1
|
Dowerah D, V N Uppuladinne M, Paul S, Das D, Gour NK, Biswakarma N, Sarma PJ, Sonavane UB, Joshi RR, Ray SK, Deka RC. A Study Modeling Bridged Nucleic Acid-Based ASOs and Their Impact on the Structure and Stability of ASO/RNA Duplexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21407-21426. [PMID: 39370641 DOI: 10.1021/acs.langmuir.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Antisense medications treat diseases that cannot be treated using traditional pharmacological technologies. Nucleotide monomers of bare and phosphorothioate (PS)-modified LNA, N-MeO-amino-BNA, 2',4'-BNANC[NH], 2',4'-BNANC[NMe], and N-Me-aminooxy-BNA antisense modifications were considered for a detailed DFT-based quantum chemical study to estimate their molecular-level structural and electronic properties. Oligomer hybrid duplex stability is described by performing an elaborate MD simulation study by incorporating the PS-LNA and PS-BNA antisense modifications onto 14-mer ASO/RNA hybrid gapmer type duplexes targeting protein PTEN mRNA nucleic acid sequence (5'-CTTAGCACTGGCCT-3'/3'-GAAUCGUGACCGGA-5'). Replica sets of MD simulations were performed accounting to two data sets, each set simulated for 1 μs simulation time. Bulk properties of oligomers are regulated by the chemical properties of their monomers. As such, the primary goal of this work focused on establishing an organized connection between the monomeric BNA nucleotide's electronic effects observed in DFT studies and the macroscopic behavior of the BNA antisense oligomers, as observed in MD simulations. The results from this study predicted that spatial orientation of MO-isosurfaces of the BNA nucleotides are concentrated in the nucleobase region. These BNA nucleotides may become less accessible for various electronic interactions when coupled as ASOs forming duplexes with target RNAs and when the ASO/RNA duplexes further bind with the RNase H. Understanding such electronic interactions is crucial to design superior antisense modifications with specific electronic properties. Also, for the particular nucleic acid sequence solvation of the duplexes although were higher compared to the natural oligonucleotides, their binding energies being relatively lower may lead to decreased antisense activity compared to existing analogs such as the LNAs and MOEs. Fine tuning these BNAs to obtain superior binding affinity is thus a necessity.
Collapse
Affiliation(s)
- Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Mallikarjunachari V N Uppuladinne
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Subrata Paul
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Department of Chemistry, Assam University, Silchar, Assam 788011, India
| | - Dharitri Das
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nand K Gour
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nishant Biswakarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Plaban J Sarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Department of Chemistry, Gargaon College, Simaluguri, Sivasagar, Assam 785686, India
| | - Uddhavesh B Sonavane
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Rajendra R Joshi
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Suvendra K Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Ramesh Ch Deka
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
2
|
Tekintaş Y, Temel A. Antisense oligonucleotides: a promising therapeutic option against infectious diseases. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:1-39. [PMID: 37395450 DOI: 10.1080/15257770.2023.2228841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Infectious diseases have been one of the biggest health problems of humanity for centuries. Nucleic acid-based therapeutics have received attention in recent years with their effectiveness in the treatment of various infectious diseases and vaccine development studies. This review aims to provide a comprehensive understanding of the basic properties underlying the mechanism of antisense oligonucleotides (ASOs), their applications, and their challenges. The efficient delivery of ASOs is the greatest challenge for their therapeutic success, but this problem is overcome with new-generation antisense molecules developed with chemical modifications. The types, carrier molecules, and gene regions targeted by sequences have been summarized in detail. Research and development of antisense therapy is still in its infancy; however, gene silencing therapies appear to have the potential for faster and longer-lasting activity than conventional treatment strategies. On the other hand, realizing the potential of antisense therapy will require a large initial economic investment to ascertain the pharmacological properties and learn how to optimize them. The ability of ASOs to be rapidly designed and synthesized to target different microbes can reduce drug discovery time from 6 years to 1 year. Since ASOs are not particularly affected by resistance mechanisms, they come to the fore in the fight against antimicrobial resistance. The design-based flexibility of ASOs has enabled it to be used for different types of microorganisms/genes and successful in vitro and in vivo results have been revealed. The current review summarized a comprehensive understanding of ASO therapy in combating bacterial and viral infections.
Collapse
Affiliation(s)
- Yamaç Tekintaş
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| | - Aybala Temel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|
3
|
Dowerah D, V. N. Uppuladinne M, Sarma PJ, Biswakarma N, Sonavane UB, Joshi RR, Ray SK, Namsa ND, Deka RC. Design of LNA Analogues Using a Combined Density Functional Theory and Molecular Dynamics Approach for RNA Therapeutics. ACS OMEGA 2023; 8:22382-22405. [PMID: 37396274 PMCID: PMC10308574 DOI: 10.1021/acsomega.2c07860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/17/2023] [Indexed: 07/04/2023]
Abstract
Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties. A detailed MD simulation study was done on a 14-mer ASO (5'-CTTAGCACTGGCCT-3') containing these modifications targeting PTEN mRNA. Results from both molecular- and oligomer-level analysis clearly depicted LNA-level stability of the modifications, the ASO/RNA duplexes maintaining stable Watson-Crick base pairing preferring RNA-mimicking A-form duplexes. Notably, monomer MO isosurfaces for both purines and pyrimidines were majorly distributed on the nucleobase region in modifications A1 and A2 and in the bridging unit in modifications A3, A4, and A5, suggesting that A3/RNA, A4/RNA, and A5/RNA duplexes interact more with the RNase H and solvent environment. Accordingly, solvation of A3/RNA, A4/RNA, and A5/RNA duplexes was higher compared to that of LNA/RNA, A1/RNA, and A2/RNA duplexes. This study has resulted in a successful archetype for creating advantageous nucleic acid modifications tailored for particular needs, fulfilling a useful purpose of designing novel antisense modifications, which may overcome the drawbacks and improve the pharmacokinetics of existing LNA antisense modifications.
Collapse
Affiliation(s)
- Dikshita Dowerah
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
| | - Mallikarjunachari V. N. Uppuladinne
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Plaban J. Sarma
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
- Department
of Chemistry, Gargaon College, Sivasagar, Assam 785685, India
| | - Nishant Biswakarma
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
| | - Uddhavesh B. Sonavane
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Rajendra R. Joshi
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Suvendra K. Ray
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nima D. Namsa
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Ramesh Ch. Deka
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
4
|
Sun Y, Meng L, Zhang Y, Zhao D, Lin Y. The Application of Nucleic Acids and Nucleic Acid Materials in Antimicrobial Research. Curr Stem Cell Res Ther 2021; 16:66-73. [PMID: 32436832 DOI: 10.2174/1574888x15666200521084417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the misuse of antibiotics, multiple drug-resistant pathogenic bacteria have increasingly emerged. This has increased the difficulty of treatment as these bacteria directly affect public health by diminishing the potency of existing antibiotics. Developing alternative therapeutic strategies is the urgent need to reduce the mortality and morbidity related to drug-resistant bacterial infections. In the past 10 to 20 years, nanomedicines have been widely studied and applied as an antibacterial agent. They have become a novel tool for fighting resistant bacteria. The most common innovative substances, metal and metal oxide nanoparticles (NPs), have been widely reported. Until recently, DNA nanostructures were used alone or functionalized with specific DNA sequences by many scholars for antimicrobial purposes which were alternatively selected as therapy for severe bacterial infections. These are a potential candidate for treatments and have a considerable role in killing antibiotic-resistant bacteria. This review involves the dimensions of multidrug resistance and the mechanism of bacteria developing drug resistance. The importance of this article is that we summarized the current study of nano-materials based on nucleic acids in antimicrobial use. Meanwhile, the current progress and the present obstacles for their antibacterial and therapeutic use and special function of stem cells in this field are also discussed.
