over their lifetime. Age-related macular degeneration was classified from retinal fundus photographs and spectral domain optical coherence tomography at 2 to 3 years intervals over the 2006 to 2017 period. Associations between cumulative exposure to ultraviolet A, ultraviolet B, and total (total UV) and the incidence of early and advanced AMD were estimated using multivariate Cox models. RESULTS Intermediate quartiles of total UV, ultraviolet A, and ultraviolet B exposures were associated with a higher risk for incident early AMD (Hazard Ratio [HR] =2.01 [95% confidence interval [CI] = 1.27-3.13], HR = 2.20 [95% CI = 1.38-3.50], HR = 1.79 [95% CI = 1.13-2.80], respectively) as compared with the lower quartile. However, this risk did not further increase in the highest quartiles of exposure. None of the three types of UVR exposure was significantly associated with incident advanced AMD. CONCLUSION Despite an increased risk with intermediate compared with low UVR exposure, our study cannot confirm a dose-response relationship of UVR exposure with early AMD onset.
Collapse
Affiliation(s)
- Bouchra Amari
- Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France
| | | | - Jean-François Korobelnik
- Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France
- CHU de Bordeaux, Department of Ophthalmology, Bordeaux, France
| | - Marie-Noëlle Delyfer
- Univ. Bordeaux, INSERM, BPH, U1219, Bordeaux, France
- CHU de Bordeaux, Department of Ophthalmology, Bordeaux, France
| | - Mathieu Boniol
- World Health Organization, Health Personnel Department, Geneva, Switzerland; and
| | - Jean-François Dore
- INSERM U 1296 "Radiation, Defense, Health, Environment", Center Léon Bérard, Lyon, France
| | | | | | | |
Collapse
|
3
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
4
|
Singh S, Keller PR, Busija L, McMillan P, Makrai E, Lawrenson JG, Hull CC, Downie LE. Blue-light filtering spectacle lenses for visual performance, sleep, and macular health in adults. Cochrane Database Syst Rev 2023; 8:CD013244. [PMID: 37593770 PMCID: PMC10436683 DOI: 10.1002/14651858.cd013244.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
BACKGROUND 'Blue-light filtering', or 'blue-light blocking', spectacle lenses filter ultraviolet radiation and varying portions of short-wavelength visible light from reaching the eye. Various blue-light filtering lenses are commercially available. Some claims exist that they can improve visual performance with digital device use, provide retinal protection, and promote sleep quality. We investigated clinical trial evidence for these suggested effects, and considered any potential adverse effects. OBJECTIVES To assess the effects of blue-light filtering lenses compared with non-blue-light filtering lenses, for improving visual performance, providing macular protection, and improving sleep quality in adults. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL; containing the Cochrane Eyes and Vision Trials Register; 2022, Issue 3); Ovid MEDLINE; Ovid Embase; LILACS; the ISRCTN registry; ClinicalTrials.gov and WHO ICTRP, with no date or language restrictions. We last searched the electronic databases on 22 March 2022. SELECTION CRITERIA We included randomised controlled trials (RCTs), involving adult participants, where blue-light filtering spectacle lenses were compared with non-blue-light filtering spectacle lenses. DATA COLLECTION AND ANALYSIS Primary outcomes were the change in visual fatigue score and critical flicker-fusion frequency (CFF), as continuous outcomes, between baseline and one month of follow-up. Secondary outcomes included best-corrected visual acuity (BCVA), contrast sensitivity, discomfort glare, proportion of eyes with a pathological macular finding, colour discrimination, proportion of participants with reduced daytime alertness, serum melatonin levels, subjective sleep quality, and patient satisfaction with their visual performance. We evaluated findings related to ocular and systemic adverse effects. We followed standard Cochrane methods for data extraction and assessed risk of bias using the Cochrane Risk of Bias 1 (RoB 1) tool. We used GRADE to assess the certainty of the evidence for each outcome. MAIN RESULTS We included 17 RCTs, with sample sizes ranging from five to 156 participants, and intervention follow-up periods from less than one day to five weeks. About half of included trials used a parallel-arm design; the rest adopted a cross-over design. A variety of participant characteristics was represented across the studies, ranging from healthy adults to individuals with mental health and sleep disorders. None of the studies had a low risk of bias in all seven Cochrane RoB 1 domains. We judged 65% of studies to have a high risk of bias due to outcome assessors not being masked (detection bias) and 59% to be at high risk of bias of performance bias as participants and personnel were not masked. Thirty-five per cent of studies were pre-registered on a trial registry. We did not perform meta-analyses for any of the outcome measures, due to lack of available quantitative data, heterogenous study populations, and differences in intervention follow-up periods. There may be no difference in subjective visual fatigue scores with blue-light filtering lenses compared to non-blue-light filtering lenses, at less than one week of follow-up (low-certainty evidence). One RCT reported no difference between intervention arms (mean difference (MD) 9.76 units (indicating worse symptoms), 95% confidence interval (CI) -33.95 to 53.47; 120 participants). Further, two studies (46 participants, combined) that measured visual fatigue scores reported no significant difference between intervention arms. There may be little to no difference in CFF with blue-light filtering lenses compared to non-blue-light filtering lenses, measured at less than one day of follow-up (low-certainty evidence). One study reported no significant difference between intervention arms (MD - 1.13 Hz lower (indicating poorer performance), 95% CI - 3.00 to 0.74; 120 participants). Another study reported a less negative change in CFF (indicating less visual fatigue) with high- compared to low-blue-light filtering and no blue-light filtering lenses. Compared to non-blue-light filtering lenses, there is probably little or no effect with blue-light filtering lenses on visual performance (BCVA) (MD 0.00 logMAR units, 95% CI -0.02 to 0.02; 1 study, 156 participants; moderate-certainty evidence), and unknown effects on daytime alertness (2 RCTs, 42 participants; very low-certainty evidence); uncertainty in these effects was due to lack of available data and the small number of studies reporting these outcomes. We do not know if blue-light filtering spectacle lenses are equivalent or superior to non-blue-light filtering spectacle lenses with respect to sleep quality (very low-certainty evidence). Inconsistent findings were evident across six RCTs (148 participants); three studies reported a significant improvement in sleep scores with blue-light filtering lenses compared to non-blue-light filtering lenses, and the other three studies reported no significant difference between intervention arms. We noted differences in the populations across studies and a lack of quantitative data. Device-related adverse effects were not consistently reported (9 RCTs, 333 participants; low-certainty evidence). Nine studies reported on adverse events related to study interventions; three studies described the occurrence of such events. Reported adverse events related to blue-light filtering lenses were infrequent, but included increased depressive symptoms, headache, discomfort wearing the glasses, and lower mood. Adverse events associated with non-blue-light filtering lenses were occasional hyperthymia, and discomfort wearing the spectacles. We were unable to determine whether blue-light filtering lenses affect contrast sensitivity, colour discrimination, discomfort glare, macular health, serum melatonin levels or overall patient visual satisfaction, compared to non-blue-light filtering lenses, as none of the studies evaluated these outcomes. AUTHORS' CONCLUSIONS This systematic review found that blue-light filtering spectacle lenses may not attenuate symptoms of eye strain with computer use, over a short-term follow-up period, compared to non-blue-light filtering lenses. Further, this review found no clinically meaningful difference in changes to CFF with blue-light filtering lenses compared to non-blue-light filtering lenses. Based on the current best available evidence, there is probably little or no effect of blue-light filtering lenses on BCVA compared with non-blue-light filtering lenses. Potential effects on sleep quality were also indeterminate, with included trials reporting mixed outcomes among heterogeneous study populations. There was no evidence from RCT publications relating to the outcomes of contrast sensitivity, colour discrimination, discomfort glare, macular health, serum melatonin levels, or overall patient visual satisfaction. Future high-quality randomised trials are required to define more clearly the effects of blue-light filtering lenses on visual performance, macular health and sleep, in adult populations.
