1
|
Zhou J, Zhang J, Cao L, Liu Y, Liu L, Liu C, Li X. Ginsenoside Rg 1 modulates vesicular dopamine storage and release during exocytosis revealed with single-vesicle electrochemistry. Chem Commun (Camb) 2023; 59:3087-3090. [PMID: 36804575 DOI: 10.1039/d2cc06950d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Ginsenoside Rg1, a tetracyclic triterpenoid derivative extracted from the roots of Panax ginseng C. A. Meyer, can enhance learning and memory and improve cognitive impairment. However, whether or how it affects vesicular dopamine storage and its release during exocytosis remains unknown. By using single-vesicle electrochemistry, we for the first time find out that Rg1 not only upregulates vesicular dopamine content but also increases exocytosis frequency and modulates dopamine release during exocytosis in PC12 cells, which may relate to the activation of protein kinases, causing a series of biological cascades. This finding offers the possible link between Rg1 and vesicular chemical storage and exocytotic release, which is of significance for understanding the nootropic role of Rg1 from the perspective of neurotransmission.
Collapse
Affiliation(s)
- Junlan Zhou
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China. .,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Jing Zhang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China. .,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Lijiao Cao
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China. .,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yuying Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China. .,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.,State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Luyao Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China. .,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Chunlan Liu
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China. .,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xianchan Li
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China. .,Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.,State Key Laboratory of Natural and Biomimetic Drugs and Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Tomagra G, Peroni G, Aprà P, Bonino V, Campostrini M, Carabelli V, Ruvolo CC, Lo Giudice A, Guidorzi L, Mino L, Olivero P, Pacher L, Picariello F, Re A, Rigato V, Truccato M, Varzi V, Vittone E, Picollo F. Diamond-based sensors for in vitro cellular radiobiology: Simultaneous detection of cell exocytic activity and ionizing radiation. Biosens Bioelectron 2022; 220:114876. [DOI: 10.1016/j.bios.2022.114876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
3
|
Zhang X, Hatamie A, Ewing AG. Direct Acquisition of the Gap Height of Biological Tissue-Electronic Chemical Sensor Interfaces. Angew Chem Int Ed Engl 2022; 61:e202210224. [PMID: 36074259 PMCID: PMC9828447 DOI: 10.1002/anie.202210224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Interfacing biological tissues with electronic sensors offers the exciting opportunity to accurately investigate multiple biological processes. Accurate signal collection and application are the foundation of these measurements, but a long-term issue is the signal distortion resulting from the interface gap. The height of the gap is the key characteristic needed to evaluate or model the distortion, but it is difficult to measure. By integrating a pair of nanopores at the electronic sensor plane and measuring the ion conductance between them, we developed a versatile and straightforward strategy to realize the direct cooperative evaluation of the gap height during exocytotic release from adrenal gland tissues. The signaling distortion of this gap has been theoretically evaluated and shows almost no influence on the amperometric recording of exocytosis in a classic "semi-artificial synapse" configuration. This strategy should benefit research concerning various bio/chemical/machine interfaces.
Collapse
Affiliation(s)
- Xin‐Wei Zhang
- College of Chemistry and Molecular SciencesWuhan University430072WuhanChina,Department of Chemistry and Molecular BiologyUniversity of Gothenburg41296GothenburgSweden
| | - Amir Hatamie
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg41296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg41296GothenburgSweden
| |
Collapse
|
4
|
Zhang XW, Hatamie A, Ewing AG. Direct Acquisition of the Gap Height of Biological Tissue‐Electronic Chemical Sensor Interfaces. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Amir Hatamie
- University of Gothenburg: Goteborgs Universitet Chemistry SWEDEN
| | - Andrew G. Ewing
- University of Gothenburg: Goteborgs Universitet Chemistry and Molecular Biology Kemivägen 10 41296 Gothenburg SWEDEN
| |
Collapse
|
5
|
Huang Y, Zhang Y, Liu D, Li M, Yu Y, Yang W, Li H. Facile synthesis of highly ordered mesoporous Fe 3O 4 with ultrasensitive detection of dopamine. Talanta 2019; 201:511-518. [PMID: 31122458 DOI: 10.1016/j.talanta.2019.01.099] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/24/2019] [Accepted: 01/29/2019] [Indexed: 11/26/2022]
Abstract
Dopamine (DA) detection is significant for the prevention of unfavorable neuronal illness. However, the detection of DA with low concentration still face tremendous challenges. In this study, highly ordered mesoporous Fe3O4 materials were synthesized as a biosensor by using mesoporous silica KIT-6 with different aging temperature as hard template. The ordered mesoporous Fe3O4 with high surface area modified glassy carbon electrode shows the high sensitivity for detecting DA. Fe3O4-40 mesoporous material modified electrode has the highest catalytic activity to DA with a sensitivity of 0.053 nA nM-1 and a detection limit of 0.8 nM (S/N = 3). The results indicating that the mesoporous Fe3O4 material modified electrode exhibits high sensitivity to determine DA at low levels, which can be used for DA real-time monitoring in neutral biological media.
