1
|
Takeyama T, Shimazaki Y. Diversity of oxidation state in copper complexes with phenolate ligands. Dalton Trans 2024; 53:3911-3929. [PMID: 38319292 DOI: 10.1039/d3dt04230h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The phenoxyl radical binding copper complexes have been widely developed and their detailed geometric and electronic structures have been clarified. While many one-electron oxidized CuII-phenolate complexes have been reported previously, recent studies of the Cu-phenolate complexes proceed toward elucidation of the complexes with other oxidation states, such as the phenoxyl radical binding CuI complexes and CuIV-phenolate complexes in the formal oxidation state. This Perspective focuses on new aspects of the properties and reactivities of various Cu-phenolate and Cu-phenoxyl radical complexes with emphasis on the relationship between geometric and electronic structures.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, 756-0884 Yamaguchi, Japan.
| | - Yuichi Shimazaki
- College of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan.
| |
Collapse
|
2
|
Koschorreck K, Alpdagtas S, Urlacher VB. Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications. ENGINEERING MICROBIOLOGY 2022; 2:100037. [PMID: 39629025 PMCID: PMC11611005 DOI: 10.1016/j.engmic.2022.100037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/06/2024]
Abstract
Copper-radical oxidases (CROs) catalyze the two-electron oxidation of a large number of primary alcohols including carbohydrates, polyols and benzylic alcohols as well as aldehydes and α-hydroxy-carbonyl compounds while reducing molecular oxygen to hydrogen peroxide. Initially, CROs like galactose oxidase and glyoxal oxidase were identified only in fungal secretomes. Since the last decade, their representatives have also been identified in some bacteria. CROs are grouped in the AA5 family of "auxiliary activities" in the database of Carbohydrate-Active enzymes. Despite low overall sequence similarity and different substrate specificities, sequence alignments and the solved crystal structures revealed a conserved architecture of the active sites in all CROs, with a mononuclear copper ion coordinated to an axial tyrosine, two histidines, and a cross-linked cysteine-tyrosyl radical cofactor. This unique post-translationally modified protein cofactor has attracted much attention in the past, which resulted in a large number of reports that shed light on key steps of the catalytic cycle and physico-chemical properties of CROs. Thanks to their broad substrate spectrum accompanied by the only need for molecular oxygen for catalysis, CROs since recently experience a renaissance and have been applied in various biocatalytic processes. This review provides an overview of the structural features, catalytic mechanism and substrates of CROs, presents an update on the engineering of these enzymes to improve their expression in recombinant hosts and to enhance their activity, and describes their potential fields of biotechnological application.
Collapse
Affiliation(s)
- Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Saadet Alpdagtas
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Department of Biology, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
3
|
Milić M, Byström E, Domínguez de María P, Kara S. Enzymatic Cascade for the Synthesis of 2,5-Furandicarboxylic Acid in Biphasic and Microaqueous Conditions: 'Media-Agnostic' Biocatalysts for Biorefineries. CHEMSUSCHEM 2022; 15:e202102704. [PMID: 35438241 PMCID: PMC9322558 DOI: 10.1002/cssc.202102704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) is produced upon dehydration of C6 sugars in biorefineries. As the product, it remains either in aqueous solutions, or is in situ extracted to an organic medium (biphasic system). For the subsequent oxidation of HMF to 2,5-furandicarboxylic acid (FDCA), 'media-agnostic' catalysts that can be efficiently used in different conditions, from aqueous to biphasic, and to organic (microaqueous) media, are of interest. Here, the concept of a one-pot biocatalytic cascade for production of FDCA from HMF was reported, using galactose oxidase (GalOx) for the formation of 2,5-diformylfuran (DFF), followed by the lipase-mediated peracid oxidation of DFF to FDCA. GalOx maintained its catalytic activity upon exposure to a range of organic solvents with only 1 % (v/v) of water. The oxidation of HMF to 2,5-diformylfuran (DFF) was successfully established in ethyl acetate-based biphasic or microaqueous systems. To validate the concept, the reaction was conducted at 5 % (v/v) water, and integrated in a cascade where DFF was subsequently oxidized to FDCA in a reaction catalyzed by Candida antarctica lipase B.
