1
|
Yang S, Wang Y, Huang S, Zhang T, Xu P, Jiang C, Ye C. Temporal oscillation of phospholipids promotes metabolic efficiency. Nat Chem Biol 2025:10.1038/s41589-025-01885-5. [PMID: 40229581 DOI: 10.1038/s41589-025-01885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025]
Abstract
Biological timing is a fundamental aspect of life, facilitating efficient resource use and adaptation to environmental changes. In this study, we unveil robust temporal oscillations in phospholipid abundance as a function of the yeast metabolic cycle (YMC). These fluctuations, occurring throughout the cell division cycle, demonstrate a systematic segregation of various phospholipid species over time. Such segregation corresponds logically with their physical properties, generating entropic forces for membrane dynamics and biogenesis. Within the YMC, the temporal oscillations in phosphatidylethanolamine and phosphatidylcholine levels require biosynthesis from triacylglycerol as a crucial lipid reservoir, with phosphatidylinositol and phosphatidylserine synthesized primarily de novo. The orchestrated regulation of gene expression in biosynthesis pathways ensures precise temporal control of phospholipid dynamics, ultimately promoting metabolic efficiency.
Collapse
Affiliation(s)
- Sen Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuan Wang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Sisi Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tong Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pinglong Xu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chao Jiang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
| |
Collapse
|
2
|
Wang Q, Cheng W, He T, Li S, Ao J, He Y, Duan C, Li X, Zhang J. Glycerophospholipid metabolic disorders and gender difference of cantharidin-induced hepatotoxicity in rats: Lipidomics and MALDI mass spectrometry imaging analysis. Chem Biol Interact 2025; 405:111314. [PMID: 39551422 DOI: 10.1016/j.cbi.2024.111314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The hepatotoxicity mechanism of cantharidin (CTD), a major active component of Mylabris was explored based on liver lipidome alterations and spatial distributions in female and male rats using lipidomics and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). After oral CTD exposure, the livers of female rats were screened for 104 differential lipids including lysophosphatidylethanolamine(LysoPE)(20:2/0:0) and diacylglycerol(DG)(18:2/22:4), whereas the livers of male rats were screened for 76 differential lipids including fatty acid(FA)(24:6) and DG(18:0/22:4). According to the MALDI-MSI results, female rats exhibited 12 differential lipids with alteration in the abundance and spatial distribution of phosphatylcholine(PC), phosphatidylethanolamine(PE), lysophosphatidylcholine(LysoPC), and LysoPE in the liver lesion area. On the other hand, male rats exhibited 8 differential lipids with changes in the abundance and spatial distribution of PC, PE, and FA in the liver lesion area. The lipidomics- and MALDI-MSI-detected differential lipids strongly disrupted glycerophospholipid metabolism in both female and male rats. Additionally, phosphatidate phosphatase (Lipin1), choline/ethanolamine phosphotransferase 1 (CEPT1), and phosphatidylethanolamine N-methyltransferase (PEMT) were screened to distinguish CTD hepatoxicity in female and male rats. Western blotting analysis demonstrated a significant elevation in Lipin1 expression in female and male rat livers, accompanied by a decrease in PEMT expression. Furthermore, CEPT1 expression increased significantly in female rat livers and decreased significantly in male rat livers. These findings suggested that CTD could disrupt lipid metabolism in a gender-specific manner. Moreover, the combination of lipidomics and MALDI-MSI could offer valuable insights into CTD-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Qiyi Wang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Weina Cheng
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Tianmu He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Shan Li
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Jingwen Ao
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yanmei He
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Cancan Duan
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Xiaofei Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, 563000, China
| | - Jianyong Zhang
- Department of Pharmacy, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Zhu Y, Tong X, Xue J, Qiu H, Zhang D, Zheng DQ, Tu ZC, Ye C. Phospholipid biosynthesis modulates nucleotide metabolism and reductive capacity. Nat Chem Biol 2025; 21:35-46. [PMID: 39060393 DOI: 10.1038/s41589-024-01689-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Phospholipid and nucleotide syntheses are fundamental metabolic processes in eukaryotic organisms, with their dysregulation implicated in various disease states. Despite their importance, the interplay between these pathways remains poorly understood. Using genetic and metabolic analyses in Saccharomyces cerevisiae, we elucidate how cytidine triphosphate usage in the Kennedy pathway for phospholipid synthesis influences nucleotide metabolism and redox balance. We find that deficiencies in the Kennedy pathway limit nucleotide salvage, prompting compensatory activation of de novo nucleotide synthesis and the pentose phosphate pathway. This metabolic shift enhances the production of antioxidants such as NADPH and glutathione. Moreover, we observe that the Kennedy pathway for phospholipid synthesis is inhibited during replicative aging, indicating its role in antioxidative defense as an adaptive mechanism in aged cells. Our findings highlight the critical role of phospholipid synthesis pathway choice in the integrative regulation of nucleotide metabolism, redox balance and membrane properties for cellular defense.
Collapse
Affiliation(s)
- Yibing Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xiaomeng Tong
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jingyuan Xue
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Hong Qiu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dao-Qiong Zheng
- Ocean College, Zhejiang University, Zhoushan, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Cunqi Ye
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Hainan Institute, Zhejiang University, Sanya, China.
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
4
|
Jog R, Han GS, Carman GM. The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase. J Biol Chem 2024; 300:108003. [PMID: 39551141 PMCID: PMC11665475 DOI: 10.1016/j.jbc.2024.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024] Open
Abstract
The Nem1-Spo7 phosphatase complex plays a key role in lipid metabolism as an activator of Pah1 phosphatidate phosphatase, which produces diacylglycerol for the synthesis of triacylglycerol and membrane phospholipids. For dephosphorylation of Pah1, the Nem1 catalytic subunit requires Spo7 for the recruitment of the protein substrate and interacts with the regulatory subunit through its conserved region (residues 251-446). In this work, we found that the Nem1 C-terminal region (CTR) (residues 414-436), which flanks the haloacid dehalogenase-like catalytic domain (residues 251-413), contains the conserved hydrophobic residues (L414, L415, L417, L418, L421, V430, L434, and L436) that are necessary for the complex formation with Spo7. AlphaFold predicts that some CTR residues of Nem1 interact with Spo7 conserved regions, whereas some residues interact with the haloacid dehalogenase-like domain. By site-directed mutagenesis, Nem1 variants were constructed to lack (Δ(414-446)) or substitute alanines (8A) and arginines (8R) for the hydrophobic residues. When co-expressed with Spo7, the CTR variants of Nem1 did not form a complex with Spo7. In addition, the Nem1 variants were incapable of catalyzing the dephosphorylation of Pah1 in the presence of Spo7. Moreover, the Nem1 variants expressed in nem1Δ cells did not complement the phenotypes characteristic of a defect in the Nem1-Spo7/Pah1 phosphatase cascade function (e.g., lipid synthesis, lipid droplet formation, and phospholipid biosynthetic gene expression). These findings support that Nem1 interacts with Spo7 through its CTR hydrophobic residues to form a phosphatase complex for catalytic activity and physiological functions.
Collapse
Affiliation(s)
- Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
5
|
Khondker S, Han GS, Carman GM. Protein kinase Hsl1 phosphorylates Pah1 to inhibit phosphatidate phosphatase activity and regulate lipid synthesis in Saccharomyces cerevisiae. J Biol Chem 2024; 300:107572. [PMID: 39009344 PMCID: PMC11342776 DOI: 10.1016/j.jbc.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
In Saccharomyces cerevisiae, Pah1 phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, plays a key role in utilizing PA for the synthesis of the neutral lipid triacylglycerol and thereby controlling the PA-derived membrane phospholipids. The enzyme function is controlled by its subcellular location as regulated by phosphorylation and dephosphorylation. Pah1 is initially inactivated in the cytosol through phosphorylation by multiple protein kinases and then activated via its recruitment and dephosphorylation by the protein phosphatase Nem1-Spo7 at the nuclear/endoplasmic reticulum membrane where the PA phosphatase reaction occurs. Many of the protein kinases that phosphorylate Pah1 have yet to be characterized with the identification of the target residues. Here, we established Pah1 as a bona fide substrate of septin-associated Hsl1, a protein kinase involved in mitotic morphogenesis checkpoint signaling. The Hsl1 activity on Pah1 was dependent on reaction time and the amounts of protein kinase, Pah1, and ATP. The Hsl1 phosphorylation of Pah1 occurred on Ser-748 and Ser-773, and the phosphorylated protein exhibited a 5-fold reduction in PA phosphatase catalytic efficiency. Analysis of cells expressing the S748A and S773A mutant forms of Pah1 indicated that Hsl1-mediated phosphorylation of Pah1 promotes membrane phospholipid synthesis at the expense of triacylglycerol, and ensures the dependence of Pah1 function on the Nem1-Spo7 protein phosphatase. This work advances the understanding of how Hsl1 facilitates membrane phospholipid synthesis through the phosphorylation-mediated regulation of Pah1.
Collapse
Affiliation(s)
- Shoily Khondker
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
6
|
Jog R, Han GS, Carman GM. The Saccharomyces cerevisiae Spo7 basic tail is required for Nem1-Spo7/Pah1 phosphatase cascade function in lipid synthesis. J Biol Chem 2024; 300:105587. [PMID: 38141768 PMCID: PMC10820825 DOI: 10.1016/j.jbc.2023.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023] Open
Abstract
The Saccharomyces cerevisiae Nem1-Spo7 protein phosphatase complex dephosphorylates and thereby activates Pah1 at the nuclear/endoplasmic reticulum membrane. Pah1, a phosphatidate phosphatase catalyzing the dephosphorylation of phosphatidate to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The diacylglycerol produced in the lipid phosphatase reaction is utilized for the synthesis of triacylglycerol that is stored in lipid droplets. Disruptions of the Nem1-Spo7/Pah1 phosphatase cascade cause a plethora of physiological defects. Spo7, the regulatory subunit of the Nem1-Spo7 complex, is required for the Nem1 catalytic function and interacts with the acidic tail of Pah1. Spo7 contains three conserved homology regions (CR1-3) that are important for the interaction with Nem1, but its region for the interaction with Pah1 is unknown. Here, by deletion and site-specific mutational analyses of Spo7, we revealed that the C-terminal basic tail (residues 240-259) containing five arginine and two lysine residues is important for the Nem1-Spo7 complex-mediated dephosphorylation of Pah1 and its cellular function (triacylglycerol synthesis, lipid droplet formation, maintenance of nuclear/endoplasmic reticulum membrane morphology, and cell growth at elevated temperatures). The glutaraldehyde cross-linking analysis of synthetic peptides indicated that the Spo7 basic tail interacts with the Pah1 acidic tail. This work advances our understanding of the Spo7 function and the Nem1-Spo7/Pah1 phosphatase cascade in yeast lipid synthesis.
