1
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Zheng J, Fletcher C, Gupta B, St-Denis M, Boodhoo N, Sharif S. A Marek's Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens. Viruses 2024; 16:1156. [PMID: 39066318 PMCID: PMC11281610 DOI: 10.3390/v16071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h. The vaccine was injected in low and high doses using prime and prime-boost strategies. The expression of type I and II interferons (IFNs), a panel of interferon-stimulated genes, and two key antiviral cytokines, IL-1β and IL-2, were measured in spleen and lungs after vaccination. The transcriptional analysis of the above genes showed significant increases in the expression of MDA5, Myd88, IFN-α, IFN-β, IFN-γ, IRF7, OAS, Mx1, and IL-2 in both the spleen and lungs within the first 36 h of immunization. Secondary immunization increased expression of all the above genes in the lungs. In contrast, only IFN-γ, MDA5, MyD88, Mx1, and OAS showed significant upregulation in the spleen after the secondary immunization. This study shows that two doses of the MDV mRNA vaccine encoding gB and pp38 antigens activate innate and adaptive responses and induce an antiviral state in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Fiddaman SR, Dimopoulos EA, Lebrasseur O, du Plessis L, Vrancken B, Charlton S, Haruda AF, Tabbada K, Flammer PG, Dascalu S, Marković N, Li H, Franklin G, Symmons R, Baron H, Daróczi-Szabó L, Shaymuratova DN, Askeyev IV, Putelat O, Sana M, Davoudi H, Fathi H, Mucheshi AS, Vahdati AA, Zhang L, Foster A, Sykes N, Baumberg GC, Bulatović J, Askeyev AO, Askeyev OV, Mashkour M, Pybus OG, Nair V, Larson G, Smith AL, Frantz LAF. Ancient chicken remains reveal the origins of virulence in Marek's disease virus. Science 2023; 382:1276-1281. [PMID: 38096384 DOI: 10.1126/science.adg2238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.
Collapse
Affiliation(s)
| | - Evangelos A Dimopoulos
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ophélie Lebrasseur
- Centre d'Anthropobiologie et de Génomique de Toulouse, CNRS/Université Toulouse III Paul Sabatier, Toulouse, France
- Instituto Nacional de Antropología y Pensamiento Latinoamericano, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Louis du Plessis
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
| | - Sophy Charlton
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Ashleigh F Haruda
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Kristina Tabbada
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | | | | | - Hannah Li
- Institute of Immunity and Transplantation, University College London, London, UK
| | | | | | | | | | - Dilyara N Shaymuratova
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Igor V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | | | - Maria Sana
- Departament de Prehistòria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hossein Davoudi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Homa Fathi
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
| | - Amir Saed Mucheshi
- Department of Art and Architecture, Payame Noor University (PNU), Tehran, Iran
| | - Ali Akbar Vahdati
- Iranian Ministry of Cultural Heritage, Tourism, and Handicrafts, North Khorasan Office, Iran
| | - Liangren Zhang
- Department of Archaeology, School of History, Nanjing University, China
| | | | - Naomi Sykes
- Department of Archaeology, University of Exeter, Exeter, UK
| | - Gabrielle Cass Baumberg
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Jelena Bulatović
- Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden
| | - Arthur O Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Oleg V Askeyev
- Laboratory of Biomonitoring, The Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan, Russia
| | - Marjan Mashkour
- Bioarchaeology Laboratory, Central Laboratory, University of Tehran, Tehran, Iran
- CNRS, National Museum Natural History Paris, Paris, France
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London, UK
| | - Venugopal Nair
- Department of Biology, University of Oxford, Oxford, UK
- Viral Oncogenesis Group, Pirbright Institute, Woking, UK
| | - Greger Larson
- The Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | | | - Laurent A F Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universitat, Munich, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
3
|
Role of T Cells in Vaccine-Mediated Immunity against Marek’s Disease. Viruses 2023; 15:v15030648. [PMID: 36992357 PMCID: PMC10055809 DOI: 10.3390/v15030648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Marek’s disease virus (MDV), a highly cell-associated oncogenic α-herpesvirus, is the etiological agent of T cell lymphomas and neuropathic disease in chickens known as Marek’s disease (MD). Clinical signs of MD include neurological disorders, immunosuppression, and lymphoproliferative lymphomas in viscera, peripheral nerves, and skin. Although vaccination has greatly reduced the economic losses from MD, the molecular mechanism of vaccine-induced protection is largely unknown. To shed light on the possible role of T cells in immunity induced by vaccination, we vaccinated birds after the depletion of circulating T cells through the IP/IV injection of anti-chicken CD4 and CD8 monoclonal antibodies, and challenged them post-vaccination after the recovery of T cell populations post-treatment. There were no clinical signs or tumor development in vaccinated/challenged birds with depleted CD4+ or CD8+ T cells. The vaccinated birds with a combined depletion of CD4+ and CD8+ T cells, however, were severely emaciated, with atrophied spleens and bursas. These birds were also tumor-free at termination, with no virus particles detected in the collected tissues. Our data indicated that CD4+ and CD8+ T lymphocytes did not play a critical role in vaccine-mediated protection against MDV-induced tumor development.
Collapse
|
4
|
Matsuyama-Kato A, Shojadoost B, Boodhoo N, Raj S, Alizadeh M, Fazel F, Fletcher C, Zheng J, Gupta B, Abdul-Careem MF, Plattner BL, Behboudi S, Sharif S. Activated Chicken Gamma Delta T Cells Are Involved in Protective Immunity against Marek's Disease. Viruses 2023; 15:v15020285. [PMID: 36851499 PMCID: PMC9962238 DOI: 10.3390/v15020285] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Gamma delta (γδ) T cells play a significant role in the prevention of viral infection and tumor surveillance in mammals. Although the involvement of γδ T cells in Marek's disease virus (MDV) infection has been suggested, their detailed contribution to immunity against MDV or the progression of Marek's disease (MD) remains unknown. In the current study, T cell receptor (TCR)γδ-activated peripheral blood mononuclear cells (PBMCs) were infused into recipient chickens and their effects were examined in the context of tumor formation by MDV and immunity against MDV. We demonstrated that the adoptive transfer of TCRγδ-activated PBMCs reduced virus replication in the lungs and tumor incidence in MDV-challenged chickens. Infusion of TCRγδ-activated PBMCs induced IFN-γ-producing γδ T cells at 10 days post-infection (dpi), and degranulation activity in circulating γδ T cell and CD8α+ γδ T cells at 10 and 21 dpi in MDV-challenged chickens. Additionally, the upregulation of IFN-γ and granzyme A gene expression at 10 dpi was significant in the spleen of the TCRγδ-activated PBMCs-infused and MDV-challenged group compared to the control group. Taken together, our results revealed that TCRγδ stimulation promotes the effector function of chicken γδ T cells, and these effector γδ T cells may be involved in protection against MD.