Collapse
Affiliation(s)
- Yue Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingxian Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Raue R, Frank AC, Syed SN, Brüne B. Therapeutic Targeting of MicroRNAs in the Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22042210. [PMID: 33672261 PMCID: PMC7926641 DOI: 10.3390/ijms22042210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor-microenvironment (TME) is an amalgamation of various factors derived from malignant cells and infiltrating host cells, including cells of the immune system. One of the important factors of the TME is microRNAs (miRs) that regulate target gene expression at a post transcriptional level. MiRs have been found to be dysregulated in tumor as well as in stromal cells and they emerged as important regulators of tumorigenesis. In fact, miRs regulate almost all hallmarks of cancer, thus making them attractive tools and targets for novel anti-tumoral treatment strategies. Tumor to stroma cell cross-propagation of miRs to regulate protumoral functions has been a salient feature of the TME. MiRs can either act as tumor suppressors or oncogenes (oncomiRs) and both miR mimics as well as miR inhibitors (antimiRs) have been used in preclinical trials to alter cancer and stromal cell phenotypes. Owing to their cascading ability to regulate upstream target genes and their chemical nature, which allows specific pharmacological targeting, miRs are attractive targets for anti-tumor therapy. In this review, we cover a recent update on our understanding of dysregulated miRs in the TME and provide an overview of how these miRs are involved in current cancer-therapeutic approaches from bench to bedside.
Collapse
Affiliation(s)
- Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
| | - Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (R.R.); (A.-C.F.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
- Correspondence: (S.N.S.); (B.B.); Tel.: +49-69-6301-7424 (B.B.)
| |
Collapse
|
6
|
Miroshnichenko SK, Amirloo B, Bichenkova EV, Vlassov VV, Zenkova MA, Patutina OA. 2'OMe Modification of Anti-miRNA-21 Oligonucleotide–Peptide Conjugate Improves Its Hybridization Properties and Catalytic Activity. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abstract
Gapmers are antisense oligonucleotides composed of a central DNA segment flanked by nucleotides of modified chemistry. Hybridizing with transcripts by sequence complementarity, gapmers recruit ribonuclease H and induce target RNA degradation. Since its concept first emerged in the 1980s, much work has gone into developing gapmers for use in basic research and therapy. These include improvements in gapmer chemistry, delivery, and therapeutic safety. Gapmers have also successfully entered clinical trials for various genetic disorders, with two already approved by the U.S. Food and Drug Administration for the treatment of familial hypercholesterolemia and transthyretin amyloidosis-associated polyneuropathy. Here, we review the events surrounding the early development of gapmers, from conception to their maturity, and briefly conclude with perspectives on their use in therapy.
Collapse
Affiliation(s)
- Kenji Rowel Q Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Benizri S, Gissot A, Martin A, Vialet B, Grinstaff MW, Barthélémy P. Bioconjugated Oligonucleotides: Recent Developments and Therapeutic Applications. Bioconjug Chem 2019; 30:366-383. [PMID: 30608140 PMCID: PMC6766081 DOI: 10.1021/acs.bioconjchem.8b00761] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Oligonucleotide-based agents have the potential to treat or cure almost any disease, and are one of the key therapeutic drug classes of the future. Bioconjugated oligonucleotides, a subset of this class, are emerging from basic research and being successfully translated to the clinic. In this Review, we first briefly describe two approaches for inhibiting specific genes using oligonucleotides-antisense DNA (ASO) and RNA interference (RNAi)-followed by a discussion on delivery to cells. We then summarize and analyze recent developments in bioconjugated oligonucleotides including those possessing GalNAc, cell penetrating peptides, α-tocopherol, aptamers, antibodies, cholesterol, squalene, fatty acids, or nucleolipids. These novel conjugates provide a means to enhance tissue targeting, cell internalization, endosomal escape, target binding specificity, resistance to nucleases, and more. We next describe those bioconjugated oligonucleotides approved for patient use or in clinical trials. Finally, we summarize the state of the field, describe current limitations, and discuss future prospects. Bioconjugation chemistry is at the centerpiece of this therapeutic oligonucleotide revolution, and significant opportunities exist for development of new modification chemistries, for mechanistic studies at the chemical-biology interface, and for translating such agents to the clinic.
Collapse
Affiliation(s)
- Sebastien Benizri
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Arnaud Gissot
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Andrew Martin
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Brune Vialet
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, Massachusetts 02215, United States
| | - Philippe Barthélémy
- Inserm U1212, F-33076 Bordeaux, France
- CNRS 5320, F-33076 Bordeaux, France
- Universitéde Bordeaux, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France
| |
Collapse
|
9
|
Kamble NR, Sigurdsson ST. Purine-Derived Nitroxides for Noncovalent Spin-Labeling of Abasic Sites in Duplex Nucleic Acids. Chemistry 2018; 24:4157-4164. [DOI: 10.1002/chem.201705410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Nilesh R. Kamble
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| | - Snorri Th. Sigurdsson
- University of Iceland; Department of Chemistry; Science Institute; Dunhaga 3 107 Reykjavik Iceland
| |
Collapse
|
10
|
Hagedorn PH, Hansen BR, Koch T, Lindow M. Managing the sequence-specificity of antisense oligonucleotides in drug discovery. Nucleic Acids Res 2017; 45:2262-2282. [PMID: 28426096 PMCID: PMC5389529 DOI: 10.1093/nar/gkx056] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/21/2017] [Indexed: 01/06/2023] Open
Abstract
All drugs perturb the expression of many genes in the cells that are exposed to them. These gene expression changes can be divided into effects resulting from engaging the intended target and effects resulting from engaging unintended targets. For antisense oligonucleotides, developments in bioinformatics algorithms, and the quality of sequence databases, allow oligonucleotide sequences to be analyzed computationally, in terms of the predictability of their interactions with intended and unintended RNA targets. Applying these tools enables selection of sequence-specific oligonucleotides where no- or only few unintended RNA targets are expected. To evaluate oligonucleotide sequence-specificity experimentally, we recommend a transcriptomics protocol where two or more oligonucleotides targeting the same RNA molecule, but with entirely different sequences, are evaluated together. This helps to clarify which changes in cellular RNA levels result from downstream processes of engaging the intended target, and which are likely to be related to engaging unintended targets. As required for all classes of drugs, the toxic potential of oligonucleotides must be evaluated in cell- and animal models before clinical testing. Since potential adverse effects related to unintended targeting are sequence-dependent and therefore species-specific, in vitro toxicology assays in human cells are especially relevant in oligonucleotide drug discovery.
Collapse
Affiliation(s)
- Peter H Hagedorn
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark.,Center for Computational and Applied Transcriptomics, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| | - Bo R Hansen
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark
| | - Troels Koch
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark
| | - Morten Lindow
- Roche Pharmaceutical Discovery and Early Development, Therapeutic Modalities, Roche Innovation Center Copenhagen, Hørsholm 2970, Denmark.,Center for Computational and Applied Transcriptomics, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark.,The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
11
|
miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem 2015; 6:1967-84. [PMID: 25495987 DOI: 10.4155/fmc.14.116] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The discovery of miRNAs as important regulatory agents for gene expression has expanded the therapeutic opportunities for oligonucleotides. In contrast to siRNA, miRNA-targeted therapy is able to influence not only a single gene, but entire cellular pathways or processes. It is possible to supplement downregulated or non-functional miRNAs by synthetic oligonucleotides, as well as alleviating effects caused by overexpression of malignant miRNAs through artificial antagonists, either oligonucleotides or small molecules. Chemical oligonucleotide modifications together with an efficient delivery system seem to be mandatory for successful therapeutic application. While miRNA-based therapy benefits from the decades of research spent on other therapeutic oligonucleotides, there are some specific challenges associated with miRNA therapy, mainly caused by the short target sequence. The current status and recent progress of miRNA-targeted therapeutics is described and future challenges and potential applications in treatment of cancer and viral infections are discussed.
Collapse
|
12
|
Suresh G, Priyakumar UD. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study. J Mol Graph Model 2015; 61:150-9. [PMID: 26254870 DOI: 10.1016/j.jmgm.2015.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes.