Collapse
Affiliation(s)
- Ruta Jog
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
7
|
Konishi R, Fukuda K, Kuriyama S, Masatani T, Xuan X, Fujita A. Unique asymmetric distribution of phosphatidylserine and phosphatidylethanolamine in Toxoplasma gondii revealed by nanoscale analysis. Histochem Cell Biol 2023; 160:279-291. [PMID: 37477836 DOI: 10.1007/s00418-023-02218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2023] [Indexed: 07/22/2023]
Abstract
Toxoplasma gondii is a highly prevalent obligate apicomplexan parasite that is important in clinical and veterinary medicine. It is known that glycerophospholipids phosphatidylserine (PtdSer) and phosphatidylethanolamine (PtdEtn), especially their expression levels and flip-flops between cytoplasmic and exoplasmic leaflets, in the membrane of T. gondii play important roles in efficient growth in host mammalian cells, but their distributions have still not been determined because of technical difficulties in studying intracellular lipid distribution at the nanometer level. In this study, we developed an electron microscopy method that enabled us to determine the distributions of PtdSer and PtdEtn in individual leaflets of cellular membranes by using quick-freeze freeze-fracture replica labeling. Our findings show that PtdSer and PtdEtn are asymmetrically distributed, with substantial amounts localized at the luminal leaflet of the inner membrane complex (IMC), which comprises flattened vesicles located just underneath the plasma membrane (see Figs. 2B and 7). We also found that PtdSer was absent in the cytoplasmic leaflet of the inner IMC membrane, but was present in considerable amounts in the cytoplasmic leaflet of the middle IMC membrane, suggesting a barrier-like mechanism preventing the diffusion of PtdSer in the cytoplasmic leaflets of the two membranes. In addition, the expression levels of both PtdSer and PtdEtn in the luminal leaflet of the IMC membrane in the highly virulent RH strain were higher than those in the less virulent PLK strain. We also found that the amount of glycolipid GM3, a lipid raft component, was higher in the RH strain than in the PLK strain. These results suggest a correlation between lipid raft maintenance, virulence, and the expression levels of PtdSer and PtdEtn in T. gondii.
Collapse
Affiliation(s)
- Rikako Konishi
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Kayoko Fukuda
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Sayuri Kuriyama
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Tatsunori Masatani
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Japan
| | - Akikazu Fujita
- Department of Molecular and Cell Biology and Biochemistry, Basic Veterinary Science, Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan.
| |
Collapse
|
8
|
Nenadic A, Zaman MF, Johansen J, Volpiana MW, Beh CT. Increased Phospholipid Flux Bypasses Overlapping Essential Requirements for the Yeast Sac1p Phosphoinositide Phosphatase and ER-PM Membrane Contact Sites. J Biol Chem 2023; 299:105092. [PMID: 37507017 PMCID: PMC10470028 DOI: 10.1016/j.jbc.2023.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In budding yeast cells, much of the inner surface of the plasma membrane (PM) is covered with the endoplasmic reticulum (ER). This association is mediated by seven ER membrane proteins that confer cortical ER-PM association at membrane contact sites (MCSs). Several of these membrane "tether" proteins are known to physically interact with the phosphoinositide phosphatase Sac1p. However, it is unclear how or if these interactions are necessary for their interdependent functions. We find that SAC1 inactivation in cells lacking the homologous synaptojanin-like genes INP52 and INP53 results in a significant increase in cortical ER-PM MCSs. We show in sac1Δ, sac1tsinp52Δ inp53Δ, or Δ-super-tether (Δ-s-tether) cells lacking all seven ER-PM tethering genes that phospholipid biosynthesis is disrupted and phosphoinositide distribution is altered. Furthermore, SAC1 deletion in Δ-s-tether cells results in lethality, indicating a functional overlap between SAC1 and ER-PM tethering genes. Transcriptomic profiling indicates that SAC1 inactivation in either Δ-s-tether or inp52Δ inp53Δ cells induces an ER membrane stress response and elicits phosphoinositide-dependent changes in expression of autophagy genes. In addition, by isolating high-copy suppressors that rescue sac1Δ Δ-s-tether lethality, we find that key phospholipid biosynthesis genes bypass the overlapping function of SAC1 and ER-PM tethers and that overexpression of the phosphatidylserine/phosphatidylinositol-4-phosphate transfer protein Osh6 also provides limited suppression. Combined with lipidomic analysis and determinations of intracellular phospholipid distributions, these results suggest that Sac1p and ER phospholipid flux controls lipid distribution to drive Osh6p-dependent phosphatidylserine/phosphatidylinositol-4-phosphate counter-exchange at ER-PM MCSs.
Collapse
Affiliation(s)
- Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mohammad F Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jesper Johansen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
9
|
Stukey GJ, Han GS, Carman GM. Phosphatidate phosphatase Pah1 contains a novel RP domain that regulates its phosphorylation and function in yeast lipid synthesis. J Biol Chem 2023; 299:105025. [PMID: 37423305 PMCID: PMC10406625 DOI: 10.1016/j.jbc.2023.105025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023] Open
Abstract
The Saccharomyces cerevisiae PAH1-encoded phosphatidate (PA) phosphatase, which catalyzes the Mg2+-dependent dephosphorylation of PA to produce diacylglycerol, is one of the most highly regulated enzymes in lipid metabolism. The enzyme controls whether cells utilize PA to produce membrane phospholipids or the major storage lipid triacylglycerol. PA levels, which are regulated by the enzyme reaction, also control the expression of UASINO-containing phospholipid synthesis genes via the Henry (Opi1/Ino2-Ino4) regulatory circuit. Pah1 function is largely controlled by its cellular location, which is mediated by phosphorylation and dephosphorylation. Multiple phosphorylations sequester Pah1 in the cytosol and protect it from 20S proteasome-mediated degradation. The endoplasmic reticulum-associated Nem1-Spo7 phosphatase complex recruits and dephosphorylates Pah1 allowing the enzyme to associate with and dephosphorylate its membrane-bound substrate PA. Pah1 contains domains/regions that include the N-LIP and haloacid dehalogenase-like catalytic domains, N-terminal amphipathic helix for membrane binding, C-terminal acidic tail for Nem1-Spo7 interaction, and a conserved tryptophan within the WRDPLVDID domain required for enzyme function. Through bioinformatics, molecular genetics, and biochemical approaches, we identified a novel RP (regulation of phosphorylation) domain that regulates the phosphorylation state of Pah1. We showed that the ΔRP mutation results in a 57% reduction in the endogenous phosphorylation of the enzyme (primarily at Ser-511, Ser-602, and Ser-773/Ser-774), an increase in membrane association and PA phosphatase activity, but reduced cellular abundance. This work not only identifies a novel regulatory domain within Pah1 but emphasizes the importance of the phosphorylation-based regulation of Pah1 abundance, location, and function in yeast lipid synthesis.
Collapse
Affiliation(s)
- Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
10
|
Greenwood BL, Luo Z, Ahmed T, Huang D, Stuart DT. Saccharomyces cerevisiae Δ9-desaturase Ole1 forms a supercomplex with Slc1 and Dga1. J Biol Chem 2023:104882. [PMID: 37269945 PMCID: PMC10302205 DOI: 10.1016/j.jbc.2023.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023] Open
Abstract
Biosynthesis of the various lipid species that compose cellular membranes and lipid droplets depends on the activity of multiple enzymes functioning in coordinated pathways. The flux of intermediates through lipid biosynthetic pathways is regulated to respond to nutritional and environmental demands placed on the cell necessitating that there be extensive flexibility in pathway activity and organization. This flexibility can in part be achieved through the organization of biosynthetic enzymes into metabolon supercomplexes. However, the composition and organization of such supercomplexes remains unclear. Here, we identified protein-protein interactions between acyltransferases Sct1, Gpt2, Slc1, Dga1 and the Δ9 acyl-CoA desaturase Ole1 in Saccharomyces cerevisiae. We further determined that a subset of these acyltransferases interact with each other without Ole1 acting as a scaffold. We show that truncated versions of Dga1 lacking the carboxyl-terminal 20 amino acid residues are non-functional and unable to bind Ole1. Furthermore, charged-to-alanine scanning mutagenesis revealed that a cluster of charged residues near the carboxyl-terminus were required for the interaction with Ole1. Mutation of these charged residues disrupted the interaction between Dga1 and Ole1, but allowed Dga1 to retain catalytic activity and to induce lipid droplet formation. These data support the formation of a complex of acyltransferases involved in lipid biosynthesis that interacts with Ole1, the sole acyl-CoA desaturase in S. cerevisiae, that can channel unsaturated acyl-chains toward phospholipid or triacylglycerol synthesis. This desaturasome complex may provide the architecture that allows for the necessary flux of de novo synthesized unsaturated acyl-CoA to phospholipid or triacylglycerol synthesis as demanded by cellular requirements.