Collapse
Affiliation(s)
- Ayumi Matsuyama-Kato
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bahram Shojadoost
- Ceva Animal Health Inc., Research Park Centre, Guelph, ON N1G 4T2, Canada
| | - Nitish Boodhoo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sugandha Raj
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Fatemeh Fazel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Charlotte Fletcher
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jiayu Zheng
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bhavya Gupta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | - Brandon L. Plattner
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 54641); Fax: +1-519-824-5930
| |
Collapse
|
5
|
B cells do not play a role in vaccine-mediated immunity against Marek's disease. Vaccine X 2022; 10:100128. [PMID: 34977551 PMCID: PMC8686028 DOI: 10.1016/j.jvacx.2021.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Marek's disease virus (MDV), a highly oncogenic α-herpesvirus, is the etiological agent of Marek's disease (MD) in chickens. The antiviral activity of vaccine-induced immunity against MD reduces the level of early cytolytic infection, production of cell-free virions in the feather follicle epithelial cells (FFE), and lymphoma formation. Despite the success of several vaccines that have greatly reduced the economic losses from MD, the mechanism of vaccine-induced immunity is poorly understood. METHODS To provide insight into possible role of B cells in vaccine-mediated protection, we bursectomized birds on day of hatch and vaccinated them eight days later. The birds were challenged 10 days post vaccination with or without receiving adoptive lymphocytes from age-matched control birds prior to inoculation. The study also included vaccinated/challenged and non-vaccinated challenged intact birds. Flowcytometric analysis of PBMN cells were conducted twice post bursectomy to confirm B cell depletion and assess the effect of surgery on T cell population. Immunohistochemical analysis and viral genome copy number assessment in the skin samples at termination was performed to measure the replication rate of MDV in the FFE of the skin tissues of the challenged birds. RESULTS The non-vaccinated/challenged birds developed typical clinical signs of MD while the vaccinated/challenged and bursectomized, vaccinated/challenged groups with or without adoptive lymphocyte transfer, were fully protected with no sign of transient paralysis, weight loss, or T cell lymphomas. Immunohistochemical analysis and viral genome copy number evaluation in the skin samples revealed that unlike the vaccinated/challenged birds a significant number of virus particles were produced in the FFE of the non-vaccinated/challenged birds at termination. In the bursectomized, vaccinated/challenged groups, only a few replicating virions were detected in the skin of birds that received adoptive lymphocytes prior to challenge. CONCLUSIONS The study shows that B cells do not play a critical role in MD vaccine-mediated immunity.
Collapse
|
6
|
Boodhoo N, Behboudi S. Differential Virus-Specific IFN-Gamma Producing T Cell Responses to Marek's Disease Virus in Chickens With B19 and B21 MHC Haplotypes. Front Immunol 2022; 12:784359. [PMID: 35095857 PMCID: PMC8792850 DOI: 10.3389/fimmu.2021.784359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Abstract
Marek’s disease virus (MDV), the etiologic agent for Marek’s disease (MD), causes a deadly lymphoproliferative disease in chickens. Causes of the well-documented association between genetically defined lines of chicken and resistance to MD remain unknown. Here, the frequencies of IFN-gamma producing pp38 and MEQ-specific T cell responses were determined in line N (B21 haplotype; MD-resistant) and line P2a (B19 haplotype, MD-susceptible) chickens after infection with vaccine and/or virulent (RB1B) strains of MDV using both standard ex vivo and cultured chIFN-gamma ELISPOT assays. Notably, MDV infection of naïve and vaccinated MD-resistant chickens induced higher frequencies of IFN-gamma producing MDV-specific T cell responses using the cultured and ex vivo ELISPOT assay, respectively. Remarkably, vaccination did not induce or boost MEQ-specific effector T cells in the susceptible chickens, while it boosted both pp38-and MEQ-specific response in resistant line. Taken together, our results revealed that there is a direct association between the magnitude of T cell responses to pp38 and MEQ of MDV antigens and resistance to the disease.
Collapse
Affiliation(s)
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom.,Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, United Kingdom
| |
Collapse
|
7
|
Yehia N, El-Sayed HS, Omar SE, Erfan A, Amer F. Genetic evolution of Marek's disease virus in vaccinated poultry farms. Vet World 2021; 14:1342-1353. [PMID: 34220140 PMCID: PMC8243665 DOI: 10.14202/vetworld.2021.1342-1353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: The Marek’s disease virus (MDV) is a neoplastic disease causing serious economic losses in poultry production. This study aimed to investigate MDV occurrence in poultry flocks in the Lower Egypt during the 2020 breakout and genetically characterized Meq, gL, and ICP4 genes in field strains of MDV. Materials and Methods: Forty samples were collected from different breeds from eight Egyptian governorates in 2020. All flocks had received a bivalent vaccine (herpesvirus of turkey FC-126 + Rispens CVI988). However, weight loss, emaciation, reduced egg production, paralysis, and rough/raised feather follicles occurred. Samples were collected from feather follicles, liver, spleen, and nerve tissue for diagnosis by polymerase chain reaction. MDV genetic characterization was then performed by sequencing the Meq, gL, and ICP4 genes of five positive samples representing different governorates and breeds. Results: A total of 28 samples were positive for MDV field strains, while two were related to MDV vaccinal strains. All samples tested negative for ALV (A, B, C, D, and J) and REV. Phylogenetic analysis of the Meq gene of sequenced samples revealed that all MDVs were related to the highly virulent European viruses (Gallid herpesvirus 2 ATE and PC12/30) with high amino acid (A.A.) identity 99.2-100%. Alternatively, there was low A.A. identity with the vaccine strains CVI988 and 3004 (up to 82.5%). These results indicate that further investigation of the efficacy of current Egyptian vaccines is required. The Egyptian strains also harbor a specific mutation, allowing clustering into two subgroups (A and B). By mutation analysis of the Meq gene, the Egyptian viruses in our study had R101K, P217A, and E263D mutations present in all Egyptian viruses. Furthermore, R176A and T180A mutations specific to our strains contributed to the high virulence of highly virulent strains. There were no mutations of the gL or ICP4 genes. Conclusion: Further studies should evaluate the protection contributed by current vaccines used in Egypt.
Collapse
Affiliation(s)
- Nahed Yehia
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Hemat S El-Sayed
- Department of Poultry Diseases, Benha Provincial Laboratory, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sabry E Omar
- Department of Poultry Diseases, Benha Provincial Laboratory, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Ahmed Erfan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Fatma Amer
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| |
Collapse
|
8
|
Hao X, Li S, Li J, Yang Y, Qin A, Shang S. An Anti-Tumor Vaccine Against Marek's Disease Virus Induces Differential Activation and Memory Response of γδ T Cells and CD8 T Cells in Chickens. Front Immunol 2021; 12:645426. [PMID: 33659011 PMCID: PMC7917234 DOI: 10.3389/fimmu.2021.645426] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. The most efficacious vaccine, CVI988/Rispens (CVI988), against MD has been used for several decades. However, the mechanisms leading to protective immunity following vaccination are not fully understood. In this study, employing multi-parameter flow cytometry, we performed a comprehensive analysis of T cell responses in CVI988-vaccinated chickens. CVI988 vaccination induced significant expansion of γδ T cells and CD8α+ T cells but not CD4+ T cells in spleen, lung and blood at early time-points. The expansion of these cells was CVI988-specific as infection with very virulent MDV RB1B did not elicit expansion of either γδ or CD8α+ T cells. Phenotypic analysis showed that CVI988 vaccination elicited preferential proliferation of CD8α+ γδ T cells and CD8αα co-receptor expression was upregulated on γδ T cells and CD8α+ T cells after immunization. Additionally, cell sorting and quantitative RT-PCR showed that CVI988 vaccination activated γδ T cells and CD8α+ T cells which exhibited differential expression of cytotoxic and T cell-related cytokines. Lastly, secondary immunization with CVI988 induced the expansion of CD8+ T cells but not γδ T cells at higher magnitude, compared to primary immunization, suggesting CVI988 did induce memory CD8+ T cells but not γδ T cells in chickens. Our results, for the first time, reveal a potential role of γδ T cells in CVI988-induced immune protection and provide new insights into the mechanism of immune protection against oncogenic MDV.