Collapse
Affiliation(s)
- Sumeer Singh
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Peter R Keller
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Ljoudmila Busija
- Biostatistics Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Patrick McMillan
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Eve Makrai
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - John G Lawrenson
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - Christopher C Hull
- Centre for Applied Vision Research, School of Health Sciences, City University of London, London, UK
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Wolffsohn JS, Dhallu S, Aujla M, Laughton D, Tempany K, Powell D, Gifford K, Gifford P, Wan K, Cho P, Stahl U, Woods J. International multi-centre study of potential benefits of ultraviolet radiation protection using contact lenses. Cont Lens Anterior Eye 2022; 45:101593. [DOI: 10.1016/j.clae.2022.101593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
|
6
|
Zhang X, Sivaprasad S. Drusen and pachydrusen: the definition, pathogenesis, and clinical significance. Eye (Lond) 2020; 35:121-133. [PMID: 33208847 DOI: 10.1038/s41433-020-01265-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
The pachychoroid disease spectrum encompasses seven major retinal conditions including central serous chorioretinopathy (CSC), polypoidal choroidal vasculopathy (PCV), and pachychoroid neovasculopathy or type I macular neovascularisation (MNV) secondary to chronic persistent thickening and dysfunction of the choroidal vasculature. Drusen are focal yellow-white deposits of extracellular debris, which consist of complement proteins, esterified and nonesterified cholesterol, apolipoproteins, carbohydrates, and trace elements, above the retinal pigment epithelium (RPE) or between the RPE and Bruch's membrane. Although drusen are an essential disease precursor of advanced age-related macular degeneration (AMD), a new entity "pachydrusen" has been identified to be associated with some of the enitites that constitute the pachychoroid spectrum. It remains to be determined what the exact differences are between soft drusen, pseudodrusen, and pachydrusen in terms of phenotype, genotype, and pathogenesis. Improving our knowledge in these areas will inevitably improve our understanding of their clinical significance especially as in disease prediction in AMD and the pachychroid spectrum disorders. It remains controversial whether PCV is a subtype of AMD. Understanding the pathogenesis of different types of drusen may also help in addressing if phenotype and/or genotype of type 1 MNV associated with pachychoroid are similar to type 1 MNV related to AMD. Furthermore, because pachydrusen links two pachychoroid diseases, CSC and PCV, it is also of great interest to investigate if CSC is an early stage or a predictor of PCV in future research. In this review, we share our experience in clinical practice and the latest published evidence-based literature to emphasize the differences and similarities in morphology, pathogenesis, and clinical significance of drusen and pachydrusen, a new member of the pachychoroid spectrum disorders.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, PR China.
| | - Sobha Sivaprasad
- NIHR Moorfields Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| |
Collapse
|
7
|
Smith AK, Conger JR, Hedayati B, Kim JJ, Amoozadeh S, Mehta M. The Effect of a Screen Protector on Blue Light Intensity Emitted from Different Hand-held Devices. Middle East Afr J Ophthalmol 2020; 27:177-181. [PMID: 33488015 PMCID: PMC7813134 DOI: 10.4103/meajo.meajo_2_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/06/2020] [Accepted: 10/11/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE: In response to growing concern about the effect of blue light on ocular tissue, companies have created mobile device screen protectors to block blue light. This project evaluates one of these screen protectors' ability to reduce blue light intensity. METHODS: The intensity of light at 450 nm from an iPhone 8, iPhone X, and iPad was measured in a dark room. The averages of three measurements were taken with and without the screen protector at different distances, settings of brightness, and Apple's night shift (NS) mode. Results were analyzed using paired t-tests. RESULTS: At 33 cm, 100% brightness, and 0% NS, the screen protector decreased intensity by 43.9%, 32.3%, and 34.9% for the iPhone 8, iPhone X, and iPad, respectively. At 33 cm and 100% brightness, increasing NS mode from 0% to 100% decreased intensity by 81.2%, 84.2%, and 86.5%. At 33 cm without NS, decreasing the brightness from 100% to 0% decreased intensity by 99.5%, 99.8%, and 97.8%. CONCLUSIONS: The screen protector decreased the intensity at 450 nm for every setting other than those at 0% brightness. Decreasing brightness and applying NS mode were more effective in reducing blue light. More research is needed to determine the benefits of decreasing blue light exposure from electronic devices.
Collapse
Affiliation(s)
- Andrew K Smith
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, USA
| | - Jordan R Conger
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, USA
| | - Bobak Hedayati
- School of Medicine, University of California, Irvine, USA
| | - Jeff J Kim
- School of Medicine, University of California, Irvine, USA
| | | | - Mitul Mehta
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, USA
| |
Collapse
|
8
|
Buch J, Hammond B. Photobiomodulation of the Visual System and Human Health. Int J Mol Sci 2020; 21:ijms21218020. [PMID: 33126530 PMCID: PMC7662260 DOI: 10.3390/ijms21218020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Humans express an expansive and detailed response to wavelength differences within the electromagnetic (EM) spectrum. This is most clearly manifest, and most studied, with respect to a relatively small range of electromagnetic radiation that includes the visible wavelengths with abutting ultraviolet and infrared, and mostly with respect to the visual system. Many aspects of our biology, however, respond to wavelength differences over a wide range of the EM spectrum. Further, humans are now exposed to a variety of modern lighting situations that has, effectively, increased our exposure to wavelengths that were once likely minimal (e.g., “blue” light from devices at night). This paper reviews some of those biological effects with a focus on visual function and to a lesser extent, other body systems.
Collapse
Affiliation(s)
- John Buch
- Johnson & Johnson Vision, Research & Development, Jacksonville, FL 32256, USA
- Correspondence: ; Tel.: +1-904-443-1707
| | - Billy Hammond
- Department of Psychology, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
9
|
Abstract
Since the original ICNIRP Statement was published in 2000, there have been significant improvements in the efficiency and radiance (i.e., optical radiation emission) of LEDs. The most important improvement is the development of 'white' LEDs that can be used as general lighting sources, which are more efficient than traditional lighting sources. LEDs emitting in the ultraviolet wavelength region have also become available and have made their way into consumer products. All these changes have led to a rise in concern for the safety of the optical radiation emissions from LEDs. Several in vitro and animal studies have been conducted, which indicate that blue and white LEDs can potentially cause retinal cell damage under high irradiance and lengthy exposure conditions. However, these studies cannot be directly extrapolated to normal exposure conditions for humans, and equivalent effects can also be caused by the optical radiation from other light sources under extreme exposure conditions. Acute damage to the human retina from typical exposure to blue or white LEDs has not been demonstrated. Concern for potential long-term effects, e.g. age-related macular degeneration (AMD), remains based on epidemiological studies indicating a link between high levels of exposure to sunlight and AMD. When evaluating the optical radiation safety of LEDs, it has now been established that published safety standards for lamps, not lasers, should be applied. Thus far, the only clear, acute adverse health effects from LEDs are those due to temporal light modulation (including flicker). Glare can also create visual disturbances when LED light fixtures are not properly designed. Further research is needed on potential health effects from short- and long-term exposure to new and emerging lighting technologies.