Collapse
Affiliation(s)
- Brianna L Greenwood
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Zijun Luo
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Tareq Ahmed
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Daniel Huang
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - David T Stuart
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada.
| |
Collapse
|
11
|
Mukherjee S, Das S, Bedi M, Vadupu L, Ball WB, Ghosh A. Methylglyoxal-mediated Gpd1 activation restores the mitochondrial defects in a yeast model of mitochondrial DNA depletion syndrome. Biochim Biophys Acta Gen Subj 2023; 1867:130328. [PMID: 36791826 DOI: 10.1016/j.bbagen.2023.130328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.
Collapse
Affiliation(s)
- Soumyajit Mukherjee
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Shubhojit Das
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Minakshi Bedi
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India
| | - Lavanya Vadupu
- Department of the Biological Sciences, SRM University- AP, Andhra Pradesh Pin- 522240, India
| | - Writoban Basu Ball
- Department of the Biological Sciences, SRM University- AP, Andhra Pradesh Pin- 522240, India
| | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, 35 Ballygunge Circular Road, Kolkata Pin-700019, India.
| |
Collapse
|
12
|
Kwarteng DO, Gangoda M, Kooijman EE. The effect of methylated phosphatidylethanolamine derivatives on the ionization properties of signaling phosphatidic acid. Biophys Chem 2023; 296:107005. [PMID: 36934676 DOI: 10.1016/j.bpc.2023.107005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Phosphatidylethanolamine (PE) and Phosphatidylcholine (PC) are the most abundant glycerophospholipids in eukaryotic membranes. The differences in the physicochemical properties of their headgroups have contrasting modulatory effects on their interaction with intracellular macromolecules. As such, their overall impact on membrane structure and function differs significantly. Enzymatic methylation of PE's amine headgroup produces two methylated derivatives namely monomethyl PE (MMPE) and dimethyl PE (DMPE) which have physicochemical properties that generally range between that of PE and PC. Additionally, their influence on membrane properties differs from both PE and PC. Although variations in headgroup methylation have been reported to affect signaling pathways, the direct influence that these differences exert on the ionization properties of signaling phospholipids have not been investigated. Here, we briefly review membrane function and structure that are mediated by the differences in headgroup methylation between PE, MMPE, DMPE and PC. In addition, using 31P MAS NMR, we investigate the effect of these four phospholipids on the ionization properties of the ubiquitous signaling anionic lipid phosphatidic acid (PA). Our results show that PA's ionization properties are differentially affected by changes in phospholipid headgroup methylation. This could have important implications for PA-protein binding and hence physiological functions in cells where signaling events lead to changes in abundance of methylated PE derivatives in the membrane.
Collapse
Affiliation(s)
- Desmond Owusu Kwarteng
- Department of Biological Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242, USA.
| | - Mahinda Gangoda
- Department of Chemistry & Biochemistry, Kent State University, P.O. Box 5190, Kent, OH 44242, USA
| | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, P.O. Box 5190, Kent, OH 44242, USA.
| |
Collapse
|
13
|
Pokharel M, Konarzewska P, Roberge JY, Han GS, Wang Y, Carman GM, Xue C. The Anticancer Drug Bleomycin Shows Potent Antifungal Activity by Altering Phospholipid Biosynthesis. Microbiol Spectr 2022; 10:e0086222. [PMID: 36036637 PMCID: PMC9602507 DOI: 10.1128/spectrum.00862-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/10/2022] [Indexed: 12/30/2022] Open
Abstract
Invasive fungal infections are difficult to treat with limited drug options, mainly because fungi are eukaryotes and share many cellular mechanisms with the human host. Most current antifungal drugs are either fungistatic or highly toxic. Therefore, there is a critical need to identify important fungal specific drug targets for novel antifungal development. Numerous studies have shown the fungal phosphatidylserine (PS) biosynthetic pathway to be a potential target. It is synthesized from CDP-diacylglycerol and serine, and the fungal PS synthesis route is different from that in mammalian cells, in which preexisting phospholipids are utilized to produce PS in a base-exchange reaction. In this study, we utilized a Saccharomyces cerevisiae heterologous expression system to screen for inhibitors of Cryptococcus PS synthase Cho1, a fungi-specific enzyme essential for cell viability. We identified an anticancer compound, bleomycin, as a positive candidate that showed a phospholipid-dependent antifungal effect. Its inhibition on fungal growth can be restored by ethanolamine supplementation. Further exploration of the mechanism of action showed that bleomycin treatment damaged the mitochondrial membrane in yeast cells, leading to increased generation of reactive oxygen species (ROS), whereas supplementation with ethanolamine helped to rescue bleomycin-induced damage. Our results indicate that bleomycin does not specifically inhibit the PS synthase enzyme; however, it may affect phospholipid biosynthesis through disruption of mitochondrial function, namely, the synthesis of phosphatidylethanolamine (PE) and phosphatidylcholine (PC), which helps cells maintain membrane composition and functionality. IMPORTANCE Invasive fungal pathogens cause significant morbidity and mortality, with over 1.5 million deaths annually. Because fungi are eukaryotes that share much of their cellular machinery with the host, our armamentarium of antifungal drugs is highly limited, with only three classes of antifungal drugs available. Drug toxicity and emerging resistance have limited their use. Hence, targeting fungi-specific enzymes that are important for fungal survival, growth, or virulence poses a strategy for novel antifungal development. In this study, we developed a heterologous expression system to screen for chemical compounds with activity against Cryptococcus phosphatidylserine synthase, Cho1, a fungi-specific enzyme that is essential for viability in C. neoformans. We confirmed the feasibility of this screen method and identified a previously unexplored role of the anticancer compound bleomycin in disrupting mitochondrial function and inhibiting phospholipid synthesis.
Collapse
Affiliation(s)
- Mona Pokharel
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Paulina Konarzewska
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Jacques Y. Roberge
- Molecular Design and Synthesis Core, Rutgers University Biomolecular Innovations Cores, Office for Research, Rutgers University, Piscataway, New Jersey, USA
| | - Gil-Soo Han
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Yina Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - George M. Carman
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition and Health, Rutgers University, New Brunswick, New Jersey, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| |
Collapse
|
14
|
Jiang X, Jiang S, Huang H, Li D, Yang R, Yang Y, Wang D, Song B, Chen Z. Multi-Omics Analysis Reveals that the Antimicrobial Kasugamycin Potential Targets Nitrate Reductase in Didymella segeticola to Achieve Control of Tea Leaf Spot. PHYTOPATHOLOGY 2022; 112:1894-1906. [PMID: 35322715 DOI: 10.1094/phyto-11-21-0457-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of the lack of effective disease management measures, tea leaf spot-caused by the fungal phytopathogen Didymella segeticola (syn. Phoma segeticola)-is an important foliar disease. The important and widely used agricultural antimicrobial kasugamycin (Ksg), produced by the Gram-positive bacterium Streptomyces kasugaensis, effects high levels of control against crop diseases. The results of this study indicated that Ksg could inhibit the growth of D. segeticola hyphae in vitro with a half-maximal effective concentration (EC50) of 141.18 μg ml-1. Meanwhile, the curative effect in vivo on the pathogen in detached tea leaves also demonstrated that Ksg induced some morphological changes in organelles, septa, and cell walls as observed by optical microscopy and by scanning and transmission electron microscopy. This may indicate that Ksg disturbs biosynthesis of key metabolites, inhibiting hyphal growth. Integrated transcriptomic, proteomic, and bioinformatic analyses revealed that differentially expressed genes or differentially expressed proteins in D. segeticola hyphae in response to Ksg exposure were involved with metabolic processes and biosynthesis of secondary metabolites. Molecular docking studies indicated that Ksg may target nitrate reductase (NR), and microscale thermophoresis assay showed greater affinity with NR, potentially disturbing nitrogen assimilation and subsequent metabolism. The results indicated that Ksg inhibits the pathogen of tea leaf spot, D. segeticola, possibly by binding to NR, disturbing fungal metabolism, and inducing subsequent changes in hyphal growth and development.
Collapse
Affiliation(s)
- Xinyue Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shilong Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongke Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Dongxue Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuanyou Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Baoan Song
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
15
|
Khan MH, Xue L, Yue J, Schüller HJ, Zhu Z, Niu L. Structural Analysis of Ino2p/Ino4p Mutual Interactions and Their Binding Interface with Promoter DNA. Int J Mol Sci 2022; 23:7600. [PMID: 35886947 PMCID: PMC9315497 DOI: 10.3390/ijms23147600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Gene expression is mediated by a series of regulatory proteins, i.e., transcription factors. Under different growth conditions, the transcriptional regulation of structural genes is associated with the recognition of specific regulatory elements (REs) in promoter DNA. The manner by which transcription factors recognize distinctive REs is a key question in structural biology. Previous research has demonstrated that Ino2p/Ino4p heterodimer is associated with the transcriptional regulation of phospholipid biosynthetic genes. Mechanistically, Ino2p/Ino4p could specifically recognize the inositol/choline-responsive element (ICRE), followed by the transcription activation of the phospholipid biosynthetic gene. While the promoter DNA sequence for Ino2p has already been characterized, the structural basis for the mutual interaction between Ino2p/Ino4p and their binding interface with promoter DNA remain relatively unexplored. Here, we have determined the crystalline structure of the Ino2pDBD/Ino4pDBD/DNA ternary complex, which highlights some residues (Ino2pHis12/Glu16/Arg20/Arg44 and Ino4pHis12/Glu16/Arg19/Arg20) associated with the sequence-specific recognition of promoter DNA. Our biochemical analysis showed that mutating these residues could completely abolish protein-DNA interaction. Despite the requirement of Ino2p and Ino4p for interprotein-DNA interaction, both proteins can still interact-even in the absence of DNA. Combined with the structural analysis, our in vitro binding analysis demonstrated that residues (Arg35, Asn65, and Gln69 of Ino2pDBD and Leu59 of Ino4pDBD) are critical for interprotein interactions. Together, these results have led to the conclusion that these residues are critical to establishing interprotein-DNA and protein-DNA mutual interactions.