Collapse
Affiliation(s)
- Yarong Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yongzhao Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Dandan Liu
- Department of Endocrinology, The Eighth Affiliated Hospital, Sun Yat-Sen university, Shenzhen 518033, China
| | - Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yongsheng Yu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Haibo Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
6
|
Abstract
Cells are extraordinarily complex, containing thousands of different analytes with concentrations spanning at least nine orders of magnitude. Analyzing single cells instead of tissue homogenates provides unique insights into cell-to-cell heterogeneity and aids in distinguishing normal cells from pathological ones. The high sensitivity and low sample consumption of capillary and on-chip electrophoresis, when integrated with fluorescence, electrochemical, and mass spectrometric detection methods, offer an ideal toolset for examining single cells and even subcellular organelles; however, the isolation and loading of such small samples into these devices is challenging. Recent advances have addressed this issue by interfacing a variety of enhanced mechanical, microfluidic, and optical sampling techniques to capillary and on-chip electrophoresis instruments for single-cell analyses.
Collapse
Affiliation(s)
- Christine Cecala
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
7
|
Zhang B, Heien MLAV, Santillo MF, Mellander L, Ewing AG. Temporal resolution in electrochemical imaging on single PC12 cells using amperometry and voltammetry at microelectrode arrays. Anal Chem 2011; 83:571-7. [PMID: 21190375 PMCID: PMC3023167 DOI: 10.1021/ac102502g] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Carbon-fiber-microelectrode arrays (MEAs) have been utilized to electrochemically image neurochemical secretion from individual pheochromocytoma (PC12) cells. Dopamine release events were electrochemically monitored from seven different locations on single PC12 cells using alternately constant-potential amperometry and fast-scan cyclic voltammetry (FSCV). Cyclic voltammetry, when compared to amperometry, can provide excellent chemical resolution; however, spatial and temporal resolution are both compromised. The spatial and temporal resolution of these two methods have been quantitatively compared and the differences explained using models of molecular diffusion at the nanogap between the electrode and the cell. A numerical simulation of the molecular flux reveals that the diffusion of dopamine molecules and electrochemical reactions both play important roles in the temporal resolution of electrochemical imaging. The simulation also reveals that the diffusion and electrode potential cause the differences in signal crosstalk between electrodes when comparing amperometry and FSCV.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, 104 Chemistry Research Building, The Pennsylvania State University, University Park, PA 16802
| | - Michael L. A. V. Heien
- Department of Chemistry, 104 Chemistry Research Building, The Pennsylvania State University, University Park, PA 16802
| | - Michael F. Santillo
- Department of Chemistry, 104 Chemistry Research Building, The Pennsylvania State University, University Park, PA 16802
| | - Lisa Mellander
- University of Gothenburg, Kemivägen 10, SE-41296, Göteborg, Sweden
| | - Andrew G. Ewing
- University of Gothenburg, Kemivägen 10, SE-41296, Göteborg, Sweden
| |
Collapse
|
8
|
Monitoring of Cellular Dynamics with Electrochemical Detection Techniques. MODERN ASPECTS OF ELECTROCHEMISTRY 2011. [DOI: 10.1007/978-1-4614-0347-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Omiatek DM, Cans AS, Heien ML, Ewing AG. Analytical approaches to investigate transmitter content and release from single secretory vesicles. Anal Bioanal Chem 2010; 397:3269-79. [PMID: 20480152 DOI: 10.1007/s00216-010-3698-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 10/19/2022]
Abstract
The vesicle serves as the primary intracellular unit for the highly efficient storage and release of chemical messengers triggered during signaling processes in the nervous system. This review highlights conventional and emerging analytical methods that have used microscopy, electrochemistry, and spectroscopy to resolve the location, time course, and quantal content characteristics of neurotransmitter release. Particular focus is on the investigation of the synaptic vesicle and its involvement in the fundamental molecular mechanisms of cell communication.