Collapse
|
10
|
Quigley MG, Powell I, Wittich W. Increased Axial Length Corresponds to Decreased Retinal Light Dose: A Parsimonious Explanation for Decreasing AMD Risk in Myopia. ACTA ACUST UNITED AC 2018; 59:3852-3857. [DOI: 10.1167/iovs.17-23696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Michael G. Quigley
- Centre Hospitalier de l'Université de Montréal, University of Montreal, Montreal, Quebec, Canada
- Royal Victoria Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Walter Wittich
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
- Center for Interdisciplinary Rehabilitation Research of Greater Montreal, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Begaj T, Schaal S. Sunlight and ultraviolet radiation—pertinent retinal implications and current management. Surv Ophthalmol 2018; 63:174-192. [DOI: 10.1016/j.survophthal.2017.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022]
|
12
|
Çalışkan S, Gürdal C. Re: Siah et al.: Lower macular pigment optical density in foveal-involved glaucoma (Ophthalmology 2015;122:2029-37). Ophthalmology 2016; 123:e43. [PMID: 27342335 DOI: 10.1016/j.ophtha.2016.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 01/21/2016] [Indexed: 11/26/2022] Open
Affiliation(s)
- Sinan Çalışkan
- Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey.
| | - Canan Gürdal
- Diskapi Yildirim Beyazit Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
13
|
Mendoza-Mendieta ME, Lorenzo-Mejía AA. Associated depression in pseudophakic patients with intraocular lens with and without chromophore. Clin Ophthalmol 2016; 10:577-81. [PMID: 27099465 PMCID: PMC4820230 DOI: 10.2147/opth.s95212] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND With aging, the crystalline lens turns yellowish, which increases the absorption of wavelengths in the blue electromagnetic spectrum, reducing their photoreception in the retina. Since these wavelengths are the main stimulus in the regulation of the circadian rhythm, progressive reduction in their transmission is associated with chronic sleep disturbances and depression in elderly patients. Cataract extraction improves circadian photoreception at any age. However, lenses that block blue waves have 27% to 38% less melatonin suppression than lenses that block only ultraviolet (UV) rays. PURPOSE To assess the depression symptoms in subjects who have had bilateral phacoemul-sification and intraocular lens (IOL) implants, one group with yellow chromophore IOLs and the other group with transparent IOLs were compared. SETTING Association to Prevent Blindness in Mexico (APEC), Hospital "Dr Luis Sánchez Bulnes". DESIGN This was an observational, cross-sectional, and single-center study. MATERIALS AND METHODS Twenty-six subjects between 60 and 80 years of age, with a history of bilateral phacoemulsification and placement of the same type of IOL in both eyes from 4 to 12 months prior to the study, who attended the follow-up visits and agreed to participate in this study, and provided signed informed consent were included in the study. They were asked to answer the short version of the 15-item Geriatric Depression Scale. RESULTS The average age of the study participants was 72.5±5.94 years. The group without chromophore included 46.1% (n=12) of the patients and the group with chromophore included 53.9% (n=14) of the patients (P=0.088). CONCLUSION In the group of patients with IOLs that block the passage of blue light, the depression rate was 21.4%, a rate similar to that observed in the elderly population, whereas no patients in the group with transparent IOLs had depression.
Collapse
Affiliation(s)
| | - Ana Aurora Lorenzo-Mejía
- Association to Prevent Blindness in Mexico (APEC), Hospital "Dr Luis Sánchez Bulnes", Mexico City, Mexico
| |
Collapse
|
14
|
Reibaldi M, Longo A, Pulvirenti A, Avitabile T, Russo A, Cillino S, Mariotti C, Casuccio A. Geo-Epidemiology of Age-Related Macular Degeneration: New Clues Into the Pathogenesis. Am J Ophthalmol 2016; 161:78-93.e1-2. [PMID: 26432929 DOI: 10.1016/j.ajo.2015.09.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/24/2015] [Accepted: 09/24/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE To evaluate the demographic, geographic, and race-related variables that account for geographic variability in prevalence rates of age-related macular degeneration (AMD). DESIGN Systematic review, meta-regression, and decision-tree analysis. METHODS A systematic literature review of PubMed, Medline, Web of Science, and Embase databases identified population-based studies on the prevalence of AMD published before May 2014. Only population-based studies that took place in a spatially explicit geographic area that could be geolocalized, and used retinal photographs and standardized grading classifications, were included. Latitude and longitude data (geolocalization) and the mean annual insolation for the area where survey took place were obtained. Age-standardized prevalence rates across studies were estimated using the direct standardization method. Correlations between the prevalence of AMD and longitude and latitude were obtained by regression analysis. A hierarchical Bayesian meta-regression approach was used to assess the association between the prevalence of AMD and other relevant factors. We further investigated the interplay between location and these factors on the prevalence of AMD using regression based on conditional-inference decision trees. RESULTS We observed significant inverse correlations between latitude or longitude, and crude or age-standardized prevalence rates, of early and late AMD (P < .001). Metaregression analysis showed that insolation, latitude, longitude, age, and race have a significant effect on the prevalence rates of early and late AMD (P < .001). Decision-tree analysis identified that the most important predictive variable was race for early AMD (P = .002) and insolation for late AMD (P = .001). CONCLUSIONS Geographic position and insolation are key factors in the prevalence of AMD.
Collapse
|
15
|
Marquioni-Ramella MD, Suburo AM. Photo-damage, photo-protection and age-related macular degeneration. Photochem Photobiol Sci 2015. [DOI: 10.1039/c5pp00188a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The course of Age-related Macular Degeneration (AMD) is described as the effect of light (400–580 nm) on various molecular targets in photoreceptors and the retinal pigment epithelium (RPE). Photo-damage is followed by inflammation, increasing oxidative stress and, probably, unveiling new photosensitive molecules.
Collapse
Affiliation(s)
| | - Angela M. Suburo
- Medicina Celular y Molecular
- Facultad de Ciencias Biomédicas
- Universidad Austral
- Pilar B1629AHJ
- Argentina
| |
Collapse
|
16
|
|
17
|
Wickremasinghe SS, Chong EWT, Guymer RH. Lifestyle and age-related macular degeneration. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.4.1.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
|
19
|
Yam JCS, Kwok AKH. Ultraviolet light and ocular diseases. Int Ophthalmol 2013; 34:383-400. [PMID: 23722672 DOI: 10.1007/s10792-013-9791-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 05/02/2013] [Indexed: 01/03/2023]
Abstract
The objective of this study is to review the association between ultraviolet (UV) light and ocular diseases. The data are sourced from the literature search of Medline up to Nov 2012, and the extracted data from original articles, review papers, and book chapters were reviewed. There is a strong evidence that ultraviolet radiation (UVR) exposure is associated with the formation of eyelid malignancies [basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)], photokeratitis, climatic droplet keratopathy (CDK), pterygium, and cortical cataract. However, the evidence of the association between UV exposure and development of pinguecula, nuclear and posterior subcapsular cataract, ocular surface squamous neoplasia (OSSN), and ocular melanoma remained limited. There is insufficient evidence to determine whether age-related macular degeneration (AMD) is related to UV exposure. It is now suggested that AMD is probably related to visible radiation especially blue light, rather than UV exposure. From the results, it was concluded that eyelid malignancies (BCC and SCC), photokeratitis, CDK, pterygium, and cortical cataract are strongly associated with UVR exposure. Evidence of the association between UV exposure and development of pinguecula, nuclear and posterior subcapsular cataract, OSSN, and ocular melanoma remained limited. There is insufficient evidence to determine whether AMD is related to UV exposure. Simple behaviural changes, appropriate clothing, wearing hats, and UV blocking spectacles, sunglasses or contact lens are effective measures for UV protection.