Collapse
Affiliation(s)
- Muhammad Hidayatullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Lu Xue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Jian Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hans-Joachim Schüller
- Institut für Genetik und Funktionelle Genomforschung, Felix-Hausdorff-Str. 8, 17487 Greifswald, Germany;
| | - Zhongliang Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Molecular and Cellular Biophysics, University of Science and Technology of China, Hefei 230026, China; (M.H.K.); (L.X.); (J.Y.)
- Division of Life Sciences and Medicine, School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Gaspar ML, Aregullin MA, Chang YF, Jesch SA, Henry SA. Phosphatidic acid species 34:1 mediates expression of the myo-inositol 3-phosphate synthase gene INO1 for lipid synthesis in yeast. J Biol Chem 2022; 298:102148. [PMID: 35716778 PMCID: PMC9283935 DOI: 10.1016/j.jbc.2022.102148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Depletion of exogenous inositol in yeast results in rising levels of phosphatidic acid (PA) and is correlated with increased expression of genes containing the inositol-dependent upstream activating sequence promoter element (UASINO). INO1, encoding myo-inositol 3-phosphate synthase, is the most highly regulated of the inositol-dependent upstream activating sequence-containing genes, but its mechanism of regulation is not clear. In the current study, we determined the relative timing and kinetics of appearance of individual molecular species of PA following removal of exogenous inositol in actively growing wild type, pah1Δ, and ole1ts strains. We report that the pah1Δ strain, lacking the PA phosphatase, exhibits a delay of about 60 min in comparison to wildtype before initiating derepression of INO1 expression. The ole1ts mutant on the other hand, defective in fatty acid desaturation, when grown at a semirestrictive temperature, exhibited reduced synthesis of PA species 34:1 and elevated synthesis of PA species 32:1. Importantly, we found these changes in the fatty acid composition in the PA pool of the ole1ts strain were associated with reduced expression of INO1, indicating that synthesis of PA 34:1 is involved in optimal expression of INO1 in the absence of inositol. Using deuterium-labeled glycerol in short-duration labeling assays, we found that changes associated with PA species 34:1 were uniquely correlated with increased expression of INO1 in all three strains. These data indicate that the signal for activation of INO1 transcription is not necessarily the overall level of PA but rather levels of a specific species of newly synthesized PA 34:1.
Collapse
Affiliation(s)
- Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| | - Manuel A Aregullin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Yu-Fang Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
17
|
John Peter AT, Schie SNS, Cheung NJ, Michel AH, Peter M, Kornmann B. Rewiring phospholipid biosynthesis reveals resilience to membrane perturbations and uncovers regulators of lipid homeostasis. EMBO J 2022; 41:e109998. [PMID: 35188676 PMCID: PMC8982615 DOI: 10.15252/embj.2021109998] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
The organelles of eukaryotic cells differ in their membrane lipid composition. This heterogeneity is achieved by the localization of lipid synthesizing and modifying enzymes to specific compartments, as well as by intracellular lipid transport that utilizes vesicular and non‐vesicular routes to ferry lipids from their place of synthesis to their destination. For instance, the major and essential phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC), can be produced by multiple pathways and, in the case of PE, also at multiple locations. However, the molecular components that underlie lipid homeostasis as well as the routes allowing their distribution remain unclear. Here, we present an approach in which we simplify and rewire yeast phospholipid synthesis by redirecting PE and PC synthesis reactions to distinct subcellular locations using chimeric enzymes fused to specific organelle targeting motifs. In rewired conditions, viability is expected to depend on homeostatic adaptation to the ensuing lipostatic perturbations and on efficient interorganelle lipid transport. We therefore performed genetic screens to identify factors involved in both of these processes. Among the candidates identified, we find genes linked to transcriptional regulation of lipid homeostasis, lipid metabolism, and transport. In particular, we identify a requirement for Csf1—an uncharacterized protein harboring a Chorein‐N lipid transport motif—for survival under certain rewired conditions as well as lipidomic adaptation to cold, implicating Csf1 in interorganelle lipid transport and homeostatic adaptation.
Collapse
Affiliation(s)
| | | | - Ngaam J Cheung
- Department of Biochemistry University of Oxford Oxford UK
| | - Agnès H Michel
- Department of Biochemistry University of Oxford Oxford UK
| | | | | |
Collapse
|
18
|
Shvetsova A, Masud AJ, Schneider L, Bergmann U, Monteuuis G, Miinalainen IJ, Hiltunen JK, Kastaniotis AJ. A hunt for OM45 synthetic petite interactions in Saccharomyces cerevisiae reveals a role for Miro GTPase Gem1p in cristae structure maintenance. Microbiologyopen 2021; 10:e1238. [PMID: 34713605 PMCID: PMC8501180 DOI: 10.1002/mbo3.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 11/28/2022] Open
Abstract
Om45 is a major protein of the yeast's outer mitochondrial membrane under respiratory conditions. However, the cellular role of the protein has remained obscure. Previously, deletion mutant phenotypes have not been found, and clear amino acid sequence similarities that would allow inferring its functional role are not available. In this work, we describe synthetic petite mutants of GEM1 and UGO1 that depend on the presence of OM45 for respiratory growth, as well as the identification of several multicopy suppressors of the synthetic petite phenotypes. In the analysis of our mutants, we demonstrate that Om45p and Gem1p have a collaborative role in the maintenance of mitochondrial morphology, cristae structure, and mitochondrial DNA maintenance. A group of multicopy suppressors rescuing the synthetic lethal phenotypes of the mutants on non-fermentable carbon sources additionally supports this result. Our results imply that the synthetic petite phenotypes we observed are due to the disturbance of the inner mitochondrial membrane and point to this mitochondrial sub-compartment as the main target of action of Om45p, Ugo1p, and the yeast Miro GTPase Gem1p.
Collapse
Affiliation(s)
- Antonina Shvetsova
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ali J. Masud
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Laura Schneider
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Ulrich Bergmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - Geoffray Monteuuis
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Biochemistry and Developmental BiologyUniversity of HelsinkiHelsinkiFinland
| | - Ilkka J. Miinalainen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | - J. Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine and Biocenter OuluUniversity of OuluOuluFinland
| | | |
Collapse
|
19
|
Arhar S, Gogg-Fassolter G, Ogrizović M, Pačnik K, Schwaiger K, Žganjar M, Petrovič U, Natter K. Engineering of Saccharomyces cerevisiae for the accumulation of high amounts of triacylglycerol. Microb Cell Fact 2021; 20:147. [PMID: 34315498 PMCID: PMC8314538 DOI: 10.1186/s12934-021-01640-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/19/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Fatty acid-based substances play an important role in many products, from food supplements to pharmaceutical products and biofuels. The production of fatty acids, mainly in their esterified form as triacylglycerol (TAG), has been intensively studied in oleaginous yeasts, whereas much less effort has been invested into non-oleaginous species. In the present work, we engineered the model yeast Saccharomyces cerevisiae, which is commonly regarded as non-oleaginous, for the storage of high amounts of TAG, comparable to the contents achieved in oleaginous yeasts. RESULTS We investigated the effects of several mutations with regard to increased TAG accumulation and identified six of them as important for this phenotype: a point mutation in the acetyl-CoA carboxylase Acc1p, overexpression of the diacylglycerol acyltransferase Dga1p, deletions of genes coding for enzymes involved in the competing pathways glycogen and steryl ester synthesis and TAG hydrolysis, and a deletion of CKB1, the gene coding for one of the regulatory subunits of casein kinase 2. With the combination of these mutations in a S. cerevisiae strain with a relatively high neutral lipid level already in the non-engineered state, we achieved a TAG content of 65% in the dry biomass. High TAG levels were not only obtained under conditions that favor lipid accumulation, but also in defined standard carbon-limited media. CONCLUSIONS Baker's yeast, which is usually regarded as inefficient in the storage of TAG, can be converted into a highly oleaginous strain that could be useful in processes aiming at the synthesis of fatty acid-based products. This work emphasizes the importance of strain selection in combination with metabolic engineering to obtain high product levels.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria
| | - Gabriela Gogg-Fassolter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria
| | - Mojca Ogrizović
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Klavdija Pačnik
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria
| | - Katharina Schwaiger
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria
| | - Mia Žganjar
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Uroš Petrovič
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010, Graz, Austria.
| |
Collapse
|
20
|
Abstract
My career in research has flourished through hard work, supportive mentors, and outstanding mentees and collaborators. The Carman laboratory has contributed to the understanding of lipid metabolism through the isolation and characterization of key lipid biosynthetic enzymes as well as through the identification of the enzyme-encoding genes. Our findings from yeast have proven to be invaluable to understand regulatory mechanisms of human lipid metabolism. Several rewarding aspects of my career have been my service to the Journal of Biological Chemistry as an editorial board member and Associate Editor, the National Institutes of Health as a member of study sections, and national and international scientific meetings as an organizer. I advise early career scientists to not assume anything, acknowledge others’ accomplishments, and pay it forward.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
21
|
Chattopadhyay A, Maiti MK. Lipid production by oleaginous yeasts. ADVANCES IN APPLIED MICROBIOLOGY 2021; 116:1-98. [PMID: 34353502 DOI: 10.1016/bs.aambs.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Microbial lipid production has been studied extensively for years; however, lipid metabolic engineering in many of the extraordinarily high lipid-accumulating yeasts was impeded by inadequate understanding of the metabolic pathways including regulatory mechanisms defining their oleaginicity and the limited genetic tools available. The aim of this review is to highlight the prominent oleaginous yeast genera, emphasizing their oleaginous characteristics, in conjunction with diverse other features such as cheap carbon source utilization, withstanding the effect of inhibitory compounds, commercially favorable fatty acid composition-all supporting their future development as economically viable lipid feedstock. The unique aspects of metabolism attributing to their oleaginicity are accentuated in the pretext of outlining the various strategies successfully implemented to improve the production of lipid and lipid-derived metabolites. A large number of in silico data generated on the lipid accumulation in certain oleaginous yeasts have been carefully curated, as suggestive evidences in line with the exceptional oleaginicity of these organisms. The different genetic elements developed in these yeasts to execute such strategies have been scrupulously inspected, underlining the major types of newly-found and synthetically constructed promoters, transcription terminators, and selection markers. Additionally, there is a plethora of advanced genetic toolboxes and techniques described, which have been successfully used in oleaginous yeasts in the recent years, promoting homologous recombination, genome editing, DNA assembly, and transformation at remarkable efficiencies. They can accelerate and effectively guide the rational designing of system-wide metabolic engineering approaches pinpointing the key targets for developing industrially suitable yeast strains.