Collapse
Affiliation(s)
- Gorle Suresh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India.
| |
Collapse
|
13
|
Mutso M, Nikonov A, Pihlak A, Žusinaite E, Viru L, Selyutina A, Reintamm T, Kelve M, Saarma M, Karelson M, Merits A. RNA Interference-Guided Targeting of Hepatitis C Virus Replication with Antisense Locked Nucleic Acid-Based Oligonucleotides Containing 8-oxo-dG Modifications. PLoS One 2015; 10:e0128686. [PMID: 26039055 PMCID: PMC4454572 DOI: 10.1371/journal.pone.0128686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022] Open
Abstract
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2'-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Base Pairing
- Cell Line, Tumor
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Genome, Viral
- Hepacivirus/genetics
- Hepacivirus/growth & development
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Molecular Targeted Therapy
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA Cleavage
- RNA Interference
- RNA Stability
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Structure-Activity Relationship
- Virus Replication
Collapse
Affiliation(s)
- Margit Mutso
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | - Andrei Nikonov
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | | | - Eva Žusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | - Liane Viru
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | | | - Tõnu Reintamm
- GeneCode, Ltd., Tallinn, Estonia
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Merike Kelve
- GeneCode, Ltd., Tallinn, Estonia
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- GeneCode, Ltd., Tallinn, Estonia
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
14
|
Wu L, He Y, Tang X. Photoregulating RNA digestion using azobenzene linked dumbbell antisense oligodeoxynucleotides. Bioconjug Chem 2015; 26:1070-9. [PMID: 25961679 DOI: 10.1021/acs.bioconjchem.5b00125] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction of 4,4'-bis(hydroxymethyl)-azobenzene (azo) to dumbbell hairpin oligonucleotides at the loop position was able to reversibly control the stability of the whole hairpin structure via UV or visible light irradiation. Here, we designed and synthesized a series of azobenzene linked dumbbell antisense oligodeoxynucleotides (asODNs) containing two terminal hairpins that are composed of an asODN and a short inhibitory sense strand. Thermal melting studies of these azobenzene linked dumbbell asODNs indicated that efficient trans to cis photoisomerization of azobenzene moieties induced large difference in thermal stability (ΔTm = 12.1-21.3 °C). In addition, photomodulation of their RNA binding abilities and RNA digestion by RNase H was investigated. The trans-azobenzene linked asODNs with the optimized base pairs between asODN strands and inhibitory sense strands could only bind few percentage of the target RNA, while it was able to recover their binding to the target RNA and degrade it by RNase H after light irradiation. Upon optimization, it is promising to use these azobenzene linked asODNs for reversible spatial and temporal regulation of antisense activities based on both steric binding and RNA digestion by RNase H.
Collapse
Affiliation(s)
- Li Wu
- †School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujian He
- †School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.,‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinjing Tang
- ‡State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
15
|
Kunej T, Obsteter J, Pogacar Z, Horvat S, Calin GA. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring. Crit Rev Clin Lab Sci 2014; 51:344-57. [PMID: 25123609 DOI: 10.3109/10408363.2014.944299] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as "transcriptional noise", lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve as novel biomarkers for diagnostic, prognostic and monitoring purposes. (9) Tissue specificity of lncRNAs enables the development of selective therapeutic options. (10) Long non-coding RNAs are emerging as commercial biomarkers and therapeutic agents.
Collapse
Affiliation(s)
- Tanja Kunej
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana , Domzale , Slovenia
| | | | | | | | | |
Collapse
|
16
|
Šipova H, Špringer T, Rejman D, Šimak O, Petrová M, Novák P, Rosenbergová Š, Páv O, Liboska R, Barvík I, Štěpanek J, Rosenberg I, Homola J. 5'-O-Methylphosphonate nucleic acids--new modified DNAs that increase the Escherichia coli RNase H cleavage rate of hybrid duplexes. Nucleic Acids Res 2014; 42:5378-89. [PMID: 24523351 PMCID: PMC4005664 DOI: 10.1093/nar/gku125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several oligothymidylates containing various ratios of phosphodiester and isopolar 5'-hydroxyphosphonate, 5'-O-methylphosphonate and 3'-O-methylphosphonate internucleotide linkages were examined with respect to their hybridization properties with oligoriboadenylates and their ability to induce RNA cleavage by ribonuclease H (RNase H). The results demonstrated that the increasing number of 5'-hydroxyphosphonate or 5'-O-methylphosphonate units in antisense oligonucleotides (AOs) significantly stabilizes the heteroduplexes, whereas 3'-O-methylphosphonate AOs cause strong destabilization of the heteroduplexes. Only the heteroduplexes with 5'-O-methylphosphonate units in the antisense strand exhibited a significant increase in Escherichia coli RNase H cleavage activity by up to 3-fold (depending on the ratio of phosphodiester and phosphonate linkages) in comparison with the natural heteroduplex. A similar increase in RNase H cleavage activity was also observed for heteroduplexes composed of miRNA191 and complementary AOs containing 5'-O-methylphosphonate units. We propose for this type of AOs, working via the RNase H mechanism, the abbreviation MEPNA (MEthylPhosphonate Nucleic Acid).
Collapse
Affiliation(s)
- Hana Šipova
- Institute of Photonics and Electronics AS CR, v.v.i., Chaberská 57, 182 51 Prague, Czech Republic, Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nám. 2., 166 10 Prague, Czech Republic and Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Suresh G, Priyakumar UD. DNA–RNA hybrid duplexes with decreasing pyrimidine content in the DNA strand provide structural snapshots for the A- to B-form conformational transition of nucleic acids. Phys Chem Chem Phys 2014; 16:18148-55. [DOI: 10.1039/c4cp02478h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A gradual increase in the deoxypyrimidine content in DNA–RNA hybrids leads to B- to A-form nucleic acid transition. Possible factors that govern nuclease activity on hybrid duplexes are presented.
Collapse
Affiliation(s)
- Gorle Suresh
- Centre for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology
- Hyderabad 500 032, India
| | - U. Deva Priyakumar
- Centre for Computational Natural Sciences and Bioinformatics
- International Institute of Information Technology
- Hyderabad 500 032, India
| |
Collapse
|
18
|
Kusano S, Haruyama T, Ishiyama S, Hagihara S, Nagatsugi F. Development of the crosslinking reactions to RNA triggered by oxidation. Chem Commun (Camb) 2014; 50:3951-4. [DOI: 10.1039/c3cc49463b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper, we have reported a novel oxidation triggered crosslinking nucleobase ATVP (1) and demonstrated that the oxidized form ASVP (2) showed a very fast and selective crosslinking reaction to cytosine in RNA.
Collapse
Affiliation(s)
- Shuhei Kusano
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Takuya Haruyama
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Shogo Ishiyama
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| |
Collapse
|
19
|
Li CH, Chen Y. Targeting long non-coding RNAs in cancers: Progress and prospects. Int J Biochem Cell Biol 2013; 45:1895-910. [DOI: 10.1016/j.biocel.2013.05.030] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
|
20
|
Gerber AB, Leumann CJ. Synthesis and properties of isobicyclo-DNA. Chemistry 2013; 19:6990-7006. [PMID: 23613358 DOI: 10.1002/chem.201300487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Indexed: 11/11/2022]
Abstract
We present the synthesis of the isobicyclo-DNA building blocks with the nucleobases A, C, G and T, as well as biophysical and biological properties of oligonucleotides derived thereof. The synthesis of the sugar part was achieved in 5 steps starting from a known intermediate of the tricyclo-DNA synthesis. Dodecamers containing single isobicyclo-thymidine incorporations, fully modified A- and T-containing sequences, and fully modified oligonucleotides containing all four bases were synthesized and characterized. Isobicyclo-DNA forms stable duplexes with natural nucleic acids with a pronounced preference for DNA over RNA as complements. The most stable duplexes, however, arise by self-pairing. Isobicyclo-DNA forms preferentially B-DNA-like duplexes with DNA and A-like duplexes with complementary RNA as determined by circular dichroism (CD) spectroscopy. Self-paired duplexes show a yet unknown structure, as judged from CD spectroscopy. Biochemical tests revealed that isobicyclo-DNA is stable in fetal bovine serum and does not elicit RNaseH activity.