Collapse
Affiliation(s)
- Jason C S Yam
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, 4/F, Hong Kong Eye Hospital, 147 K Argyle Street, Kowloon, Hong Kong, People's Republic of China,
| | | |
Collapse
|
20
|
Epidemiology and Risk Factors for Age-Related Macular Degeneration. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Schmier JK, Covert DW, Lau EC. Patterns and costs associated with progression of age-related macular degeneration. Am J Ophthalmol 2012; 154:675-681.e1. [PMID: 22835513 DOI: 10.1016/j.ajo.2012.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 12/18/2022]
Abstract
PURPOSE To evaluate patterns of disease progression among individuals with age-related macular degeneration (AMD) and to compare costs over time. DESIGN Retrospective data analysis using 5% Medicare claims data from 1997 through 2009. METHODS Beneficiaries were included if they had no diagnosis of AMD in 1997, were 65 years of age or older, had data through 2009, and had no major ophthalmic conditions. Two cohorts were identified: those who had dry AMD in 1998 (cases) and matched controls who never had AMD. RESULTS There were 52,607 beneficiaries who never had AMD and 1184 who were diagnosed with dry AMD in 1998. Among beneficiaries with dry AMD, the disease progressed in 20.4% to the wet form by 2009. From 1999 to 2009, average annual Medicare expenditures increased from $11,265 to $24,494 (cases whose disease did not progress) and from $11,712 to $34,308 (cases whose disease progressed). Among beneficiaries without AMD, expenditures also increased over time (from $4736 in 1999 to $17,473 in 2009), but consistently were lower than cases' expenditures. Considering ophthalmic expenditures, the pattern was more pronounced: beneficiaries without AMD had annual expenditures less than $100, those with dry AMD had expenditures at least 3 times more, and wet AMD beneficiaries' costs were at least 5-fold more than that of those with dry disease. A subgroup analysis of beneficiaries without hypertension revealed similar patterns, although expenditures were lower than in the general population. CONCLUSIONS AMD progression seems to be associated with increased annual Medicare expenditures. Findings suggest that halting or slowing disease progression using proven treatment such as Age-Related Eye Disease Study-endorsed vitamins or novel technologies could have a substantial positive impact by lowering public health expenditures.
Collapse
|
22
|
Crooke A, Huete-Toral F, Martínez-Águila A, Colligris B, Pintor J. Ocular disorders and the utility of animal models in the discovery of melatoninergic drugs with therapeutic potential. Expert Opin Drug Discov 2012; 7:989-1001. [PMID: 22860991 DOI: 10.1517/17460441.2012.714769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The pineal indole-derived hormone melatonin is a modulator of circadian and seasonal rhythms with an important role in ocular health and disease. This could be due to specific melatonin receptors that have been identified in structures such as cornea, lens, ciliary body, retina, choroid and sclera. In addition, a local synthesis of melatonin occurs in several of these ocular tissues. AREAS COVERED The authors review existing literature on the most common animal models where ocular melatonin actions have been tested. The therapeutic potential of melatonin in diabetic keratopathy and retinopathy, keratitis, cataracts, glaucoma, uveitis, age-related macular degeneration and retinitis pigmentosa is discussed. Furthermore, the authors comment on the usefulness of different animal models for the development of melatoninergic drugs with therapeutic potential. EXPERT OPINION The use of animals for the study of ocular diseases and the potentiality of melatonin and its analogs, as future therapeutic drugs, should be performed on the basis of a rationale study. It is important to note that melatonin receptors seem to be widespread all over the eye. This strongly suggests that, in order to modify the physiology and biochemistry of malfunctioning ocular tissue, the melatonin receptors which are present in that tissue must be first identified. Second there is the need to confirm that those receptors targeted perform the desirable responses, and as a third measure, to use selective agonists (or antagonists) instead of melatonin. However, although some animals mimic ocular pathologies relatively well, and these can be used in melatonin studies, there is still a long way to go till some of the results obtained in animal models could be used for human therapy.
Collapse
Affiliation(s)
- Almudena Crooke
- Departamento de Bioquímica y Biología Molecular IV, E.U. Óptica, Universidad Complutense de Madrid, C/Arcos de Jalón 118, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Abstract
The human eye is constantly exposed to sunlight and artificial lighting. Light transmission through the eye is fundamental to its unique biological functions of directing vision and circadian rhythm and therefore light absorbed by the eye must be benign. However, exposure to the very intense ambient radiation can pose a hazard particularly if the recipient is over 40 years of age. There are age-related changes in the endogenous (natural) chromophores (lipofuscin, A2E and all-trans-retinal derivatives) in the human retina that makes it more susceptible to visible light damage. Intense visible light sources that do not filter short blue visible light (400-440 nm) used for phototherapy of circadian imbalance (i.e. seasonal affective disorder) increase the risk for age-related light damage to the retina. Moreover, many drugs, dietary supplements, nanoparticles and diagnostic dyes (xenobiotics) absorb ocular light and have the potential to induce photodamage to the retina, leading to transient or permanent blinding disorders. This article will review the underlying reasons why visible light in general and short blue visible light in particular dramatically raises the risk of photodamage to the human retina.
Collapse
Affiliation(s)
- Albert R Wielgus
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
24
|
Bordone MP, Lanzani MF, López-Costa JJ, Chianelli MS, Franco P, Sáenz DA, Rosenstein RE. Bacterial lipopolysaccharide protects the retina from light-induced damage. J Neurochem 2012; 122:392-403. [DOI: 10.1111/j.1471-4159.2012.07767.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Morrison MA, Silveira AC, Huynh N, Jun G, Smith SE, Zacharaki F, Sato H, Loomis S, Andreoli MT, Adams SM, Radeke MJ, Jelcick AS, Yuan Y, Tsiloulis AN, Chatzoulis DZ, Silvestri G, Kotoula MG, Tsironi EE, Hollis BW, Chen R, Haider NB, Miller JW, Farrer LA, Hageman GS, Kim IK, Schaumberg DA, DeAngelis MM. Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration. Hum Genomics 2012; 5:538-68. [PMID: 22155603 PMCID: PMC3525248 DOI: 10.1186/1479-7364-5-6-538] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance. Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then validated and replicated in the extended family cohort, an unrelated case-control cohort from central Greece and a prospective nested case-control population from the Nurse's Health Study and Health Professionals Follow-Up Studies, which included patients with all subtypes of AMD for a total of 2,528 individuals. Single point variants in CYP24A1 (the gene encoding the catabolising enzyme of the vitamin D pathway) were demonstrated to influence AMD risk after controlling for smoking history, sex and age in all populations, both separately and, more importantly, in a meta-analysis. This is the first report demonstrating a genetic association between vitamin D metabolism and AMD risk. These findings were also supplemented with expression data from human donor eyes and human retinal cell lines. These data not only extend previous biological studies in the AMD field, but further emphasise common antecedents between several disorders with an inflammatory/immunogenic component such as cardiovascular disease, cancer and AMD.
Collapse
Affiliation(s)
- Margaux A Morrison
- Ocular Molecular Genetics Institute, Harvard Medical School, Massachusetts Eye and Ear, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hunter JJ, Morgan JIW, Merigan WH, Sliney DH, Sparrow JR, Williams DR. The susceptibility of the retina to photochemical damage from visible light. Prog Retin Eye Res 2012; 31:28-42. [PMID: 22085795 PMCID: PMC3242847 DOI: 10.1016/j.preteyeres.2011.11.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 02/08/2023]
Abstract
The photoreceptor/RPE complex must maintain a delicate balance between maximizing the absorption of photons for vision and retinal image quality while simultaneously minimizing the risk of photodamage when exposed to bright light. We review the recent discovery of two new effects of light exposure on the photoreceptor/RPE complex in the context of current thinking about the causes of retinal phototoxicity. These effects are autofluorescence photobleaching in which exposure to bright light reduces lipofuscin autofluorescence and, at higher light levels, RPE disruption in which the pattern of autofluorescence is permanently altered following light exposure. Both effects occur following exposure to visible light at irradiances that were previously thought to be safe. Photopigment, retinoids involved in the visual cycle, and bisretinoids in lipofuscin have been implicated as possible photosensitizers for photochemical damage. The mechanism of RPE disruption may follow either of these paths. On the other hand, autofluorescence photobleaching is likely an indicator of photooxidation of lipofuscin. The permanent changes inherent in RPE disruption might require modification of the light safety standards. AF photobleaching recovers after several hours although the mechanisms by which this occurs are not yet clear. Understanding the mechanisms of phototoxicity is all the more important given the potential for increased susceptibility in the presence of ocular diseases that affect either the visual cycle and/or lipofuscin accumulation. In addition, knowledge of photochemical mechanisms can improve our understanding of some disease processes that may be influenced by light exposure, such as some forms of Leber's congenital amaurosis, and aid in the development of new therapies. Such treatment prior to intentional light exposures, as in ophthalmic examinations or surgeries, could provide an effective preventative strategy.