Collapse
Affiliation(s)
- Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
22
|
Zhao Y, Zhang Y, Nielsen J, Liu Z. Production of β-carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnol Bioeng 2021; 118:2043-2052. [PMID: 33605428 DOI: 10.1002/bit.27717] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals. However, as a non-oleaginous yeast, S. cerevisiae has a limited production capacity for lipophilic compounds, such as β-carotene. To increase its accumulation of β-carotene, we engineered different lipid metabolic pathways in a β-carotene producing strain and investigated the relationship between lipid components and the accumulation of β-carotene. We found that overexpression of sterol ester synthesis genes ARE1 and ARE2 increased β-carotene yield by 1.5-fold. Deletion of phosphatidate phosphatase (PAP) genes (PAH1, DPP1, and LPP1) also increased β-carotene yield by twofold. Combining these two strategies resulted in a 2.4-fold improvement in β-carotene production compared with the starting strain. These results demonstrated that regulating lipid metabolism pathways is important for β-carotene accumulation in S. cerevisiae, and may also shed insights to the accumulation of other lipophilic compounds in yeast.
Collapse
Affiliation(s)
- Yijin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yueping Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
23
|
Li S, Zhang Q, Wang J, Liu Y, Zhao Y, Deng Y. Recent progress in metabolic engineering of Saccharomyces cerevisiae for the production of malonyl-CoA derivatives. J Biotechnol 2020; 325:83-90. [PMID: 33278463 DOI: 10.1016/j.jbiotec.2020.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023]
Abstract
To reduce dependence on petroleum, the biosynthesis of important chemicals from simple substrates using industrial microorganisms has attracted increased attention. Metabolic engineering of Saccharomyces cerevisiae offers a sustainable and flexible alternative for the production of various chemicals. As a key metabolic intermediate, malonyl-CoA is a precursor for many useful compounds. However, the productivity of malonyl-CoA derivatives is restricted by the low cellular level of malonyl-CoA and enzymatic performance. In this review, we focused on how to increase the intracellular malonyl-CoA level and summarize the recent advances in different metabolic engineering strategies for directing intracellular malonyl-CoA to the desired malonyl-CoA derivatives, including strengthening the malonyl-CoA supply, reducing malonyl-CoA consumption, and precisely controlling the intracellular malonyl-CoA level. These strategies provided new insights for further improving the synthesis of malonyl-CoA derivatives in microorganisms.
Collapse
Affiliation(s)
- Shiyun Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiyue Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology & Business University, Beijing 100048, China
| | - Yunying Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
24
|
Yap WS, Shyu P, Gaspar ML, Jesch SA, Marvalim C, Prinz WA, Henry SA, Thibault G. The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis. J Cell Sci 2020; 133:jcs248526. [PMID: 33033181 PMCID: PMC7657468 DOI: 10.1242/jcs.248526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wei Sheng Yap
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Peter Shyu
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Charlie Marvalim
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Guillaume Thibault
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673
| |
Collapse
|
25
|
Mirheydari M, Dey P, Stukey GJ, Park Y, Han GS, Carman GM. The Spo7 sequence LLI is required for Nem1-Spo7/Pah1 phosphatase cascade function in yeast lipid metabolism. J Biol Chem 2020; 295:11473-11485. [PMID: 32527729 DOI: 10.1074/jbc.ra120.014129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Indexed: 11/06/2022] Open
Abstract
The Nem1-Spo7 complex in the yeast Saccharomyces cerevisiae is a protein phosphatase that catalyzes the dephosphory-lation of Pah1 phosphatidate phosphatase, required for its translocation to the nuclear/endoplasmic reticulum membrane. The Nem1-Spo7/Pah1 phosphatase cascade plays a major role in triacylglycerol synthesis and in the regulation of phospholipid synthesis. In this work, we examined Spo7, a regulatory subunit required for Nem1 catalytic function, to identify residues that govern formation of the Nem1-Spo7 complex. By deletion analysis of Spo7, we identified a hydrophobic Leu-Leu-Ile (LLI) sequence comprising residues 54-56 as being required for the protein to complement the temperature-sensitive phenotype of an spo7Δ mutant strain. Mutational analysis of the LLI sequence with alanine and arginine substitutions showed that its overall hydrophobicity is crucial for the formation of the Nem1-Spo7 complex as well as for the Nem1 catalytic function on its substrate, Pah1, in vivo Consistent with the role of the Nem1-Spo7 complex in activating the function of Pah1, we found that the mutational effects of the Spo7 LLI sequence were on the Nem1-Spo7/Pah1 axis that controls lipid synthesis and related cellular processes (e.g. triacylglycerol/phospholipid synthesis, lipid droplet formation, nuclear/endoplasmic reticulum membrane morphology, vacuole fusion, and growth on glycerol medium). These findings advance the understanding of Nem1-Spo7 complex formation and its role in the phosphatase cascade that regulates the function of Pah1 phosphatidate phosphatase.
Collapse
Affiliation(s)
- Mona Mirheydari
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Prabuddha Dey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Geordan J Stukey
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Yeonhee Park
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
26
|
Zaman MF, Nenadic A, Radojičić A, Rosado A, Beh CT. Sticking With It: ER-PM Membrane Contact Sites as a Coordinating Nexus for Regulating Lipids and Proteins at the Cell Cortex. Front Cell Dev Biol 2020; 8:675. [PMID: 32793605 PMCID: PMC7387695 DOI: 10.3389/fcell.2020.00675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/31/2022] Open
Abstract
Membrane contact sites between the cortical endoplasmic reticulum (ER) and the plasma membrane (PM) provide a direct conduit for small molecule transfer and signaling between the two largest membranes of the cell. Contact is established through ER integral membrane proteins that physically tether the two membranes together, though the general mechanism is remarkably non-specific given the diversity of different tethering proteins. Primary tethers including VAMP-associated proteins (VAPs), Anoctamin/TMEM16/Ist2p homologs, and extended synaptotagmins (E-Syts), are largely conserved in most eukaryotes and are both necessary and sufficient for establishing ER-PM association. In addition, other species-specific ER-PM tether proteins impart unique functional attributes to both membranes at the cell cortex. This review distils recent functional and structural findings about conserved and species-specific tethers that form ER-PM contact sites, with an emphasis on their roles in the coordinate regulation of lipid metabolism, cellular structure, and responses to membrane stress.
Collapse
Affiliation(s)
- Mohammad F Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Ana Radojičić
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,The Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
27
|
Kwiatek JM, Carman GM. Yeast phosphatidic acid phosphatase Pah1 hops and scoots along the membrane phospholipid bilayer. J Lipid Res 2020; 61:1232-1243. [PMID: 32540926 DOI: 10.1194/jlr.ra120000937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
PA phosphatase, encoded by PAH1 in the yeast Saccharomyces cerevisiae, catalyzes the Mg2+-dependent dephosphorylation of PA, producing DAG at the nuclear/ER membrane. This enzyme plays a major role in triacylglycerol synthesis and in the regulation of phospholipid synthesis. As an interfacial enzyme, PA phosphatase interacts with the membrane surface, binds its substrate, and catalyzes its reaction. The Triton X-100/PA-mixed micellar system has been utilized to examine the activity and regulation of yeast PA phosphatase. This system, however, does not resemble the in vivo environment of the membrane phospholipid bilayer. We developed an assay system that mimics the nuclear/ER membrane to assess PA phosphatase activity. PA was incorporated into unilamellar phospholipid vesicles (liposomes) composed of the major nuclear/ER membrane phospholipids, PC, PE, PI, and PS. We optimized this system to support enzyme-liposome interactions and to afford activity that is greater than that obtained with the aforementioned detergent system. Activity was regulated by phospholipid composition, whereas the enzyme's interaction with liposomes was insensitive to composition. Greater activity was attained with large (≥100 nm) versus small (50 nm) vesicles. The fatty-acyl moiety of PA had no effect on this activity. PA phosphatase activity was dependent on the bulk (hopping mode) and surface (scooting mode) concentrations of PA, suggesting a mechanism by which the enzyme operates along the nuclear/ER membrane in vivo.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901
| | - George M Carman
- Department of Food Science and Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
28
|
Ranganathan PR, Nawada N, Narayanan AK, Rao DKV. Triglyceride deficiency and diacylglycerol kinase1 activity lead to the upregulation of mevalonate pathway in yeast: A study for the development of potential yeast platform for improved production of triterpenoid. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158661. [PMID: 32058036 DOI: 10.1016/j.bbalip.2020.158661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
Besides energy storage and membrane biogenesis, lipids are known for their numerous biological functions. The two essential lipids, diacylglycerol (DG) and phosphatidic acid (PA), are shown to be associated with cell signalling processes. In this study, we examined whether triglyceride-deficient yeast mutants (tgΔ), dga1Δ and dga1Δlro1Δ, may play an important role in mevalonate (MEV) pathway regulation. Our metabolite analyses revealed that tgΔ cells showed high levels of squalene (SQ) and ergosterol (ERG), which are key indicators of MEV pathway activity. In addition, gene expression studies indicated that the MEV pathway genes in tgΔ cells were significantly upregulated. Interestingly, tgΔ cells exhibited high diacylglycerol kinase1 (DGK1) expression. Furthermore, DGK1 overexpression in WT and tgΔ phenotypes causes a substantial elevation in SQ and ERG levels, and we also found a significant increase in transcript levels of MEV pathway genes, confirming the new role of DGK1 in MEV pathway regulation. This suggests that high DG phosphorylation activity increases the PA pool that may induce the upregulation of MEV pathway in tgΔ cells. The induced MEV pathway is one of the key strategies in the field of synthetic biology for improved production of terpenoids in yeast. Thus, to examine whether increased endogenous MEV pathway flux can be redirected to triterpenoid, β-Amyrin synthase gene was heterologously expressed in DGK1 overexpressing tgΔ cells that led to significant production of β-Amyrin, a natural triterpenoid. In conclusion, our findings provide a novel strategy to increase MEV pathway precursors by modulating endogenous signal lipids for improved production of terpenoids.
