1
|
Cheng YH, Huang CW, Lien HT, Hsiao YY, Weng PL, Chang YC, Cheng JH, Lan KC. A Preliminary Investigation of the Roles of Endometrial Cells in Endometriosis Development via In Vitro and In Vivo Analyses. Int J Mol Sci 2024; 25:3873. [PMID: 38612685 PMCID: PMC11011664 DOI: 10.3390/ijms25073873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Endometriosis is a complex gynecological disease that affects more than 10% of women in their reproductive years. While surgery can provide temporary relief from women's pain, symptoms often return in as many as 75% of cases within two years. Previous literature has contributed to theories about the development of endometriosis; however, the exact pathogenesis and etiology remain elusive. We conducted a preliminary investigation into the influence of primary endometrial cells (ECs) on the development and progression of endometriosis. In vitro studies, they were involved in inducing Lipopolysaccharide (LPS) in rat-isolated primary endometrial cells, which resulted in increased nuclear factor-kappa B (NF-κB) and vascular endothelial growth factor (VEGF) mRNA gene expression (quantitative polymerase chain reaction analysis, qPCR) and protein expression (western blot analysis). Additionally, in vivo studies utilized autogenic and allogeneic transplantations (rat to rat) to investigate endometriosis-like lesion cyst size, body weight, protein levels (immunohistochemistry), and mRNA gene expression. These studies demonstrated that estrogen upregulates the gene and protein regulation of cytoskeletal (CK)-18, transforming growth factor-β (TGF-β), VEGF, and tumor necrosis factor (TNF)-α, particularly in the peritoneum. These findings may influence cell proliferation, angiogenesis, fibrosis, and inflammation markers. Consequently, this could exacerbate the occurrence and progression of endometriosis.
Collapse
Affiliation(s)
- Yin-Hua Cheng
- Department of Medical Research and Development, Jen-Ai Hospital, Taichung 412, Taiwan;
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Ching-Wei Huang
- Division of Urology, Department of Surgery, Jen-Ai Hospital, Taichung 412, Taiwan;
| | - Hao-Ting Lien
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College, Kaohsiung 833, Taiwan
| | - Yu-Yang Hsiao
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College, Kaohsiung 833, Taiwan
| | - Pei-Ling Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Yung-Chiao Chang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
| | - Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Leisure and Sports Management, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Kuo-Chung Lan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (H.-T.L.); (Y.-Y.H.); (P.-L.W.); (Y.-C.C.)
- Department of Obstetrics and Gynecology, Jen-Ai Hospital, Taichung 412, Taiwan
- Center for Menopause and Reproductive Medicine Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| |
Collapse
|
2
|
Shibata S, Endo S, Nagai LAE, H. Kobayashi E, Oike A, Kobayashi N, Kitamura A, Hori T, Nashimoto Y, Nakato R, Hamada H, Kaji H, Kikutake C, Suyama M, Saito M, Yaegashi N, Okae H, Arima T. Modeling embryo-endometrial interface recapitulating human embryo implantation. SCIENCE ADVANCES 2024; 10:eadi4819. [PMID: 38394208 PMCID: PMC10889356 DOI: 10.1126/sciadv.adi4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Research and Development Division, Rohto Pharmaceutical Co. Ltd., Osaka 544-8666, Japan
| | - Shun Endo
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Luis A. E. Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eri H. Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Akane Kitamura
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Changes in expression of nuclear factor kappa B subunits in the ovine thymus during early pregnancy. Sci Rep 2022; 12:17683. [PMID: 36271124 PMCID: PMC9587240 DOI: 10.1038/s41598-022-21632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
There is a pregnant maternal immunological tolerance that protects the fetus and promotes its growth, and nuclear factor kappa B (NF-κB) family participates in the regulation of innate immune and adaptive immune responses. The thymus is related to establishing central tolerance, and early pregnancy has effects on expression of a good number of genes and proteins in the maternal thymus in sheep. However, it is unclear whether early pregnancy changes expression of NF-κB subunits in the ovine thymus. In this study, the thymic samples were collected from day 16 of non-pregnant ewes, and days 13, 16 and 25 of pregnant ewes, and the expression of NF-κB members (NF-κB1, NF-κB2, RelA, RelB and c-Rel) was analyzed through real-time quantitative PCR, Western blot and immunohistochemical analysis. The results showed that c-Rel mRNA and protein upregulated at day 25 of pregnancy, and NF-κB1 mRNA and proteins increased at days 16 and 25 of pregnancy, and RelB mRNA and proteins enhanced during early pregnancy. However, expression levels of NF-κB2 and RelA were decreased during early pregnancy, but upregulated from day 13 to 25 of pregnancy. In addition, the RelA protein was located in the epithelial reticular cells, capillaries and thymic corpuscles. This paper reported for the first time that early pregnancy induced expression of NF-κB1, RelB and c-Rel, but inhibited expression of NF-κB2 and RelA in the maternal thymus during early pregnancy, which is involved in the central immune tolerance, and helpful for successful pregnancy in sheep.
Collapse
|
4
|
Fu H, Tan W, Chen Z, Ye Z, Duan Y, Huang J, Qi H, Liu X. TOP2A deficit-induced abnormal decidualization leads to recurrent implantation failure via the NF-κB signaling pathway. Reprod Biol Endocrinol 2022; 20:142. [PMID: 36138481 PMCID: PMC9494868 DOI: 10.1186/s12958-022-01013-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Successful implantation is a complex process that is influenced by embryo quality, endometrial receptivity, immune factors, and the specific type of in vitro fertilization protocol used. DNA topoisomerase IIα (TOP2A) is a well-known protein involved in cell proliferation; however, its expression and effect on the endometrium in recurrent implantation failure (RIF) have not been fully elucidated. METHODS The human endometrial tissues of healthy controls and patients with RIF were collected. A proteomic analysis was performed to evaluate the differentially expressed proteins between the RIF group and the fertile control group. The expression patterns of TOP2A in the human preimplantation endometrium of the patients with RIF were determined by immunohistochemical staining, Western blotting and qRT-PCR. TOP2A knockdown (sh-TOP2A) T-HESCs were generated using lentiviruses. The expression of TOP2A in T-HESCs was manipulated to investigate its role in decidualization. The TOP2A-related changes in decidualization were screened by mRNA sequencing in decidualized TOP2A knockdown and control T-HESCs and then confirmed by Western blotting and immunofluorescence staining. TOP2A-deficient mice were generated by injection of TOP2A-interfering adenovirus on GD2.5 and GD3.5. RESULTS We performed a proteomic analysis of endometrial tissues to investigate the potential pathogenesis of RIF by comparing the patients with RIF and the matched controls and found that TOP2A might be a key protein in RIF. TOP2A is ubiquitously expressed in both stromal and glandular epithelial cells of the endometrium. The data indicate that TOP2A expression is significantly lower in the mid-secretory endometrium of women with RIF. TOP2A expression was downregulated under stimulation by 8-bromo-cAMP and MPA. Ablation of TOP2A resulted in upregulated expression of decidual biomarkers and morphological changes in the cells. Mechanistic analysis revealed that TOP2A regulates the NF-κB signaling pathway in decidualized T-HESCs. The TOP2A-deficient mice exhibited lower fetal weights. CONCLUSIONS Our findings revealed that abnormal expression of TOP2A affects decidualization and changes the "window of implantation", leading to RIF. TOP2A participates in the processes of decidualization and embryo implantation, functioning at least in part through the NF-κB pathway. Regulating the expression of TOP2A in the endometrium may become a new strategy for the prevention and treatment of RIF.
Collapse
Affiliation(s)
- Huijia Fu
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Wang Tan
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Chen
- Department of Gynecology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, No, China
| | - Zi Ye
- Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuhan Duan
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayu Huang
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Hongbo Qi
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China.