Collapse
Affiliation(s)
- Xiaoli Hao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jiaqi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China
| | - Aijian Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China.,Ministry of Education Key Laboratory for Avian Preventive Medicine, Yangzhou University, Yangzhou, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, China.,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, China
| |
Collapse
|
9
|
Umthong S, Dunn JR, Cheng HH. Depletion of CD8αβ + T Cells in Chickens Demonstrates Their Involvement in Protective Immunity towards Marek's Disease with Respect to Tumor Incidence and Vaccinal Protection. Vaccines (Basel) 2020; 8:E557. [PMID: 32987648 PMCID: PMC7712963 DOI: 10.3390/vaccines8040557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 01/12/2023] Open
Abstract
Marek's disease (MD) is a lymphoproliferative disease in chickens caused by Marek's disease virus (MDV), a highly oncogenic alphaherpesvirus. Since 1970, MD has been controlled through widespread vaccination of commercial flocks. However, repeated and unpredictable MD outbreaks continue to occur in vaccinated flocks, indicating the need for a better understanding of MDV pathogenesis to guide improved or alternative control measures. As MDV is an intracellular pathogen that infects and transforms CD4+ T cells, the host cell-mediated immune response is considered to be vital for controlling MDV replication and tumor formation. In this study, we addressed the role of CD8+ T cells in vaccinal protection by widely-used monovalent (SB-1 and HVT) and bivalent (SB-1+HVT) MD vaccines. We established a method to deplete CD8+ T cells in chickens and found that their depletion through injection of anti-CD8 monoclonal antibodies (mAb) increased tumor induction and MD pathology, and reduced vaccinal protection to MD, which supports the important role of CD8+ T cells for both MD and vaccinal protection.
Collapse
Affiliation(s)
- Supawadee Umthong
- Microbiology and Molecular Genetics Program, Michigan State University, East Lansing, MI 48823, USA;
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| | - John R. Dunn
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| | - Hans H. Cheng
- USDA, ARS, US National Poultry Research Center, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| |
Collapse
|
10
|
Lachheb J, Mastour H, Nsiri J, Kaboudi K, Choura I, Ammouna F, Amara A, Ghram A. Newly detected mutations in the Meq oncogene and molecular pathotyping of very virulent Marek's disease herpesvirus in Tunisia. Arch Virol 2020; 165:2589-2597. [PMID: 32876794 PMCID: PMC7547972 DOI: 10.1007/s00705-020-04790-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 07/27/2020] [Indexed: 11/25/2022]
Abstract
Marek's disease (MD) is a contagious avian viral disease that is responsible for large economic losses to farmers. The disease is caused by Marek's disease virus (species Gallid alphaherpesvirus 2), which causes neurological lesions, immune suppression, and tumor proliferation of lymphoid cells that invade a large number of organs and tissues. Despite widespread vaccination, Marek's disease virus (MDV), has shown a continuous increase in its virulence and has acquired the ability to overcome immune responses induced by vaccines. In the present study, the oncogenic serotype MDV-1 was detected by real-time PCR in DNA samples extracted from organs developing tumor infiltrations. Identification of the pathotype based on a 132-bp tandem repeat and sequencing and phylogenetic analysis of the Meq gene and its encoded protein allowed classification of the isolated viruses as "very virulent", with two new and unique mutations in the Meq gene resulting in amino acid substitutions. Sequencing of pp38, vIl-8, UL1 and UL44 genes did not reveal any new mutations that were characteristic of the Tunisian isolates or correlated with virulence. These results raised concerns about the ability of HVT and CVI988 vaccines, which are currently used in Tunisia and other countries, to protect chickens against highly virulent virus strains.
Collapse
Affiliation(s)
- Jihene Lachheb
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Houssem Mastour
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Jihene Nsiri
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Khaled Kaboudi
- Department of Poultry Farming and Pathology, National School of Veterinary Medicine, University of Carthage, Sidi Thabet, Tunis, Tunisia
| | - Imed Choura
- Society of Animal Nutrition (SNA), Tunis, Tunisia
| | - Faten Ammouna
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Abdelkader Amara
- Department of Poultry Farming and Pathology, National School of Veterinary Medicine, University of Carthage, Sidi Thabet, Tunis, Tunisia
| | - Abdeljelil Ghram
- Laboratory of Epidemiology and Veterinary Microbiology, LR 11 IPT 03, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
11
|
Yang Y, Dong M, Hao X, Qin A, Shang S. Revisiting cellular immune response to oncogenic Marek's disease virus: the rising of avian T-cell immunity. Cell Mol Life Sci 2020; 77:3103-3116. [PMID: 32080753 PMCID: PMC7391395 DOI: 10.1007/s00018-020-03477-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/21/2022]
Abstract
Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. Although Marek's disease (MD) is well controlled by current vaccines, the evolution of MDV field viruses towards increasing virulence is concerning as a better vaccine to combat very virulent plus MDV is still lacking. Our understanding of molecular and cellular immunity to MDV and its immunopathogenesis has significantly improved, but those findings about cellular immunity to MDV are largely out-of-date, hampering the development of more effective vaccines against MD. T-cell-mediated cellular immunity was thought to be of paramount importance against MDV. However, MDV also infects macrophages, B cells and T cells, leading to immunosuppression and T-cell lymphoma. Additionally, there is limited information about how uninfected immune cells respond to MDV infection or vaccination, specifically, the mechanisms by which T cells are activated and recognize MDV antigens and how the function and properties of activated T cells correlate with immune protection against MDV or MD tumor. The current review revisits the roles of each immune cell subset and its effector mechanisms in the host immune response to MDV infection or vaccination from the point of view of comparative immunology. We particularly emphasize areas of research requiring further investigation and provide useful information for rational design and development of novel MDV vaccines.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Maoli Dong
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoli Hao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| | - Shaobin Shang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China.
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, China.