Collapse
Affiliation(s)
- Anna-Barbara Gerber
- Department of Chemistry & Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | |
Collapse
|
21
|
Zhang J, Chen Y, Huang Y, Jin HW, Qiao RP, Xing L, Zhang LR, Yang ZJ, Zhang LH. Synthesis and properties of novel L-isonucleoside modified oligonucleotides and siRNAs. Org Biomol Chem 2013; 10:7566-77. [PMID: 22895883 DOI: 10.1039/c2ob26219c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antisense oligonucleotides and siRNAs are potential therapeutic agents and their chemical modifications play an important role to improve the properties and activities of oligonucleotides. Isonucleoside is a type of nucleoside analogue, in which the nucleobase is moved from C-1 to other positions of ribose. In this report, a novel isonucleoside 5 containing a 5'-CH(2)-extended chain at the sugar moiety was synthesized, thus isoadenosine 5a and isothymidine 5b were incorporated into a DNA single strand and siRNA. It was found that isonucleoside 5 modified oligonucleotides can form stable double helical structures with their complementary DNA and RNA and the stability towards nuclease and ability to activate RNase H are more promising compared with the unmodified, natural analogues. In siRNA, passenger strand modified with isonucleoside (5a/b) at 3' or 5' terminal can retain the silencing activity and minimize the passenger strand specific off-target effect.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu H, Zhang S, Dunn MR, Chaput JC. An Efficient and Faithful in Vitro Replication System for Threose Nucleic Acid. J Am Chem Soc 2013; 135:3583-91. [DOI: 10.1021/ja3118703] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hanyang Yu
- Center for Evolutionary
Medicine and Informatics in
the Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301,
United States
| | - Su Zhang
- Center for Evolutionary
Medicine and Informatics in
the Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301,
United States
| | - Matthew R. Dunn
- Center for Evolutionary
Medicine and Informatics in
the Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301,
United States
| | - John C. Chaput
- Center for Evolutionary
Medicine and Informatics in
the Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-5301,
United States
| |
Collapse
|
23
|
Lindberg S, Muñoz-Alarcón A, Helmfors H, Mosqueira D, Gyllborg D, Tudoran O, Langel U. PepFect15, a novel endosomolytic cell-penetrating peptide for oligonucleotide delivery via scavenger receptors. Int J Pharm 2012. [PMID: 23200958 DOI: 10.1016/j.ijpharm.2012.11.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Gene-regulatory biomolecules such as splice-correcting oligonucleotides and anti-microRNA oligonucleotides are important tools in the struggle to understand and treat genetic disorders caused by defective gene expression or aberrant splicing. However, oligonucleotides generally suffer from low bioavailability, hence requiring efficient and non-toxic delivery vectors to reach their targets. Cell-penetrating peptides constitute a promising category of carrier molecules for intracellular delivery of bioactive cargo. In this study we present a novel cell-penetrating peptide, PepFect15, comprising the previously reported PepFect14 peptide modified with endosomolytic trifluoromethylquinoline moieties to facilitate endosomal escape. Pepfect15 efficiently delivers both splice-correcting oligonucleotides and anti-microRNA oligonucleotides into cells through a non-covalent complexation strategy. To our knowledge this is the first work that describes peptide-mediated anti-microRNA delivery. The peptide and its cargo form stable, negatively charged nanoparticles that are taken up by cells largely through scavenger receptor type A mediated endocytosis.
Collapse
Affiliation(s)
- Staffan Lindberg
- Department of Neurochemistry, Stockholm University, Svante Arrhenius väg 21A, SE-106 92 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wu L, Wang Y, Wu J, Lv C, Wang J, Tang X. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res 2012; 41:677-86. [PMID: 23104375 PMCID: PMC3592401 DOI: 10.1093/nar/gks996] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We synthesized three 20mer caged circular antisense oligodeoxynucleotides (R20, R20B2 and R20B4) with a photocleavable linker and an amide bond linker between two 10mer oligodeoxynucleotides. With these caged circular antisense oligodeoxynucleotides, RNA-binding affinity and its digestion by ribonuclease H were readily photomodulated. RNA cleavage rates were upregulated ∼43-, 25- and 15-fold for R20, R20B2 and R20B4, respectively, upon light activation in vitro. R20B2 and R20B4 with 2- or 4-nt gaps in the target RNA lost their ability to bind the target RNA even though a small amount of RNA digestion was still observed. The loss of binding ability indicated promising gene photoregulation through a non-enzymatic strategy. To test this strategy, three caged circular antisense oligonucleotides (PS1, PS2 and PS3) with 2′-OMe RNA and phosphorothioate modifications were synthesized to target GFP expression. Upon light activation, photomodulation of target hybridization and GFP expression in cells was successfully achieved with PS1, PS2 and PS3. These caged circular antisense oligonucleotides show promising applications of photomodulating gene expression through both ribonuclease H and non-enzyme involved antisense strategies.
Collapse
Affiliation(s)
- Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
25
|
Reshat R, Priestley CC, Gooderham NJ. A triple-helix forming oligonucleotide targeting genomic DNA fails to induce mutation. Mutagenesis 2012; 27:713-9. [PMID: 22914677 DOI: 10.1093/mutage/ges037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purine tracts in duplex DNA can bind oligonucleotide strands in a sequence specific manner to form triple-helix structures. Triple-helix forming oligonucleotides (TFOs) targeting supFG1 constructs have previously been shown to be mutagenic raising safety concerns for oligonucleotide-based pharmaceuticals. We have engineered a TFO, TFO27, to target the genomic Hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus to define the mutagenic potential of such structures at genomic DNA. We report that TFO27 was resistant to nuclease degradation and readily binds to its target motif in a cell free system. Contrary to previous studies using the supFG1 reporter construct, TFO27 failed to induce mutation within the genomic HPRT locus. We suggest that it is possible that previous reports of triplex-mediated mutation using the supFG1 reporter construct could be confounded by DNA quadruplex formation. Although the present study indicates that a TFO targeting a genomic locus lacks mutagenic activity, it is unclear if this finding can be generalised to all TFOs and their targets. For the present, we suggest that it is prudent to avoid large purine stretches in oligonucleotide pharmaceutical design to minimise concern regarding off-target genotoxicity.
Collapse
Affiliation(s)
- Reshat Reshat
- Biomolecular Medicine, Imperial College, London SW7 2AZ, UK
| | | | | |
Collapse
|
26
|
Dinç E, Tóth SZ, Schansker G, Ayaydin F, Kovács L, Dudits D, Garab G, Bottka S. Synthetic antisense oligodeoxynucleotides to transiently suppress different nucleus- and chloroplast-encoded proteins of higher plant chloroplasts. PLANT PHYSIOLOGY 2011; 157:1628-41. [PMID: 21980174 PMCID: PMC3327186 DOI: 10.1104/pp.111.185462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/05/2011] [Indexed: 05/18/2023]
Abstract
Selective inhibition of gene expression by antisense oligodeoxynucleotides (ODNs) is widely applied in gene function analyses; however, experiments with ODNs in plants are scarce. In this work, we extend the use of ODNs in different plant species, optimizing the uptake, stability, and efficiency of ODNs with a combination of molecular biological and biophysical techniques to transiently inhibit the gene expression of different chloroplast proteins. We targeted the nucleus-encoded phytoene desaturase (pds) gene, encoding a key enzyme in carotenoid biosynthesis, the chlorophyll a/b-binding (cab) protein genes, and the chloroplast-encoded psbA gene, encoding the D1 protein. For pds and psbA, the in vivo stability of ODNs was increased by phosphorothioate modifications. After infiltration of ODNs into juvenile tobacco (Nicotiana benthamiana) leaves, we detected a 25% to 35% reduction in mRNA level and an approximately 5% decrease in both carotenoid content and the variable fluorescence of photosystem II. In detached etiolated wheat (Triticum aestivum) leaves, after 8 h of greening, the mRNA level, carotenoid content, and variable fluorescence were inhibited up to 75%, 25%, and 20%, respectively. Regarding cab, ODN treatments of etiolated wheat leaves resulted in an up to 59% decrease in the amount of chlorophyll b, a 41% decrease of the maximum chlorophyll fluorescence intensity, the cab mRNA level was reduced to 66%, and the protein level was suppressed up to 85% compared with the control. The psbA mRNA and protein levels in Arabidopsis (Arabidopsis thaliana) leaves were inhibited by up to 85% and 72%, respectively. To exploit the potential of ODNs for photosynthetic genes, we propose molecular design combined with fast, noninvasive techniques to test their functional effects.