Collapse
Affiliation(s)
- Donna M Omiatek
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
10
|
Omiatek DM, Santillo MF, Heien ML, Ewing AG. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal Chem 2009; 81:2294-302. [PMID: 19228035 PMCID: PMC2656409 DOI: 10.1021/ac802466g] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The primary method for neuronal communication involves the extracellular release of small molecules that are packaged in secretory vesicles. We have developed a platform to separate, lyse, and electrochemically measure the contents of single vesicles using a hybrid capillary-microfluidic device. This device incorporates a sheath-flow design at the outlet of the capillary for chemical lysis of vesicles and subsequent electrochemical detection. The effect of sheath-flow on analyte dispersion was characterized using confocal fluorescence microscopy and electrochemical detection. At increased flow rates, dispersion was minimized, leading to higher separation efficiencies but lower detected amounts. Large unilamellar vesicles (diameter approximately 200 nm), a model for secretory vesicles, were prepared by extrusion and loaded with an electroactive molecule. They were then separated and detected using the hybrid capillary-microfluidic device. Determination of size from internalized analyte concentration provides a method to characterize the liposomal suspension. These results were compared to an orthogonal size measurement using dynamic light scattering to validate the detection platform.
Collapse
Affiliation(s)
- Donna M. Omiatek
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael F. Santillo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael L Heien
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew G. Ewing
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Göteborg University, Kemivägen 10, SE-41296 Göteborg, Sweden
| |
Collapse
|
11
|
Amatore C, Arbault S, Guille M, Lemaître F. Electrochemical Monitoring of Single Cell Secretion: Vesicular Exocytosis and Oxidative Stress. Chem Rev 2008; 108:2585-621. [DOI: 10.1021/cr068062g] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Spégel C, Heiskanen A, Pedersen S, Emnéus J, Ruzgas T, Taboryski R. Fully automated microchip system for the detection of quantal exocytosis from single and small ensembles of cells. LAB ON A CHIP 2008; 8:323-9. [PMID: 18231673 DOI: 10.1039/b715107a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A lab-on-a-chip device that enables positioning of single or small ensembles of cells on an aperture in close proximity to a mercaptopropionic acid (MPA) modified sensing electrode has been developed and characterized. The microchip was used for the detection of Ca(2+)-dependent quantal catecholamine exocytosis from single as well as small assemblies of rat pheochromocytoma (PC12) cells. The frequency of events increased considerably upon depolarization of the PC12 cell membrane using a high extracelluar concentration of potassium. The number of recorded events could be correlated with the number of cells immobilized on the electrode. Quantal characteristics, such as the number of released molecules per recorded event, are equivalent to data obtained using conventional carbon fiber microelectrodes. The detection sensitivity of the device allows for the detection of less than 10 000 dopamine molecules in a quantal release. The distribution of peak rise-time and full width at half maximum was constant during measurement periods of several minutes demonstrating the stability of the MPA modified surface.