- Ministry of Education Key Laboratory for Avian Preventive Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
12
|
Yilmaz A, Turan N, Bayraktar E, Tali HE, Aydin O, Umar S, Cakan B, Sadeyen JR, Baigent S, Iqbal M, Nair V, Yilmaz H. Molecular characterisation and phylogenetic analysis of Marek's disease virus in Turkish layer chickens. Br Poult Sci 2020; 61:523-530. [PMID: 32316760 DOI: 10.1080/00071668.2020.1758301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
1. There is no current data about the genotypes of Marek's disease virus (MDV) in Turkish poultry flocks; hence, this study was performed to analyse CVI988/Rispens, turkey herpesvirus (HVT) vaccine viruses and MDV field viruses as well as to perform phylogenetic analysis of MDV in Turkish layer chickens. 2. In 2017 and 2018, a total of 602 spleen samples from 49 layer flocks were collected from the Marmara, West Black Sea and Aegean regions. DNA was extracted from the spleen samples and the samples were analysed by real-time PCR probe assay to detect CVI988/Rispens and HVT vaccine viruses and MDV field strains. Samples found positive for MDV by real-time PCR were subjected to PCR using the Meq gene primers for phylogenetic analysis. 3. Amongst 49 flocks, virulent MDV was detected in nine flocks. CVI988/Rispens and HVT vaccine strains were detected in 47 flocks and HVT in all 49 flocks. Splenomegaly, hepatomegaly and tumours in the oviduct were observed in chickens of affected flocks. Virulent MDV was detected in 120 out of 602 spleen samples. Sequencing and phylogenetic analyses showed that MDVs detected in this study were closely related to MDV strains from Italy, Poland, Saudi Arabia, Iraq, India and China but showed diversity with MDV strains from Egypt and Hungary. Multiple sequence analysis of the Meq protein revealed several point mutations in deduced amino acid sequences. Interestingly, CVI988/Rispens vaccine virus from China (AF493555) showed mutations at position 66 (G66R) and 71 (S66A) along with two other vaccine strains from China (GU354326.1) and Russia (EU032468.1), in comparison with the other vaccine strain CVI988/Rispens (DQ534538). The molecular analyses of the Meq gene suggested that Turkish field strains of MDV are in the class of virulent or very virulent pathotypes. 4. The results have shown that MDV still affects poultry health, and the phylogenetic and amino acid variation data obtained will help in vaccination and control strategies.
Collapse
Affiliation(s)
- A Yilmaz
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - N Turan
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - E Bayraktar
- Poultry Division, CEVA Animal Health , Maslak, Turkey
| | - H E Tali
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - O Aydin
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - S Umar
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| | - B Cakan
- Poultry Division, CEVA Animal Health , Maslak, Turkey
| | - J-R Sadeyen
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - S Baigent
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - M Iqbal
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - V Nair
- Avian Influenza Group, The Pirbright Institute , Woking, UK
| | - H Yilmaz
- Department of Virology, Istanbul University-Cerrahpasa, Veterinary Faculty , Istanbul, Turkey
| |
Collapse
|
13
|
Wang D, Sun S, Heidari M. Marek's disease vaccine activates chicken macrophages. J Vet Sci 2018; 19:375-383. [PMID: 29366301 PMCID: PMC5974519 DOI: 10.4142/jvs.2018.19.3.375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
To provide insights into the role of innate immune responses in vaccine-mediated protection, we investigated the effect of Marek's disease (MD) vaccine, CVI988/Rispens, on the expression patterns of selected genes associated with activation of macrophages in MD-resistant and MD-susceptible chicken lines. Upregulation of interferon γ, interleukin (IL)-1β, IL-8, and IL-12 at different days post-inoculation (dpi) revealed activation of macrophages in both chicken lines. A strong immune response was induced in cecal tonsils of the susceptible line at 5 dpi. The highest transcriptional activities were observed in spleen tissues of the resistant line at 3 dpi. No increase in the population of CD3⁺ T cells was observed in duodenum of vaccinated birds at 5 dpi indicating a lack of involvement of the adaptive immune system in the transcriptional profiling of the tested genes. There was, however, an increase in the number of macrophages in the duodenum of vaccinated birds. The CVI988/Rispens antigen was detected in the duodenum and cecal tonsils of the susceptible line at 5 dpi but not in the resistant line. This study sheds light on the role of macrophages in vaccine-mediated protection against MD and on the possible development of new recombinant vaccines with enhanced innate immune system activation properties.
Collapse
Affiliation(s)
- Dan Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Shuhong Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China
| | - Mohammad Heidari
- Avian Disease and Oncology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), East Lansing, MI 48823, USA
| |
Collapse
|
14
|
He L, Li J, Zhang Y, Luo J, Cao Y, Xue C. Phylogenetic and molecular epidemiological studies reveal evidence of recombination among Marek's disease viruses. Virology 2018; 516:202-209. [PMID: 29407378 DOI: 10.1016/j.virol.2018.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/09/2023]
Abstract
Marek's disease has brought enormous loss in chicken production worldwide and the increasing virulence of Marek's disease virus (MDV) became a severe problem. To better understand the genetic basis underlying, a Chinese MDV strain HNGS101 isolated from immunized chickens was sequenced. Phylogenetic analysis implied that HNGS101 showed more relatedness to Eurasian strains than GaHV-2 circulating in North America. Recombination networks analysis showed the evidence of recombination among MDV strains, and several recombination events in the UL and US region were found. Further analysis indicated that the HNGS101 strain seemed to be generated by the recombination of the earliest Eurasian strains and North American strains in the US region, which may be responsible for the MD outbreaks in China. In summary, this study demonstrates recombination events among MDV strains [corrected], which may shed light on the mechanism of virulence enhancement.
Collapse
Affiliation(s)
- Liangliang He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jie Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China; School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Yun Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Luo
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471003, China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
16
|
McPherson MC, Delany ME. Virus and host genomic, molecular, and cellular interactions during Marek's disease pathogenesis and oncogenesis. Poult Sci 2016; 95:412-29. [PMID: 26755654 PMCID: PMC4957504 DOI: 10.3382/ps/pev369] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/09/2015] [Indexed: 01/16/2023] Open
Abstract
Marek's Disease Virus (MDV) is a chicken alphaherpesvirus that causes paralysis, chronic wasting, blindness, and fatal lymphoma development in infected, susceptible host birds. This disease and its protective vaccines are highly relevant research targets, given their enormous impact within the poultry industry. Further, Marek's disease (MD) serves as a valuable model for the investigation of oncogenic viruses and herpesvirus patterns of viral latency and persistence--as pertinent to human health as to poultry health. The objectives of this article are to review MDV interactions with its host from a variety of genomic, molecular, and cellular perspectives. In particular, we focus on cytogenetic studies, which precisely assess the physical status of the MDV genome in the context of the chicken host genome. Combined, the cytogenetic and genomic research indicates that MDV-host genome interactions, specifically integration of the virus into the host telomeres, is a key feature of the virus life cycle, contributing to the viral achievement of latency, transformation, and reactivation of lytic replication. We present a model that outlines the variety of virus-host interactions, at the multiple levels, and with regard to the disease states.
Collapse
Affiliation(s)
- M C McPherson
- Department of Animal Science, University of California, Davis, CA 95616
| | - M E Delany
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
17
|
Parvizi P, Brisbin JT, Read LR, Sharif S. Cytokine Gene Expression in Lung Mononuclear Cells of Chickens Vaccinated with Herpesvirus of Turkeys and Infected with Marek's Disease Virus. Viral Immunol 2015; 28:538-43. [DOI: 10.1089/vim.2015.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Payvand Parvizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Jennifer T. Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Leah R. Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
| |
Collapse
|
18
|
Haq K, Schat KA, Sharif S. Immunity to Marek's disease: where are we now? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:439-446. [PMID: 23588041 DOI: 10.1016/j.dci.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 06/02/2023]
Abstract
Marek's disease (MD) in chickens was first described over a century ago and the causative agent of this disease, Marek's disease virus (MDV), was first identified in the 1960's. There has been extensive and intensive research over the last few decades to elucidate the underlying mechanisms of the interactions between the virus and its host. We have also made considerable progress in terms of developing efficacious vaccines against MD. The advent of the chicken genetic map and genome sequence as well as development of approaches for chicken transcriptome and proteome analyses, have greatly facilitated the process of illuminating underlying genetic mechanisms of resistance and susceptibility to disease. However, there are still major gaps in our understanding of MDV pathogenesis and mechanisms of host immunity to the virus and to the neoplastic events caused by this virus. Importantly, vaccines that can disrupt virus transmission in the field are lacking. The current review explores mechanisms of host immunity against Marek's disease and makes an attempt to identify the areas that are lacking in this field.