Collapse
Affiliation(s)
- Milica Milić
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 108000Aarhus CDenmark
| | | | | | - Selin Kara
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 108000Aarhus CDenmark
- Institute of Technical ChemistryLeibniz University HannoverCallinstr. 530167HannoverGermany
| |
Collapse
|
4
|
Zhang S, Ruccolo S, Fryszkowska A, Klapars A, Marshall N, Strotman NA. Electrochemical Activation of Galactose Oxidase: Mechanistic Studies and Synthetic Applications. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shaoguang Zhang
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Anna Fryszkowska
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Artis Klapars
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Nicholas Marshall
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Lorente-Arevalo A, Ladero M, Bolivar JM. Framework of the kinetic analysis of O 2-dependent oxidative biocatalysts for reaction intensification. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00237f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A framework for kinetic modelling and evaluation of the reaction intensification of O2-dependent enzyme catalyzed reactions is built from measurements of consumption rates of the initially dissolved O2 in homogeneous liquid phase.
Collapse
Affiliation(s)
- Alvaro Lorente-Arevalo
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - Miguel Ladero
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - Juan M. Bolivar
- Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| |
Collapse
|
6
|
Johnson HC, Zhang S, Fryszkowska A, Ruccolo S, Robaire SA, Klapars A, Patel NR, Whittaker AM, Huffman MA, Strotman NA. Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(iii) activator for the synthesis of islatravir. Org Biomol Chem 2021; 19:1620-1625. [DOI: 10.1039/d0ob02395g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese(iii) acetate activates galactose oxidase (GOase), a Cu-dependent metalloenzyme that catalyzes the oxidation of alcohols to aldehydes.
Collapse
Affiliation(s)
| | - Shaoguang Zhang
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Anna Fryszkowska
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Serge Ruccolo
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Sandra A. Robaire
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Artis Klapars
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Niki R. Patel
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | | | - Mark A. Huffman
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| | - Neil A. Strotman
- Department of Process Research and Development
- Merck & Co
- Inc
- Rahway
- USA
| |
Collapse
|
7
|
Cosgrove SC, Mattey AP, Riese M, Chapman MR, Birmingham WR, Blacker AJ, Kapur N, Turner NJ, Flitsch SL. Biocatalytic Oxidation in Continuous Flow for the Generation of Carbohydrate Dialdehydes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04819] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sebastian C. Cosgrove
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Ashley P. Mattey
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Michel Riese
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Michael R. Chapman
- Institute of Process Research & Development, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - William R. Birmingham
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - A. John Blacker
- Institute of Process Research & Development, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nikil Kapur
- Institute of Process Research & Development, University of Leeds, Leeds, LS2 9JT, United Kingdom
- School of Mechanical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB) & School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
8
|
Toftgaard Pedersen A, Birmingham WR, Rehn G, Charnock SJ, Turner NJ, Woodley JM. Process Requirements of Galactose Oxidase Catalyzed Oxidation of Alcohols. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00278] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Asbjørn Toftgaard Pedersen
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - William R. Birmingham
- School
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Gustav Rehn
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Simon J. Charnock
- Prozomix
Ltd, Station Court, Haltwhistle, Northumberland NE49 9HN, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Copper active sites in biology. Chem Rev 2014; 114:3659-853. [PMID: 24588098 PMCID: PMC4040215 DOI: 10.1021/cr400327t] [Citation(s) in RCA: 1210] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - David E. Heppner
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | - Jake W. Ginsbach
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Jordi Cirera
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Munzarin Qayyum
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | | | | | - Ryan G. Hadt
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| | - Li Tian
- Department of Chemistry, Stanford University, Stanford, CA, 94305
| |
Collapse
|
10
|
Kupper CE, Rosencrantz RR, Henßen B, Pelantová H, Thönes S, Drozdová A, Křen V, Elling L. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein J Org Chem 2012; 8:712-25. [PMID: 23015818 PMCID: PMC3388858 DOI: 10.3762/bjoc.8.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
The importance of glycans in biological systems is highlighted by their various functions in physiological and pathological processes. Many glycan epitopes on glycoproteins and glycolipids are based on N-acetyllactosamine units (LacNAc; Galβ1,4GlcNAc) and often present on extended poly-LacNAc glycans ([Galβ1,4GlcNAc](n)). Poly-LacNAc itself has been identified as a binding motif of galectins, an important class of lectins with functions in immune response and tumorigenesis. Therefore, the synthesis of natural and modified poly-LacNAc glycans is of specific interest for binding studies with galectins as well as for studies of their possible therapeutic applications. We present the oxidation by galactose oxidase and subsequent chemical or enzymatic modification of terminal galactose and N-acetylgalactosamine residues of poly-N-acetyllactosamine (poly-LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) by galactose oxidase. Product formation starting from different poly-LacNAc oligomers was characterised and optimised regarding formation of the C6-aldo product. Further modification of the aldehyde containing glycans, either by chemical conversion or enzymatic elongation, was established. Base-catalysed β-elimination, coupling of biotin-hydrazide with subsequent reduction to the corresponding hydrazine linkage, and coupling by reductive amination to an amino-functionalised poly-LacNAc oligomer were performed and the products characterised by LC-MS and NMR analysis. Remarkably, elongation of terminally oxidised poly-LacNAc glycans by β3GlcNAc- and β4Gal-transferase was also successful. In this way, a set of novel, modified poly-LacNAc oligomers containing terminally and/or internally modified galactose residues were obtained, which can be used for binding studies and various other applications.