- Department of Obstetrics, Women and Children's Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), 400010, Chongqing, China.
| | - Xiru Liu
- Department of Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Preimplantation Endometrial Transcriptomics in Natural Conception Cycle of the Rhesus Monkey. REPRODUCTIVE MEDICINE 2022. [DOI: 10.3390/reprodmed3010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is no report on preimplantation phase endometrial transcriptomics in natural conception cycles of primates. In the present study, the whole-genome expression array of endometrium on Days 2, 4, and 6 post-ovulation (pov) in proven natural conception (Group 1; n = 12) and non-mated, ovulatory (Group 2; n = 12) cycles of rhesus monkeys was examined, compared, and validated. Of fifteen (15) genes showing differential expression (>2-fold; pFDR < 0.05), six genes (CHRND, FOXD3, GJD4, MAPK8IP3, MKS1, and NUP50) were upregulated, while eight genes (ADCY5, ADIPOR1, NNMT, PATL1, PIGV, TGFBR2, TOX2, and VWA5B1) were down regulated on Day 6 pov as compared to Day 2 pov in conception cycles. On Day 6 pov, four genes (ADCY5, NNMT, TOX2, and VWA5B1) were down regulated, and AVEN was upregulated in conception cycles compared with the non-conception cycle. These observations were orthogonally validated at protein expression level. Group-specifically expressed unique genes in conception cycles influence the process of induction of immune-tolerance, while the genes expressed in both groups influence processes of protein targeting and metabolism. A triad of timed-actions of progesterone, seminal plasma, and preimplantation embryo putatively regulate several input molecules to CREB, NF-kB, and STAT regulatory networks during secretory phase towards evolution of endometrial receptivity in the rhesus monkey.
Collapse
|
6
|
Faustmann G, Tiran B, Trajanoski S, Obermayer-Pietsch B, Gruber HJ, Ribalta J, Roob JM, Winklhofer-Roob BM. Activation of nuclear factor-kappa B subunits c-Rel, p65 and p50 by plasma lipids and fatty acids across the menstrual cycle. Free Radic Biol Med 2020; 160:488-500. [PMID: 32846215 DOI: 10.1016/j.freeradbiomed.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
This study focused on a comprehensive analysis of the canonical activation pathway of the redox-sensitive transcription factor nuclear factor-kappa B (NF-κB) in peripheral blood mononuclear cells, addressing c-Rel, p65 and p50 activation in 28 women at early (T1) and late follicular (T2) and mid (T3) and late luteal (T4) phase of the menstrual cycle, and possible relations with fasting plasma lipids and fatty acids. For the first time, strong inverse relations of c-Rel with apolipoprotein B were observed across the cycle, while those with LDL cholesterol, triglycerides as well as saturated (SFA), particularly C14-C22 SFA, monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) clustered at T2. In contrast, p65 was positively related to LDL cholesterol and total n-6 PUFA, while p50 did not show any relations. C-Rel was not directly associated with estradiol and progesterone, but data suggested an indirect C22:5n-3-mediated effect of progesterone. Strong positive relations between estradiol and individual SFA, MUFA and n-3 PUFA at T1 were confined to C18 fatty acids; C18:3n-3 was differentially associated with estradiol (positively) and progesterone (inversely). Given specific roles of c-Rel activation in immune tolerance, inhibition of c-Rel activation by higher plasma apolipoprotein B and individual fatty acid concentrations could have clinical implications for female fertility.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria; Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
7
|
Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int J Mol Sci 2020; 21:ijms21051750. [PMID: 32143439 PMCID: PMC7084761 DOI: 10.3390/ijms21051750] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Early and accurate diagnosis of endometriosis is crucial for the management of this benign, yet debilitating pathology. Despite the advances of modern medicine, there is no common ground regarding the pathophysiology of this disease as it continues to affect the quality of life of millions of women of reproductive age. The lack of specific symptoms often determines a belated diagnosis. The gold standard remains invasive, surgery followed by a histopathological exam. A biomarker or a panel of biomarkers is easy to measure, usually noninvasive, and could benefit the clinician in both diagnosing and monitoring the treatment response. Several studies have advanced the idea of biomarkers for endometriosis, thereby circumventing unnecessary invasive techniques. Our paper aims at harmonizing the results of these studies in the search of promising perspectives on early diagnosis. METHODS We selected the papers from Google Academic, PubMed, and CrossRef and reviewed recent articles from the literature, aiming to evaluate the effectiveness of various putative serum and urinary biomarkers for endometriosis. RESULTS The majority of studies focused on a panel of biomarkers, rather than a single biomarker and were unable to identify a single biomolecule or a panel of biomarkers with sufficient specificity and sensitivity in endometriosis. CONCLUSION Noninvasive biomarkers, proteomics, genomics, and miRNA microarray may aid the diagnosis, but further research on larger datasets along with a better understanding of the pathophysiologic mechanisms are needed.
Collapse
|
8
|
Nobiletin alleviates endometriosis via down-regulating NF-κB activity in endometriosis mouse model. Biosci Rep 2018; 38:BSR20180470. [PMID: 29871974 PMCID: PMC6013702 DOI: 10.1042/bsr20180470] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/28/2018] [Accepted: 06/01/2018] [Indexed: 12/23/2022] Open
Abstract
Nobiletin exhibits protective potential on inflammation and inhibits the activation of transcription factors nuclear factor-κB (NF-κB). However, its effects on the progression of endometriosis remain unsettled. The present study aimed to explore the in vivo alleviation of nobiletin on endometriosis and its mechanism of action. The mouse model of endometriosis was established and administered with nobiletin. The ectopic lesion size was measured and the hotplate test was performed to assess the amelioration of nobiletin on endometriosis. The expression of proliferation and angiogenesis relevant genes including proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and E-cadherin was measured by immunostaining and the mRNA expression of proinflammatory mediators including interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, matrix metalloproteinases (MMP)-1, and MMP-3 was measured by RT-PCR. The change of NF-κB activity in endometriotic cells was evaluated by Western blotting and confirmed by luciferase assay. Administration of nobiletin significantly reduced lesions size and pain in endometriosis mice. Nobiletin significantly altered the expression of PCNA, VEGF, and E-cadherin in ectopic endometrium, as well as the levels of IL-6, IL-1β, TNF-α, MMP-1, and MMP-3. Nobiletin also showed remarkably impairment on the activation of NF-κB in promoting endometriotic cells, likely targeting on the activity of IκB kinases (IKKs). The present study provides the first evidence that nobiletin exerts protection on endometriosis via inhibition the activation of NF-κB, specifically on the activity of IκB kinases.
Collapse
|
9
|
Arlıer S, Kayışlı ÜA, Arıcı A. Tumor necrosis factor alfa and interleukin 1 alfa induced phosphorylation and degradation of inhibitory kappa B alpha are regulated by estradiol in endometrial cells. Turk J Obstet Gynecol 2018; 15:50-59. [PMID: 29662717 PMCID: PMC5894537 DOI: 10.4274/tjod.47700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: When bound to the inhibitory kappa B (IкB) protein, the transcription factor nuclear factor kappa B (NF-кB) remains inactively in the cytoplasm. Activated NF-кB upregulates the gene expression of many chemokines including monocyte chemoattractant protein-1 and interleukin (IL)-8. We hypothesized that estrogen may regulate IкB phosphorylation and degradation thus influencing NF-кB-dependent gene expression. Regulation of chemokines by estrogen is different in uterine endometrial cells when compared to ectopic endometrial cells of endometriosis. Materials and Methods: We investigated the in vivo expression of IкB in normal endometrium and in eutopic and ectopic endometrium of women with endometriosis. We then studied in cultured endometrial cells to assess the effects of estradiol on IкB and NF-кB function. Results: Normal endometrium from mid-late proliferative phase revealed the strongest IкB immunoreactivity throughout the cycle (p<0.05). When compared to paired homologous eutopic endometrium, ectopic endometrium revealed significantly less immunoreactivity for IкB (p<0.05). Moreover, estradiol induced a decrease in tumor necrosis factor-and IL-1-induced IкB phosphorylation, and also decreased the levels of active-NF-кB (p<0.05). Conclusion: Our results support the conclusion that one pathway for estradiol-mediated NF-кB inhibition occurs through the down-regulation of IкB phosphorylation. We propose that the estradiol-induced regulation of IкB and consequent reduction in active-NF-кB may affect inflammatory responses in human endometrial cells.