Collapse
Affiliation(s)
- Poornima Ramani Ranganathan
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Niveditha Nawada
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India
| | - Ananth Krishna Narayanan
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India
| | - D K Venkata Rao
- Biochemistry Laboratory, CSIR-Central Institute of Medicinal & Aromatic Plants, Research Center, Allalasandra, GKVK (post), Bangalore 560065, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India.
| |
Collapse
|
29
|
Kwiatek JM, Han GS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158434. [PMID: 30910690 PMCID: PMC6755077 DOI: 10.1016/j.bbalip.2019.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
In yeast and higher eukaryotes, phospholipids and triacylglycerol are derived from phosphatidate at the nuclear/endoplasmic reticulum membrane. In de novo biosynthetic pathways, phosphatidate is channeled into membrane phospholipids via its conversion to CDP-diacylglycerol. Its dephosphorylation to diacylglycerol is required for the synthesis of triacylglycerol as well as for the synthesis of phosphatidylcholine and phosphatidylethanolamine via the Kennedy pathway. In addition to the role of phosphatidate as a precursor, it is a regulatory molecule in the transcriptional control of phospholipid synthesis genes via the Henry regulatory circuit. Pah1 phosphatidate phosphatase and Dgk1 diacylglycerol kinase are key players that function counteractively in the control of the phosphatidate level at the nuclear/endoplasmic reticulum membrane. Loss of Pah1 phosphatidate phosphatase activity not only affects triacylglycerol synthesis but also disturbs the balance of the phosphatidate level, resulting in the alteration of lipid synthesis and related cellular defects. The pah1Δ phenotypes requiring Dgk1 diacylglycerol kinase exemplify the importance of the phosphatidate level in the misregulation of cellular processes. The catalytic function of Pah1 requires its translocation from the cytoplasm to the nuclear/endoplasmic reticulum membrane, which is regulated through its phosphorylation in the cytoplasm by multiple protein kinases as well as through its dephosphorylation by the membrane-associated Nem1-Spo7 protein phosphatase complex. This article is part of a Special Issue entitled Endoplasmic reticulum platforms for lipid dynamics edited by Shamshad Cockcroft and Christopher Stefan.
Collapse
Affiliation(s)
- Joanna M Kwiatek
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA
| | - George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, USA.
| |
Collapse
|
30
|
William James A, Ravi C, Srinivasan M, Nachiappan V. Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae. Sci Rep 2019; 9:14485. [PMID: 31597940 PMCID: PMC6785544 DOI: 10.1038/s41598-019-51054-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/04/2019] [Indexed: 11/09/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi functional organelle and plays a crucial role in protein folding and lipid biosynthesis. The SEC59 gene encodes dolichol kinase, required for protein glycosylation in the ER. The mutation of sec59-1 caused a protein N-glycosylation defect mediated ER stress resulting in increased levels of phospholipid, neutral lipid and sterol, whereas growth was reduced. In the sec59-1∆ cell, the N-glycosylation of vacuolar carboxy peptidase-Y (CPY) was significantly reduced; whereas the ER stress marker Kar2p and unfolded protein response (UPR) were significantly increased. Increased levels of Triacylglycerol (TAG), sterol ester (SE), and lipid droplets (LD) could be attributed to up-regulation of DPP1, LRO1, and ARE2 in the sec 59-1∆ cell. Also, the diacylglycerol (DAG), sterol (STE), and free fatty acids (FFA) levels were significantly increased, whereas the genes involved in peroxisome biogenesis and Pex3-EGFP levels were reduced when compared to the wild-type. The microarray data also revealed increased expression of genes involved in phospholipid, TAG, fatty acid, sterol synthesis, and phospholipid transport resulting in dysregulation of lipid homeostasis in the sec59-1∆ cell. We conclude that SEC59 dependent N-glycosylation is required for lipid homeostasis, peroxisome biogenesis, and ER protein quality control.
Collapse
Affiliation(s)
- Antonisamy William James
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Chidambaram Ravi
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysore, 570020, India
| | - Vasanthi Nachiappan
- Biomembrane Lab, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamilnadu, India.
| |
Collapse
|
31
|
Zahumensky J, Malinsky J. Role of MCC/Eisosome in Fungal Lipid Homeostasis. Biomolecules 2019; 9:E305. [PMID: 31349700 PMCID: PMC6723945 DOI: 10.3390/biom9080305] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
One of the best characterized fungal membrane microdomains is the MCC/eisosome. The MCC (membrane compartment of Can1) is an evolutionarily conserved ergosterol-rich plasma membrane domain. It is stabilized on its cytosolic face by the eisosome, a hemitubular protein complex composed of Bin/Amphiphysin/Rvs (BAR) domain-containing Pil1 and Lsp1. These two proteins bind directly to phosphatidylinositol 4,5-bisphosphate and promote the typical furrow-like shape of the microdomain, with highly curved edges and bottom. While some proteins display stable localization in the MCC/eisosome, others enter or leave it under particular conditions, such as misbalance in membrane lipid composition, changes in membrane tension, or availability of specific nutrients. These findings reveal that the MCC/eisosome, a plasma membrane microdomain with distinct morphology and lipid composition, acts as a multifaceted regulator of various cellular processes including metabolic pathways, cellular morphogenesis, signalling cascades, and mRNA decay. In this minireview, we focus on the MCC/eisosome's proposed role in the regulation of lipid metabolism. While the molecular mechanisms of the MCC/eisosome function are not completely understood, the idea of intracellular processes being regulated at the plasma membrane, the foremost barrier exposed to environmental challenges, is truly exciting.
Collapse
Affiliation(s)
- Jakub Zahumensky
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic
| | - Jan Malinsky
- Department of Microscopy, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic.
| |
Collapse
|
32
|
Zhao X, Qiu X. Very Long Chain Polyunsaturated Fatty Acids Accumulated in Triacylglycerol Are Channeled From Phosphatidylcholine in Thraustochytrium. Front Microbiol 2019; 10:645. [PMID: 30972054 PMCID: PMC6446058 DOI: 10.3389/fmicb.2019.00645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/14/2019] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrium is a marine protist that can accumulate a large amount of very long chain polyunsaturated fatty acids (VLCPUFA) in triacylglycerols (TAG). How these freshly synthesized VLCPUFAs are channeled into TAG remains unknown. In this study, the glycerolipid profile of Thraustochytrium at log and stationary growth stages was first analyzed by lipidomic tools, and then 14C-acetate and 14C-glycerol were used to trace the flux of fatty acids and backbone in glycerolipids. Lipidomic analysis showed that VLCPUFAs were mostly allocated to phosphatidylcholine (PC) and TAG. PC possessed a relatively stable profile of VLCPUFAs, whereas TAG carrying VLCPUFAs were significantly increased at the stationary phase. 14C-acetate labeled VLCPUFAs were predominately incorporated into PC initially but were mostly found in TAG at later time of labeling. Positional analysis showed that PC had either one VLCPUFA at its sn-2 position (PC1) or two VLCPUFAs (PC2), while TAG incorporated VLCPUFAs almost exclusively at the sn-2 position. Similarly, 14C-glycerol was more efficiently incorporated into PC1 than TAG initially but was mostly found in TAG at later time of labeling, and diacylglycerol and PC1 shared a similar incorporation pattern. These results indicate that VLCPUFAs in TAG are mainly channeled from PC likely through diacylglycerol as the intermediate.
Collapse
Affiliation(s)
| | - Xiao Qiu
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
33
|
Regulation of the inositol transporter Itr1p by hydrogen peroxide in Saccharomyces cerevisiae. Arch Microbiol 2018; 201:123-134. [PMID: 30283989 DOI: 10.1007/s00203-018-1584-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Myo-inositol is a precursor of several membrane phospholipids and sphingolipids and plays a key role in gene regulation in Saccharomyces cerevisiae (S. cerevisiae). Here, we tested whether H2O2 was affecting the levels of the inositol transporters and thus inositol uptake. In S. cerevisiae cells adapted to H2O2 Itr1-GFPp accumulated in the plasma membrane until 20 min, concomitantly with an inhibition of its internalization. Exposure to H2O2 did not alter Itr2-GFPp cellular levels and induced only an 8% decrease at 10 min in the plasma membrane. Therefore, decreased inositol intracellular levels are not caused by decreased levels of inositol transporters in the plasma membrane. However, results show that H2O2 adaptation affects Itr1p turnover and, consequently, H2O2-adapted yeast cells display an inositol transporter phenotype comparable to cells grown in the absence of inositol in growth medium, i.e. accumulation in the plasma membrane and decreased degradation.