Collapse
Affiliation(s)
- Emine Dinç
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Alexander JC, Pandit A, Bao G, Connolly D, Rochev Y. Monitoring mRNA in living cells in a 3D in vitro model using TAT-peptide linked molecular beacons. LAB ON A CHIP 2011; 11:3908-3914. [PMID: 21952477 DOI: 10.1039/c1lc20447e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There is a growing need for the development of in vitro 3D cell culture models for assessing newer therapeutics for clinical applications and mechanisms of human pathology. Molecular beacons have been successfully delivered in two-dimensional (2D) systems to monitor, detect, and localize specific mRNA expression in living cells at the single cell level. However, to date the use of molecular beacons in three-dimensional (3D) systems has not been reported. To translate this technology into specific clinical targeted applications, it is critical to develop and demonstrate efficacy in a 3D system. For the first time the use of TAT-peptide conjugated molecular beacons to monitor mRNA in a 3D in vitro system has been reported.
Collapse
Affiliation(s)
- Jennifer Claire Alexander
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
28
|
Toth PP. Antisense therapy and emerging applications for the management of dyslipidemia. J Clin Lipidol 2011; 5:441-9. [PMID: 22108147 DOI: 10.1016/j.jacl.2011.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Because a significant percentage of patients who require high-dose statin therapy for dyslipidemia experience treatment-related muscle symptoms and an inconsistent clinical response, alternative or adjunctive approaches to the management of dyslipidemia are needed. One alternative approach, antisense therapy, may offer an effective and well-tolerated option for patients not satisfactorily responsive to or intolerant to standard pharmacologic dyslipidemia therapies. OBJECTIVE This review provides an overview of antisense technology and its potential role in the management of dyslipidemia. METHODS Source material was obtained primarily from the published literature identified through a search of the PubMed database. RESULTS Antisense technology is an evolving approach to therapy that has gone through a series of refinements to enhance molecular stability, potency, and tolerability. Mipomersen is an antisense molecule capable of producing clinically meaningful reductions in low-density lipoprotein cholesterol in patients with severe familial hypercholesterolemia. Further long-term clinical studies are required to more clearly quantify its impact on risk for cardiovascular events and establish whether it increases risk for hepatosteatosis. CONCLUSION Antisense therapy represents a potentially effective and well-tolerated emerging treatment modality for numerous diseases. In the treatment of hypercholesterolemia, the antisense therapy mipomersen may provide a possible treatment option for patients with treatment-resistant dyslipidemia.
Collapse
Affiliation(s)
- Peter P Toth
- Department of Preventive Cardiology, CGH Medical Center, Sterling, IL, USA.
| |
Collapse
|
29
|
Saleh AD, Miller PS. Hydrolysis of bulged nucleotides in hybrids formed by RNA and imidazole-derivatized oligo-2'-O-methylribonucleotides. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:235-55. [PMID: 21491332 PMCID: PMC3097529 DOI: 10.1080/15257770.2011.569810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to enhance the efficacy of small antisense molecules, we examined a series of antisense oligonucleotides derivatized with functional groups designed to enable them to hydrolyze their RNA target. Solid phase synthetic methods were used to prepare imidazole-derivatized antisense oligo-2'-O-methylribonucleotides. Upon binding, these oligonucleotides create internal bulged bases in the target RNA that serve as sites for hydrolysis. We observed that an oligonucleotide derivatized with a side chain containing two imidazole groups was capable of hydrolyzing 58% of its RNA target when incubated with the target for 48 hours at 37°C and physiological pH.
Collapse
Affiliation(s)
| | - Paul S. Miller
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205
| |
Collapse
|
30
|
Okabe K, Harada Y, Zhang J, Tadakuma H, Tani T, Funatsu T. Real time monitoring of endogenous cytoplasmic mRNA using linear antisense 2'-O-methyl RNA probes in living cells. Nucleic Acids Res 2011; 39:e20. [PMID: 21106497 PMCID: PMC3045578 DOI: 10.1093/nar/gkq1196] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 10/27/2010] [Accepted: 11/05/2010] [Indexed: 12/21/2022] Open
Abstract
Visualization and monitoring of endogenous mRNA in the cytoplasm of living cells promises a significant comprehension of refined post-transcriptional regulation. Fluorescently labeled linear antisense oligonucleotides can bind to natural mRNA in a sequence-specific way and, therefore, provide a powerful tool in probing endogenous mRNA. Here, we investigated the feasibility of using linear antisense probes to monitor the variable and dynamic expression of endogenous cytoplasmic mRNAs. Two linear antisense 2'-O-methyl RNA probes, which have different interactive fluorophores at the 5'-end of one probe and at the 3'-end of the other, were used to allow fluorescence resonance energy transfer (FRET) upon hybridization to the target mRNA. By characterizing the formation of the probe-mRNA hybrids in living cells, we found that the probe composition and concentration are crucial parameters in the visualization of endogenous mRNA with high specificity. Furthermore, rapid hybridization (within 1 min) of the linear antisense probe enabled us to visualize dynamic processes of endogenous c-fos mRNA, such as fast elevation of levels after gene induction and the localization of c-fos mRNA in stress granules in response to cellular stress. Thus, our approach provides a basis for real time monitoring of endogenous cytoplasmic mRNA in living cells.
Collapse
Affiliation(s)
- Kohki Okabe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshie Harada
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junwei Zhang
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hisashi Tadakuma
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tokio Tani
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Funatsu
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, The Tokyo Metropolitan Institute of Medical Science, 1-6-2 Kamikitazawa Setagaya-ku, Tokyo 156-8506, The Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Honmachi Sakyo-ku, Kyoto 606-8501, Graduate School of Frontier Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami Kumamoto, Kumamoto 860-8555 and Center for NanoBio Integration, the University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
31
|
Sípová H, Vaisocherová H, Stěpánek J, Homola J. A dual surface plasmon resonance assay for the determination of ribonuclease H activity. Biosens Bioelectron 2010; 26:1605-11. [PMID: 20829018 DOI: 10.1016/j.bios.2010.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 07/16/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
There is a demand for efficient tools for the monitoring of RNase H activity. We report on a new assay which allows for simultaneous (1) real-time monitoring of RNase H activity and (2) detection of cleavage reaction products. The dual assay is implemented using a multichannel surface plasmon resonance (SPR) biosensor with two independently functionalized sensing areas in a single fluidic path. In the first sensing area the RNA cleavage by RNase H is monitored, while the products of the cleavage reaction are captured in the second sensing area with specific DNA probes. The assay was optimized with respect to AON concentration and temperature. A significant improvement was obtained with special chimeric probes, which contain RNA substrate for RNase H and a longer deoxyribonucleotide tail, which enhances the SPR signal. It has been shown that RNase H stabilizes the RNA:DNA hybrid duplex before the cleavage. The potential of the assay is demonstrated in the study in which the ability of natural and modified oligonucleotides to activate RNase H is examined.
Collapse
Affiliation(s)
- Hana Sípová
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, 182 51 Prague, Czech Republic
| | | | | | | |
Collapse
|
32
|
Thayer J, Puri N, Burnett C, Hail M, Rao S. Identification of RNA linkage isomers by anion exchange purification with electrospray ionization mass spectrometry of automatically desalted phosphodiesterase-II digests. Anal Biochem 2010; 399:110-7. [DOI: 10.1016/j.ab.2009.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/07/2009] [Indexed: 10/20/2022]
|
33
|
|
34
|
Abstract
The current standard of care for the treatment of hepatitis C virus infection, pegylated interferon-alpha and ribavirin, is costly, associated with significant side effects, and effective in only 50% of patients. There is therefore a need for the development of novel antiviral therapies. One such approach involves the application of gene silencing technologies, including antisense oligonucleotides, ribozymes, RNA interference, and aptamers. However, despite great scientific advances over the past decade, and promising in vitro data, several significant challenges continue to limit the translation of this technology to the clinical setting. This review provides a concise update of the current literature.