Collapse
Affiliation(s)
- Christiane E Kupper
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Ruben R Rosencrantz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Birgit Henßen
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Helena Pelantová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Stephan Thönes
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Anna Drozdová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Vladimir Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| |
Collapse
|
11
|
Crawford JA, Li W, Pierce BS. Single turnover of substrate-bound ferric cysteine dioxygenase with superoxide anion: enzymatic reactivation, product formation, and a transient intermediate. Biochemistry 2011; 50:10241-53. [PMID: 21992268 DOI: 10.1021/bi2011724] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cysteine dioxygenase (CDO) is a non-heme mononuclear iron enzyme that catalyzes the O(2)-dependent oxidation of L-cysteine (Cys) to produce cysteine sulfinic acid (CSA). In this study we demonstrate that the catalytic cycle of CDO can be "primed" by one electron through chemical oxidation to produce CDO with ferric iron in the active site (Fe(III)-CDO, termed 2). While catalytically inactive, the substrate-bound form of Fe(III)-CDO (2a) is more amenable to interrogation by UV-vis and EPR spectroscopy than the 'as-isolated' Fe(II)-CDO enzyme (1). Chemical-rescue experiments were performed in which superoxide (O(2)(•-)) anions were introduced to 2a to explore the possibility that a Fe(III)-superoxide species represents the first intermediate within the catalytic pathway of CDO. In principle, O(2)(•-) can serve as a suitable acceptor for the remaining 3-electrons necessary for CSA formation and regeneration of the active Fe(II)-CDO enzyme (1). Indeed, addition of O(2)(•-) to 2a resulted in the rapid formation of a transient species (termed 3a) observable at 565 nm by UV-vis spectroscopy. The subsequent decay of 3a is kinetically matched to CSA formation. Moreover, a signal attributed to 3a was also identified using parallel mode X-band EPR spectroscopy (g ~ 11). Spectroscopic simulations, observed temperature dependence, and the microwave power saturation behavior of 3a are consistent with a ground state S = 3 from a ferromagnetically coupled (J ~ -8 cm(-1)) high-spin ferric iron (S(A) = 5/2) with a bound radical (S(B) = 1/2), presumably O(2)(•-). Following treatment with O(2)(•-), the specific activity of recovered CDO increased to ~60% relative to untreated enzyme.