Collapse
|
34
|
Carman GM. Discoveries of the phosphatidate phosphatase genes in yeast published in the Journal of Biological Chemistry. J Biol Chem 2018; 294:1681-1689. [PMID: 30061152 DOI: 10.1074/jbc.tm118.004159] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This JBC Review on the discoveries of yeast phosphatidate (PA) phosphatase genes is dedicated to Dr. Herbert Tabor, Editor-in-Chief of the Journal of Biological Chemistry (JBC) for 40 years, on the occasion of his 100th birthday. Here, I reflect on the discoveries of the APP1, DPP1, LPP1, and PAH1 genes encoding all the PA phosphatase enzymes in yeast. PA phosphatase catalyzes PA dephosphorylation to generate diacylglycerol; both substrate and product are key intermediates in the synthesis of membrane phospholipids and triacylglycerol. App1 and Pah1 are peripheral membrane proteins catalyzing an Mg2+-dependent reaction governed by the DXDX(T/V) phosphatase motif. Dpp1 and Lpp1 are integral membrane proteins that catalyze an Mg2+-independent reaction governed by the KX 6RP-PSGH-SRX 5HX 3D phosphatase motif. Pah1 is PA-specific and is the only PA phosphatase responsible for lipid synthesis at the nuclear/endoplasmic reticulum membrane. App1, Dpp1, and Lpp1, respectively, are localized to cortical actin patches and the vacuole and Golgi membranes; they utilize several lipid phosphate substrates, including PA, lyso-PA, and diacylglycerol pyrophosphate. App1 is postulated to be involved in endocytosis, whereas Dpp1 and Lpp1 may be involved in lipid signaling. Pah1 is the yeast lipin homolog of mice and humans. A host of cellular defects and lipid-based diseases associated with loss or overexpression of PA phosphatase in yeast, mice, and humans, highlights its importance to cell physiology.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901.
| |
Collapse
|
35
|
Vance JE. Historical perspective: phosphatidylserine and phosphatidylethanolamine from the 1800s to the present. J Lipid Res 2018; 59:923-944. [PMID: 29661786 DOI: 10.1194/jlr.r084004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/12/2018] [Indexed: 12/17/2022] Open
Abstract
This article provides a historical account of the discovery, chemistry, and biochemistry of two ubiquitous phosphoglycerolipids, phosphatidylserine (PS) and phosphatidylethanolamine (PE), including the ether lipids. In addition, the article describes the biosynthetic pathways for these phospholipids and how these pathways were elucidated. Several unique functions of PS and PE in mammalian cells in addition to their ability to define physical properties of membranes are discussed. For example, the translocation of PS from the inner to the outer leaflet of the plasma membrane of cells occurs during apoptosis and during some other specific physiological processes, and this translocation is responsible for profound life-or-death events. Moreover, mitochondrial function is severely impaired when the PE content of mitochondria is reduced below a threshold level. The discovery and implications of the existence of membrane contact sites between the endoplasmic reticulum and mitochondria and their relevance for PS and PE metabolism, as well as for mitochondrial function, are also discussed. Many of the recent advances in these fields are due to the use of isotope labeling for tracing biochemical pathways. In addition, techniques for disruption of specific genes in mice are now widely used and have provided major breakthroughs in understanding the roles and metabolism of PS and PE in vivo.
Collapse
Affiliation(s)
- Jean E Vance
- Department of Medicine and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
36
|
Pillai AN, Shukla S, Rahaman A. An evolutionarily conserved phosphatidate phosphatase maintains lipid droplet number and endoplasmic reticulum morphology but not nuclear morphology. Biol Open 2017; 6:1629-1643. [PMID: 28954739 PMCID: PMC5703613 DOI: 10.1242/bio.028233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Phosphatidic acid phosphatases are involved in the biosynthesis of phospholipids and triacylglycerol, and also act as transcriptional regulators. Studies to ascertain their role in lipid metabolism and membrane biogenesis are restricted to Opisthokonta and Archaeplastida. Here, we report the role of phosphatidate phosphatase (PAH) in Tetrahymena thermophila, belonging to the Alveolata clade. We identified two PAH homologs in Tetrahymena, TtPAH1 and TtPAH2 Loss of function of TtPAH1 results in reduced lipid droplet number and an increase in endoplasmic reticulum (ER) content. It also results in more ER sheet structure as compared to wild-type Tetrahymena Surprisingly, we did not observe a visible defect in the nuclear morphology of the ΔTtpah1 mutant. TtPAH1 rescued all known defects in the yeast pah1Δ strain and is conserved functionally between Tetrahymena and yeast. The homologous gene derived from Trypanosoma also rescued the defects of the yeast pah1Δ strain. Our results indicate that PAH, previously known to be conserved among Opisthokonts, is also present in a set of distant lineages. Thus, a phosphatase cascade is evolutionarily conserved and is functionally interchangeable across eukaryotic lineages.
Collapse
Affiliation(s)
- Anoop Narayana Pillai
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, HBNI, P.O. Jatni, Khurda 752050, Odisha, India
| | - Sushmita Shukla
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, HBNI, P.O. Jatni, Khurda 752050, Odisha, India
| | - Abdur Rahaman
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, HBNI, P.O. Jatni, Khurda 752050, Odisha, India
| |
Collapse
|
37
|
Ali AH, Zou X, Abed SM, Korma SA, Jin Q, Wang X. Natural phospholipids: Occurrence, biosynthesis, separation, identification, and beneficial health aspects. Crit Rev Food Sci Nutr 2017; 59:253-275. [PMID: 28820277 DOI: 10.1080/10408398.2017.1363714] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the last years, phospholipids (PLs) have attracted great attention because of their crucial roles in providing nutritional values, technological and medical applications. There are considerable proofs that PLs have unique nutritional benefits on human health, such as reducing cholesterol absorption, improving liver functions, and decreasing the risk of cardiovascular diseases. PLs are the main structural lipid components of cell and organelle membranes in all living organisms, and therefore, they occur in all organisms and the derived food products. PLs are distinguished by the presence of a hydrophilic head and a hydrophobic tail, consequently they possess amphiphilic features. Due to their unique characteristics, the extraction, separation, and identification of PLs are critical issues to be concerned. This review is focused on the content of PLs classes in several sources (including milk, vegetable oils, egg yolk, and mitochondria). As well, it highlights PLs biosynthesis, and the methodologies applied for PLs extraction and separation, such as solvent extraction and solid-phase extraction. In addition, the determination and quantification of PLs classes by using thin layer chromatography, high-performance liquid chromatography coupled with different detectors, and nuclear magnetic resonance spectroscopy techniques.
Collapse
Affiliation(s)
- Abdelmoneim H Ali
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China.,b Department of Food Science, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Xiaoqiang Zou
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China
| | - Sherif M Abed
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China.,c Food and Dairy Science and Technology Department, Faculty of Environmental Agricultural Science , El Arish University , El Arish , Egypt
| | - Sameh A Korma
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China.,b Department of Food Science, Faculty of Agriculture , Zagazig University , Zagazig , Egypt
| | - Qingzhe Jin
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China
| | - Xingguo Wang
- a State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology , Jiangnan University , 1800 Lihu Road, Wuxi , Jiangsu , PR China
| |
Collapse
|
38
|
Gaspar ML, Chang YF, Jesch SA, Aregullin M, Henry SA. Interaction between repressor Opi1p and ER membrane protein Scs2p facilitates transit of phosphatidic acid from the ER to mitochondria and is essential for INO1 gene expression in the presence of choline. J Biol Chem 2017; 292:18713-18728. [PMID: 28924045 DOI: 10.1074/jbc.m117.809970] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/08/2017] [Indexed: 12/20/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, the Opi1p repressor controls the expression of INO1 via the Opi1p/Ino2p-Ino4p regulatory circuit. Inositol depletion favors Opi1p interaction with both Scs2p and phosphatidic acid at the endoplasmic reticulum (ER) membrane. Inositol supplementation, however, favors the translocation of Opi1p from the ER into the nucleus, where it interacts with the Ino2p-Ino4p complex, attenuating transcription of INO1 A strain devoid of Scs2p (scs2Δ) and a mutant, OPI1FFAT, lacking the ability to interact with Scs2p were utilized to examine the specific role(s) of the Opi1p-Scs2p interaction in the regulation of INO1 expression and overall lipid metabolism. Loss of the Opi1p-Scs2p interaction reduced INO1 expression and conferred inositol auxotrophy. Moreover, inositol depletion in strains lacking this interaction resulted in Opi1p being localized to sites of lipid droplet formation, coincident with increased synthesis of triacylglycerol. Supplementation of choline to inositol-depleted growth medium led to decreased TAG synthesis in all three strains. However, in strains lacking the Opi1p-Scs2p interaction, Opi1p remained in the nucleus, preventing expression of INO1 These data support the conclusion that a specific pool of phosphatidic acid, associated with lipid droplet formation in the perinuclear ER, is responsible for the initial rapid exit of Opi1p from the nucleus to the ER and is required for INO1 expression in the presence of choline. Moreover, the mitochondria-specific phospholipid, cardiolipin, was significantly reduced in both strains compromised for Opi1p-Scs2p interaction, indicating that this interaction is required for the transfer of phosphatidic acid from the ER to the mitochondria for cardiolipin synthesis.
Collapse
Affiliation(s)
- Maria L Gaspar
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Yu-Fang Chang
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Stephen A Jesch
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Manuel Aregullin
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| | - Susan A Henry
- From the Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853
| |
Collapse
|
39
|
Carman GM, Han GS. Phosphatidate phosphatase regulates membrane phospholipid synthesis via phosphatidylserine synthase. Adv Biol Regul 2017; 67:49-58. [PMID: 28827025 DOI: 10.1016/j.jbior.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/13/2017] [Indexed: 12/20/2022]
Abstract
The yeast Saccharomyces cerevisiae serves as a model eukaryote to elucidate the regulation of lipid metabolism. In exponentially growing yeast, a diverse set of membrane lipids are synthesized from the precursor phosphatidate via the liponucleotide intermediate CDP-diacylglycerol. As cells exhaust nutrients and progress into the stationary phase, phosphatidate is channeled via diacylglycerol to the synthesis of triacylglycerol. The CHO1-encoded phosphatidylserine synthase, which catalyzes the committed step in membrane phospholipid synthesis via CDP-diacylglycerol, and the PAH1-encoded phosphatidate phosphatase, which catalyzes the committed step in triacylglycerol synthesis are regulated throughout cell growth by genetic and biochemical mechanisms to control the balanced synthesis of membrane phospholipids and triacylglycerol. The loss of phosphatidate phosphatase activity (e.g., pah1Δ mutation) increases the level of phosphatidate and its conversion to membrane phospholipids by inducing Cho1 expression and phosphatidylserine synthase activity. The regulation of the CHO1 expression is mediated through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. Consequently, phosphatidate phosphatase activity regulates phospholipid synthesis through the transcriptional regulation of the phosphatidylserine synthase enzyme.