Collapse
Affiliation(s)
- Jennifer J Hunter
- Flaum Eye Institute, University of Rochester, Box 314, 601Elmwood Ave, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Tsika C, Tsilimbaris MK, Makridaki M, Kontadakis G, Plainis S, Moschandreas J. Assessment of macular pigment optical density (MPOD) in patients with unilateral wet age-related macular degeneration (AMD). Acta Ophthalmol 2011; 89:e573-8. [PMID: 21672183 DOI: 10.1111/j.1755-3768.2011.02170.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE To compare the macular pigment optical density (MPOD) of patients with unilateral wet age-related macular degeneration (AMD) with the MPOD of bilateral dry AMD patients and healthy elderly individuals. METHODS The MPOD of 34 patients with unilateral wet AMD was measured in their fellow eye that had the dry form of the disease (study group). The MPOD of the study group was compared with the MPOD of 33 patients with bilateral dry AMD (patients' control group) and 35 elderly subjects without any signs of retinal disease (control group). None of the subjects was under carotenoid supplementation. The MPOD was measured with Heterochromatic Flicker Photometry [QuantifEYE™- MPS 9000 (ZeaVision(©))]. The statistical package SPSS v 17.0 was used for the analysis. RESULTS The overall mean MPOD was 0.52 (SD 0.15). Patients with unilateral wet AMD have significantly higher levels of MPOD in their fellow eye compared with patients with bilateral dry AMD (0.58 versus 0.48, p = 0.026). Mean MPOD of patients with bilateral dry AMD does not differ significantly from that of healthy elderly subjects (0.48 versus 0.50, p = 0.865). In this population sample, no correlation with age was observed, while women have slightly but significantly higher levels of MPOD (0.55 versus 0.49, p = 0.029). CONCLUSION In the present study, the mean MPOD at the fellow eye of patients with unilateral wet AMD was found to be significantly higher than that of patients with bilateral dry AMD, while no other significant difference emerged between groups. Further investigation is demanded to clarify the role of macular pigment in AMD progression.
Collapse
Affiliation(s)
- Chrysanthi Tsika
- Department of Ophthalmology, University Hospital of Heraklion, Crete, Heraklion, Greece
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE We tested for protection of blue light-exposed A2E-containing retinal pigment epithelial (RPE) from damage through the implementation of polycarbonate filters containing varying levels of a pigment that absorbs short wavelength light. METHODS Human adult RPE cells (ARPE-19) that had accumulated synthesized A2E were exposed to either a light line delivered from a tungsten halogen source (430 ± 20 nm; 8 mW/cm) or to the entire area of a 35 mm dish (1 mW/cm). Blue-light absorbing polycarbonate filters (2.5 × 4 cm) containing varying levels of short-wavelength light absorbing pigment (1.0, 1.9, 3.8, 7.5, 15, and 35 ppm) or no dye (PC) were placed in the light path. Cytotoxicity was measured by the 4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric microtiter assay (Roche Diagnostics Corporation, Indianapolis, IN) or by fluorescent staining of non-viable cells. RESULTS When filters containing blue-light absorbing dye were placed in the light path, protection of 430 nm irradiated A2E-laden RPE was observed. The extent of protection was dependent on the concentration of the dye. By MTT assay and fluorescence labeling, statistically significant differences (p < 0.05) between irradiation in the absence of a filter and irradiation in the presence of a filter were observed. CONCLUSIONS The series of filters tested in this work provided protection against blue light damage in a culture model.
Collapse
|
29
|
Kernt M, Walch A, Neubauer AS, Hirneiss C, Haritoglou C, Ulbig MW, Kampik A. Filtering blue light reduces light-induced oxidative stress, senescence and accumulation of extracellular matrix proteins in human retinal pigment epithelium cells. Clin Exp Ophthalmol 2011; 40:e87-97. [PMID: 21668780 DOI: 10.1111/j.1442-9071.2011.02620.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cumulative light exposure is significantly associated with ageing and the progression of age-related macular degeneration. To prevent the retina from blue-light damage in pseudophakia, blue light-absorbing intraocular lenses have been developed. This study compares the possible protective effects of a blue light-absorbing intraocular lens to an untinted ultraviolet-absorbing intraocular lens with regard to light-induced oxidative stress and senescence of human retinal pigment epithelium. METHODS As primary human retinal pigment epithelium cells were exposed to white light, either an ultraviolet- and blue light-absorbing intraocular lens or ultraviolet-absorbing intraocular lens was placed in the light beam. After 60 min of irradiation, cells were investigated by electron microscopy for viability, induction of intracellular reactive oxygen species, and senescence-associated β-galactosidase activity. Expression and secretion of matrix metalloproteinases 1 and 3 and their mRNA were determined by real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay. RESULTS Light exposure induced structural damage, decreased retinal pigment epithelium cell viability, and increased reactive oxygen species, senescence-associated β-galactosidase activity and matrix metalloproteinases 1 and 3 expression and secretion. Although both types of intraocular lens significantly reduced these effects, the protective effects of the ultraviolet- and blue light-absorbing intraocular lens were significantly stronger than those of the ultraviolet-absorbing intraocular lens. CONCLUSIONS The ultraviolet- and blue light-absorbing intraocular lens demonstrated significantly better protection against light-induced oxidative stress, senescence and structural damage than the ultraviolet-absorbing intraocular lens. These in vitro findings support the hypothesis that the ultraviolet- and blue light-absorbing intraocular lens may prevent retinal damage in clinical use.
Collapse
Affiliation(s)
- Marcus Kernt
- Department of Ophthalmology, Ludwig Maximilians University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Millen AE, Voland R, Sondel SA, Parekh N, Horst RL, Wallace RB, Hageman GS, Chappell R, Blodi BA, Klein ML, Gehrs KM, Sarto GE, Mares JA. Vitamin D status and early age-related macular degeneration in postmenopausal women. ACTA ACUST UNITED AC 2011; 129:481-9. [PMID: 21482873 DOI: 10.1001/archophthalmol.2011.48] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The relationship between serum 25-hydroxyvitamin D (25[OH]D) concentrations (nmol/L) and the prevalence of early age-related macular degeneration (AMD) was investigated in participants of the Carotenoids in Age-Related Eye Disease Study. METHODS Stereoscopic fundus photographs, taken from 2001 to 2004, assessed AMD status. Baseline (1994-1998) serum samples were available for 25(OH)D assays in 1313 women with complete ocular and risk factor data. Odds ratios (ORs) and 95% confidence intervals (CIs) for early AMD (n = 241) of 1287 without advanced disease were estimated with logistic regression and adjusted for age, smoking, iris pigmentation, family history of AMD, cardiovascular disease, diabetes, and hormone therapy use. RESULTS In multivariate models, no significant relationship was observed between early AMD and 25(OH)D (OR for quintile 5 vs 1, 0.79; 95% CI, 0.50-1.24; P for trend = .47). A significant age interaction (P = .002) suggested selective mortality bias in women aged 75 years and older: serum 25(OH)D was associated with decreased odds of early AMD in women younger than 75 years (n = 968) and increased odds in women aged 75 years or older (n = 319) (OR for quintile 5 vs 1, 0.52; 95% CI, 0.29-0.91; P for trend = .02 and OR, 1.76; 95% CI, 0.77-4.13; P for trend = .05, respectively). Further adjustment for body mass index and recreational physical activity, predictors of 25(OH)D, attenuated the observed association in women younger than 75 years. Additionally, among women younger than 75 years, intake of vitamin D from foods and supplements was related to decreased odds of early AMD in multivariate models; no relationship was observed with self-reported time spent in direct sunlight. CONCLUSIONS High serum 25(OH)D concentrations may protect against early AMD in women younger than 75 years.