Collapse
Affiliation(s)
- Sefa Arlıer
- University of South Florida Faculty of Medicine, Department of Obstetrics and Gynecology, Tampa, USA.,University of Health Sciences, Adana Numune Training and Research Hospital, Clinic of Obstetrics and Gynecology, Adana, Turkey
| | - Ümit Ali Kayışlı
- University of South Florida Faculty of Medicine, Department of Obstetrics and Gynecology, Tampa, USA
| | - Aydın Arıcı
- Yale University Faculty of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New Haven, USA.,Anadolu Medical Center, Clinic of Reproductive Endocrinology and Infertility, İstanbul, Turkey
| |
Collapse
|
10
|
Lousse JC, Defrère S, Ramos RG, Van Langendonckt A, Colette S, Donnez J. Involvement of Iron, Nuclear Factor-Kappa B (NF-κB) and Prostaglandins in the Pathogenesis of Peritoneal Endometriosis-Associated Inflammation: A Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/228402650900100104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peritoneal endometriosis is a chronic pelvic inflammatory disease, characterized by increased numbers of peritoneal macrophages and their secreted products such as cytokines, growth and angiogenic factors in peritoneal fluid. Inflammation plays a major role in pain and infertility associated with endometriosis, but is also extensively involved in the molecular and cellular processes that lead to peritoneal endometriotic lesion development. Several inflammatory mediators have therefore been studied in the context of endometriosis over the last few years. The aim of this review is to focus on three that have been clearly implicated in the pathogenesis of endometriosis and may be linked: peritoneal iron metabolism, nuclear factor-kappa B (NF-κB) activation, and prostaglandin biosynthesis. Peritoneal iron overload has been conclusively demonstrated in endometriosis patients and may induce oxidative stress in the peritoneal cavity. Oxidative stress and proinflammatory cytokines are well known to be potent activators of the NF-κB pathway, which has recently been implicated in peritoneal endometriosis. Induced NF-κB activation leads to expression of numerous proinflammatory genes such as cytokines, which may provide positive feedback to the pathway, self-perpetuating the inflammatory response. Other important NF-κB-regulated molecules are prostaglandin biosynthesis enzymes, and cyclooxygenase-2 (COX-2) in particular. Increased concentrations of prostaglandins have been evidenced in the peritoneal fluid of endometriosis patients and COX-2 inhibitors have proved to be effective in ‘in vitro’ and ‘in vivo’ experimental models. In the light of available data collected from patient biopsies, as well as ‘in vitro’ and ‘in vivo’ studies, the respective implication and potential molecular association of iron, NF-κB and prostaglandins in the pathogenesis of endometriosis are discussed. The key role of peritoneal macrophages is emphasized and potential therapeutic targets are examined.
Collapse
Affiliation(s)
| | - Sylvie Defrère
- Department of Gynecology, Université Catholique de Louvain, 1200 Brussels - Belgium
| | | | | | - Sébastien Colette
- Department of Gynecology, Université Catholique de Louvain, 1200 Brussels - Belgium
| | - Jacques Donnez
- Department of Gynecology, Université Catholique de Louvain, 1200 Brussels - Belgium
| |
Collapse
|
11
|
Geisert RD, Whyte JJ, Meyer AE, Mathew DJ, Juárez MR, Lucy MC, Prather RS, Spencer TE. Rapid conceptus elongation in the pig: An interleukin 1 beta 2 and estrogen‐regulated phenomenon. Mol Reprod Dev 2017; 84:760-774. [DOI: 10.1002/mrd.22813] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/14/2017] [Accepted: 04/04/2017] [Indexed: 12/25/2022]
Affiliation(s)
| | - Jeffrey J. Whyte
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Ashley E. Meyer
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Daniel J. Mathew
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - María R. Juárez
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | - Matthew C. Lucy
- Division of Animal SciencesUniversity of MissouriColumbiaMissouri
| | | | | |
Collapse
|
12
|
Faustmann G, Tiran B, Maimari T, Kieslinger P, Obermayer-Pietsch B, Gruber HJ, Roob JM, Winklhofer-Roob BM. Circulating leptin and NF-κB activation in peripheral blood mononuclear cells across the menstrual cycle. Biofactors 2016; 42:376-87. [PMID: 27093900 DOI: 10.1002/biof.1281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 12/13/2022]
Abstract
Using the menstrual cycle as a model, this study focused on longitudinal changes and associations within a physiological network known to play a role in female fertility, including, as biologically active nodes, NF-κB, leptin and adiponectin, β-carotene, adipose tissue, and progesterone. In 28 women, leptin, adiponectin, β-carotene, and progesterone concentrations, NF-κB p65 and p50 activation in peripheral blood mononuclear cells (known to possess estrogen, progesterone and leptin receptors), total body fat (TBF) and subcutaneous adipose tissue (SAT) mass were determined at early (T1) and late follicular (T2) and mid (T3) and late (T4) luteal phase. Leptin and adiponectin concentrations were higher, while NF-κB p65 activation was lower at T3 compared with T1. NF-κB p65 activation was inversely related to leptin concentrations at T1, T3, and T4. β-Carotene was inversely related to leptin (T1,T2,T4) and SAT (T1,T3,T4). NF-κB p50 activation was inversely related to TBF (T4) and SAT (T3,T4), and leptin was positively related to TBF and SAT (T1-T4). Progesterone was inversely related to leptin (T2,T3), adiponectin (T3), TBF (T3,T4), and SAT (T2,T3,T4). By providing evidence of luteal phase-specific reduced NF-κB p65 activation in women under physiological conditions, this study bridges the gap between existing evidence of a Th1-Th2 immune response shift induced by reduced NF-κB p65 activation and a Th1-Th2 shift previously observed at luteal phase. For the first time, inverse regressions suggest inhibitory effects of leptin on NF-κB p65 activation at luteal phase, along with inhibitory effects of leptin as well as adiponectin on progesterone production in corpus luteum. © 2016 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology. 24(4):376-387, 2016.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Theopisti Maimari
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Petra Kieslinger
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 27, 8036 Graz, Austria
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, Karl-Franzens University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
13
|
Mathew DJ, Lucy MC, D Geisert R. Interleukins, interferons, and establishment of pregnancy in pigs. Reproduction 2016; 151:R111-22. [PMID: 27001998 DOI: 10.1530/rep-16-0047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 01/27/2023]
Abstract
Early pregnancy in mammals requires complex and highly orchestrated cellular and molecular interactions between specialized cells within the endometrium and the conceptus. Proinflammatory cytokines are small signaling proteins released by leukocytes that augment innate and adaptive immune responses. They are also released by the mammalian trophectoderm as the conceptus apposes the uterine surface for implantation. On approximately day 12 of development in pigs, the conceptus undergoes a rapid morphological transformation referred to as elongation while simultaneously releasing estrogens and a novel conceptus form of interleukin-1 beta (IL1β). Following elongation, pig conceptuses express interferon gamma (IFNγ) and, in lesser amounts, interferon delta (IFNδ). Significant IFN signaling takes place within the endometrium between day 14 and 18 of pregnancy as the conceptus intimately associates with the uterine epithelium. Based on studies carried out in pigs and other mammals, the combined spacio-temporal activities of conceptus estrogens, IL1β, and IFN set in motion a series of coordinated events that promote establishment of pregnancy. This is achieved through enhancement of conceptus development, uterine receptivity, maternal-fetal hemotropic exchange, and endometrial leukocyte function. These events require activation of specific signaling pathways within the uterine luminal epithelium, glandular epithelium, and stroma. Here, we review proinflammatory cytokine expression by pig conceptuses and the hypothesized actions of these molecules during establishment of pregnancy.