Collapse
Affiliation(s)
- Christer Spégel
- Department of Analytical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Rabie HR, Rong J, Glavinović MI. Monte Carlo simulation of release of vesicular content in neuroendocrine cells. BIOLOGICAL CYBERNETICS 2006; 94:483-99. [PMID: 16550439 DOI: 10.1007/s00422-006-0061-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Accepted: 02/15/2006] [Indexed: 05/07/2023]
Abstract
The release of transmitter from the vesicle, its diffusion through the fusion pore, and the cleft and its interaction with the carbon electrode were simulated using the Monte Carlo method. According to the simulation the transmitter release is largely determined by geometric factors--the ratio of the fusion pore cross-sectional and vesicular areas, if the diffusion constant is as in the aqueous solution--but the speed of transmitter dissociation from the gel matrix plays an important role during the rise phase of release. Transmitter is not depleted near the entrance to the fusion pore and there is no cleft-to-vesicle feedback, but the depletion becomes evident if the diffusion constant is reduced, especially if the pore is wide. In general, the time course of amperometric currents closely resembles the time course of the simulated transmitter concentration in the cleft and the time course of release. Surprisingly, even a tenfold change of the electrode efficiency has only a marginal effect on the amplitude or the time course of amperometric currents. Greater electrode efficiency however lowers the cleft concentration, but only if the cleft is narrow. As the cleft widens the current amplitudes diminish and rise times lengthen, but the decay times are less affected. Moreover, the amplitude dependence of the rise and decay times becomes steeper as the cleft widens and/or as the release kinetics slows. Finally, lower diffusion constant of transmitter in the narrow cleft does not further prolong the amperometric currents, whose slow time course reflects slow release kinetics.
Collapse
Affiliation(s)
- H R Rabie
- Department of Applied Chemical Sciences, Ryerson Polytechnic University, Toronto, ON, Canada
| | | | | |
Collapse
|
14
|
Germain D, Maysinger D, Glavinovic MI. Vesicular roundness and compound release in PC-12 cells. J Neurosci Methods 2006; 153:27-42. [PMID: 16290198 DOI: 10.1016/j.jneumeth.2005.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/22/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022]
Abstract
The principal goals of this study were to establish a quantitative morphological analysis of spatial and regional properties of dense core vesicles, and to use this analysis to assess whether homotypic fusion is prominent in chronically treated PC-12 cells at elevated release levels. Simple computerized image processing of electron-micrographs provided the binary images of vesicular dense cores, whilst the artificial intelligence methods were needed to determine the vesicular membranes. As in the past, the presence of large, highly irregular vesicles, provided the morphological evidence of fused vesicles, but the irregularity of vesicular shape was assessed quantitatively-from its roundness. Free space of each vesicle was determined from the distance to its nearest-neighbor, or from the size of its Voronoi polygon. Within a Voronoi polygon, each point is closer to that vesicle than to any other vesicle. Large vesicles were not less round and did not have larger free space, as expected if they result from fusion of several smaller vesicles. In conclusion, we present a novel and rigorous morphological analysis of spatial and regional properties of dense core vesicles. The results demonstrate that the homotypic fusion is not prominent in PC-12 cells, before or following a chronic treatment that enhances release.