Collapse
Affiliation(s)
- Amy E Millen
- Department of Social and Preventive Medicine, University at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Walker DP, Vollmer-Snarr HR, Eberting CLD. Ocular hazards of blue-light therapy in dermatology. J Am Acad Dermatol 2011; 66:130-5. [PMID: 21536341 DOI: 10.1016/j.jaad.2010.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 09/28/2010] [Accepted: 11/04/2010] [Indexed: 12/11/2022]
Abstract
Blue-light phototherapy has become important in the treatment of many dermatologic conditions and as a result continue to be developed. Although blue-light therapy is successful, research shows that excessive ocular blue-light exposure may contribute to age-related macular degeneration and other vision problems. As blue-light therapy becomes increasingly more popular for clinical and at-home use, patients and operators of blue-light devices should be aware of its associated ocular hazards. Protective eyewear should be carefully selected and implemented with each therapy session to guard against the development of retinal disease.
Collapse
Affiliation(s)
- Daniel P Walker
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
32
|
Butt AL, Lee ET, Klein R, Russell D, Ogola G, Warn A, Kingsley RM, Yeh J. Prevalence and risks factors of age-related macular degeneration in Oklahoma Indians: the Vision Keepers Study. Ophthalmology 2011; 118:1380-5. [PMID: 21310490 DOI: 10.1016/j.ophtha.2010.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 11/09/2010] [Accepted: 11/09/2010] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To determine the prevalence of age-related macular degeneration (AMD) and to identify its risk factors in an Oklahoma Indian population. DESIGN Cross-sectional study design. PARTICIPANTS Included 1019 Oklahoma Indians who participated in baseline and second examinations of the Strong Heart Study. METHODS Retinal photographs of at least 1 eye were obtained and graded for AMD by the University of Wisconsin Ocular Epidemiology Reading Center. Retinal photographs of 986 participants were considered gradable and were included in the study. MAIN OUTCOME MEASURES Age-related macular degeneration (early and late). RESULTS The overall prevalence of AMD in the study was 35.2%, including a prevalence of 0.81% for late AMD. The prevalence of early AMD increased from 30.6% in those aged 48 to 59 years to 46.1% in those 70 to 82 years of age. When potential risk factors were analyzed individually (univariate analyses), men with hypertension had a significantly higher prevalence of AMD (P = 0.02) than those without hypertension. In women, high-density lipoprotein cholesterol and sun exposure were associated positively with the prevalence of AMD (P = 0.01), whereas a history of using multivitamins was associated with lower AMD prevalence (P = 0.005). When multiple risk factors were analyzed simultaneously using logistic regression, only age showed significant association with AMD in both men (P = 0.02) and women (P<0.0001) and was the only significant risk factor in men. In women, multivitamin use and total cholesterol had a significant inverse association with AMD, whereas sun exposure and high-density lipoprotein cholesterol had a positive association. When men and women were combined, age and high-density lipoprotein cholesterol had significant positive associations, whereas total cholesterol, multivitamin use, and current alcohol use showed a significant inverse association with AMD. CONCLUSIONS This study was the first to report a detailed prevalence of AMD in Oklahoma Indians and its risk factors. The prevalence seemed to be relatively high compared with that in other ethnic groups. Some of the modifiable risk factors identified confirmed previous findings and can be used to design preventive programs to reduce the burden of AMD, although longitudinal data are still needed.
Collapse
Affiliation(s)
- Amir L Butt
- Center for American Indian Health Research, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in the developed world. It is a multifactorial disease, and current therapy predominantly limits damage only when it has already occurred. The macula is a source of high metabolic activity, and is therefore exposed to correspondingly high levels of reactive oxygen species (ROS). With age, the balance between production of ROS and local antioxidant levels is shifted, and damage ensues. Systemic ROS and antioxidant levels in AMD reflect these local processes. Genetic studies investigating mutations in antioxidant genes in AMD are inconclusive and further studies are indicated, especially to determine the role of mitochondria. Oral antioxidant supplements could be beneficial, and diet modification may help. Future treatments might either increase antioxidant capacity or reduce the production of ROS, using methods such as genetic manipulation. This article reviews the role of oxidative stress in AMD and the potential therapies that might have a role in preventing the blindness resulting from this disease.
Collapse
|
34
|
Abstract
There is increasing interest in the effects of reactive oxygen species ('free radicals') in ageing, both in the body overall and specifically in the eye. Cataract and age-related macular degeneration (AMD) are two major causes of blindness, with cataract accounting for 48 per cent of world blindness and AMD accounting for 8.7 per cent. Both cataract and AMD affect an older population (over 50 years of age) and while cataract is largely treatable provided resources are available, AMD is a common cause of untreatable, progressive visual loss. There is evidence that AMD is linked to exposure to short wavelength electromagnetic radiation, which includes ultraviolet, blue and violet wavelengths. The ageing crystalline lens provides some protection to the posterior pole because, as it yellows with age, its spectral absorption increasingly blocks the shorter wavelengths of light. Ultraviolet blocking intraocular lenses (IOLs) have been the standard of care for many years but a more recent trend is to include blue-blocking filters based on theoretical benefits. As these filters absorb part of the visible spectrum, they may affect visual function. This review looks at the risks and the benefits of filtering out short wavelength light in pseudophakic patients.
Collapse
|
35
|
|
36
|
Wong IYH, Koo SCY, Chan CWN. Prevention of age-related macular degeneration. Int Ophthalmol 2010; 31:73-82. [PMID: 20862519 PMCID: PMC3021198 DOI: 10.1007/s10792-010-9397-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 09/04/2010] [Indexed: 11/22/2022]
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the developed world. Although effective treatment modalities such as anti-VEGF treatment have been developed for neovascular AMD, there is still no effective treatment for geographical atrophy, and therefore the most cost-effective management of AMD is to start with prevention. This review looks at current evidence on preventive measures targeted at AMD. Modalities reviewed include (1) nutritional supplements such as the Age-Related Eye Disease Study (AREDS) formula, lutein and zeaxanthin, omega-3 fatty acid, and berry extracts, (2) lifestyle modifications, including smoking and body-mass-index, and (3) filtering sunlight, i.e. sunglasses and blue-blocking intraocular lenses. In summary, the only proven effective preventive measures are stopping smoking and the AREDS formula.
Collapse
|
37
|
Golan S, Shalev V, Goldstein M, Treister G, Chodick G, Loewenstein A. The rate of myocardial infarction events among patients with age-related macular degeneration: a population-based study. Graefes Arch Clin Exp Ophthalmol 2010; 249:179-82. [PMID: 21337041 DOI: 10.1007/s00417-010-1489-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/27/2010] [Accepted: 08/03/2010] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To examine the association between age-related macular degeneration (AMD) and the risk of myocardial infarctions (MIs) in a large health maintenance organization. DESIGN A retrospective cohort study carried out at Maccabi Healthcare Services (MHS). PARTICIPANTS A total of 6,546 patients aged ≥65 years who were diagnosed with AMD between April 18 1996 and June 6 2008, and 61,672 non-AMD patients frequency-matched for age and gender. METHODS Participants were retrospectively followed to the day of leaving the MHS, to undergoing an MI, or to closure of the study on July 1 2008, whichever came earlier. The relative risk of MI associated with AMD was estimated using the Cox proportional hazard model. MAIN OUTCOME MEASURES Incident myocardial infarction events. RESULTS During the study period, there were 159 (5.1 per 1,000 person years [PY]) and 2,997 (4.2 per 1,000 PY) MIs respectively in the AMD and non-AMD patient groups. The age- and gender-adjusted hazard ratio (HR) of MI among AMD patients was 1.01 (95%CI: 0.85-1.20). Baseline medical characteristics associated with increased risk of mortality included diabetes mellitus, hypertension, older age, and male gender. The fully adjusted HR associated with AMD was 1.03 (95%CI: 0.87-1.22). CONCLUSION Despite the shared risk factors associated with AMD and MIs, we found no increased risk of MI in AMD patients.