Collapse
Affiliation(s)
- Daniel J Mathew
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - Matthew C Lucy
- Division of Animal SciencesUniversity of Missouri, Columbia, Missouri, USA
| | - Rodney D Geisert
- Division of Animal SciencesUniversity of Missouri, Columbia, Missouri, USA
| |
Collapse
|
14
|
Sierra-Mondragón E, Gómez-Chávez F, Murrieta-Coxca M, Vázquez-Sánchez EA, Martínez-Torres I, Cancino-Díaz ME, Rojas-Espinosa O, Cancino-Díaz JC, Reyes-Sánchez JL, Rodríguez-Muñóz R, Rodríguez-Martínez S. Low expression of IL-6 and TNF-α correlates with the presence of the nuclear regulators of NF-κB, IκBNS and BCL-3, in the uterus of mice. Mol Immunol 2015; 68:333-40. [PMID: 26442662 DOI: 10.1016/j.molimm.2015.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/18/2015] [Accepted: 09/23/2015] [Indexed: 01/03/2023]
Abstract
The dynamic regulation of NF-κB activity in the uterus maintains a favorable environment of cytokines necessary to prepare for pregnancy throughout the estrous cycle. Recently, the mechanisms that directly regulate the NF-κB transcriptional activity in different tissues are of growing interest. IκBNS and BCL-3 are negative nuclear regulators of NF-κB activity that regulate IL-6 and TNF-α transcription, respectively. Both cytokines have been described as important factors in the remodeling of uterus for blastocyst implantation. In this work we analyzed in ICR mice the mRNA expression and protein production profile of IL-6, TNF-α, and their correspondent negative transcription regulators IκBNS or BCL-3 using real-time PCR, western blot and immunochemistry. We found that the expression of TNF-α and IL-6 was oscillatory along the estrous cycle, and its low expression coincided with the presence of BCL-3 and IκBNS, and vice versa, when the presence of the regulators was subtle, the expression of TNF-α and IL-6 was exacerbated. When we compared the production of TNF-α and IL-6 in the different estrous stages relating with diestrus we found that at estrus there is an important increase of the cytokines (p<0.05) decreasing at metestrus to reach the basal expression at diestrus. In the immunochemistry analysis we found that at diestrus BCL-3 is distributed all over the tissue with a barely detected TNF-α, but on the contrary, at estrus the expression of BCL-3 is not detected with TNF-α clearly observable along the tissue; the same phenomenon occur in the analysis of IκBNS and IL-6. With that evidence we suggest that the expression of TNF-α and IL-6 might be regulated through NF-κB nuclear regulators BCL-3 and IκBNS in the uterus of mice as has been demonstrated in other systems.
Collapse
Affiliation(s)
- Edith Sierra-Mondragón
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - Fernando Gómez-Chávez
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - Martín Murrieta-Coxca
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - Ernesto A Vázquez-Sánchez
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - Isaí Martínez-Torres
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - Mario E Cancino-Díaz
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - Oscar Rojas-Espinosa
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - Juan Carlos Cancino-Díaz
- Department of Microbiology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico
| | - José Luis Reyes-Sánchez
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Rafael Rodríguez-Muñóz
- Department of Physiology, Biophysics, and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Sandra Rodríguez-Martínez
- Department of Immunology, National School of Biological Sciences of the National Polytechnic Institute, Mexico City, Mexico.
| |
Collapse
|
15
|
Bozkurt M, Şahin L, Ulaş M. Hysteroscopic polypectomy decreases NF-κB1 expression in the mid-secretory endometrium of women with endometrial polyp. Eur J Obstet Gynecol Reprod Biol 2015; 189:96-100. [DOI: 10.1016/j.ejogrb.2015.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 03/08/2015] [Accepted: 03/31/2015] [Indexed: 11/28/2022]
|
16
|
Hendry WJ, Hariri HY, Alwis ID, Gunewardena SS, Hendry IR. Altered gene expression patterns during the initiation and promotion stages of neonatally diethylstilbestrol-induced hyperplasia/dysplasia/neoplasia in the hamster uterus. Reprod Toxicol 2014; 50:68-86. [PMID: 25242112 DOI: 10.1016/j.reprotox.2014.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/18/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Neonatal treatment of hamsters with diethylstilbestrol (DES) induces uterine hyperplasia/dysplasia/neoplasia (endometrial adenocarcinoma) in adult animals. We subsequently determined that the neonatal DES exposure event directly and permanently disrupts the developing hamster uterus (initiation stage) so that it responds abnormally when it is stimulated with estrogen in adulthood (promotion stage). To identify candidate molecular elements involved in progression of the disruption/neoplastic process, we performed: (1) immunoblot analyses and (2) microarray profiling (Affymetrix Gene Chip System) on sets of uterine protein and RNA extracts, respectively, and (3) immunohistochemical analysis on uterine sections; all from both initiation stage and promotion stage groups of animals. Here we report that: (1) progression of the neonatal DES-induced hyperplasia/dysplasia/neoplasia phenomenon in the hamster uterus involves a wide spectrum of specific gene expression alterations and (2) the gene products involved and their manner of altered expression differ dramatically during the initiation vs. promotion stages of the phenomenon.
Collapse
Affiliation(s)
- William J Hendry
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States.
| | - Hussam Y Hariri
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| | - Imala D Alwis
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| | - Sumedha S Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Bioinformatics Core, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Isabel R Hendry
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260-0026, United States
| |
Collapse
|
17
|
Taguchi A, Wada-Hiraike O, Kawana K, Koga K, Yamashita A, Shirane A, Urata Y, Kozuma S, Osuga Y, Fujii T. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: a possible role of the sirtuin 1 pathway. J Obstet Gynaecol Res 2013; 40:770-8. [PMID: 24320086 DOI: 10.1111/jog.12252] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/27/2013] [Indexed: 01/03/2023]
Abstract
AIM Endometriosis is a chronic inflammatory disease. Sirtuin 1 (SIRT1) plays a role in regulation of inflammation. The role of SIRT1 in endometriosis remains unknown. We here addressed the anti-inflammatory effects of SIRT1 on endometriosis. METHODS The expression of SIRT1 in human ovarian endometriomas and eutopic endometria were examined using immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). Endometriotic stromal cells (ESC) obtained from endometriomas were exposed to either resveratrol or sirtinol, an activator or inhibitor of sirtuins, respectively, and tumor necrosis factor (TNF)-α-induced interleukin (IL)-8 release from the ESC was assessed at mRNA and protein levels. RESULTS Both immunochemistry and RT-PCR demonstrated that SIRT1 was expressed in ESC and normal endometrial stromal cells. Resveratrol suppressed TNF-α-induced IL-8 release from the ESC in a dose-dependent manner while sirtinol increased IL-8 release. CONCLUSION These opposing effects of SIRT1-related agents suggest that IL-8 release from the ESC is modulated through the SIRT1 pathway. Resveratrol may have the potential to ameliorate local inflammation in endometriomas.
Collapse
Affiliation(s)
- Ayumi Taguchi
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yoshinaga K, PrabhuDas M, Davies C, White K, Caron K, Golos T, Fazleabas A, Paria B, Mor G, Paul S, Ye X, Dey SK, Spencer T, Roberts RM. Interdisciplinary collaborative team for blastocyst implantation research: inception and perspectives. Am J Reprod Immunol 2013; 71:1-11. [PMID: 24286196 DOI: 10.1111/aji.12173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Koji Yoshinaga
- Fertility and Infertility Branch, NICHD, NIH, DHHS, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim SH, Ihm HJ, Oh YS, Chae HD, Kim CH, Kang BM. Increased nuclear expression of nuclear factor kappa-B p65 subunit in the eutopic endometrium and ovarian endometrioma of women with advanced stage endometriosis. Am J Reprod Immunol 2013; 70:497-508. [PMID: 24118362 DOI: 10.1111/aji.12161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 08/27/2013] [Indexed: 11/28/2022] Open
Abstract
PROBLEM We evaluated whether the expression of NF-кB p65 subunit is increased in the eutopic endometrium and/or in the ovarian endometrioma of women with advanced stage endometriosis, and ascertained in vitro effects of proinflammatory cytokines on the expression and DNA binding of NF-кB p65 subunit in endometrial cells. METHOD OF STUDY Immunohistochemistry was performed to compare the nuclear NF-кB p65 subunit immunoreactivity between women with and without advanced stage endometriosis. The nuclear NF-кB p65 subunit expression and DNA binding were also analyzed in endometrial cells treated with tumor necrosis factor-alpha (TNF-α) or interleukin-1beta (IL-1β) utilizing Western blot analysis, enzyme-linked immunosorbent assay, and electrophoretic mobility shift assay. RESULTS The immunoreactivity of the nuclear NF-кB p65 subunit was significantly increased in the eutopic endometrium as well as in the ovarian endometrioma of women with endometriosis compared with the controls. In vitro treatment of endometrial cells with TNF-α and IL-1β led to a significant increase in nuclear NF-кB p65 subunit expression and DNA binding. CONCLUSIONS The nuclear expression of NF-κB p65 is increased in the eutopic endometrium and ovarian endometrioma of women with advanced stage endometriosis, which strongly suggests that NF-кB signaling plays a crucial role in the pathogenesis and/or pathophysiology of endometriosis.