Collapse
Affiliation(s)
- Joshua A Crawford
- Department of Chemistry and Biochemistry, College of Sciences, The University of Texas at Arlington, Arlington, Texas 76019, United States
| | | | | |
Collapse
|
12
|
Humphreys KJ, Mirica LM, Wang Y, Klinman JP. Galactose oxidase as a model for reactivity at a copper superoxide center. J Am Chem Soc 2009; 131:4657-63. [PMID: 19290629 PMCID: PMC2683747 DOI: 10.1021/ja807963e] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mononuclear copper enzyme, galactose oxidase, has been investigated under steady-state conditions via O(2)-consumption assays using 1-O-methyl-alpha-D-galactopyranoside as the sugar substrate to produce an aldehyde at the C-6 position. The rate-determining step of the oxidative half-reaction was probed through the measurement of substrate and solvent deuterium and O-18 isotope effects on k(cat)/K(m)(O(2)). The reaction conforms to a ping-pong mechanism with the kinetic parameters for the reductive half, k(cat)/K(m)(S) = 8.3 x 10(3) M(-1) s(-1) at 10 degrees C and pH 7.0, comparing favorably to literature values. The oxidative half-reaction yielded a value of k(cat)/K(m)(O(2)) = 2.5 x 10(6) M(-1) s(-1). A substrate deuterium isotope effect of 32 was measured for the k(cat)/K(m)(S), while a smaller, but significant value of 1.6-1.9 was observed on k(cat)/K(m)(O(2)). O-18 isotope effects of 1.0185 with either protiated or deuterated sugar, together with the absence of any solvent isotope effect, lead to the conclusion that hydrogen atom transfer from reduced cofactor to a Cu(II)-superoxo intermediate is fully rate-determining for k(cat)/K(m)(O(2)). The measured O-18 isotope effects provide corroborative evidence for the reactive superoxo species in the dopamine beta-monooxygenase/peptidylglycine alpha-hydroxylating monooxygenase family, as well as providing a frame of reference for copper-superoxo reactivity. The combination of solvent and substrate deuterium isotope effects rules out solvent deuterium exchange into reduced enzyme as the origin of the relatively small substrate deuterium isotope effect on k(cat)/K(m)(O(2)). These data indicate fundamental differences in the hydrogen transfer step from the carbon of substrate vs the oxygen of reduced cofactor during the reductive and oxidative half-reactions of galactose oxidase.
Collapse
Affiliation(s)
- Kristi J. Humphreys
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Liviu M. Mirica
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Yi Wang
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Judith P. Klinman
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Departments of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
13
|
Alberton D, Silva de Oliveira L, Peralta RM, Barbosa-Tessmann IP. Production, purification, and characterization of a novel galactose oxidase fromFusarium acuminatum. J Basic Microbiol 2007; 47:203-12. [PMID: 17518413 DOI: 10.1002/jobm.200610290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extra-cellular production of a novel galactose oxidase from Fusarium acuminatum using submerged fermentation was studied. Glucose (1.0% w/v) was used as the sole carbon source. Maximum galactose oxidase production (approximately 4.0 U/ml) was obtained when fermentation was carried out at 25 degrees C, with orbital shaking (100 rpm) and an initial medium of pH 7.0, for 96 h, using a 2% (v/v) inoculum made from a homogenized four-day-old liquid culture, in the presence of copper, manganese, and magnesium. The enzyme was purified by one-step affinity chromatography, with a recovery of 42% of the initial activity. The purified enzyme ran as a single band of 66 kDa in SDS-PAGE. Optimal pH and temperature for the enzyme activity were 8.0 and 30 degrees C, respectively. The enzyme was thermoinactivated at temperatures above 60 degrees C. The purified enzyme was active toward various substrates, including galactose, dihydroxyacetone, guar gum, lactose, melibiose, methyl-galactopyranoside, and raffinose. SDS was an inhibitor but EDTA, Tween 80, NH(4)(+), Na(+), Mg(2+), K(+), and glycerol were not. The Michaelis-Menten constant (K(m)) for galactose was estimated to be 16.2 mM, while maximal velocity (V(max)) was 0.27 micromol of H(2)O(2) . ml(-1) . min(-1).
Collapse
Affiliation(s)
- Dayane Alberton
- Universidade Estadual de Maringá, Departamento de Bioquímica, Maringá, PR, Brazil
| | | | | | | |
Collapse
|
14
|
Whittaker MM, Whittaker JW. Streptomyces coelicolor oxidase (SCO2837p): A new free radical metalloenzyme secreted by Streptomyces coelicolor A3(2). Arch Biochem Biophys 2006; 452:108-18. [PMID: 16884677 DOI: 10.1016/j.abb.2006.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/10/2006] [Accepted: 06/20/2006] [Indexed: 11/23/2022]
Abstract
The SCO2837 open-reading frame is located within the conserved central core region of the Streptomyces coelicolor A3(2) genome, which contains genes required for essential cellular functions. SCO2837 protein (SCO2837p) expressed by Pichia pastoris is a copper metalloenzyme, catalyzing the oxidation of simple alcohols to aldehydes and reduction of dioxygen to hydrogen peroxide. Distinct optical absorption spectra are observed for oxidized and one-electron reduced holoenzyme, and a free radical EPR signal is present in the oxidized apoprotein, characteristic of the Tyr-Cys redox cofactor previously reported for fungal secretory radical copper oxidases, galactose oxidase and glyoxal oxidase, with which it shares weak sequence similarity. SCO2837p was detected in the growth medium of both S. coelicolor and a recombinant expression host (Streptomyces lividans TK64) by Western blotting, with the expression level dependent on the nature of the carbon source. This represents the first characterized example of a prokaryotic radical copper oxidase.