Collapse
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Canada
| | | | | |
Collapse
|
19
|
Hassanin O, Abdallah F, El-Araby IE. Molecular Characterization and Phylogenetic Analysis of Marek's Disease Virus from Clinical Cases of Marek's Disease in Egypt. Avian Dis 2013; 57:555-61. [DOI: 10.1637/10337-082912-reg.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
|
21
|
Chen CY, Xie QM, Xue Y, Ji J, Chang S, Ma JY, Bi YZ. Characterization of cytotoxicity-related gene expression in response to virulent Marek's disease virus infection in the bursa of Fabricius. Res Vet Sci 2012; 94:496-503. [PMID: 23164636 DOI: 10.1016/j.rvsc.2012.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/18/2012] [Accepted: 10/19/2012] [Indexed: 12/15/2022]
Abstract
Cell-mediated cytotoxic responses are critical for control of Marek's disease virus (MDV) infection and tumour development. However, the mechanisms of virus clearance mediated by cytotoxic responses in the bursa of Fabricius of chickens during MDV infection are not fully understood. In this study, the host cytotoxic responses during MDV infection in the bursa were investigated by examining the expression of genes in the cell lysis pathways. Partial up-regulation existed in the expression of the important cytolytic molecule granzyme A (GzmA), Fas, NK lysin and DNA repair enzyme Ape1, whereas little or no expression appeared in other cytolytic molecules, including perforin (PFN) and Fas ligand (FasL), and molecules involved in DNA repair and apoptosis in the bursa during MDV infection. These results suggest that less sustained cytotoxic activities are generated in the bursa of MDV-infected chickens. The findings of this study provide a more detailed insight into the host cytotoxic responses to MDV infection.
Collapse
Affiliation(s)
- Cui-Ying Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Mwangi WN, Smith LP, Baigent SJ, Beal RK, Nair V, Smith AL. Clonal structure of rapid-onset MDV-driven CD4+ lymphomas and responding CD8+ T cells. PLoS Pathog 2011; 7:e1001337. [PMID: 21573129 PMCID: PMC3088711 DOI: 10.1371/journal.ppat.1001337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 04/05/2011] [Indexed: 01/28/2023] Open
Abstract
Lymphoid oncogenesis is a life threatening complication associated with a number of persistent viral infections (e.g. EBV and HTLV-1 in humans). With many of these infections it is difficult to study their natural history and the dynamics of tumor formation. Marek's Disease Virus (MDV) is a prevalent α-herpesvirus of poultry, inducing CD4+ TCRαβ+ T cell tumors in susceptible hosts. The high penetrance and temporal predictability of tumor induction raises issues related to the clonal structure of these lymphomas. Similarly, the clonality of responding CD8 T cells that infiltrate the tumor sites is unknown. Using TCRβ repertoire analysis tools, we demonstrated that MDV driven CD4+ T cell tumors were dominated by one to three large clones within an oligoclonal framework of smaller clones of CD4+ T cells. Individual birds had multiple tumor sites, some the result of metastasis (i.e. shared dominant clones) and others derived from distinct clones of transformed cells. The smaller oligoclonal CD4+ cells may represent an anti-tumor response, although on one occasion a low frequency clone was transformed and expanded after culture. Metastatic tumor clones were detected in the blood early during infection and dominated the circulating T cell repertoire, leading to MDV associated immune suppression. We also demonstrated that the tumor-infiltrating CD8+ T cell response was dominated by large oligoclonal expansions containing both “public” and “private” CDR3 sequences. The frequency of CD8+ T cell CDR3 sequences suggests initial stimulation during the early phases of infection. Collectively, our results indicate that MDV driven tumors are dominated by a highly restricted number of CD4+ clones. Moreover, the responding CD8+ T cell infiltrate is oligoclonal indicating recognition of a limited number of MDV antigens. These studies improve our understanding of the biology of MDV, an important poultry pathogen and a natural infection model of virus-induced tumor formation. Many viral infections target the immune system, making use of the long lived, highly proliferative lymphocytes to propagate and survive within the host. This characteristic has led to an association between some viruses such as Epstein Barr Virus (EBV), Human T cell Lymphotrophic Virus-1 (HTLV-1) and Mareks Disease Virus (MDV) and lymphoid tumors. We employed methods for identifying the T cell receptor repertoire as a molecular bar-code to study the biology of MDV-induced tumors and the anti-tumor response. Each individual contained a small number of large (high frequency) tumor clones alongside some smaller (lower frequency) clones in the CD4+ T cell population. The tumor infiltrating CD8+ T cell response was highly focused with a small number of large clones, with one representing a public CDR3 sequence. This data is consistent with the recognition of a small number of dominant antigens and understanding the relationship between these and protective immunity is important to improve development of new vaccination strategies. Collectively, our results provide insights into the clonal structure of MDV driven tumors and in the responding CD8+ T cell compartment. These studies advance our understanding of MDV biology, an important poultry disease and a natural infection model of virus-induced tumor formation.
Collapse
Affiliation(s)
- William N. Mwangi
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Lorraine P. Smith
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Susan J. Baigent
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Richard K. Beal
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Venugopal Nair
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | - Adrian L. Smith
- Avian Infectious Disease Programme, Institute for Animal Health, Compton, Berkshire, United Kingdom
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Abstract
It is more than a century since Marek's disease (MD) was first reported in chickens and since then there have been concerted efforts to better understand this disease, its causative agent and various approaches for control of this disease. Recently, there have been several outbreaks of the disease in various regions, due to the evolving nature of MD virus (MDV), which necessitates the implementation of improved prophylactic approaches. It is therefore essential to better understand the interactions between chickens and the virus. The chicken immune system is directly involved in controlling the entry and the spread of the virus. It employs two distinct but interrelated mechanisms to tackle viral invasion. Innate defense mechanisms comprise secretion of soluble factors as well as cells such as macrophages and natural killer cells as the first line of defense. These innate responses provide the adaptive arm of the immune system including antibody- and cell-mediated immune responses to be tailored more specifically against MDV. In addition to the immune system, genetic and epigenetic mechanisms contribute to the outcome of MDV infection in chickens. This review discusses our current understanding of immune responses elicited against MDV and genetic factors that contribute to the nature of the response.