Collapse
Affiliation(s)
- Shani Golan
- Department of Ophthalmology, Tel Aviv Sourasky Medical Center, 6 Weizman Street, Tel Aviv, 64239, Israel.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Intraocular lenses (IOLs) that block both ultraviolet and blue wavelength light (<500 nm)were introduced in the 1990s. Since then, the potential benefits and harm from blocking blue light has been debated. We report the results of a complete review of all peer-reviewed published studies regarding the impact of blocking the transmission of blue light. Fifty-six published reports on subjects related to blue-blocking lenses including sleep disturbance, visual outcomes, cataract surgery, lens transmittance, sunlight exposure, and macular disease were found in peer reviewed journals from 1962 to 2009. Eleven reports specifically compared visual outcomes between blue-blocking IOLs and nonblue-locking IOLs. Of these, 10 independent studies (10/11, 91%) concluded that there are no significant effects of blue-blocking IOLs on various meters of visual performance including visual acuity, contrast sensitivity, color perception, and photopic, mesopic, and scotopic sensitivities. Only one group of authors reported that the use of blue-blocking IOLs may have detrimental effects on scotopic vision and circadian rhythms. However, the actual clinical significance of these potential negative effects on scotopic vision and on sleep patterns is uncertain. The benefits of blocking the transmission of blue light to the macula and the relationship between progression of age-related macular degeneration remain unclear. However, the published studies clearly state that the use of blue-blocking IOLs is not detrimental in visual acuity, color perception, and contrast sensitivity. The reported potential negative effects on scotopic vision and sleep disturbance appear to be minimal and may not be clinically relevant. (Surv Ophthalmol 55:284--289, 2010. 2010 Elsevier Inc. All rights reserved.)
Collapse
Affiliation(s)
- Bonnie An Henderson
- Ophthalmic Consultants of Boston, and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
39
|
Abstract
Age-related macular degeneration (AMD) is a complex disorder of the eye and the third leading cause of blindness worldwide. With a multifactorial etiology, AMD results in progressive loss of central vision affecting the macular region of the eye in elderly. While the prevalence is relatively higher in the Caucasian populations, it has gradually become a major public health issue among the non-Caucasian populations (including Indians) as well due to senescence, rapidly changing demographics and life-style factors. Recent genome-wide association studies (GWAS) on large case-control cohorts have helped in mapping genes in the complement cascade that are involved in the regulation of innate immunity with AMD susceptibility. Genes involved with mitochondrial oxidative stress and extracellular matrix regulation also play a role in AMD pathogenesis. Majority of the associations observed in complement (CFH, CFB, C2 and C3) and other (ARMS2 and HTRA1) genes have been replicated in diverse populations worldwide. Gene-gene (CFH with ARMS2 and HTRA1) interactions and correlations with environmental traits (smoking and body mass index) have been established as significant covariates in AMD pathology. In this review, we have provided an overview on the underlying molecular genetic mechanisms in AMD worldwide and highlight the AMD-associated-candidate genes and their potential role in disease pathogenesis.
Collapse
|
40
|
Retinal Examination and Photography Are Safe…Is Anyone Surprised? Ophthalmology 2010; 117:197-8. [DOI: 10.1016/j.ophtha.2009.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 11/16/2009] [Indexed: 11/22/2022] Open
|
41
|
Wielgus AR, Collier RJ, Martin E, Lih FB, Tomer KB, Chignell CF, Roberts JE. Blue light induced A2E oxidation in rat eyes – experimental animal model of dry AMD. Photochem Photobiol Sci 2010; 9:1505-12. [DOI: 10.1039/c0pp00133c] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
42
|
Abstract
The reader may be eager to examine in which diseases ozonetherapy can be proficiently used and she/he will be amazed by the versatility of this complementary approach (Table 9 1). The fact that the medical applications are numerous exposes the ozonetherapist to medical derision because superficial observers or sarcastic sceptics consider ozonetherapy as the modern panacea. This seems so because ozone, like oxygen, is a molecule able to act simultaneously on several blood components with different functions but, as we shall discuss, ozonetherapy is not a panacea. The ozone messengers ROS and LOPs can act either locally or systemically in practically all cells of an organism. In contrast to the dogma that “ozone is always toxic”, three decades of clinical experience, although mostly acquired in private clinics in millions of patients, have shown that ozone can act as a disinfectant, an oxygen donor, an immunomodulator, a paradoxical inducer of antioxidant enzymes, a metabolic enhancer, an inducer of endothelial nitric oxide synthase and possibly an activator of stem cells with consequent neovascularization and tissue reconstruction.
Collapse
Affiliation(s)
- Velio Bocci
- Department of Physiology, University of Siena, via A. Moro 2, 53100 Siena, Italy
| |
Collapse
|
43
|
Mainster MA, Turner PL. Blue-blocking IOLs decrease photoreception without providing significant photoprotection. Surv Ophthalmol 2009; 55:272-89. [PMID: 19883931 DOI: 10.1016/j.survophthal.2009.07.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/16/2009] [Accepted: 07/31/2009] [Indexed: 12/22/2022]
Abstract
Violet and blue light are responsible for 45% of scotopic, 67% of melanopsin, 83% of human circadian (melatonin suppression) and 94% of S-cone photoreception in pseudophakic eyes (isoilluminance source). Yellow chromophores in blue-blocking intraocular lenses (IOLs) eliminate between 43 and 57% of violet and blue light between 400 and 500 nm, depending on their dioptric power. This restriction adversely affects pseudophakic photopic luminance contrast, photopic S-cone foveal threshold, mesopic contrast acuity, scotopic short-wavelength sensitivity and circadian photoreception. Yellow IOL chromophores provide no tangible clinical benefits in exchange for the photoreception losses they cause. They fail to decrease disability glare or improve contrast sensitivity. Most epidemiological evidence shows that environmental light exposure and cataract surgery are not significant risk factors for the progression of age-related macular degeneration (AMD). Thus, the use of blue-blocking IOLs is not evidence-based medicine. Most AMD occurs in phakic adults over 60 years of age, despite crystalline lens photoprotection far greater than that of blue-blocking IOLs. Therefore, if light does play some role in the pathogenesis of AMD, then 1) senescent crystalline lenses do not prevent it, so neither can blue-blocking IOLs that offer far less photoprotection, and 2) all pseudophakes should wear sunglasses in bright environments. Pseudophakes have the freedom to remove their sunglasses for optimal photoreception whenever they choose to do so, provided that they are not encumbered permanently by yellow IOL chromophores. In essence, yellow chromophores are placebos for prevention of AMD that permanently restrict a pseudophake's dim light and circadian photoreception at ages when they are needed most. If yellow IOLs had been the standard of care, then colorless UV-blocking IOLs could be advocated now as "premium" IOLs because they offer dim light and circadian photoreception roughly 15-20 years more youthful than blue-blocking IOLs.