Collapse
Affiliation(s)
- Mei M Whittaker
- Department of Environmental and Biomolecular Systems, Oregon Health and Science University, Beaverton, OR 97006-8291, USA
| | | |
Collapse
|
15
|
Whittaker JW. The radical chemistry of galactose oxidase. Arch Biochem Biophys 2005; 433:227-39. [PMID: 15581579 DOI: 10.1016/j.abb.2004.08.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 08/31/2004] [Indexed: 11/15/2022]
Abstract
Galactose oxidase is a free radical metalloenzyme containing a novel metalloradical complex, comprised of a protein radical coordinated to a copper ion in the active site. The unusually stable protein radical is formed from the redox-active side chain of a cross-linked tyrosine residue (Tyr-Cys). Biochemical studies on galactose oxidase have revealed a new class of oxidation mechanisms based on this free radical coupled-copper catalytic motif, defining an emerging family of enzymes, the radical-copper oxidases. Isotope kinetics and substrate reaction profiling have provided insight into the elementary steps of substrate oxidation in these enzymes, complementing structural studies on their active site. Galactose oxidase is remarkable in the extent to which free radicals are involved in all aspects of the enzyme function: serving as a key feature of the active site structure, defining the characteristic reactivity of the complex, and directing the biogenesis of the Tyr-Cys cofactor during protein maturation.
Collapse
Affiliation(s)
- James W Whittaker
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006, USA.
| |
Collapse
|
16
|
Affiliation(s)
- James W Whittaker
- Department of Environmental and Biomolecular Systems, OGI School of Science and Engineering, Oregon Health and Science University, 20000 Northwest Walker Road, Beaverton, Oregon 97006, USA.
| |
Collapse
|
17
|
Whittaker MM, Whittaker JW. Catalytic reaction profile for alcohol oxidation by galactose oxidase. Biochemistry 2001; 40:7140-8. [PMID: 11401560 DOI: 10.1021/bi010303l] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Galactose oxidase is a remarkable enzyme containing a metalloradical redox cofactor capable of oxidizing a variety of primary alcohols during enzyme turnover. Recent studies using 1-O-methyl alpha-D-galactopyranoside have revealed an unusually large kinetic isotope effect (KIE) for oxidation of the alpha-deuterated alcohol (kH/kD = 22), demonstrating that cleavage of the 6,6'-di[2H]hydroxymethylene C-H bond is fully rate-limiting for oxidation of the canonical substrate. This step is believed to involve hydrogen atom transfer to the tyrosyl phenoxyl in a radical redox mechanism for catalysis [Whittaker, M. M., Ballou, D. P., and Whittaker, J. W. (1998) Biochemistry 37, 8426-8436]. In the work presented here, the enzyme's unusually broad substrate specificity has allowed us to extend these investigations to a homologous series of benzyl alcohol derivatives, in which remote (meta or para) substituents are used to systematically perturb the properties of the hydroxyl group undergoing oxidation. Quantitative structure-activity relationship (QSAR) correlations over the steady state rate data reveal a shift in the character of the transition state for substrate oxidation over this series, reflected in a change in the magnitude of the observed KIE for these reactions. The observed KIE values have been shown to obey a log-linear correlation over the substituent parameter, Hammett sigma. For the relatively difficult to oxidize nitro derivative, the KIE is large (kH/kD = 12.3), implying rate-limiting C-H bond cleavage for the oxidation reaction. This contribution becomes less important for more easily oxidized substrates (e.g., methoxy derivatives) where a much smaller KIE is observed (kH/kD = 3.6). Conversely, the solvent deuterium KIE is vanishingly small for 4-nitrobenzyl alcohol, but becomes significant for the 4-methoxy derivative (kH2O/kD2O = 1.2). These experiments have allowed us to develop a reaction profile for substrate oxidation by galactose oxidase, consisting of three components (hydroxylic proton transfer, electron transfer, and hydrogen atom transfer) comprising a single-step proton-coupled electron transfer mechanism. Each component exhibits a distinct substituent and isotope sensitivity, allowing them to be identified kinetically. The proton transfer component is unique in being sensitive to the isotopic character of the solvent (H2O or D2O), while hydrogen atom transfer (C-H bond cleavage) is independent of solvent composition but is sensitive to substrate labeling. In contrast, electron transfer processes will in general be less sensitive to isotopic substitution. Our results support a mechanism in which initial proton abstraction from a coordinated substrate activates the alcohol toward inner sphere electron transfer to the Cu(II) metal center in an unfavorable redox equilibrium, forming an alkoxy radical which undergoes hydrogen atom abstraction by the tyrosine-cysteine phenoxyl free radical ligand to form the product aldehyde.