Collapse
|
24
|
Molecular epidemiological investigation of Marek’s disease virus from Guangxi, China. Arch Virol 2010; 156:203-6. [DOI: 10.1007/s00705-010-0840-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 10/15/2010] [Indexed: 10/18/2022]
|
25
|
Parvizi P, Andrzejewski K, Read LR, Behboudi S, Sharif S. Expression profiling of genes associated with regulatory functions of T-cell subsets in Marek's disease virus-infected chickens. Avian Pathol 2010; 39:367-73. [DOI: 10.1080/03079457.2010.508776] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Haq K, Abdul-Careem MF, Shanmuganthan S, Thanthrige-Don N, Read LR, Sharif S. Vaccine-induced host responses against very virulent Marek's disease virus infection in the lungs of chickens. Vaccine 2010; 28:5565-72. [DOI: 10.1016/j.vaccine.2010.06.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/07/2010] [Accepted: 06/10/2010] [Indexed: 02/02/2023]
|
27
|
Zhao G, Zheng M, Chen J, Wen J, Wu C, Li W, Liu L, Zhang Y. Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization. Genet Mol Biol 2010; 33:44-50. [PMID: 21637603 PMCID: PMC3036089 DOI: 10.1590/s1415-47572009005000097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 07/20/2009] [Indexed: 11/22/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is a new type of virus that mainly induces myeloid leukosis (ML) in chickens. To further elucidate the pathogenesis of ALV-J infection and tumor development, expression profiles from the bone marrow tissue of 15 infected and 18 non-infected birds from a local-breed poultry-farm under naturally infected conditions, were analyzed by suppression-subtractive hybridization. The birds were diagnosed as ML+ (or ML-) by specific ALV-J detection methods, involving serological tests for antigens and antibodies, and RT-PCR to detect viral RNA. A total of 59 partial gene sequences were revealed by differential screening of 496 forward and 384 reverse subtracted cDNA clones. Of these, 22 identified genes, including 8 up-regulated and 14 down-regulated, were related to immune functions, these genes being, MHC B-G antigen, translationally-controlled tumor protein (TPT1/TPTC), transferrin and ferritin, hemoglobin and Carbonic anhydrase. Four of the down-regulated genes were selected for further analysis, in view of their predicted roles in infection and immunity by real-time qRT-PCR, using RNA collected from the same birds as those used for SSH. The four genes were expressed at significantly lower levels (p < 0.001) in ALV-J infected birds than in non-infected ones.
Collapse
Affiliation(s)
- Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Jilan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Chunmei Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Wenjuan Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Libo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, BeijingChina
| | - Yuan Zhang
- Department of Animal Genetics Breeding, China Agricultural University, BeijingChina
| |
Collapse
|
28
|
Cytokine gene expression in splenic CD4+ and CD8+ T cell subsets of genetically resistant and susceptible chickens infected with Marek's disease virus. Vet Immunol Immunopathol 2009; 132:209-17. [DOI: 10.1016/j.vetimm.2009.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 01/03/2023]
|
29
|
Effects of transferrins and cytokines on nitric oxide production by an avian lymphoblastoid cell line infected with Marek's disease virus. Antiviral Res 2009; 81:248-52. [DOI: 10.1016/j.antiviral.2008.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 10/10/2008] [Accepted: 12/05/2008] [Indexed: 11/19/2022]
|
30
|
Parvizi P, Read L, Abdul-Careem MF, Lusty C, Sharif S. Cytokine Gene Expression in Splenic CD4+and CD8+T-Cell Subsets of Chickens Infected with Marek's Disease Virus. Viral Immunol 2009; 22:31-8. [DOI: 10.1089/vim.2008.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Payvand Parvizi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Leah Read
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | - Christopher Lusty
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
31
|
Sarson AJ, Abdul-Careem MF, Read LR, Brisbin JT, Sharif S. Expression of cytotoxicity-associated genes in Marek's disease virus-infected chickens. Viral Immunol 2008; 21:267-72. [PMID: 18570592 DOI: 10.1089/vim.2007.0094] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytotoxic host responses to Marek's disease virus (MDV) have been attributed to both natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). However, the mechanisms of cell lysis initiated by these cytotoxic responses during MDV infection are not well defined. Therefore, the current study was aimed at elucidating the molecular mechanisms of host cytotoxic responses to MDV infection by investigating the expression of genes in the cell lysis pathway involving granzyme A. Genes encoding cytolytic proteins, NK lysin, and granzyme A were upregulated during early stages of infection, whereas the genes encoding major histocompatibility complex (MHC) class I and the DNA repair and apoptosis protein, poly(ADP-ribose) polymerase (PARP), were downregulated. These findings shed more light on the mechanisms of host response to MDV infection in chickens.
Collapse
Affiliation(s)
- Aimie J Sarson
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Host responses are induced in feathers of chickens infected with Marek's disease virus. Virology 2007; 370:323-32. [PMID: 17949771 DOI: 10.1016/j.virol.2007.09.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 07/12/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022]
Abstract
Control measures are ineffective in curtailing Marek's disease virus (MDV) infection and replication in the feather follicle epithelium (FFE). Therefore, vaccinated birds which subsequently become infected with MDV, shed the virulent virus although they remain protected against disease. The present study investigated host responses generated against MDV infection in the feather. We observed that in parallel with an increase in viral genome load and viral replication in the feather, there was a gradual but progressive increase in infiltration of CD4+ and CD8+ T cells into the feather pulp of MDV-infected chickens, starting on day 4 and peaking by day 10 post-infection. Concomitant with infiltration of T cells, the expression of interleukin (IL)-18, IL-6, interferon (IFN)-gamma and major histocompatibility complex class I genes was significantly enhanced in the feather pulp of MDV-infected chickens. The finding that host responses are generated in the feather may be exploited for developing strategies to control MDV infection in the FFE, thus preventing horizontal virus transmission.
Collapse
|
33
|
Butter C, Staines K, Baaten B, Smith L, Davison TF. Route of challenge is critical in determining the clinical outcome of infection with a very virulent oncogenic herpesvirus, Marek's disease virus. Avian Pathol 2007; 36:93-9. [PMID: 17479368 DOI: 10.1080/03079450601156075] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The majority of experimental studies examining Marek's disease virus infection have used parenteral injection of cell-associated virus. The aim of this study was to examine whether the route of entry of virus was critical in determining the outcome of infection. Susceptible (L7) and resistant (L6) White Leghorn chickens were infected with a very virulent Marek's disease virus, RB1B, by either the intra-abdominal or intra-tracheal route. Birds infected by the intra-tracheal route had earlier, higher or more sustained blood, spleen and lung viral concentrations than those infected by the intra-abdominal route. L7 birds had higher viral loads than L6 birds infected by the same route. Clinical outcomes reflected these data. Resistant birds infected by the intra-tracheal route had an increased prevalence of tumours and shorter survival times compared with those infected by the intra-abdominal route. Susceptible birds infected by the intra-tracheal route became paralysed 10 days after infection. L7 birds had shorter survival times and increased prevalences of tumours than L6 birds. The pathology and viraemia seen with intra-tracheal infection could not be fully replicated by increasing the dose in intra-abdominal infections. We conclude that instillation of infective dust produces a more aggressive infection that depends on the route of entry and form of virus, and not just on the challenge dose.
Collapse
Affiliation(s)
- Colin Butter
- The Institute for Animal Health, Compton, Newbury, Berkshire, UK.
| | | | | | | | | |
Collapse
|
34
|
Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S. Marek's disease virus: from miasma to model. Nat Rev Microbiol 2006; 4:283-94. [PMID: 16541136 DOI: 10.1038/nrmicro1382] [Citation(s) in RCA: 307] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marek's disease virus (MDV) is an oncogenic herpesvirus that causes various clinical syndromes in its natural host, the chicken. MDV has long been of interest as a model organism, particularly with respect to the pathogenesis and immune control of virus-induced lymphoma in an easily accessible small-animal system. Recent advances in MDV genetics and the determination of the chicken genome sequence, aided by functional genomics, have begun to dramatically increase our understanding not only of lytic MDV replication, but also of the factors and mechanisms leading to latency and tumour formation. This new information is helping to elucidate cellular signalling pathways that have undergone convergent evolution and are perturbed by different viruses, and emphasizes the value of MDV as a comparative biomedical model. Furthermore, the door is now open for rational and efficient engineering of new vaccines against one of the most important and widespread infectious diseases in chickens.