Collapse
Affiliation(s)
- Sung Hoon Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
20
|
Cyclosporine A promotes in vitro migration of human first-trimester trophoblasts via MAPK/ERK1/2-mediated NF-κB and Ca2+/calcineurin/NFAT signaling. Placenta 2013; 34:374-80. [DOI: 10.1016/j.placenta.2013.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 01/24/2023]
|
21
|
Song Y, Wang Q, Huang W, Xiao L, Shen L, Xu W. NF κB expression increases and CFTR and MUC1 expression decreases in the endometrium of infertile patients with hydrosalpinx: a comparative study. Reprod Biol Endocrinol 2012; 10:86. [PMID: 23061681 PMCID: PMC3551815 DOI: 10.1186/1477-7827-10-86] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/10/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Hydrosalpinx are associated with infertility, due to reduced rates of implantation and increased abortion rates. The aims of this study were to investigate the expression of cystic fibrosis transmembrane conductance regulator (CFTR), nuclear factor kappa B (NF KappaB) and mucin-1 (MUC-1), and analyze the correlation between the expression of CFTR and NF KappaB or MUC1, in the endometrium of infertile women with and without hydrosalpinx. METHODS Thirty-one infertile women with laparoscopy-confirmed unilateral or bilateral hydrosalpinx and 20 infertile women without hydrosalpinx or pelvic inflammatory disease (control group) were recruited. Endometrial biopsy samples were collected and the expression of CFTR, NF KappaB and MUC1 were analyzed using immunohistochemistry and quantitative real-time PCR. RESULTS CFTR, NF KappaB and MUC1 mRNA and protein expression tended to increase in the secretory phase compared to the proliferative phase in both groups; however, these differences were not significantly different. The endometrium of infertile patients with hydrosalpinx had significantly higher NF KappaB mRNA and protein expression, and significantly lower CFTR and MUC1 mRNA and protein expression, compared to control infertile patients. A positive correlation was observed between CFTR and MUC1 mRNA expression (r = 0.65, P < 0.05); a negative correlation was observed between CFTR mRNA and NF KappaB mRNA expression (r = -0.59, P < 0.05). CONCLUSIONS Increased NF KappaB expression and decreased CFTR and MUC1 expression in the endometrium of infertile patients with hydrosalpinx reinforce the involvement of a molecular mechanism in the regulation of endometrial receptivity.
Collapse
Affiliation(s)
- Yong Song
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Sichuan, China
| | - Qiushi Wang
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Sichuan, China
| | - Wei Huang
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Sichuan, China
| | - Li Xiao
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Sichuan, China
| | - Licong Shen
- Department of Gynecology and Obstetrics, West China Second University Hospital of Sichuan University, Sichuan, China
| | - Wenming Xu
- The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital of Sichuan University, Sichuan, China
| |
Collapse
|
22
|
González-Ramos R, Defrère S, Devoto L. Nuclear factor-kappaB: a main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil Steril 2012; 98:520-8. [PMID: 22771029 DOI: 10.1016/j.fertnstert.2012.06.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/05/2012] [Accepted: 06/08/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To update, analyze, and summarize the literature concerning nuclear factor-kappaB (NF-κB) participation in endometriosis pathophysiology. DESIGN Review. RESULT(S) Nuclear factor-kappaB is physiologically activated in the human endometrium, showing variable activity. A cyclic p65-DNA binding pattern was shown in the endometrium of healthy women. This cyclic pattern was altered in the endometrium of patients with endometriosis. Nuclear factor-kappaB is basally activated in peritoneal endometriotic lesions, showing higher p65 activity in red endometriotic lesions than in black lesions. In vivo and in vitro studies show up-regulation of inflammation and cell proliferation and down-regulation of apoptosis by NF-κB activity. Iron overload has been shown in the pelvic cavity of endometriosis patients, and iron overload and oxidative stress activate NF-κB in macrophages, which have been shown to participate in the endometriosis-associated inflammatory reaction. CONCLUSION(S) Nuclear factor-kappaB activation dysregulation in the endometrium of endometriosis patients may explain some endometrial biological alterations associated with endometriosis. The scientific evidence strongly suggests that NF-κB activity in endometriotic cells stimulates inflammation and cell proliferation and inhibits apoptosis, favoring the development and maintenance of endometriosis. Iron overload in the pelvic cavity of endometriosis patients could be a main factor enhancing oxidative stress and activating NF-κB in a chronic manner, contributing to endometriosis establishment and growth.
Collapse
Affiliation(s)
- Reinaldo González-Ramos
- Instituto de Investigaciones Materno Infantil, Departamento de Obstetricia y Ginecología, Hospital Clínico San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
23
|
Abraham F, Sacerdoti F, De León R, Gentile T, Canellada A. Angiotensin II activates the calcineurin/NFAT signaling pathway and induces cyclooxygenase-2 expression in rat endometrial stromal cells. PLoS One 2012; 7:e37750. [PMID: 22662209 PMCID: PMC3360626 DOI: 10.1371/journal.pone.0037750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca(2+) concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca(2+) signals is the activity of the Ca(2+)- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression--both mRNA and protein--was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression--both mRNA and protein--was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of non-pregnant but not of early-pregnant rats. These results might be related to differential roles that COX-2 plays in the endometrium.
Collapse
Affiliation(s)
- Florencia Abraham
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flavia Sacerdoti
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Romina De León
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Teresa Gentile
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrea Canellada
- Instituto de Estudios de la Inmunidad Humoral “Profesor Ricardo A. Margni” (CONICET-UBA), Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
24
|
Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β. Cell Tissue Res 2012; 349:825-38. [PMID: 22382391 DOI: 10.1007/s00441-012-1356-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/30/2012] [Indexed: 01/09/2023]
Abstract
Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review.
Collapse
|
25
|
Shaw JLV, Wills GS, Lee KF, Horner PJ, McClure MO, Abrahams VM, Wheelhouse N, Jabbour HN, Critchley HOD, Entrican G, Horne AW. Chlamydia trachomatis infection increases fallopian tube PROKR2 via TLR2 and NFκB activation resulting in a microenvironment predisposed to ectopic pregnancy. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 178:253-60. [PMID: 21224062 PMCID: PMC3016599 DOI: 10.1016/j.ajpath.2010.11.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 12/01/2022]
Abstract
Chlamydia trachomatis and smoking are major risk factors for tubal ectopic pregnancy (EP), but the underlying mechanisms of these associations are not completely understood. Fallopian tube (FT) from women with EP exhibit altered expression of prokineticin receptors 1 and 2 (PROKR1 and PROKR2); smoking increases FT PROKR1, resulting in a microenvironment predisposed to EP. We hypothesize that C. trachomatis also predisposes to EP by altering FT PROKR expression and have investigated this by examining NFκB activation via ligation of the Toll-like receptor (TLR) family of cell-surface pattern recognition receptors. PROKR2 mRNA was higher in FT from women with evidence of past C. trachomatis infection than in those without (P < 0.05), and was also increased in FT explants and in oviductal epithelial cell line OE-E6/E7 infected with C. trachomatis (P < 0.01) or exposed to UV-killed organisms (P < 0.05). The ability of both live and dead organisms to induce this effect suggests ligation of a cell-surface-expressed receptor. FT epithelium and OE-E6/E7 were both found to express TLR2 and TLR4 by immunohistochemistry. Transfection of OE-E6/E7 cells with dominant-negative TLR2 or IκBα abrogated the C. trachomatis–induced PROKR2 expression. We propose that ligation of tubal TLR2 and activation of NFκB by C. trachomatis leads to increased tubal PROKR2, thereby predisposing the tubal microenvironment to ectopic implantation.