Collapse
Affiliation(s)
- Alexander J V Thompson
- Division of Gastroenterology/Hepatology, Duke Clinical Research Institute, Duke University, Durham, NC 27715, USA
| | | |
Collapse
|
35
|
Rao DD, Vorhies JS, Senzer N, Nemunaitis J. siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 2009; 61:746-59. [PMID: 19389436 DOI: 10.1016/j.addr.2009.04.004] [Citation(s) in RCA: 433] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/13/2009] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) is a natural process through which expression of a targeted gene can be knocked down with high specificity and selectivity. Using available technology and bioinformatics investigators will soon be able to identify relevant bio molecular tumor network hubs as potential key targets for knockdown approaches. Methods of mediating the RNAi effect involve small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA. The simplicity of siRNA manufacturing and transient nature of the effect per dose are optimally suited for certain medical disorders (i.e. viral injections). However, using the endogenous processing machinery, optimized shRNA constructs allow for high potency and sustainable effects using low copy numbers resulting in less off-target effects, particularly if embedded in a miRNA scaffold. Bi-functional design may further enhance potency and safety of RNAi-based therapeutics. Remaining challenges include tumor selective delivery vehicles and more complete evaluation of the scope and scale of off-target effects. This review will compare siRNA, shRNA and bi-functional shRNA.
Collapse
|
36
|
Maeda Y, Sheffield AM, Smith RJ. Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 2009; 66:13-36. [PMID: 19494570 PMCID: PMC2867253 DOI: 10.1159/000218205] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeting and downregulating specific genes with antisense and decoy oligonucleotides, ribozymes or RNA interference (RNAi) offer the theoretical potential of altering a disease phenotype. Here we review the molecular mechanism behind the in vivo application of RNAi-mediated gene silencing, focusing on its application to the inner ear. RNAi is a physiological phenomenon in which small, double-stranded RNA molecules (small interfering RNA, siRNA) reduce expression of homologous genes. Notable for its exquisite sequence specificity, it is ideally applied to diseases caused by a gain-of-function mechanism of action. Types of deafness in which gain-of-function mutations are observed include DFNA2 (KCNQ4), DFNA3 (GJB2) and DFNA5 (DFNA5). Several strategies can be used to deliver siRNA into the inner ear, including cationic liposomes, adeno-associated and lentiviral vectors, and adenoviral vectors. Transduction efficiency with cationic liposomes is low and the effect is transient; with adeno-associated and lentiviral vectors, long-term transfection is possible using a small hairpin RNA expression cassette.
Collapse
Affiliation(s)
- Yukihide Maeda
- Molecular Otolaryngology Research Laboratories, Department of Otolaryngology – Head & Neck Surgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Abraham M. Sheffield
- Medical Scientist Training Program, The University of Iowa, Iowa City, IA 52242, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology Research Laboratories, Department of Otolaryngology – Head & Neck Surgery, The University of Iowa, Iowa City, IA 52242, USA
- Medical Scientist Training Program, The University of Iowa, Iowa City, IA 52242, USA
- The Interdepartmental PhD Genetics Program, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
Rejman D, Kočalka P, Pohl R, Točík Z, Rosenberg I. Synthesis and hybridization of oligonucleotides modified at AMP sites with adenine pyrrolidine phosphonate nucleotides. ACTA ACUST UNITED AC 2009. [DOI: 10.1135/cccc2009022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Three structurally diverse types of the protected pyrrolidine nucleoside phosphonates were prepared as the monomers for the introduction of pyrrolidine nucleotide units into modified oligonucleotides on the solid phase. Two different chemistries were used for incorporation of modified and natural units: the phosphotriester method for the former, i.e., monomers containing N-phosphonoalkyl and N-phosphonoacyl moieties attached to the pyrrolidine ring nitrogen atom, and phosphoramidite chemistry for the latter. Since the synthesized pyrrolidine nucleoside phosphonic acids are close mimics of the 3′-deoxynucleoside 5′-phosphates, the incorporation of one modified unit into oligonucleotides gives rise to one 2′,5′ internucleotide linkage. A series of nonamers containing two or three modified units, as well as the fully modified adenine 15-mer, were synthesized in reverse order, i.e., from the 5′ to the 3′ end of the strand. The measurement of thermal characteristics of the complexes of modified nonamers with the complementary strand revealed a destabilizing effect of the introduced modification. The modified adenine homooligonucleotide, was found to form the most stable complex with oligothymidylate of all the tested modified oligonucleotides in terms of ΔTm per modification.
Collapse
|
38
|
Abstract
Although Nature's antisense approaches are clearly impressive, this Perspectives article focuses on the experimental uses of antisense reagents (ASRs) for control of biological processes. ASRs comprise antisense oligonucleotides (ASOs), and their catalytically active counterparts ribozymes and DNAzymes, as well as small interfering RNAs (siRNAs). ASOs and ribozymes/DNAzymes target RNA molecules on the basis of Watson-Crick base pairing in sequence-specific manner. ASOs generally result in destruction of the target RNA by RNase-H mediated mechanisms, although they may also sterically block translation, also resulting in loss of protein production. Ribozymes and DNAzymes cleave target RNAs after base pairing via their antisense flanking arms. siRNAs, which contain both sense and antisense regions from a target RNA, can mediate target RNA destruction via RNAi and the RISC, although they can also function at the transcriptional level. A considerable number of ASRs (mostly ASOs) have progressed into clinical trials, although most have relatively long histories in Phase I/II settings. Clinical trial results are surprisingly difficult to find, although few ASRs appear to have yet established efficacy in Phase III levels. Evolution of ASRs has included: (a) Modifications to ASOs to render them nuclease resistant, with analogous modifications to siRNAs being developed; and (b) Development of strategies to select optimal sites for targeting. Perhaps the biggest barrier to effective therapies with ASRs is the "Delivery Problem." Various liposomal vehicles have been used for systemic delivery with some success, and recent modifications appear to enhance systemic delivery, at least to liver. Various nanoparticle formulations are now being developed which may also enhance delivery. Going forward, topical applications of ASRs would seem to have the best chances for success. In summary, modifications to ASRs to enhance stability, improve targeting, and incremental improvements in delivery vehicles continue to make ASRs attractive as molecular therapeutics, but their advance toward the bedside has been agonizingly slow.