Collapse
Affiliation(s)
- Nikolaus Osterrieder
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
35
|
Niemiec PK, Read LR, Sharif S. Synthesis of chicken major histocompatibility complex class II oligomers using a baculovirus expression system. Protein Expr Purif 2005; 46:390-400. [PMID: 16236525 DOI: 10.1016/j.pep.2005.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 08/29/2005] [Accepted: 09/01/2005] [Indexed: 11/15/2022]
Abstract
Chicken major histocompatibility complex (MHC) B21 and B19 haplotypes are associated with resistance and susceptibility to Marek's disease (MD), respectively. T-cell-mediated immune response is crucial in coordinating protection against Marek's disease virus (MDV) infection, but it has been difficult to identify and characterize antigen-specific T-cells. MHC class II tetramers and oligomers have been widely used for characterization of antigen-specific T-cells in the context of infectious and autoimmune diseases. Thus, the objective of this study was to synthesize chicken MHC class II oligomers of B21 and B19 haplotypes for the future identification of antigen-specific T-cells. To achieve this objective, full-length coding sequences of chicken MHC class II B21 and B19 molecules were amplified and the molecules were expressed as fusion proteins, carrying Fos and Jun leucine zipper (LZ), histidine-tag and biotin ligase recognition site sequences, using a baculovirus expression system. Recombinant MHC-II were loaded with self-peptides, which stabilized the heterodimer in SDS-PAGE and allowed the detection of these molecules in Western blots with a conformation-specific anti-chicken MHC class II antibody. Biotinylated MHC molecules were conjugated to streptavidin to form oligomers, which were resolved under the transmission electron microscope through immuno-gold labelling, thus confirming success of oligomerization. In conclusion, chicken MHC class II oligomers may be used in the future to study the antigen-specific CD4+ T-cell compartment.
Collapse
Affiliation(s)
- Patrycja K Niemiec
- Department of Pathobiology, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | | | |
Collapse
|
36
|
Yunis R, Jarosinski KW, Schat KA. Association between rate of viral genome replication and virulence of Marek's disease herpesvirus strains. Virology 2004; 328:142-50. [PMID: 15380365 DOI: 10.1016/j.virol.2004.07.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 05/27/2004] [Accepted: 07/06/2004] [Indexed: 11/23/2022]
Abstract
The early pathogenesis of Marek's disease virus (MDV) infection is characterized by a lytic infection followed by the induction of latency. Genetically resistant N2a and susceptible P2a chickens were infected with the less virulent JM-16 or the very virulent plus (vv+) RK-1 MDV strains to examine the relationship between virulence and resistance on virus replication during 1-10 days postinfection (dpi) using real-time quantitative polymerase chain reaction (qPCR) and quantitative reverse transcriptase (qRT)-PCR assays. The numbers of copies of the viral DNA or transcripts amplified by these assays were normalized relative to cellular controls and subjected to three-way ANOVA. Viral DNA but not RNA was present in spleens at 1-3 dpi in decreasing quantities, and at 4 dpi, viral DNA started to increase concomitant with the initiation of viral transcription independently of virus strain and genetic resistance. At 6 dpi, JM-16 became latent in resistant N2a and susceptible P2a chickens with low levels of viral transcripts, but transcriptional activity increased in susceptible P2a chickens at 9 and 10 dpi. In contrast, infection with vv+ RK-1 never went into latency in both chicken lines. Viral transcripts were present from 4 to 10 dpi showing a higher and more persistent viral activity that may lead to severe damage to the lymphoid organs resulting in increased immunosuppression and increased incidence of MD. The use of qPCR and qRT-PCR to determine viral DNA load and transcriptional activity may offer an alternative to the current system of pathotyping to characterize new MDV isolates.
Collapse
Affiliation(s)
- Reem Yunis
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | | |
Collapse
|
37
|
Baaten BJG, Butter C, Davison TF. Study of host-pathogen interactions to identify sustainable vaccine strategies to Marek's disease. Vet Immunol Immunopathol 2004; 100:165-77. [PMID: 15207454 DOI: 10.1016/j.vetimm.2004.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Marek's disease virus is a highly cell-associated, lymphotropic alpha-herpesvirus that causes paralysis and neoplastic disease in chickens. The disease has been contained by vaccination with attenuated viruses and provides the first evidence for a malignant cancer being controlled by an antiviral vaccine. Marek's disease pathogenesis is complex, involving cytolytic and latent infection of lymphoid cells and oncogenic transformation of CD4+ T cells in susceptible chickens. Innate and adaptive immune responses develop in response to infection, but infection of lymphocytes results in immunosuppressive effects. The remarkable ability of MDV to escape immune responses by interacting with, and down-regulating, some key aspects of the immune system will be discussed in the context of genetic resistance. Resistance conferred by vaccination and the implications of targeting replicative stages of the virus will also be examined.
Collapse
Affiliation(s)
- B J G Baaten
- Institute for Animal Health, Compton, Newbury RG20 7NN, Berkshire, UK.
| | | | | |
Collapse
|
38
|
Shamblin CE, Greene N, Arumugaswami V, Dienglewicz RL, Parcells MS. Comparative analysis of Marek’s disease virus (MDV) glycoprotein-, lytic antigen pp38- and transformation antigen Meq-encoding genes: association of meq mutations with MDVs of high virulence. Vet Microbiol 2004; 102:147-67. [PMID: 15327791 DOI: 10.1016/j.vetmic.2004.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 11/06/2003] [Accepted: 06/09/2004] [Indexed: 11/18/2022]
Abstract
Marek's disease (MD) is a highly contagious lymphoproliferative and demyelinating disorder of chickens. MD is caused by Marek's disease virus (MDV), a cell-associated, acute-transforming alphaherpesvirus. For three decades, losses to the poultry industry due to MD have been greatly limited through the use of live vaccines. MDV vaccine strains are comprised of antigenically related, apathogenic MDVs originally isolated from chickens (MDV-2), turkeys (herpesvirus of turkeys, HVT) or attenuated-oncogenic strains of MDV-1 (CVI-988). Since the inception of high-density poultry production and MD vaccination, there have been two discernible increases in the virulence of MDV field strains. Our objectives were to determine if common mutations in the major glycoprotein genes, a major lytic antigen phosphoprotein 38 (pp38) or a major latency/transformation antigen Meq (Marek's EcoRI-Q-encoded protein) were associated with enhanced MDV virulence. To address this, we cloned and sequenced the major surface glycoprotein genes (gB, gC, gD, gE, gH, gI, and gL) of five MDV strains that were representative of the virulent (v), very virulent (vv) and very virulent plus (vv+) pathotypes of MDV. We found no consistent mutations in these genes that correlated strictly with virulence level. The glycoprotein genes most similar among MDV-1, MDV-2 and HVT (gB and gC, approximately 81 and 75%, respectively) were among the most conserved across pathotype. We found mutations mapping to the putative signal cleavage site in the gL genes in four out of eleven vv+MDVs, but this mutation was also identified in one vvMDV (643P) indicating that it did not correlate with enhanced virulence. In further analysis of an additional 12 MDV strains, we found no gross polymorphism in any of the glycoprotein genes. Likewise, by PCR and RFLP analysis, we found no polymorphism at the locus encoding the pp38 gene, an early lytic-phase gene associated with MDV replication. In contrast, we found distinct mutations in the latency and transformation-associated Marek's EcoRI-Q-encoded protein, Meq. In examination of the DNA and deduced amino acid sequence of meq genes from 26 MDV strains (9 m/vMDV, 5 vvMDV and 12 vv+MDVs), we found distinct polymorphism and point mutations that appeared to correlate with virulence. Although a complex trait like MDV virulence is likely to be multigenic, these data describe the first sets of mutations that appear to correlate with MDV virulence. Our conclusion is that since Meq is expressed primarily in the latent/transforming phase of MDV infection, and is not encoded by MDV-2 or HVT vaccine viruses, the evolution of MDV virulence may be due to selection on MDV-host cell interactions during latency and may not be mediated by the immune selection against virus lytic antigens such as the surface glycoproteins.