Collapse
Affiliation(s)
- Julie L V Shaw
- Centre for Reproductive Biology, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
González-Ramos R, Van Langendonckt A, Defrère S, Lousse JC, Colette S, Devoto L, Donnez J. Involvement of the nuclear factor-κB pathway in the pathogenesis of endometriosis. Fertil Steril 2010; 94:1985-94. [PMID: 20188363 DOI: 10.1016/j.fertnstert.2010.01.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To evaluate the role of nuclear factor-κB (NF-κB) in the pathogenesis of endometriosis. DESIGN A literature search was conducted in PubMed to identify all relevant citations. RESULT(S) Our findings highlight the important role of NF-κB in the pathophysiology of endometriosis. In vitro and in vivo studies show that NF-κB-mediated gene transcription promotes inflammation, invasion, angiogenesis, and cell proliferation and inhibits apoptosis of endometriotic cells. Constitutive activation of NF-κB has been demonstrated in endometriotic lesions and peritoneal macrophages of endometriosis patients. Agents blocking NF-κB are effective inhibitors of endometriosis development and some drugs with known NF-κB inhibitory properties have proved efficient at reducing endometriosis-associated symptoms in women. Iron overload activates NF-κB in macrophages. NF-κB activation in macrophages and ectopic endometrial cells stimulates synthesis of proinflammatory cytokines, generating a positive feedback loop in the NF-κB pathway and promoting endometriotic lesion establishment, maintenance and development. CONCLUSION(S) NF-κB transcriptional activity modulates key cell processes contributing to the initiation and progression of endometriosis. Because endometriosis is a multifactorial disease, inhibiting NF-κB appears to be a promising strategy for future therapies targeting different cell functions involved in endometriosis development, such as cell adhesion, invasion, angiogenesis, inflammation, proliferation, and apoptosis. Upcoming research will elucidate these hypotheses.
Collapse
Affiliation(s)
- Reinaldo González-Ramos
- Instituto de Investigaciones Materno Infantil, Departamento de Obstetricia y Ginecología, Hospital Clínico San Borja-Arriarán, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|
27
|
King A, Collins F, Klonisch T, Sallenave JM, Critchley H, Saunders P. An additive interaction between the NFkappaB and estrogen receptor signalling pathways in human endometrial epithelial cells. Hum Reprod 2010; 25:510-8. [PMID: 19955102 PMCID: PMC2806182 DOI: 10.1093/humrep/dep421] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/01/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human embryo implantation is regulated by estradiol (E2), progesterone and locally produced mediators including interleukin-1beta (IL-1beta). Interactions between the estrogen receptor (ER) and NF kappa B (NFkappaB) signalling pathways have been reported in other systems but have not been detailed in human endometrium. METHODS AND RESULTS Real-time PCR showed that mRNA for the p65 and p105 NFkappaB subunits is maximally expressed in endometrium from the putative implantation window. Both subunits are localized in the endometrial epithelium throughout the menstrual cycle. Reporter assays for estrogen response element (ERE) activity were used to examine functional interactions between ER and NFkappaB in telomerase immortalized endometrial epithelial cells (TERT-EEC). E2 and IL-1beta treatment of TERT-EECs enhances ERE activity by a NFkappaB and ER dependent mechanism; this effect could be mediated by ERalpha or ERbeta. E2 and IL-1beta also positively interact to increase endogenous gene expression of prostaglandin E synthase and c-myc. This is a gene-dependent action as there is no additive effect on cyclin D1 or progesterone receptor expression. CONCLUSION In summary, we have established that NFkappaB signalling proteins are expressed in normal endometrium and report that IL-1beta can enhance the actions of E2 in a cell line derived from healthy endometrium. This mechanism may allow IL-1beta, possibly from the developing embryo, to modulate the function of the endometrial epithelium to promote successful implantation, for example by regulating prostaglandin production. Aberrations in the interaction between the ER and NFkappaB signalling pathways may have a negative impact on implantation contributing to pathologies such as early pregnancy loss and infertility.
Collapse
Affiliation(s)
- A.E. King
- Reproductive & Developmental Sciences, University of Edinburgh, Edinburgh, UK
| | - F. Collins
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - T. Klonisch
- Department of Human Anatomy & Cell Science, University of Manitoba, Winnipeg, Canada
| | - J.-M. Sallenave
- Universite Denis Diderot, Paris 7, France
- Unite de Defense Innee et Inflammation, INSERM U874, Batiment Metchnikoff, Institut Pasteur, 25, rue du Dr Roux, 75724 Paris Cedex, France
| | - H.O.D. Critchley
- Reproductive & Developmental Sciences, University of Edinburgh, Edinburgh, UK
| | - P.T.K. Saunders
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
28
|
|
29
|
Bruner-Tran KL, Yeaman GR, Crispens MA, Igarashi TM, Osteen KG. Dioxin may promote inflammation-related development of endometriosis. Fertil Steril 2008; 89:1287-98. [PMID: 18394613 DOI: 10.1016/j.fertnstert.2008.02.102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 02/08/2008] [Accepted: 02/08/2008] [Indexed: 01/09/2023]
Abstract
Laboratory and population-based studies suggest that exposure to environmental toxicants may be one of several triggers for the development of endometriosis. We discuss evidence that modulation of the endometrial endocrine-immune interface could mechanistically link toxicant exposure to the development of this disease.
Collapse
Affiliation(s)
- Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
30
|
González-Ramos R, Van Langendonckt A, Defrère S, Lousse JC, Mettlen M, Guillet A, Donnez J. Agents blocking the nuclear factor-kappaB pathway are effective inhibitors of endometriosis in an in vivo experimental model. Gynecol Obstet Invest 2007; 65:174-86. [PMID: 18025832 DOI: 10.1159/000111148] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 05/08/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND In vitro studies suggest that the transcription factor nuclear factor-kappa B (NF-kappaB) is implicated in the transduction of proinflammatory signals in endometriosis. The aim of this study was to investigate the involvement of NF-kappaB and the processes regulated by NF-kappaB in the initial development of endometriotic lesionsin vivo. METHODS Endometriosis was induced in nude mice by intraperitoneal injection of fluorescent-labeled menstrual endometrium. Two NF-kappaB inhibitors (BAY 11-7085 and SN-50) were injected intraperitoneally on days 0, 2 and 4 after endometriosis induction, and endometriotic lesions were recovered on day 5. Number, mass, fluorimetry and surface (morphometry) of endometriotic lesions were quantified. NF-kappaB activation, intercellular adhesion molecule (ICAM)-1 expression, cell proliferation and apoptosis were evaluated by immunohistochemical analyses and the TUNEL method. RESULTS Both NF-kappaB inhibitors induced a significant reduction in lesion development compared to control mice. NF-kappaB activation and ICAM-1 expression of endometriotic lesions were significantly reduced in treated mice, and cell proliferation was significantly reduced in BAY 11-7085-treated mice. Both inhibitors produced a significant increase in apoptosis of endometriotic lesions, as assessed by active caspase-3 immunostaining and the TUNEL method. CONCLUSION This study demonstrates, for the first time, that the NF-kappaB pathway is implicated in the development of endometriotic lesions in vivo and that NF-kappaB inhibition reduces ICAM-1 expression and cell proliferation, but increases apoptosis of endometriotic lesions, diminishing the initial development of endometriosis in an animal model.