Collapse
MESH Headings
- Animals
- Binding Sites/genetics
- DNA, Catalytic/chemistry
- DNA, Catalytic/therapeutic use
- Drug Delivery Systems/methods
- Drug Delivery Systems/trends
- Humans
- Oligonucleotides, Antisense/adverse effects
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/therapeutic use
- Oligonucleotides, Antisense/toxicity
- RNA, Catalytic/chemistry
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Wei-Hua Pan
- Gittlen Cancer Research Foundation, Hershey Medical Center, Department of Pathology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
39
|
Zhou C, Liu Y, Andaloussi M, Badgujar N, Plashkevych O, Chattopadhyaya J. Fine tuning of electrostatics around the internucleotidic phosphate through incorporation of modified 2',4'-carbocyclic-LNAs and -ENAs leads to significant modulation of antisense properties. J Org Chem 2009; 74:118-34. [PMID: 19055352 DOI: 10.1021/jo8016742] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the antisense (AS) and RNA interference (RNAi) technologies, the native single-stranded 2'-deoxyoligonucleotides (for AS) or double-stranded RNA (for RNAi) are chemically modified to bind to the target RNA in order to give improved downregulation of gene expression through inhibition of RNA translation. It is shown here how the fine adjustment of the electrostatic interaction by alteration of the substituents as well as their stereochemical environment around the internucleotidic phosphodiester moiety near the edge of the minor grove of the antisense oligonucleotides (AON)-RNA heteroduplex can lead to the modulation of the antisense properties. This was demonstrated through the synthesis of various modified carbocyclic-locked nucleic acids (LNAs) and -ethylene-bridged nucleic acids (ENAs) with hydroxyl and/or methyl substituents attached at the carbocyclic part and their integration into AONs by solid-phase DNA synthesis. The target affinity toward the complementary RNA and DNA, nuclease resistance, and RNase H elicitation by these modified AONs showed that both the nature of the modification (-OH versus -CH(3)) and their respective stereochemical orientations vis-a-vis vicinal phosphate play a very important role in modulating the AON properties. Whereas the affinity to the target RNA and the enzymatic stability of AONs were not favored by the hydrophobic and sterically bulky modifications in the center of the minor groove, their positioning at the edge of the minor groove near the phosphate linkage resulted in significantly improved nuclease resistance without loss of target affinity. On the other hand, hydrophilic modification, such as a hydroxyl group, close to the phosphate linkage made the internucleotidic phosphodiester especially nucleolytically unstable, and hence was not recommended. The substitutions on the carbocyclic moiety of the carba-LNA and -ENA did not affect significantly the choice of the cleavage sites of RNase H mediated RNA cleavage in the AON/RNA hybrid duplex, but the cleavage rate depended on the modification site in the AON sequence. If the original preferred cleavage site by RNase H was included in the 4-5nt stretch from the 3'-end of the modification site in the AON, decreased cleavage rate was observed. Upon screening of 52 modified AONs, containing 13 differently modified derivatives at C6' and C7' (or C8') of the carba-LNAs and -ENAs, two excellent modifications in the carba-LNA series were identified, which synergistically gave outstanding antisense properties such as the target RNA affinity, nuclease resistance, and RNase H activity and were deemed to be ideal candidates as potential antisense or siRNA therapeutic agents.
Collapse
Affiliation(s)
- Chuanzheng Zhou
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, Uppsala University, SE-751 23 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
40
|
Young DD, Lusic H, Lively MO, Yoder JA, Deiters A. Gene silencing in mammalian cells with light-activated antisense agents. Chembiochem 2009; 9:2937-40. [PMID: 19021142 DOI: 10.1002/cbic.200800627] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Douglas D Young
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
41
|
Muhonen P, Holthofer H. Epigenetic and microRNA-mediated regulation in diabetes. Nephrol Dial Transplant 2009; 24:1088-96. [PMID: 19145005 PMCID: PMC2658734 DOI: 10.1093/ndt/gfn728] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Pirkko Muhonen
- Centre for BioAnalytical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | |
Collapse
|
42
|
Moriguchi T, Sakai H, Suzuki H, Shinozuka K. Spermine moiety attached to the C-5 position of deoxyuridine enhances the duplex stability of the phosphorothioate DNA/complementary DNA and shows the susceptibility of the substrate to RNase H. Chem Pharm Bull (Tokyo) 2008; 56:1259-63. [PMID: 18758097 DOI: 10.1248/cpb.56.1259] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Novel phosphorothioate-modified oligodeoxynucleotides (S-ODNs) containing a deoxyuridine derivative bearing a spermine moiety at the C-5 position were synthesized. The study of the thermal stability and the thermodynamic stability showed that the modified S-ODNs have been able to form the stable duplexes with the complementary DNA. It was also found that the duplex composed of the modified S-ODN and its complementary RNA strand is the substrate for Escherichia coli RNase H, and the cleavage of the RNA strand by the enzyme was almost similar as in the case of the unmodified one.
Collapse
|
43
|
Jason TLH, Figueredo R, Ferguson PJ, Vincent MD, Berg RW, Koropatnick J. ODN 491, a novel antisense oligodeoxynucleotide that targets thymidylate synthase, exerts cell-specific effects in human tumor cell lines. DNA Cell Biol 2008; 27:229-40. [PMID: 18358073 DOI: 10.1089/dna.2007.0674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymidylate synthase (TS) is essential for DNA replication and is a target for cancer chemotherapy. However, toxicity to normal cells and tumor cell drug resistance necessitate development of new therapeutic strategies. One such strategy is to use antisense (AS) technology to reduce TS mRNA and protein levels in treated cells. We have developed oligodeoxynucleotides (ODNs) that target different regions of TS mRNA, inhibit human tumor cell proliferation as single agents, and enhance cytotoxicity of clinically useful TS protein-targeting drugs. Here we describe ODN 491, a novel 20mer AS ODN complementary to a previously untargeted portion of the TS mRNA coding region. AS ODN 491 decreased TS mRNA levels to different degrees in a panel of human tumor-derived cell lines, and induced different physiological effects in a tumor cell line-dependent manner. ODN 491 (like AS TS ODN 83, previously shown to be effective) decreased TS protein levels in HeLa cells with a concomitant increase in sensitivity to TS-targeting chemotherapeutics. However (and contrary to HeLa cell response to an AS ODN 83), it did not, as a single agent, inhibit HeLa cell proliferation. In MCF-7 cells, ODN 491 treatment was less effective at reducing TS mRNA and did not reduce TS protein, nor did it enhance sensitivity to TS-targeting or other chemotherapeutics. Moreover, specifically in MCF-7 cells but not HeLa cells, ODN 491 as a single agent induced apoptosis. These data indicate that AS TS ODN 491 is an effective AS reagent targeting a novel TS mRNA region. However, treatment of tumor cell lines with AS TS ODNs targeting different TS mRNA regions results in a pattern of physiological effects that varies in a tumor cell line-specific fashion. In addition, the capacity of different AS TS ODNs to induce physiological effects does not correlate well with their capacity to reduce TS mRNA and/or protein and, further, depends on the region of TS mRNA selected for targeting. Recognition of tumor cell-specific and mRNA region-specific variability in response to AS TS ODNs will be important in designing AS TS ODNs for potential clinical use.
Collapse
Affiliation(s)
- Tracey L H Jason
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Oligonucleotide-polyamine conjugates: influence of length and position of 2'-attached polyamines on duplex stability and antisense effect. Eur J Med Chem 2008; 44:670-7. [PMID: 18617292 DOI: 10.1016/j.ejmech.2008.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 04/15/2008] [Accepted: 05/19/2008] [Indexed: 11/22/2022]
Abstract
Tethering cationic ligands to oligonucleotides results in zwitterionic molecules with often improved target affinity and better cell membrane permeation. Due to the ideal distance between cationic groups, polyamines are perfect counter ions for oligonucleotides. Using an easy and versatile procedure for attaching ligands to the 2'-position, polyamines were conjugated to distinct terminal and internal positions of oligonucleotides. With polyamines attached to terminal nucleosides, the affinity to complementary DNA or RNA strands increased with growing number of cationic amines. Tethering polyamines to an internal nucleoside of wild type DNA oligonucleotides resulted in a considerable decrease in duplex stability, but in phosphorothioates, no significant decrease was detected. Conjugates exhibited progressively higher target downregulation ability with increasing polyamine chain length in a human melanoma cell culture assay.
Collapse
|
45
|
Vester B, Boel AM, Lobedanz S, Babu BR, Raunkjaer M, Lindegaard D, Raunak, Hrdlicka PJ, Højland T, Sharma PK, Kumar S, Nielsen P, Wengel J. Chemically modified oligonucleotides with efficient RNase H response. Bioorg Med Chem Lett 2008; 18:2296-300. [PMID: 18356048 DOI: 10.1016/j.bmcl.2008.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 02/29/2008] [Accepted: 03/02/2008] [Indexed: 11/27/2022]
Abstract
Ten different chemically modified nucleosides were incorporated into short DNA strands (chimeric oligonucleotides ON3-ON12 and ON15-ON24) and then tested for their capacity to mediate RNAse H cleavage of the complementary RNA strand. The modifications were placed at two central positions directly in the RNase H cleaving region. The RNA strand of duplexes with ON3, ON5 and ON12 were cleaved more efficiently than the RNA strand of the DNA:RNA control duplex. There seems to be no correlation between the thermal stability between the duplexes and RNase H cleavage.