Collapse
Affiliation(s)
- Christine E Shamblin
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | | | | | | | | |
Collapse
|
39
|
Caldwell DJ, Danforth HD, Morris BC, Ameiss KA, McElroy AP. Participation of the intestinal epithelium and mast cells in local mucosal immune responses in commercial poultry. Poult Sci 2004; 83:591-9. [PMID: 15109056 DOI: 10.1093/ps/83.4.591] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The intestinal mucosa of commercial poultry is continually subjected to invasion or colonization by a wide array of potentially hostile enteric pathogens. Although, recent investigations have focused on lymphocyte involvement in immune responses in the intestine, lymphocyte-mediated immunity alone will not explain the barrier nature of mucosal membranes associated with rejection of many enteric pathogens upon secondary homologous challenge. Our laboratories have focused on nontraditional elements of mucosal immunity in poultry to better understand host-pathogen interactions in the intestine. Following classical and novel immunization procedures, we have identified an antigen-specific mechanism of immediate responsiveness of the mucosal epithelium characterized by epithelial chloride secretion. This mechanism, characteristic of intestinal anaphylaxis, is mediated by local immune elements. Similar mechanisms in mammals contribute to the barrier nature of mucosal membranes during pathogen challenge. To identify cells participating in these and similar responses, additional studies have described a role for mast cells in acute phase responses in the intestines of chickens experimentally challenged with Eimeria. To a more practical end, other experiments in our laboratories have characterized drinking water administration of BSA for elicitation of local and systemic antibody responses. These experiments have shown ad libitum drinking water administration of BSA to be as effective as i.p. administration of BSA; they present a novel approach to immunization of commercial poultry with protein vaccines. These investigations support continued research on host-pathogen interactions within the intestine of commercial poultry to better understand and control enteric pathogens through vaccination or immunomodulation.
Collapse
Affiliation(s)
- D J Caldwell
- Department of Poultry Science, Texas A & M University, College Station, Texas 77843, USA.
| | | | | | | | | |
Collapse
|
40
|
Lee LF, Bacon LD, Yoshida S, Yanagida N, Zhang HM, Witter RL. The Efficacy of Recombinant Fowlpox Vaccine Protection Against Marek's Disease: Its Dependence on Chicken Line and B Haplotype. Avian Dis 2004; 48:129-37. [PMID: 15077806 DOI: 10.1637/7083] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Earlier studies have shown that the B haplotype has a significant influence on the protective efficacy of vaccines against Marek's disease (MD) and that the level of protection varies dependent on the serotype of MD virus (MDV) used in the vaccine. To determine if the protective glycoprotein gene gB is a basis for this association, we compared recombinant fowlpox virus (rFPV) containing a single gB gene from three serotypes of MDV. The rFPV were used to vaccinate 15.B congenic lines. Nonvaccinated chickens from all three haplotypes had 84%-97% MD after challenge. The rFPV containing gB1 provides better protection than rFPV containing gB2 or gB3 in all three B genotypes. Moreover, the gB proteins were critical, since the B*21/*21 chickens had better protection than chickens with B*13/*13 or B*5/*5 using rFPV with gB1, gB2, or gB3. A newly described combined rFPV/gB1gEgIUL32 + HVT vaccine was analyzed in chickens of lines 15 x 7 (B*2/*15) and N (B*21/*21) challenged with two vv+ strains of MDV. There were line differences in protection by the vaccines and line N had better protection with the rFPV/gB1gEgIUL32 + HVT vaccines (92%-100%) following either MDV challenge, but protection was significantly lower in 15 X 7 chickens (35%) when compared with the vaccine CVI988/Rispens (94%) and 301B1 + HVT (65%). Another experiment used four lines of chickens receiving the new rFPV + HVT vaccine or CVI988/Rispens and challenge with 648A MDV. The CVI 988/Rispens generally provided better protection in lines P and 15 X 7 and in one replicate with line TK. The combined rFPV/gB1gEgIUL32 + HVT vaccines protected line N chickens (90%) better than did CVI988/Rispens (73%). These data indicate that rFPV + HVT vaccines may provide protection against MD that is equivalent to or superior to CVI988/ Rispens in some chicken strains. It is not clear whether the rFPV/gB1gEgIUL32 + HVT vaccine will offer high levels of protection to commercial strains, but this vaccine, when used in line N chickens, may be a useful model to study interactions between vaccines and chicken genotypes and may thereby improve future MD vaccines.
Collapse
MESH Headings
- Animals
- Animals, Congenic
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Chickens/genetics
- Fowlpox virus/genetics
- Fowlpox virus/immunology
- Genes, Viral
- Haplotypes
- Herpesvirus 1, Meleagrid/genetics
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 2, Gallid/genetics
- Herpesvirus 2, Gallid/immunology
- Herpesvirus 3, Gallid/genetics
- Herpesvirus 3, Gallid/immunology
- Marek Disease/immunology
- Marek Disease/prevention & control
- Species Specificity
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/pharmacology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Vaccines/genetics
- Viral Vaccines/pharmacology
Collapse
Affiliation(s)
- Lucy F Lee
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, 3606 East Mt. Hope Road, East Lansing, MI, USA
| | | | | | | | | | | |
Collapse
|
41
|
Garcia-Camacho L, Schat KA, Brooks R, Bounous DI. Early cell-mediated immune responses to Marek's disease virus in two chicken lines with defined major histocompatibility complex antigens. Vet Immunol Immunopathol 2003; 95:145-53. [PMID: 12963275 DOI: 10.1016/s0165-2427(03)00140-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N2a and P2a chickens, resistant and susceptible to Marek's disease (MD), respectively, were used to examine relationships between major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes (CTL) and natural killer (NK)-like cell activity with resistance to infection with Marek's disease virus (MDV). Ten-day-old chickens were infected with MDV and euthanatized at selected times to evaluate for NK cell and MHC-restricted cytotoxicity. The N2a MDV-infected chickens had an early cell-mediated immune response characterized by a sustained NK-like cytotoxicity that coincided with a measurable MHC-cytotoxicity that was lower than controls. Although MHC-restricted and NK cell cytotoxicity was demonstrated in P2a MDV-infected chickens at 8 dpi, both abruptly decreased and remained low for the remainder of the 20-day experiment. The critical time point that may determine the resistance to MD appears to be within the first 2 weeks post-infection. Improvement of the chicken NK cell activity may be a good candidate for both selection and immunomodulation MD control programs.
Collapse
Affiliation(s)
- Lucia Garcia-Camacho
- Department of Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|