Collapse
Affiliation(s)
- Martin A Mainster
- Department of Ophthalmology, University of Kansas School of Medicine, Prairie Village, Kansas, USA.
| | | |
Collapse
|
44
|
Furino C, Ferrara A, Cardascia N, Besozzi G, Alessio G, Sborgia L, Boscia F. Combined cataract extraction and intravitreal bevacizumab in eyes with choroidal neovascularization resulting from age-related macular degeneration. J Cataract Refract Surg 2009; 35:1518-22. [PMID: 19683147 DOI: 10.1016/j.jcrs.2009.04.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/04/2009] [Accepted: 04/08/2009] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the safety and efficacy of phacoemulsification, intraocular lens (IOL) implantation, and a single intravitreal injection of bevacizumab in patients with coexisting visually significant cataract and subfoveal neovascularization due to age-related macular degeneration. SETTING Department of Ophthalmology, University of Bari, Bari, Italy. METHODS Eyes with predominantly classic subfoveal neovascularization and cataract had phacoemulsification, IOL implantation, and a 1.25 mg intravitreal injection of bevacizumab. One month after combined surgery, corrected distance visual acuity (CDVA), anterior chamber reaction, and intraocular pressure were evaluated and central foveal thickness was measured by optical coherence tomography. RESULTS Twenty eyes of 20 patients were evaluated. One month postoperatively, the mean CDVA improved significantly, from 20/100 (range 20/160 to 20/80) at baseline to 20/63 (range 20/125 to 20/50) (P<.0001). The mean central foveal thickness decreased significantly, from 353.75 microm +/- 12.50 (SD) (range 334 to 375 microm) at baseline to 275.7 +/- 17.3 microm (range 255 to 323 microm) at 1 month (P<.0001). Intraocular pressure did not change significantly, and anterior chamber reaction was absent. No ocular or systemic adverse events were observed. CONCLUSION Combined phacoemulsification, IOL implantation, and intravitreal bevacizumab was a safe and efficacious treatment in patients with visually significant cataract and active subfoveal neovascularization.
Collapse
Affiliation(s)
- Claudio Furino
- Department of Ophthalmology, University of Bari, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Retinal light damage. SPEKTRUM DER AUGENHEILKUNDE 2009. [DOI: 10.1007/s00717-009-0340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Morgan JIW, Hunter JJ, Merigan WH, Williams DR. The reduction of retinal autofluorescence caused by light exposure. Invest Ophthalmol Vis Sci 2009; 50:6015-22. [PMID: 19628734 DOI: 10.1167/iovs.09-3643] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE A prior study showed that long exposure to 568-nm light at levels below the maximum permissible exposure safety limit produces retinal damage preceded by a transient reduction in the autofluorescence of retinal pigment epithelial (RPE) cells in vivo. The present study shows how the effects of exposure power and duration combine to produce this autofluorescence reduction and find the minimum exposure causing a detectable autofluorescence reduction. METHODS Macaque retinas were imaged using a fluorescence adaptive optics scanning laser ophthalmoscope to resolve individual RPE cells in vivo. The retina was exposed to 568-nm light over a square subtending 0.5 degrees with energies ranging from 1 to 788 J/cm(2), where power and duration were independently varied. RESULTS In vivo exposures of 5 J/cm(2) and higher caused an immediate decrease in autofluorescence followed by either full autofluorescence recovery (exposures <or= 210 J/cm(2)) or permanent RPE cell damage (exposures >or= 247 J/cm(2)). No significant autofluorescence reduction was observed for exposures of 2 J/cm(2) and lower. Reciprocity of exposure power and duration held for the exposures tested, implying that the total energy delivered to the retina, rather than its distribution in time, determines the amount of autofluorescence reduction. CONCLUSIONS That reciprocity held is consistent with a photochemical origin, which may or may not cause retinal degeneration. The implementation of safe methods for delivering light to the retina requires a better understanding of the mechanism causing autofluorescence reduction. Finally, RPE imaging was demonstrated using light levels that do not cause a detectable reduction in autofluorescence.
Collapse
Affiliation(s)
- Jessica I W Morgan
- Center for Visual Science, University of Rochester, Rochester, New York, USA.
| | | | | | | |
Collapse
|
47
|
Schmier JK, Halpern MT, Covert DW, Delgado J, Sharma S. Impact of visual impairment on service and device use by individuals with age-related macular degeneration (AMD). Disabil Rehabil 2009; 28:1331-7. [PMID: 17083181 DOI: 10.1080/09638280600621436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To assess the patient-reported use of services, supplements, and devices among individuals with age-related macular degeneration (AMD) and evaluate the impact of visual impairment level on this use. METHOD Data for this study were collected using two instruments, the AMD Health and Impact Questionnaire and the Daily Living Tasks Dependent on Vision questionnaire (DLTV). Both questionnaires were mailed to members of the Macular Degeneration Partnership. The study was approved by an IRB and respondents provided consent before participating. Respondents' visual acuity (VA) was estimated using scores from the DLTV, while use of services and devices was collected from the AMD Questionnaire. De-identified data were analysed in SAS. RESULTS Of 803 respondents, 56% were male and the mean age was 73 years. Use of services (e.g., counseling, rehabilitation), and devices significantly increased as VA decreased. Using standard US costs, costs for services, supplements, and devices ranged from 506-1619 US dollars depending on VA. CONCLUSION There are substantial differences in service and device use with increased AMD severity. Delaying progression of AMD could result in considerable cost savings.
Collapse
|
48
|
Cuthbertson FM, Peirson SN, Wulff K, Foster RG, Downes SM. Blue light–filtering intraocular lenses: Review of potential benefits and side effects. J Cataract Refract Surg 2009; 35:1281-97. [DOI: 10.1016/j.jcrs.2009.04.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 02/20/2009] [Accepted: 04/07/2009] [Indexed: 11/16/2022]
|
49
|
Ellerton JA, Zuljan I, Agazzi G, Boyd JJ. Eye Problems in Mountain and Remote Areas: Prevention and Onsite Treatment—Official Recommendations of the International Commission for Mountain Emergency Medicine ICAR MEDCOM. Wilderness Environ Med 2009; 20:169-75. [DOI: 10.1580/08-weme-rev-205r1.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
50
|
Kernt M, Neubauer AS, Liegl R, Eibl KH, Alge CS, Lackerbauer CA, Ulbig MW, Kampik A. Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression. J Cataract Refract Surg 2009; 35:354-62. [PMID: 19185255 DOI: 10.1016/j.jcrs.2008.10.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 10/17/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To compare the possible protective effects of the ultraviolet (UV)-filtering and blue light-filtering SN60AT intraocular lens (IOL) and the untinted UV-filtering SA60AT IOL with regard to light-induced stress on human retinal pigment epithelium (RPE). SETTING Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany. METHODS Primary human RPE cells were exposed to white light, and a tinted or untinted IOL was placed in the light beam. After 15 to 60 minutes of irradiation, cell viability was determined by a colorimetric test (tetrazolium dye-reduction assay) and a microscopic live/dead assay. The expression of vascular endothelial growth factor-alpha (VEGF-alpha), Bax, and Bcl-2 and their mRNA was determined by reverse-transcription polymerase chain reaction (RT-PCR) and Western blotting. RESULTS Without an IOL, white-light exposure decreased cell viability compared with the decrease with the nonirradiated control in a time-dependent manner. Light-induced cell death was significantly reduced by both the tinted IOL and untinted IOL. The combined UV and blue-light filtering attenuated light-induced cell damage significantly more than UV filtering alone. Results of RT-PCR and Western blotting showed a significant time-dependent decrease in Bcl-2 and increase in Bax and VEGF-alpha that were significantly less with the tinted IOL than with the untinted IOL. CONCLUSIONS Both IOLs reduced light-induced RPE damage. The UV- and blue light-filtering IOL reduced damage more than the conventional IOL. This supports the hypothesis that blue light-filtering IOLs may prevent retinal damage in clinical use.
Collapse
Affiliation(s)
- Marcus Kernt
- Department of Ophthalmology, Ludwig Maximilian University, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|