Collapse
|
31
|
González-Ramos R, Donnez J, Defrère S, Leclercq I, Squifflet J, Lousse JC, Van Langendonckt A. Nuclear factor-kappa B is constitutively activated in peritoneal endometriosis. ACTA ACUST UNITED AC 2007; 13:503-9. [PMID: 17483545 DOI: 10.1093/molehr/gam033] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Red (active), black and white endometriotic lesions are characteristic of peritoneal endometriosis. The transcription factor nuclear factor-kappa B (NF-kappaB) activates proinflammatory, proliferative and antiapoptotic genes in many cell types. To determine whether NF-kappaB is activated in peritoneal endometriosis in women, and further ascertain the differential inflammatory status of endometriotic implants, NF-kappaB activation and intercellular adhesion molecule (ICAM)-1 expression were investigated in peritoneal endometriotic lesions according to their type. Furthermore, p65 and p50 subunits of active NF-kappaB dimers were evaluated in endometriotic lesions to gain some insight into NF-kappaB-implicated pathways. Thirty-six biopsies of peritoneal endometriotic lesions were analyzed. Constitutive NF-kappaB activation, involving p65- and p50-containing dimers, was demonstrated in peritoneal endometriotic lesions by electrophoretic mobility shift assays and supershift analyses, as well as NF-kappaB (p65) DNA-binding activity immunodetection assays. NF-kappaB activation and ICAM-1 expression (evaluated by immunoblotting) were significantly higher in red lesions than black lesions, whereas IkappaBalpha (NF-kappaB inhibitory protein) expression was constant, as shown by western blot analysis. This is the first study to demonstrate constitutive NF-kappaB activation in peritoneal endometriosis in women. NF-kappaB activation and ICAM-1 expression in red lesions confirm the more extensive inflammatory pattern of these lesions compared with black lesions. The involvement of p50/p65 dimers in NF-kappaB activation suggests implication of the classic NF-kappaB activation pathway, making it an attractive therapeutic target in endometriosis.
Collapse
Affiliation(s)
- Reinaldo González-Ramos
- Department of Gynecology, Université Catholique de Louvain, Cliniques Universitaires St Luc, Avenue Hippocrate 10, 1200 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
32
|
Hallast P, Rull K, Laan M. The evolution and genomic landscape of CGB1 and CGB2 genes. Mol Cell Endocrinol 2007; 260-262:2-11. [PMID: 17055150 PMCID: PMC2599907 DOI: 10.1016/j.mce.2005.11.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 11/28/2005] [Indexed: 10/31/2022]
Abstract
The origin of completely novel proteins is a significant question in evolution. The luteinizing hormone (LHB)/chorionic gonadotropin (CGB) gene cluster in humans contains a candidate example of this process. Two genes in this cluster (CGB1 and CGB2) exhibit nucleotide sequence similarity with the other LHB/CGB genes, but as a result of frameshifting are predicted to encode a completely novel protein. Our analysis of these genes from humans and related primates indicates a recent origin in the lineage specific to humans and African great apes. While the function of these genes is not yet known, they are strongly conserved between human and chimpanzee and exhibit three-fold lower diversity than LHB across human populations with no mutations that would disrupt the coding sequence. The 5'-upstream region of CGB1/2 contains most of the promoter sequence of hCGbeta plus a novel region proximal to the putative transcription start site. In silico prediction of putative transcription factor binding sites supports the hypothesis that CGB1 and CGB2 gene products are expressed in, and may contribute to, implantation and placental development.
Collapse
Affiliation(s)
- Pille Hallast
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kristiina Rull
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
- Department of Obstetrics and Gynecology, University of Tartu, Estonia
| | - Maris Laan
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
33
|
Guo SW. Nuclear factor-kappab (NF-kappaB): an unsuspected major culprit in the pathogenesis of endometriosis that is still at large? Gynecol Obstet Invest 2006; 63:71-97. [PMID: 17028437 DOI: 10.1159/000096047] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endometriosis, defined as the ectopic presence of endometrial glandular and stromal cells outside the uterine cavity, is a common benign gynecological disorder with an enigmatic pathogenesis. Many genes and gene products have been reported to be altered in endometriosis, yet some of them may not be major culprits but merely unwitting accomplices or even innocent bystanders. Therefore, the identification and apprehension of major culprits in the pathogenesis of endometriosis are crucial to the understanding of the pathogenesis and would help to develop better therapeutics for endometriosis. Although so far NF-kappaB only has left few traces of incriminating fingerprints, several lines of investigation suggest that NF-kappaB, a pivotal pro-inflammatory transcription factor, could promote and maintain endometriosis. Various inflammatory agents, growth factors, and oxidative stress activate NF-kappaB. NF-kappaB proteins themselves and proteins regulated by them have been linked to cellular transformation, proliferation, apoptosis, angiogenesis, and invasion. Interestingly, all existing and nearly all investigational medications for endometriosis appear to act through suppression of NF-kappaB activation. In endometriotic cells, NF-kappaB appears to be constitutively activated, and suppression of NF-kappaB activity by NF-kappaB inhibitors or proteasome inhibitors suppresses proliferation in vitro. Viewing NF-kappaB as a major culprit, an autoregulatory loop model can be postulated, which is consistent with existing data and, more importantly, can explain several puzzling phenomena that are otherwise difficult to interpret based on prevailing theories. This view has immediate and important implications for novel ways to treat endometriosis. Further research is warranted to precisely delineate the roles of NF-kappaB in the pathogenesis of endometriosis and to indict and convict its aiders and abettors.
Collapse
Affiliation(s)
- Sun-Wei Guo
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226-0509, USA.
| |
Collapse
|
34
|
Campbell EA, O'Hara L, Catalano RD, Sharkey AM, Freeman TC, Johnson MH. Temporal expression profiling of the uterine luminal epithelium of the pseudo-pregnant mouse suggests receptivity to the fertilized egg is associated with complex transcriptional changes. Hum Reprod 2006; 21:2495-513. [PMID: 16790611 DOI: 10.1093/humrep/del195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The molecular basis of changes underlying the altered sensitivity of the uterine luminal epithelium (LE) to the embryo over the peri-implantation period is not fully understood. METHODS Microarray analysis was performed on purified LE isolated from the pseudo-pregnant mouse uterus at 12-h intervals from pre-receptivity through the implantation window to refractoriness. The aim was to identify genes whose expression changes in the LE during this period. RESULTS A total of 447 transcripts were identified whose abundance changed more than 2-fold in the LE but which did not change in the underlying stroma (S) and glands. Six major patterns of changing expression were noted. Of the 447 genes, 140 were expressed in LE at least 15-fold higher than in S and glandular epithelium (GE) (101 of these more than 20-fold). Detailed spatiotemporal expression profiles were derived for several genes previously implicated in implantation (including Edg7, Ptgs1, Pla2g4a and Alox15). CONCLUSIONS Functional changes in LE receptivity are characterized by changing constellations of gene expression. Pre-receptivity has a different molecular footprint to refractoriness. Because we have used the pseudo-pregnant mouse model, these changes are driven solely by endocrine signals rather than events downstream of embryo attachment. Some of these genes have been described in previous microarray studies on endometrium, but for the majority, this is the first time they have been implicated in implantation. The 140 genes enriched in the LE greatly expand the list of epithelial markers and provide many novel candidates for further studies to identify genes playing important roles in receptivity and embryo attachment.