Collapse
Affiliation(s)
- D Germain
- Department of Computer Engineering, McGill University, Montreal, Canada
| | | | | |
Collapse
|
15
|
Ortiz PA. cAMP increases surface expression of NKCC2 in rat thick ascending limbs: role of VAMP. Am J Physiol Renal Physiol 2005; 290:F608-16. [PMID: 16144963 DOI: 10.1152/ajprenal.00248.2005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
NaCl absorption by the thick ascending limb of Henle's loop (TAL) is mediated by the apical Na-K-2Cl cotransporter NKCC2. cAMP increases NaCl absorption in the TAL by stimulating NKCC2. In oocytes, cAMP increases NKCC2 activity by regulating its trafficking. However, the mechanism by which cAMP stimulates NKCC2 in TALs is not clear. We hypothesized that cAMP increases surface expression of NKCC2 and NaCl absorption in TALs and that vesicle-associated membrane protein (VAMP) is involved in this mechanism. We used surface biotinylation of rat medullary TALs (mTAL) to examine surface and total NKCC2 levels. When mTAL suspensions were treated with dibutyryl cAMP (db-cAMP) or forskolin plus IBMX for 20 min, surface NKCC2 expression increased by 126 +/- 23 and 92 +/- 17% above basal, respectively (P < 0.03). No changes in total NKCC2 expression were observed, suggesting that cAMP increased translocation of NKCC2. We studied the role of VAMP in NKCC2 translocation and found that incubating mTALs with tetanus toxin (30 nM), which inhibits vesicle trafficking by inactivating VAMP-2 and -3, completely blocked the stimulatory effect of db-cAMP on surface NKCC2 expression (tetanus toxin = 100% vs. tetanus toxin + db-cAMP = 102 +/- 21% of control; not significant). We studied VAMP-2 and -3 expression and localization in isolated perfused TALs by confocal microscopy and found that both of them were located in the subapical space of the TAL. Finally, in isolated perfused mTALs, db-cAMP increased net Cl absorption by 95.0 +/- 34.8% (P < 0.03), and pretreatment of TALs with tetanus toxin blocked the stimulation of Cl absorption (from 110.9 +/- 15.9 to 109.7 +/- 15.6 pmol.min(-1).mm(-1); not significant). We concluded that cAMP increases NKCC2 surface expression by a mechanism involving VAMP and that NKCC2 trafficking to the apical membrane is involved in the stimulation of TAL NaCl absorption by cAMP.
Collapse
Affiliation(s)
- Pablo A Ortiz
- Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford Hospital, 2799 W. Grand Blvd., Detroit, MI 48202, USA.
| |
Collapse
|
16
|
Woods LA, Powell PR, Paxon TL, Ewing AG. Analysis of Mammalian Cell Cytoplasm with Electrophoresis in Nanometer Inner Diameter Capillaries. ELECTROANAL 2005; 17:1192-1197. [PMID: 17364015 PMCID: PMC1821352 DOI: 10.1002/elan.200403240] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Capillary electrophoresis in 770 nanometer inner diameter capillaries coupled to electrochemical detection with an etched electrode matching an etched capillary (etched electrochemical detection) has been used with ultrasmall sampling to inject subcellular samples from intact single mammalian cells. Separations of cytoplasmic samples taken from rat pheochromocytoma cells have been achieved. As little as 8% of the total volume of a single cell has been sampled and analyzed. Dopamine has been identified and quantified in these PC12 cells using this technique. The average cytoplasmic level of dopamine in rat pheochromocytoma cells has been determined to be 240 ± 60 μM. The use of electrophoresis in 770 nanometer inner diameter capillaries with electrochemical detection to monitor cytoplasmic neurotransmitters at the single cell level can provide information about complex cellular functions such as neurotransmitter storage and synthesis.
Collapse
Affiliation(s)
- Lori A. Woods
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Paula R. Powell
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tracy L. Paxon
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Andrew G. Ewing
- Department of Chemistry, 104 Chemistry Building, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
17
|
Cans AS, Wittenberg N, Eves D, Karlsson R, Karlsson A, Orwar O, Ewing A. Amperometric Detection of Exocytosis in an Artificial Synapse. Anal Chem 2003; 75:4168-75. [PMID: 14632131 DOI: 10.1021/ac0343578] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A liposome model of exocytosis has been used to examine the nanometer environment of the space between the electrode and the membrane. First, this has been used to test models of coulometric efficiency for different size vesicles with 5- and 33-microm electrodes. The resulting model has a best fit that suggests that the liquid space is approximately 300 nm across the gap. Given this dimension, the volume of the electrode-membrane space is not large enough to accommodate the volume of larger vesicles in cells such as the mast cells of the beige mouse. Second, the model suggests that flow of solution from the exocytosis event is more important than diffusion. Flow from the finite vesicle volume past the electrode leads to less charge passed. Third, and finally, this system can be used to model transport in the synapse and so it is possible to examine the idea that transmitter flows in addition to diffusing from the synapse. This model should be useful in understanding and quantifying the escape of transmitter from synapses in vivo.
Collapse
Affiliation(s)
- Ann-Sofie Cans
- Department of Chemistry, Göteborg University, S-41296 Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|