Collapse
Affiliation(s)
- George M Carman
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, United States.
| | - Gil-Soo Han
- Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ 08901, United States
| |
Collapse
|
40
|
Han GS, Carman GM. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis. J Biol Chem 2017; 292:13230-13242. [PMID: 28673963 DOI: 10.1074/jbc.m117.801720] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
The PAH1-encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae, exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1-encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1Δ mutant is induced through the inositol-sensitive upstream activation sequence (UASINO), a cis-acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UASINO mutation suppressed pah1Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1-encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis.
Collapse
Affiliation(s)
- Gil-Soo Han
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - George M Carman
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
41
|
Camelo C, Vilas-Boas F, Cepeda AP, Real C, Barros-Martins J, Pinto F, Soares H, Marinho HS, Cyrne L. Opi1p translocation to the nucleus is regulated by hydrogen peroxide in Saccharomyces cerevisiae. Yeast 2017; 34:383-395. [PMID: 28581036 DOI: 10.1002/yea.3240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 01/12/2023] Open
Abstract
During exposure of yeast cells to low levels of hydrogen peroxide (H2 O2 ), the expression of several genes is regulated for cells to adapt to the surrounding oxidative environment. Such adaptation involves modification of plasma membrane lipid composition, reorganization of ergosterol-rich microdomains and altered gene expression of proteins involved in lipid and vesicle traffic, to decrease permeability to exogenous H2 O2 . Opi1p is a transcriptional repressor that is inactive when present at the nuclear membrane/endoplasmic reticulum, but represseses transcription of inositol upstream activating sequence (UASINO )-containing genes, many of which are involved in the synthesis of phospholipids and fatty acids, when it is translocated to the nucleus. We investigated whether H2 O2 in concentrations inducing adaptation regulates Opi1p function. We found that, in the presence of H2 O2 , GFP-Opi1p fusion protein translocates to the nucleus and, concomitantly, the expression of UASINO -containing genes is affected. We also investigated whether cysteine residues of Opi1p were implicated in the H2 O2 -mediated translocation of this protein to the nucleus and identified cysteine residue 159 as essential for this process. Our work shows that Opi1p is redox-regulated and establishes a new mechanism of gene regulation involving Opi1p, which is important for adaptation to H2 O2 in yeast cells. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Carolina Camelo
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Andreia Pereira Cepeda
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Joana Barros-Martins
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Francisco Pinto
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,BioISI - Biosystems and Integrative Sciences Institute, Campo Grande, Lisboa, Portugal
| | - Helena Soares
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, 1990-096, Lisboa, Portugal
| | - H Susana Marinho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Luisa Cyrne
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.,Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
42
|
Qiu Y, Hassaninasab A, Han GS, Carman GM. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae. J Biol Chem 2016; 291:26455-26467. [PMID: 27834677 DOI: 10.1074/jbc.m116.763839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/08/2016] [Indexed: 11/06/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA.
Collapse
Affiliation(s)
- Yixuan Qiu
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Azam Hassaninasab
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - Gil-Soo Han
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| | - George M Carman
- From the Department of Food Science and the Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901
| |
Collapse
|
43
|
James AW, Gowsalya R, Nachiappan V. Dolichyl pyrophosphate phosphatase-mediated N -glycosylation defect dysregulates lipid homeostasis in Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1705-1718. [DOI: 10.1016/j.bbalip.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
|
44
|
Schott AS, Behr J, Quinn J, Vogel RF. MALDI-TOF Mass Spectrometry Enables a Comprehensive and Fast Analysis of Dynamics and Qualities of Stress Responses of Lactobacillus paracasei subsp. paracasei F19. PLoS One 2016; 11:e0165504. [PMID: 27783652 PMCID: PMC5082675 DOI: 10.1371/journal.pone.0165504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses.
Collapse
Affiliation(s)
- Ann-Sophie Schott
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technische Universität München, Freising, Germany
| | - Jennifer Quinn
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany
| |
Collapse
|
45
|
Yang PL, Hsu TH, Wang CW, Chen RH. Lipid droplets maintain lipid homeostasis during anaphase for efficient cell separation in budding yeast. Mol Biol Cell 2016; 27:2368-80. [PMID: 27307588 PMCID: PMC4966979 DOI: 10.1091/mbc.e16-02-0106] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/08/2016] [Indexed: 11/11/2022] Open
Abstract
The neutral lipids steryl ester and triacylglycerol (TAG) are stored in the membrane-bound organelle lipid droplet (LD) in essentially all eukaryotic cells. It is unclear what physiological conditions require the mobilization or storage of these lipids. Here, we study the budding yeast mutant are1Δ are2Δ dga1Δ lro1Δ, which cannot synthesize the neutral lipids and therefore lacks LDs. This quadruple mutant is delayed at cell separation upon release from mitotic arrest. The cells have abnormal septa, unstable septin assembly during cytokinesis, and prolonged exocytosis at the division site at the end of cytokinesis. Lipidomic analysis shows a marked increase of diacylglycerol (DAG) and phosphatidic acid, the precursors for TAG, in the mutant during mitotic exit. The cytokinesis and separation defects are rescued by adding phospholipid precursors or inhibiting fatty acid synthesis, which both reduce DAG levels. Our results suggest that converting excess lipids to neutral lipids for storage during mitotic exit is important for proper execution of cytokinesis and efficient cell separation.
Collapse
Affiliation(s)
- Po-Lin Yang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Han Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chao-Wen Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Rey-Huei Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
46
|
Vevea JD, Garcia EJ, Chan RB, Zhou B, Schultz M, Di Paolo G, McCaffery JM, Pon LA. Role for Lipid Droplet Biogenesis and Microlipophagy in Adaptation to Lipid Imbalance in Yeast. Dev Cell 2016; 35:584-599. [PMID: 26651293 DOI: 10.1016/j.devcel.2015.11.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/14/2015] [Accepted: 11/09/2015] [Indexed: 12/22/2022]
Abstract
The immediate responses to inhibition of phosphatidylcholine (PC) biosynthesis in yeast are altered phospholipid levels, slow growth, and defects in the morphology and localization of ER and mitochondria. With chronic lipid imbalance, yeast adapt. Lipid droplet (LD) biogenesis and conversion of phospholipids to triacylglycerol are required for restoring some phospholipids to near-wild-type levels. We confirmed that the unfolded protein response is activated by this lipid stress and find that Hsp104p is recruited to ER aggregates. We also find that LDs form at ER aggregates, contain polyubiquitinated proteins and an ER chaperone, and are degraded in the vacuole by a process resembling microautophagy. This process, microlipophagy, is required for restoration of organelle morphology and cell growth during adaptation to lipid stress. Microlipophagy does not require ATG7 but does requires ESCRT components and a newly identified class E VPS protein that localizes to ER and is upregulated by lipid imbalance.
Collapse
Affiliation(s)
- Jason D Vevea
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Enrique J Garcia
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Robin B Chan
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Bowen Zhou
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Mei Schultz
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Liza A Pon
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
47
|
Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites. Proc Natl Acad Sci U S A 2016; 113:E1064-73. [PMID: 26858414 DOI: 10.1073/pnas.1519730113] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes.
Collapse
|
48
|
Lipid droplets, lipophagy, and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:793-805. [PMID: 26713677 DOI: 10.1016/j.bbalip.2015.12.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/06/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
Lipids are essential components for life. Their various structural and physical properties influence diverse cellular processes and, thereby, human health. Lipids are not genetically encoded but are synthesized and modified by complex metabolic pathways, supplying energy, membranes, signaling molecules, and hormones to affect growth, physiology, and response to environmental insults. Lipid homeostasis is crucial, such that excess fatty acids (FAs) can be harmful to cells. To prevent such lipotoxicity, cells convert excess FAs into neutral lipids for storage in organelles called lipid droplets (LDs). These organelles do not simply manage lipid storage and metabolism but also are involved in protein quality management, pathogenesis, immune responses, and, potentially, neurodegeneration. In recent years, a major trend in LD biology has centered around the physiology of lipid mobilization via lipophagy of fat stored within LDs. This review summarizes key findings in LD biology and lipophagy, offering novel insights into this rapidly growing field. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
49
|
Luévano-Martínez LA, Kowaltowski AJ. Phosphatidylglycerol-derived phospholipids have a universal, domain-crossing role in stress responses. Arch Biochem Biophys 2015; 585:90-97. [PMID: 26391924 DOI: 10.1016/j.abb.2015.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/15/2015] [Accepted: 09/16/2015] [Indexed: 11/19/2022]
Abstract
Phosphatidylglycerol and phospholipids derived from it are widely distributed throughout the three domains of life. Cardiolipin is the best characterized of these phospholipids, and plays a key role in the response to environmental variations. Phosphatidylglycerol-derived phospholipids confer cell membranes with a wide range of responses, including changes in surface charge, fluidity, flexibility, morphology, biosynthesis and remodeling, that adapt the cell to these situations. Furthermore, the synthesis and remodeling of these phospholipids is finely regulated, highlighting the importance of these lipids in cell homeostasis and responses during stressful situations. In this article, we review the most important roles of these anionic phospholipids across domains, focusing on the biophysical basis by which these phospholipids are used in stress responses.
Collapse
Affiliation(s)
| | - Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
50
|
Ohta E, Nakayama Y, Mukai Y, Bamba T, Fukusaki E. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae. J Biosci Bioeng 2015; 121:399-405. [PMID: 26344121 DOI: 10.1016/j.jbiosc.2015.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 07/06/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022]
Abstract
The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance.
Collapse
Affiliation(s)
- Erika Ohta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasumune Nakayama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yukio Mukai
- Department of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan
| | - Takeshi Bamba
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|