Collapse
Affiliation(s)
- E A Campbell
- Department of Anatomy, MRC Rosalind Franklin Centre for Genomics Research, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
35
|
Ashworth MD, Ross JW, Hu J, White FJ, Stein DR, Desilva U, Johnson GA, Spencer TE, Geisert RD. Expression of porcine endometrial prostaglandin synthase during the estrous cycle and early pregnancy, and following endocrine disruption of pregnancy. Biol Reprod 2006; 74:1007-15. [PMID: 16452463 DOI: 10.1095/biolreprod.105.046557] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Porcine trophoblast attachment to the uterine surface is associated with increased conceptus and endometrial production of prostaglandins. Conceptus secretion of estrogen on Day 12 of gestation is important for establishment of pregnancy; however, early (Days 9 and 10) exposure to exogenous estrogens results in embryonic mortality. Present studies established the temporal and spatial pattern of endometrial PTGS1 (prostaglandin-endoperoxide synthase 1) and PTGS2 expression during the estrous cycle and early pregnancy and determined the effect of early estrogen treatment on endometrial PTGS expression in pregnant gilts. Endometrial PTGS1 mRNA expression increased 2- to 3-fold after Day 10 of the estrous cycle and pregnancy, whereas PTGS2 mRNA expression increased 76-fold between Days 5 and 15 of the estrous cycle and pregnancy. Increased expression of the PTGS2 transcript was detected in the lumenal epithelium after Day 10 in both cyclic and pregnant gilts. There was a 10- and 20-fold increase in endometrial PTGS2 protein expression between Days 5 and 18 of the estrous cycle and pregnancy respectively. Administration of estrogen on Days 9 and 10 of gestation increased endometrial PTGS2 mRNA and protein on Day 10, but decreased PTGS2 mRNA and protein in lumenal epithelium (LE) on Day 12 of gestation compared to vehicle-treated gilts. The present study demonstrates that an increase in uterine epithelial PTGS2 expression occurs after Day 10 of the estrous cycle and early pregnancy in the pig. The conceptus-independent increase in the uterine LE indicates that a novel pathway exists for endometrial induction PTGS2 expression before conceptus elongation and attachment to the uterine surface. Epithelial expression of PTGS2 may serve as one of the signals for placental attachment and embryo survival in the pig. Early administration of estrogen on Days 9 and 10 of pregnancy alters endometrial PTGS2 mRNA and protein expression, which may, at least in part, represent a mechanism by which endocrine disruption of pregnancy causes total embryonic loss during implantation in the pig.
Collapse
MESH Headings
- Animals
- Embryo Loss/genetics
- Embryo Loss/physiopathology
- Endometrium/enzymology
- Endometrium/physiology
- Estrogens/pharmacology
- Estrogens/physiology
- Estrous Cycle/genetics
- Estrous Cycle/physiology
- Female
- Fertilization/physiology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/genetics
- Gene Expression Regulation, Developmental/physiology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Enzymologic/physiology
- Interleukin-1/metabolism
- Interleukin-1/physiology
- Placentation/genetics
- Placentation/physiology
- Pregnancy
- Pregnancy, Animal/drug effects
- Pregnancy, Animal/genetics
- Pregnancy, Animal/physiology
- Prostaglandin-Endoperoxide Synthases/metabolism
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Swine
- Transcription, Genetic/genetics
- Transcription, Genetic/physiology
Collapse
Affiliation(s)
- Morgan D Ashworth
- Department of Animal Science, Oklahoma Agricultural Experiment Station, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kimura T, Nakamura H, Koyama S, Ogita K, Tabata C, Tsutsui T, Shimoya K, Koyama M, Kaneda Y, Murata Y. In vivo gene transfer into the mouse uterus: A powerful tool for investigating implantation physiology. J Reprod Immunol 2005; 67:13-20. [PMID: 16111768 DOI: 10.1016/j.jri.2005.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In vivo transient transfection of cDNA into uterine endometrium during the implantation period provides great opportunities to analyse the physiology/pathophysiology of implantation at the molecular level. We review here methodologies which have been applied for this purpose. Viral vectors are widely used for in vivo gene therapy models; however, there is no successful example of gene transfer into the uterus using such vectors. Cationic liposome-based technologies have produced some successful results, causing alterations in implantation physiology. We applied a haemagglutinating virus of Japan envelope (HVJ-E) vector system and showed that the transfection efficiency was much higher than that of methods based on cationic liposome. Commercial HVJ-E vector (GenomONE-Neo) is now also available. Several successful examples of in vivo gene transfer revealed that calcitonin, Hoxa 10 and NF kappaB play important roles in determining the efficiency or timing of implantation. Based on this knowledge, we should further analyse the pathophysiology of human implantation failure using human materials.
Collapse
Affiliation(s)
- Tadashi Kimura
- Division of Obstetrics and Gynecology, Department of Specific Organ Regulation, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Nakamura H, Kimura T, Ogita K, Koyama S, Tsujie T, Tsutsui T, Shimoya K, Koyama M, Kaneda Y, Murata Y. Alteration of the timing of implantation by in vivo gene transfer: delay of implantation by suppression of nuclear factor kappaB activity and partial rescue by leukemia inhibitory factor. Biochem Biophys Res Commun 2004; 321:886-92. [PMID: 15358109 DOI: 10.1016/j.bbrc.2004.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Indexed: 11/15/2022]
Abstract
Nuclear factor kappaB (NF-kappaB) is activated in the murine endometrium during implantation period [Am. J. Reprod. Immunol. 51 (2004) 16]. Transient transfection of IkappaBalpha mutant (IkappaBalphaM) cDNA into the mouse uterine cavity using hemagglutinating virus of Japan envelope vector suppressed uterine NF-kappaB activity less than half of that observed in control on days 3.5 and 4.5 p.c. IkappaBalphaM cDNA transfection led to significant delay of implantation. After IkappaBalphaM cDNA transfection, LIF mRNA expression in the uterus was significantly suppressed on days 3.5 and 4.5 p.c. Co-transfection of LIF cDNA with IkappaBalphaM cDNA in the uterus partially rescued the delay of implantation induced by suppression of NF-kappaB activity. Taken together, these findings indicate that NF-kappaB activation determines the timing of the implantation, at least in part, via control of LIF expression.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Division of Obstetrics and Gynecology, Department of Specific Organ Regulation, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nakamura H, Kimura T, Ogita K, Nakamura T, Takemura M, Shimoya K, Koyama S, Tsujie T, Koyama M, Murata Y. NF-κB Activation at Implantation Window of the Mouse Uterus. Am J Reprod Immunol 2004; 51:16-21. [PMID: 14725562 DOI: 10.1046/j.8755-8920.2003.00116.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PROBLEM Nuclear factor kappa B (NF-kappaB) is one candidate transcriptional modulator, which might regulate many kinds of molecules that play sequential roles at implantation in the endometrium. However, temporal and spatial activation of NF-kappaB at implantation window is unknown. METHODS Activation of NF-kappaB in the mouse uterus was determined by electrophoretic mobility shift assays. Localization of p50 and p65, components of NF-kappaB, was analyzed by immunohistochemistry. RESULTS NF-kappaB was activated in the proestrus and estrus phases in non-pregnant uterus. In the pregnant uterus, NF-kappaB was activated after day 1.5 post-coitum, and the activation continued during implantation period. The immunoreactivities of p50 and p65 were mainly localized in endometrial epithelium, and were weaker in endometrial stroma cells. CONCLUSION NF-kappaB activity is dynamically regulated during the sexual cycle as well as during the implantation period in the endometrium, where the biochemical interaction between mother and conceptus first occurs.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Division of Obstetrics and Gynecology, Department of Specific Organ Regulation, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Xie Q, Xin Z, Cao L, Li W. Expression of nuclear factor-kappaB in mouse uterus during peri-implantation. Curr Med Sci 2004; 24:361-4. [PMID: 15587399 DOI: 10.1007/bf02861868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Indexed: 10/19/2022]
Abstract
To investigate the expression of the subunit p65 of NF-kappaB and inhibitor kappa B alpha (IkappaBalpha) in mouse uterus during peri-implantation, thereby investigating whether transient activation of nuclear factor-kappaB (NF-kappaB) takes place during embryo implantation in mice. Immunohistochemical technique was used to examine the expression and localization of p65 in endometrium or deciduas, and Western blot analysis was employed to detect the levels of IkappaBalpha protein in mouse endometrium or deciduas. P65 protein was detected in stromal cells, epithelial cells of endometrium as well as in myometrium. Staining was predominately seen in the cytoplasm of the cells. Staining intensity for p65 was stronger in the epithelial compartment than the stromal compartment and myometrium. Staining intensity increased slightly during pregnancy, and it reached a high level on pregnancy day 5 and day 8. In contrast to p65, the level of IkappaBalpha protein was lowest on pregnancy day 5 in all groups. Our results suggested that NF-kappaB may regulate embryo implantation by its transient activation in mice.
Collapse
Affiliation(s)
- Qingzhen Xie
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | | | | | | |
Collapse
|