Collapse
Affiliation(s)
- Birte Vester
- Nucleic Acid Center, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gewirtz AM. On future's doorstep: RNA interference and the pharmacopeia of tomorrow. J Clin Invest 2008; 117:3612-4. [PMID: 18060018 DOI: 10.1172/jci34274] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Small molecules and antibodies have revolutionized the treatment of malignant diseases and appear promising for the treatment of many others. Nonetheless, there are many candidate therapeutic targets that are not amenable to attack by the current generation of targeted therapies, and in a small but growing number of patients, resistance to initially successful treatments evolves. This Review Series on the medicinal promise of posttranscriptional gene silencing with small interfering RNA and other molecules capable of inducing RNA interference (RNAi) is motivated by the hypothesis that effectors of RNAi can be developed into effective drugs for treating malignancies as well as many other types of disease. As this Review Series points out, there is still much to do, but many in the field now hope that the time has finally arrived when "antisense" therapies will finally come of age and fulfill their promise as the magic bullets of the 21st century.
Collapse
Affiliation(s)
- Alan M Gewirtz
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6061, USA.
| |
Collapse
|
47
|
Priyakumar UD, MacKerell AD. Atomic detail investigation of the structure and dynamics of DNA.RNA hybrids: a molecular dynamics study. J Phys Chem B 2008; 112:1515-24. [PMID: 18197661 PMCID: PMC2867233 DOI: 10.1021/jp709827m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA.RNA hybrid duplexes are biologically important molecules and are shown to have potential therapeutic properties. To investigate the relationship between structures, energetics, solvation and RNase H activity of hybrid duplexes in comparison with pure DNA and RNA duplexes, a molecular dynamics study using the CHARMM27 force field was undertaken. The structural properties of all four nucleic acids considered are in very good agreement with the experimental data. The backbone dihedral angles and the puckering of the (deoxy)ribose indicate that the purine rich strands retain their A-/B-like properties but the pyrimidine rich DNA strand undergoes A-B conformational transitions. The minor groove widths of the hybrid structures are narrower than those in the RNA duplex, a requirement for RNase H binding. In addition, sampling of noncanonical phosphodiester backbone dihedrals by the DNA strands, differential solvation properties and helical properties, most notably rise, are suggested to contribute to hybrids being RNase H substrates. Differential RNase H activity toward hybrids containing purine versus pyrimidine rich RNA strands is suggested to be due to sampling of values of the phosphodiester backbone dihedrals in the DNA strands. Notably, the present results indicate that hybrids have decreased flexibility as compared to RNA, in contrast to previous reports.
Collapse
Affiliation(s)
- U. Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
48
|
Tang X, Swaminathan J, Gewirtz AM, Dmochowski IJ. Regulating gene expression in human leukemia cells using light-activated oligodeoxynucleotides. Nucleic Acids Res 2007; 36:559-69. [PMID: 18056083 PMCID: PMC2241881 DOI: 10.1093/nar/gkm1029] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Light-activated antisense oligodeoxynucleotides (asODNs) were developed to control the degradation of target mRNA in living cells by RNase H. A 20-mer asODN previously shown to target c-myb, a hematopoietic transcription factor, was covalently attached via a photocleavable linker (PL) to partially complementary 20-mer sense strands (sODNs). In the ‘caged’ state, the sODN blocked hybridization of the asODN to c-myb mRNA. Six asODN-PL-sODN conjugates, C1-C6, were synthesized. C5, with twelve complementary bases, gave the largest decrease in melting temperature (Tm) upon UV irradiation (ΔTm = −29°C). The most thermally stable conjugate, C6 (Tm = 84°C), gave the lowest background RNase H activity, with just 8.6% degradation of an RNA 40-mer after 1 h incubation. In biochemical assays with C6, RNA digestion increased 10-fold 10 min after UV irradiation. Finally, phosphorothioated analogs S-C5 and S-C6 were synthesized to test activity in cultured K562 (human leukemia) cells. No knockdown of c-myb mRNA or protein was observed with intact S-C5 or S-C6, whereas more than half of c-myb mRNA was degraded 24 h after photoactivation. Two-fold photomodulation of c-MYB protein levels was also observed with S-C5. However, no photomodulation of c-MYB protein levels was observed with S-C6, perhaps due to the greater stability of this duplex.
Collapse
Affiliation(s)
- XinJing Tang
- The Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
49
|
Vilfan ID, Kamping W, van den Hout M, Candelli A, Hage S, Dekker NH. An RNA toolbox for single-molecule force spectroscopy studies. Nucleic Acids Res 2007; 35:6625-39. [PMID: 17905817 PMCID: PMC2095808 DOI: 10.1093/nar/gkm585] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/15/2007] [Accepted: 07/17/2007] [Indexed: 01/29/2023] Open
Abstract
Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNA-enzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct. Such a construct is typically subject to several criteria. First, single-molecule force spectroscopy techniques often require an RNA construct that is longer than the RNA molecules used for bulk biochemical studies. Next, the incorporation of modified nucleotides into the RNA construct is required for its surface immobilization. In addition, RNA constructs for single-molecule studies are commonly assembled from different single-stranded RNA molecules, demanding good control of hybridization or ligation. Finally, precautions to prevent RNase- and divalent cation-dependent RNA digestion must be taken. The rather limited selection of molecular biology tools adapted to the manipulation of RNA molecules, as well as the sensitivity of RNA to degradation, make RNA construct preparation a challenging task. We briefly illustrate the types of single-molecule force spectroscopy experiments that can be performed on RNA, and then present an overview of the toolkit of molecular biology techniques at one's disposal for the assembly of such RNA constructs. Within this context, we evaluate the molecular biology protocols in terms of their effectiveness in producing long and stable RNA constructs.
Collapse
Affiliation(s)
| | | | | | | | | | - Nynke H. Dekker
- Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands
| |
Collapse
|
50
|
Prater CE, Saleh AD, Wear MP, Miller PS. Chimeric RNase H-competent oligonucleotides directed to the HIV-1 Rev response element. Bioorg Med Chem 2007; 15:5386-95. [PMID: 17566743 PMCID: PMC1987364 DOI: 10.1016/j.bmc.2007.05.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/23/2007] [Accepted: 05/29/2007] [Indexed: 11/26/2022]
Abstract
Chimeric oligo-2'-O-methylribonucleotides containing centrally located patches of contiguous 2'-deoxyribonucleotides and terminating in a nuclease resistant 3'-methylphosphonate internucleotide linkage were prepared. The oligonucleotides were targeted to the 3'-side of HIV Rev response element (RRE) stem-loop IIB RNA, which is adjacent to the high affinity Rev protein binding site and is critical to virus function. Thermal denaturation experiments showed that chimeric oligonucleotides form very stable duplexes with a complementary single-stranded RNA, and gel electrophoretic mobility shift assays (EMSA) showed that they bind with high affinity and specificity to RRE stem-loop II RNA (K(D) approximately 200 nM). The chimeric oligonucleotides promote RNase H-mediated hydrolysis of RRE stem-loop II RNA and have half-lives exceeding 24h when incubated in cell culture medium containing 10% fetal calf serum. One of the chimeric oligonucleotides inhibited RRE mediated expression of chloramphenicol acetyl transferase (CAT) approximately 60% at a concentration of 300 nM in HEK 293T cells co-transfected with p-RRE/CAT and p-Rev mammalian expression vectors.
Collapse
Affiliation(s)
| | - Anthony D. Saleh
- Department of Biochemistry and Molecular Biology Bloomberg School of Public Health Johns Hopkins University 615 North Wolfe Street Baltimore, MD 21205
| | - Maggie P. Wear
- Department of Biochemistry and Molecular Biology Bloomberg School of Public Health Johns Hopkins University 615 North Wolfe Street Baltimore, MD 21205
| | - Paul S. Miller
- Department of Biochemistry and Molecular Biology Bloomberg School of Public Health Johns Hopkins University 615 North Wolfe Street Baltimore, MD 21205
| |
Collapse
|