Collapse
Affiliation(s)
- M M Whittaker
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, 20000 Northwest Walker Road, Beaverton, Oregon 97006-8921, USA
| | | |
Collapse
|
18
|
Characterization of the active site of galactose oxidase and its active site mutational variants Y495F/H/K and W290H by circular dichroism spectroscopy. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(97)06142-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Whittaker MM, Ballou DP, Whittaker JW. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Biochemistry 1998; 37:8426-36. [PMID: 9622494 DOI: 10.1021/bi980328t] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Galactose oxidase (GO) is a member of the family of radical-coupled copper oxidases, enzymes containing a free radical coordinated to copper in the active site. In catalysis GO cycles between an oxidized state (comprising Cu(II) with a unique cysteinyl-tyrosine radical) and a reduced state (comprising Cu(I) with the singlet cysteinyl-tyrosine) as it catalyzes the two-electron oxidation of alcohols to aldehydes and the subsequent reduction of O2 to H2O2. A ping-pong mechanism involving radical intermediates has been proposed for GO catalysis. Previous steady-state kinetics studies have demonstrated a KIE of 7-8 that was attributed to substrate oxidation, a process involving the stereospecific abstraction of the pro-S hydrogen from the 6-hydroxymethyl group of galactose. We have used rapid kinetics methods to measure the anaerobic reduction of GO substrate at 4 degreesC and carry out enzyme-monitored turnover experiments using 6-protio and 6-deutero substrates, both in H2O and D2O. At concentrations below Km, the apparent second-order rate constant for protio-substrate oxidation, kred, was 1.59 x 10(4) M-1 s-1, while that for deuterated substrate was 7.50 x 10(2) M-1 s-1, a KIE of 21.2. Steady-state measurements of oxygen consumption at low galactose concentrations reveal an unusually large isotope effect (kH/kD = 22.5 +/- 2) for oxidation of 1-O-methyl-6, 6'-di-[2H]-alpha-d-galactopyranoside, and at high galactose concentrations, where the oxygen half-reaction is rate-limiting in catalysis, a surprisingly large KIE (kH/kD = 8 +/- 1) for the reduction of O2 to H2O2. There is no detectable solvent isotope effect (<5%) on any of these measurements. This shows that there are no exchangeable protons involved in any kinetically significant step and that the hydrogen atom removed from galactose is not lost to solvent during catalysis; instead, it also participates in the rate-limiting step of the subsequent reaction with oxygen. At concentrations below Km, apparent second-order rate constants for protio-substrate oxidation (kred = 1.5 x 10(4) M-1 s-1) and O2 reduction (kox = 8 x 10(6) M-1 s-1) have been estimated from measurements both by steady-state oxygen electrode and by enzyme-monitored turnover. This is completely consistent with the anaerobic studies mentioned above. Our results show that the enzyme is essentially fully oxidized while in steady-state turnover, consistent with the reduction step being nearly fully rate-limiting at practical substrate concentrations, due to the very fast reaction with physiological concentrations of O2. Overall, the catalytic reaction is in concordance with a ping-pong mechanism. The large KIE associated with reduction of the enzyme in all three methods appears to reflect hydrogen atom radical abstraction by the active site tyrosine radical in the rate-determining step, in agreement with the previously proposed radical mechanism for GO. The KIE determined at low substrate concentrations (where oxidation of substrate is rate determining) from steady-state oxygen consumption measurements, varies from 22.5 at 4 degreesC to 13 at 45 degreesC, consistent with tunneling being involved in the hydrogen atom transfer step.
Collapse
Affiliation(s)
- M M Whittaker
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | |
Collapse
|
20
|
Ito N, Knowles PF, Phillips SE. X-ray crystallographic studies of cofactors in galactose oxidase. Methods Enzymol 1995; 258:235-62. [PMID: 8524154 DOI: 10.1016/0076-6879(95)58050-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- N Ito
- Department of Biochemistry and Molecular Biology, University of Leeds, England
| | | | | |
Collapse
|
21
|
Baron A, Stevens C, Wilmot C, Seneviratne K, Blakeley V, Dooley D, Phillips S, Knowles P, McPherson M. Structure and mechanism of galactose oxidase. The free radical site. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31504-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
22
|
Oxidoreductions. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-08-035941-0.50008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
23
|
|
24
|
Johnson JM, Halsall HB, Heineman WR. Redox activation of galactose oxidase: thin-layer electrochemical study. Biochemistry 1985; 24:1579-85. [PMID: 4005217 DOI: 10.1021/bi00328a001] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The redox activation of galactose oxidase by various oxidants is characterized by using a unique thin-layer electrochemical cell. Activation is shown to be strictly a redox process and can be rapidly accomplished by using ferricyanide, cobalt terpyridine or tetracyanomonophenanthroline ferrate, and a control electrode to control solution potential. This oxidation is a one-electron process and does not result in modified galactose oxidase which exhibits enhanced activity. On the contrary, this oxidation is required for activity. The solution potential dependence of activity is independent of which of these mediator-titrants is used, the concentration used, and which of various substrates is used in the determination. The substrates used were acetol, dihydroxyacetone, glycerin, 2-propyn-1-ol, allyl alcohol, 2-butyne-1,4-diol, furfuryl alcohol, benzyl alcohol, 4-pyridylcarbinol, galactose, and stachyose. The E1/2 and n values obtained are 0.40 +/- 0.005 V vs. SHE and 0.9 +/- 0.1 electron at pH 7.3. E1/2 is defined as the potential at which half the maximal enzymatic activity is observed and probably reflects the E0' of the enzymic group involved in activation. A model is proposed in which activation occurs during turnover due to the redox buffering (by oxidants) of an enzymic Cu(II)/Cu(I) state which has a higher E0' than in resting galactose oxidase. The pH dependence of E1/2 is 60 mV/pH unit in the pH range 6.0-8.0. The data suggest that the deprotonation of an amino acid residue facilitates the one-electron oxidation (activation) of galactose oxidase.
Collapse
|
25
|
Winkler ME, Bereman RD, Kurland RJ. Kinetic and magnetic resonance studies of substrate binding to galactose oxidase copper(II). J Inorg Biochem 1981; 14:223-35. [PMID: 6267193 DOI: 10.1016/s0162-0134(00)80002-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Alcohol substrate binding to the copper-containing enzyme galactose oxidase (GOase) has been studied by kinetic competition against cyanide and fluoride, 13C nmr relaxation, and esr competition experiments. The 13C nmr spectra of the substrate beta-O-methyl-D-galactopyranoside (beta-O-me-gal) show no apparent paramagnetic relaxation rate enhancement that could be attributed to innersphere equatorial binding of this molecule at the Cu(II) center. Moreover, the kinetics observed when CN- or F- are used as inhibitors of GOase with beta-O-me-gal as the substrate suggest that these anions act as apparent non-competitive inhibitors; the binding of the substrates beta-O-me-gal and O2 is not hindered per se, but the catalytic activity of the enzyme substrate complex is greatly decreased. The esr competition data also confirm that, in the absence of O2, CN- and beta-O-me-gal do not compete for the same GOase binding site. Previously reported esr and 19F nmr data show that CN- binds to the GOase Cu(II) at an equatorial coordination site, as does the F- detected in esr experiments. Thus, the results from the various competition experiments supports a model in which alcohol substrates bind outersphere to the GOase Cu(II), or, possibly, to an axial site.
Collapse
|